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State-to-state approach for theoretical study of transport properties in atomic gases with excited elec-
tronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic
radius on the electronic configuration of excited atoms is taken into account in the transport algorithm.
Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these
criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport
coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for
effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algo-
rithms for modelling the state-specific transport properties are applied for the prediction of transport
coefficients in shock heated flows. Based on the numerical observations, different distributions over elec-
tronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures
greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and
viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited
atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically
excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall
impact of increasing effective cross-sections on the transport properties just behind the shock front under
hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy
levels behind the shock waves are low.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

For the long time the influence of electronic degrees of freedom
on transport properties was out of consideration with a few excep-
tions for the pioneering works by Hirschfelder [1] and Capitelli [2].
The reason for such a neglect is complexity of theoretical mod-
elling and high computational efforts for its implementation. This
gap in the transport kinetic theory starts to filling out during the
last quarter-century. Algorithms for the calculation of transport
coefficients in chemically equilibrium plasmas and one-tempera-
ture non-equilibrium partially ionized gases were proposed [3–
11]. It was shown that in high-temperature flows, neglecting elec-
tronically excited species yields considerably under-predicted con-
vective heat flux.

The objective of the present study is to generalize our previous
one- temperature models of high-temperature reacting flows with
electronic excitation [10,12–15] by including state-to-state kinet-
ics of electronic levels and state-dependent transport coefficients.
While the state-to-state model has been widely used in simula-
tions of vibrationally excited flows (see references in [16,11]), its
implementation for gases with electronic excitation is just starting
[17,18,11,19,20]. In Ref. [11], a near-equilibrium plasma of molec-
ular and atomic hydrogen with electronically excited states of neu-
tral atoms was studied in the state-to-state approach, and the
contribution of electronic levels to the thermal conductivity coeffi-
cient was found to be important. Nevertheless, systematic studies
of state-resolved transport properties in electronically excited
gases are still missing. Moreover, evaluation of the influence of col-
lision diameters of many-electron atoms on the transport proper-
ties in atomic electronically excited gases is still an open problem.

In the present paper a detailed state-to-state model for a non-
equilibrium high-temperature atomic plasma flow of neutral N
and ionized N=Nþ=e� atomic nitrogen, and neutral O and ionized
O=Oþ=e� oxygen, taking into account respectively 170 and 204
electronic energy levels for neutral N and O, and 157 and 254 for
ionized Nþ and Oþ, is developed on the basis of the modified Chap-
man-Enskog method. The approach proposed in the present study
makes it possible to evaluate transport terms directly, with no sep-
aration of low-lying and high-lying electronically excited states
[21,22,11]. The distribution of atomic species over electronic
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energy levels may play an important role for strongly non-equilib-
rium flows, therefore we calculate the transport properties on the
basis of different state-to-state distributions obtained in [21,22].
For the evaluation of transport properties, conditions characteristic
for the spacecraft re-entry (Fire II experiments [23]) into the plan-
etary atmosphere are chosen. The influence of increasing atomic
radius on transport coefficients of gases with electronically excited
states is discussed.

The paper has the following structure: in the next section,
macroscopic fluid dynamic variables and governing equations for
them are introduced according to the state-to-state flow descrip-
tion. These equations are suitable for non-equilibrium high-tem-
perature reacting viscous flows of ionized atomic gases with
arbitrary distributions of species over electronic states. Then the
expressions for the transport terms as well as the algorithms for
the calculation of state-resolved transport coefficients are derived.
Further, in the Section 4, the methods of calculation of the atomic
radius and effective collision cross-section of electronically excited
atoms are discussed. Special focus is on the possibility of
implementation of the Slater’s approach for the evaluation of
atomic radius and effective cross-sections of the collisions of
neutral–neutral and neutral-charged species (the case of resonant
charge-transfer process). The limits of applicability of various
cutoff criteria are indicated, and the maximum allowed atomic
radius is calculated for different initial conditions. Finally, in the
Sections 5 and 6, different state-to-state distributions and corre-
sponding state-resolved transport coefficients (partial thermal
conductivity, shear viscosity, diffusion and thermal diffusion) are
calculated, and the effects of the number of accounted electronic
levels and the state-dependent atomic radius on the transport
terms are estimated.

