Integral identities for the boundary of convex body
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
В работе получены обобщения тождеств Плейеля и Амбарцумяна-Плейеля на случай произвольной размерности пространтсва. Кроме того, найдено обобщение формул Бляшке-Петканчина и Цэле для случая, когда часть точек выбирается внутри выпуклого тела, а часть на границе. Также получен вариант формулы Цэле для выпуклых многогранников.
In this work we present the generalizations of Pleijel and Ambartzumian-Pleijel identities for the case of arbitrary dimension. We also obtain generalisation of both Blaschke-Petkantschin and Zähle formulae for the case when some points are chosen inside the convex body and some on it's boundary. Moreover version of Zähle formula is derived for polytopes.
In this work we present the generalizations of Pleijel and Ambartzumian-Pleijel identities for the case of arbitrary dimension. We also obtain generalisation of both Blaschke-Petkantschin and Zähle formulae for the case when some points are chosen inside the convex body and some on it's boundary. Moreover version of Zähle formula is derived for polytopes.