Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://hdl.handle.net/11701/6011
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIstomin, V.A.-
dc.contributor.authorKustova, E.V.-
dc.date.accessioned2017-02-16T12:56:41Z-
dc.date.available2017-02-16T12:56:41Z-
dc.date.issued2017-02-16-
dc.identifier.issn0301-0104-
dc.identifier.urihttp://hdl.handle.net/11701/6011-
dc.description.abstractState-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.en_GB
dc.description.sponsorshipThis study is supported by the Russian Foundation for Basic Research, project 16-38-60009, and Saint Petersburg State University, project 6.37.206.2016.en_GB
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.ispartofseries485-486;125-139-
dc.subjectElectronic excitation, plasma, state-to-state approachen_GB
dc.titleState-specific transport properties of partially ionized flows of electronically excited atomic gasesen_GB
dc.typeArticleen_GB
Располагается в коллекциях:Articles

Файлы этого ресурса:
Файл Описание РазмерФормат 
Printed paper Istomin Kustova Chemical Physocs 2017.pdfPublished paper1,2 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.