2. Macroscopic parameters and governing equations

We consider non-equilibrium high-temperature reacting flows
of ionized atomic gases under the following relation between char-
acteristic times of collisional processes:

sch�tr � str � sET � sioniz � h; ð1Þ
here sch�tr ; str ; sET and sioniz are the characteristic times for resonant
charge-exchange due to particle collisions, for translational relax-
ation, for electronic energy relaxation and ionization, respectively;
h is the mean time of the variation of gas-dynamic parameters.
Under such an assumption, relaxation of electronic energy proceeds
at the macroscopic time scale and the state-to-state modeling of
kinetics and transport properties is to be implemented [16].

The closed set of governing equations for the macroscopic
parameters taking into account electronic degrees of freedom of
atoms is derived from the kinetic equations for distribution func-
tion using the generalized Chapman–Enskog method [16]. The
kinetic equations for the distribution function are multiplied by
the collision invariants, which are represented by the momentum,
particle total energy as well as the additional invariants of the most
frequent collisions (which are independent of the velocity and
depend arbitrarily on the electronic level and chemical species),
integrated over velocity and summed over electronic levels and
chemical species. In the case of the absence of external forces
and magnetic fields the governing equations are obtained in the
following form:

dncn
dt þ ncnr � v þr � ðncnVcnÞ ¼ RET

cn þ Rioniz
cn ;

c ¼ X;Xþ; e�; n ¼ 1; . . . ; Lc;

q
dv
dt

þr � P ¼ 0; ð3Þ
q
dU
dt

þr � qþ P : rv ¼ 0; ð4Þ

here ncn is the number density of atom c on the electronic level n
with energy ecn ; v is the gas velocity, Lc is the number of accounted
levels for c-species, X is the corresponding atom N or O, U is the total
specific energy including the electronic one,
qU ¼ 3

2nkT þPc;nenncn þ
P

c;nEic ncn ; Eic is ionization energy, Vcn is

the diffusion velocity of c-species for each electronic state n, RET
cn

and Rioniz
cn are the production terms due to electronic energy transi-

tions and ionization, q is the mixture density, P is the pressure ten-
sor, q is the heat flux. Eqs. (2) include conservation equations
coupled with equations of detailed electronic state and chemical
(ionization) kinetics. While a similar state-to-state approach is
widely used for modeling vibrational relaxation (see references in
[16,11]), it is quite novel for the description of electronically excited
gases. It is worth noting that it is not easy to implement this model
into the computational fluid dynamics due to considerable compu-
tational efforts and absence of data of transition probabilities
between electronic energy levels. On the other hand such a detailed
description of the electronic state kinetics is rather promising for
correct predictions of the heat and mass transfer in high-tempera-
ture flows.

The expressions for the pressure tensor, diffusion velocity, and
heat flux in a viscous flow taking into account state-resolved trans-
port coefficients can be derived using the procedure of the modi-
fied Chapman–Enskog method:

P ¼ pI � 2gS; ð5Þ
Vcn ¼ �
X
d;m

Dcndmdcn � DTcnr ln T; ð6Þ
q ¼ �k0rT � p
X
c;n

DTcndcn þ
X
c;n

5
2
kT þ ecn þ Eic

� �
ncnVcn : ð7Þ

Here S and I are deformation rate and unit tensors, dcn is the dif-
fusive driving force for each electronic state of c species:

dcn ¼ r ncn
n

� �
þ ncn

n
� qcn

q

� �
r lnp; ð8Þ

p; T are the pressure and temperature, g is the shear viscosity
coefficient, Dcndm ; DTcn are the diffusion and thermal diffusion coef-
ficients for different electronic states, k0 is the partial thermal con-
ductivity coefficient. In the present case, normal mean stress does
not include bulk viscosity and relaxation pressure, which are spec-
ified by rapid inelastic processes and appear in the one-tempera-
ture model [16]. This can be explained by the fact that under
relation (1) all rapid processes are either elastic or resonant. More-
over, in the state-to-state approach the thermal conductivity coef-
ficient is specified only by translational degrees of freedom,
whereas the transport of electronic energy is governed by diffusion
processes and therefore can be strongly affected by non-equilib-
rium kinetics of electronic states. The last but not least in the com-
parison of these two approaches is that in the one-temperature
model for pure atomic gases (c ¼ d in the model below) thermal
and mass diffusion vanish (Dcndm ¼ DTcn ¼ 0), which is not the case
for Eqs. (6) and (7) where Dcncm and DTcn – 0 for a single-component
gas. It is interesting to emphasize that in some sense, the state-to-
state approach for atomic gases with electronic excitation is simi-
lar to the model of vibrationally excited molecular gas under con-
dition of slow vibrational relaxation. In the present model, kinetics
of electronic states is investigated instead of that for vibrationally
excited levels.
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3. Transport coefficients

Using the Chapman–Enskog procedure the transport coeffi-
cients are derived by reducing integral equations for the first-order
distribution function to the systems of linear algebraic equations
using expansions of unknown functions into the series of Sonine
polynomials. It is worth noting, that due to the slow convergence
of Sonine polynomials for the case of ionized gases it is not suffi-
cient to keep in the expansions only the first non-vanishing terms.
In the present study, the first three terms: r ¼ 0::2, are retained. In

terms of the expansion coefficients bcn ;r ; acn ;r ; d
dm
cn ;r the expressions

for the transport coefficients take the following form:

g ¼ kT
2

X
cn

ncn
n

bcn ;0; k0 ¼
X
c;n

5
4
k
ncn
n

acn ;1; ð9Þ

DTcn ¼ � 1
2n

acn ;0; Dcn dm ¼ 1
2n

ddm
cn ;0: ð10Þ

The transport linear systems for the expansion coefficients are
derived similarly to [16]. Thus, for the shear viscosity coefficient
it is necessary to find the first coefficient bðc;nÞ;0 of the system

X
d;m

Hcn dm
00 bdm ;0 ¼ 2

kT
ncn
n

; c ¼ X;Xþ; e�; n ¼ 1; . . . ; Lc; ð11Þ

Hcn dm
00 is the bracket integral specified by the cross-sections of

rapid processes [16]; in the present case they include only elastic
collisions and charge transfer.

Partial thermal conductivity and thermal diffusion are found
from the system for the coefficients acn ;r supplemented by the con-
straint required to obtain the unique solution:P

d;m

X
r0
Kcndm

rr0 adm ;r0 ¼ 15kT
2

ncn
n
dr1;

c ¼ X;Xþ; e�; n ¼ 1 . . . Lc; r ¼ 0;1; . . . ;
ð12Þ

X
c;n

qcn

q
acn ;0 ¼ 0; ð13Þ

with Kcndm
rr0 being the corresponding bracket integrals.

Similarly, for diffusion coefficients we have:

P
d;mK

cndm
00 dbl

dm ;0 ¼ 3kT dcnbl �
qcn
q

� �
;

b;d ¼ X;Xþ; e�; l;m ¼ 1; . . . ; Lb;d;
ð14Þ

X
c;n

qcn

q
ddm
cn ;0 ¼ 0; d ¼ X;Xþ; e�; l ¼ 1; . . . ; Ld: ð15Þ

The bracket integrals, after some transformations, can be

expressed in terms of collision integrals Xðk;rÞ
cndm

calculated for each
pair of excited electronic states n and m of atoms c and d. In the
present study we calculate the collision integrals using the models
proposed in [24] but taking into account increasing atomic radius
(i.e. effective cross-section) of electronically excited atoms. The
transport coefficients are then calculated numerically as the solu-
tions of the transport linear systems, and expressed in terms of
the collision integrals.
Table 1
Quantum number n, effective quantum number n� , and n�

h�l calculated using the analytica

n 1 2 3 4 5 6

n� 1 2 3 3.7 4 4.2
n�
h�l 0.91 2.22 2.99 3.53 3.95 4.30
4. Radius and effective collision cross-section of electronically
excited atom

4.1. Slater diameter and effective collision cross-section

Collision integrals for electronically excited states depend sig-
nificantly on the effective cross-section of colliding species [1].
On the other hand the effective cross-section is specified by the
atomic radius, that is defined as a radius of the outermost electron
on atomic orbital and depends on the principle quantum number
[1]. For a hydrogen-like atom, this dependence for the outermost
electron can be expressed directly through the square principle
quantum number n:

rn ¼ 4p�he0
mec2

n2 � a0n2; ð16Þ

here �h is the Plank constant, e0 is the vacuum permittivity constant,
me is the mass of electron, c is the speed of light, a0 is the Bohr
radius.

For atomic orbitals of many-electron atoms (in particular,
N; Nþ; O, and Oþ, considered in the present study), no closed ana-
lytical form can be given because the orbital approximation is very
primitive [25]. In the case of many-electron atoms, the actual
wave-function can be found using a sophisticated numerical tech-
nique which helps to define the so-called Slater-type orbital
belonging to a nucleus of an atom of the atomic number Z [25]:

wðr; h;/Þ ¼ Nrn
��1exp1r=a0Ylml

ðh;/Þ; 1 ¼ Z � S
n� ; ð17Þ

where N is the normalization constant, the effective principle quan-
tum number n� is a function of the principal quantum number n
(see Table 1), 1 is an orbital exponent of a single exponential
function describing an atomic orbital, S is the screening constant
in the Slater orbital [26,27], Ylml

is a spherical harmonic depending
on the orbital quantum number l and magnetic quantum number
ml. For ground electronic states, the values Z � S have been
constructed by fitting Slater-type orbitals to numerically computed
wave-functions [25]. The latter values now replace those originally
proposed by Slater in terms of several simple rules [27].

Slater’s approach makes it possible to represent the collision
diameter of colliding neutral atomic species through the semi-
empirical relation [1]:

rSlater ¼ 2r0 þ 1:8Å; r0 ¼ 2n� þ 1
21

a0; ð18Þ

where r0 is the mean electron radius (i.e. atomic radius), and the
screening constant S for high-lying states should be calculated
directly with the set of Slater’s rules [27] mentioned above.

Based on the values for effective quantum number n�, which is
specified as a function of n ¼ 1 . . .6, for greater values of principal
quantum number n > 6 we constructed an analytical formula for
high-lying electronic states:

n�
h�l ¼ 1:8886 lognþ 0:9124; ð19Þ

that yields the coefficient of determination close to one:
R2 ¼ 0:9877.
l formula (19) for low and high-lying states.

7 8 9 10 11 12

– – – – – –
4.59 4.84 5.06 5.26 5.44 5.61
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In the general case, various orbitals with different values of n
but the same values of l andml are not orthogonal; ns-orbitals with
n > 1 have a zero amplitude at the nucleus, and the Slater’s for-
mula should be used with care [25]. In the present study we do
not account for these exceptions to the basic approximation.

It is known that collision integrals may considerably increase
with the rise of principle quantum number [1,11,13]. It is however
worth mentioning that implementation of the Slater’s approach
(18) yields over-predicted transport cross-section and does not
account for the resonant processes of excitation and charge-
exchange in collisions involving excited atoms or ion-parent atoms
[11,28]. Moreover collision integrals that are handled by interac-
tion potential also depend on polarization of each electronic state,
and the cross-sections of these integrals should involve only
allowed transitions for the electronic energy exchange. In the mod-
ern models [29,24,11] of inter-particle potentials, a phenomeno-
logical approach is implemented. The phenomenological
potentials uðxÞ are constructed combining the well-known Len-
nard-Jones and Born–Mayer-type potentials which are fitted to
experimental results. For such potentials, the collision diameter
is a product, r ¼ x0re, where x0 depends on the ‘‘softness” of collid-
ing particles and corresponds to the minimum of the potential
function uðx0Þ ¼ 0; re is the parameter depending on the polariz-
ability of colliding particles. Due to the absence of experimental
data on polarizability and ‘‘softness” coefficients for each electron-
ically excited state, we put x0; re equal to those in the ground elec-
tronic state. Whereas the last assumption is a rough approximation
for different electronically excited states, we should mention that
for the low-lying levels of N; O; Nþ or Oþ the differences in the val-
ues for re does not exceed 1%, while the discrepancies in values for
polarizability and parameters of x0 can achieve 30%. Concluding
this subsection we should say that at the present moment, the
dependence of collision integrals on the quantum state of chemical
species is largely unknown and its determination still represents a
challenging problem [11].
4.2. Cutoff criteria for electronically excited states

For modelling flows of electronically excited species, the
assumption on the time between collisions, which is much shorter
than the natural lifetime of these states, is needed [30]. For excited
states of hydrogen-like atoms, the natural lifetime between
absorption and re-emission rises as a cube of the principle quan-
tum number multiplied by the lifetime of the ground electronic
state: sn ¼ s1n3 (see Ref. [31]), so far excited states, especially
high-lying, can be treated as an object possessing the lifetime com-
parable with the mean time of variation of gas dynamics parame-
ters, and must be included into the kinetic scheme for atomic gas
flows. For metastable excited states corresponding to forbidden
transitions (i.e. forbidden by electric dipole selection rules) the life-
time may be even higher than that stated above. Consequently,
excited states of atoms may exist at the macroscopic timescale.

On the other hand, accounting for this manifold of states is a
comprehensive and complex computational task and still repre-
sents a challenging problem. Therefore a description of electronic
excitation should include a discussion on the necessary number
of accounted levels. Usually, the following cutoff criteria are imple-
mented [32]:

1. The most often used and well known, ‘‘the ground-state model”,
that completely disregards the presence of electronically
excited particles as well as their influence on lowering of the
ionization potential.

2. The so called ‘‘confined atom approximation” assumes that the
radius of electronically excited species does not exceed the
inter-particle distance (i.e. mean free path). The confined atom
approximation is usually represented by the expression (16) for
the atomic radius of hydrogen-like atoms. This expression can-
not be implemented for many-electron atoms like N; O; Nþ or
Oþ, and more complicated analysis of atomic radii has to be
done (estimates of this approach are provided below for differ-
ent test cases at the temperature range 1000–60,000 K). It is
worth noting that the confined atom approximation takes into
account neither the dependence of ionization potentials on
the presence of excited particles nor the presence of electrons
and ions in the mixture.

3. The most accurate results are obtained by using the Debye–
Huckel criteria (or so called ‘‘static screened Coulomb potential”
model), that truncates the series for the internal partition func-
tions at the term corresponding to electronically excited levels
of atoms with energy above the corrected ionization potential
predicted by the Debye–Huckel theory:
rmax ¼ Zeff kD; ð20Þ
where Zeff is the effective charge seen by the electronic excited
state, zc is the charge of the c-species (0 for neutrals, �1 for elec-
trons, 1 for single-ionized etc.), kD is the Debye length:

Zeff ¼ zc þ 1; ð21Þ

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0kTX
c

nce2c

vuuut ; c ¼ 1 . . . L: ð22Þ

In Eq. (22), nc and ec are the number density and the charge of
n-species in the mixture of L species.

In Fig. 1, the maximum allowed atomic radius for arbitrary elec-
tronically excited species in the mixture is presented as a function
of temperature T and pressure p for the confined atom approxima-
tion and the Debye–Huckel criterion (in the latter case it depends
also on the molar fraction of ionized species) under specific flow
conditions. We assume the Debye–Huckel criterion to be the most
accurate one for ionized mixtures, and we consider conditions cor-
responding to shock heated flows for two cases of re-entering
spacecrafts: Hermes [33,34], and Fire II [23] at the trajectory point
1634 s. The initial conditions before the shock front for Fire II
(v0 ¼ 11360 m=s, T0 ¼ 195 K, p0 ¼ 2 Pa) yield the post-shock
steady-state pressure p1 ¼ 4200 Pa and the fraction of ionized spe-
cies up to 5%. For the Hermes case (v0 ¼ 7198 m=s, T0 ¼ 205 K,
p0 ¼ 2 Pa before the shock front) the post-shock steady-state pres-
sure is p1 ¼ 2000 Pa and the fraction of ionized species does not
exceed 2%. In order to study the pressure effect on the atomic
radius we include also rmax calculated at the atmospheric pressure.
It is seen that the confined atom approximation essentially under-
estimates the maximum value of the atomic radius, especially at
low pressure. Indeed, the presence of charged species in the mix-
ture changes the type of interaction potential from the short-range
to the electronically screened long-range (i.e. taking into account
the long-range Coulomb forces) [35] thus enlarging the maximum
allowed atomic radius. It is worth to note that for both cutoff cri-
teria, the discrepancy between the maximum allowed radius calcu-
lated for different pressures remains approximately the same.

4.3. Effective collision cross-section for collisions of neutral atoms

In addition to the Slater’s approach let us consider an attempt of
Clementi [36] to refine the Slater’s formula, proposing the formulae
for the collision diameter for each electronic level as a function of 1
depending on Z. In the Table 2 collision diameters calculated with
the use of different models are given: (1) r1 for the Slater formula



Table 2
Collision diameters of neutral and ionized atomic nitrogen and oxygen at the ground state calculated with different models.

Interaction r1, [Å] r2, [Å] r3, [Å] r4, [Å] r1�r4
r4

� 100%[%]

Nð4SÞ � Nð4SÞ 3.15686 3.52129 3.18022 3.14663 0.32
Oð3PÞ � Oð3PÞ 2.96303 3.72723 2.98831 3.01248 �1.64
Nð4SÞ � Nþð3PÞ 2.60198 n/a n/a 2.52973 2.86

Oð3PÞ � Oþð4SÞ 2.24298 n/a n/a 2.30493 �2.69

Fig. 1. Maximum of atomic radius for electronically excited species as a function of temperature T: (1) using confined atom approximation; (2) using Debye–Huckel criteria.

V.A. Istomin, E.V. Kustova / Chemical Physics 485–486 (2017) 125–139 129
[27]; (2) r2 for the Clementi formula [36]; (3) r3 for the modified
Slater formula for the ground state collision diameter with the Cle-
menti’s data for the orbital exponent 1; (4) r4 proposed in [24], and
given in the form r ¼ x0re (see discussion in Section 4.1). The latter
data are considered as the most reliable. In [24], collision integrals
obtained using the same data are compared with the accurate
results reported in [37,38], and a good agreement is shown (the
relative error is within 6%).

It is seen that r2 exceeds the other ones up to 12% for N and
23.7% for O (compared to the most reliable data r4). On the other
hand, the discrepancy between r1 and r3 with respect to r4 is
small: corresponding errors do not exceed 0.3% and 1% for N, and
1.7% and 0.8% for O. Therefore we conclude that it is reasonable
to use the simple Slater’s approach while evaluating the effect of
increasing atomic radius of neutral species on the transport
coefficients.
Table 3
N and O Atomic Spectra Levels [39,40] and Slater Diameters Data.

Electronic level Configuration (term)

# N O

1. 2s2.2p3 (4S) 2s2.2p4 (3P)
2. 2s2.2p3 (2D) 2s2.2p4 (3P)
3. 2s2.2p3 (2D) 2s2.2p4 (3P)
4. 2s2.2p3 (2P) 2s2.2p4 (1D)
5. 2s2.2p3 (2P) 2s2.2p4 (1S)
6. 2s2.2p2.3s (4P) 2s2.2p3.3s (5S)
7. 2s2.2p2.3s (4P) 2s2.2p3.3s (3S)
8. 2s2.2p3.3s (4P) 2s2.2p3.3p (5P)
9. 2s2.2p3.3s (2P) 2s2.2p3.3p (5P)
10. 2s2.2p3.3s (2P) 2s2.2p3.3p (5P)
11. 2s.2p4 (4P) 2s2.2p3.3p (3P)
12. 2s.2p4 (4P) 2s2.2p3.3p (3P)
13. 2s.2p4 (4P) 2s2.2p3.3p (3P)
14. 2s2.2p2.3p (2P) 2s2.2p3.4s (5S)
In Table 3, the Slater diameters of the first 1–14 electronic
energy levels for N and O are given. One can see a non-monotonic
dependence of diameters on the electronic configuration. More-
over, for the nitrogen states 11–13 we obtain the same collision
diameters as for the ground state. For both N and O atoms, the
diameters of four low-lying electronic states take the same value
as for the ground state.

Since no simple explanation of this effect for many-electron
atom can be given, the simplest analogy can be drawn using hydro-
gen-like atom, whose atomic radius as a function of electronic
energy level increases as squared principle quantum number n2

(see (16)). Following this, the atomic radius behaviour of hydro-
gen-like atomic species reflects the behaviour of n2, where n grad-
ually increases with the number of electronic level. Similarly to
this, the radius of many-electron atomic species also depends on
the principle quantum number (more rigorously, on its effective
Electronic level, [cm�1] rSlater ,Å

N O N O

0 0 3.15686 2.96303
19224.464 158.265 3.15686 2.96303
19233.177 226.977 3.15686 2.96303
28838.92 15867.862 3.15686 2.96303
28839.306 33792.583 3.15686 2.96303
83284.07 73768.2 8.74545 8.15013
83317.83 76794.978 8.74545 8.15013
83364.62 86625.757 8.74545 8.15013
86137.35 86627.778 8.74545 8.15013
86220.51 86631.454 8.74545 8.15013
88107.26 88630.587 3.15686 8.15013
88151.17 88631.146 3.15686 8.15013
88170.57 88631.303 3.15686 8.15013
93581.55 95476.728 8.74545 18.24683
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value n�, see (18)), the dependence is however linear. In addition to
this, the behaviour of principle quantum number n of many-elec-
tron atoms is non-monotonic [39]. Thus, as a rough approximation,
the behaviour of atomic radius of an electronically excited many-
electron atom corresponds to the non-monotonic behaviour of
effective quantum number n�.

In Fig. 2, the radius of neutral atoms as a function of electronic
energy and the Slater diameter as a function of electronic level are
presented. For atomic oxygen O, the excited atom radius increases
faster compared to N. For electronic levels lower than 25 (with
energy less than 12 eV), the radius and the corresponding Slater
diameter of N is about three times higher than for the ground state.
Contrarily to this, for the 14th level of O; r related to the Slater
diameter for the ground electronic state is about 6 (see Fig.2),
and after some fluctuations in the middle-lying levels 14–50, it
shows further increasing. For N, the diameter variation for high-
lying states is weak: for levels 50–160 the diameter is close to
6r11 (rnm represents the effective cross-section for the collision
of two electronically excited species on levels n and m correspond-
ingly). This can be attributed to the behaviour of the principle
quantum number which determines the radius. Thus for oxygen,
the principle quantum number for the states above 150 increases
and attains 24 whereas for nitrogen it is approximately 6 for all
high-lying states. This also explains the fact that collision diame-
ters for highly located states in nitrogen are significantly lower
compared to the diameters of corresponding states in oxygen
(see Fig. 2). The physical reason for this is associated to the form
of electron configuration in the atomic shell: while for
Nð1s2:2s2:2p3Þ the electron is removed from a half-filled 2p orbi-
tal, for Oð1s2:2s2:2p4Þ two electrons in 2px-orbitals are coupled
to each other but one of them can be easier removed since the
resulting 2p3 configuration has a low energy [25]. Therefore the
electron, which has to be removed to ionize O, has a lower elec-
tron-nuclear attraction force than for the same electron of N; con-
sequently, the atomic radius of O increases faster with electronic
level.

It is emphasized in [32] that for ionized mixture flows the factor
of lowering the ionization energy due to the presence of charged
particles has to be taken into account. In the present study we
use the criteria suggested in [41]: ecn 6 Ec � DEc; Ec is the ionization
energy, and the above mentioned lowering factor DEc is set to
1000 cm�1. The value of DEc = 1000 cm�1 is chosen based on the
Fig. 2. Atomic radius and effective collision cross-section rnn as a fun
good agreement of our results for the specific heats with those
reported in [41] for the given number of accounted electronic
energy of each species in the mixture; the relative error for the
specific heats is within 5%. Also this value for DEc allows us to
cut-off the very high-lying electronic states, that are usually
unpopulated in real flows. The above assumption yields the
following numbers of electronic levels and corresponding
energies: LN ¼ 170 and eN170 ¼ 114;027 cm�1; LNþ ¼ 157;
eNþ

157
¼ 230; 832 cm�1; LO ¼ 204; eO204 ¼ 109;647 cm�1; LOþ ¼ 254;

eOþ
254

¼ 282; 219 cm�1.

It is clearly seen (see Figs. 2 and 3), that the number of
accounted electronic energy levels chosen in the present study sat-
isfies not only the Debye–Huckel criteria, but also the confined
atom approximation model for the initial conditions of Fire II and
Hermes (see Fig. 1). Moreover, for ionized mixtures under atmo-
spheric pressure, the Debye–Huckel criteria also can be imple-
mented. The only case when the increasing radius of the excited
atom should be taken with care corresponds to the confined atom
approximation model for the atmospheric pressure and tempera-
ture T > 10000 K. It is obvious that under this condition, ionization
is of importance and the confined atom approximation model rep-
resents only a rough approximation to the Debye–Huckel criteria.
Thus we can conclude that for the atmospheric entry conditions
studied in the present paper, the atomic radii calculated using
the Slater’s approach are in line with the results obtained for the
maximum atomic radius rmax allowed by the Debye–Huckel
criteria.

4.4. Effective collision cross-section for resonant ion-parent atom
collisions

Along with neutral–neutral atomic collisions one of the most
important processes in plasma diffusion and energy transfer is
the resonant charge-transfer process during collisions of an ion
and a parent atom [32,11]. This type of collisions influences the dif-

fusion-type collision integrals (i.e.the odd-order Xðk;rÞ
cndm

; k ¼ odd)
and is characterized by very large cross-sections. For this reason,
these collisions can not be neglected in the calculation of transport
properties of thermal plasma flows [11]. The process of charge
transfer has a high probability at large separation between collid-
ing particles and can be represented as follow:
ction of electronic energy and electronic level for neutral atoms.



Fig. 3. Atomic radius and effective collision cross-section rnn for ionized atomic species as a function of electronic energy and electronic level.
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Xn þ Xþ
m ) ðXþ

2 )Þ Xþ
n þ Xm; X ¼ N;O; ð23Þ
i.e. through formation of quasi-molecular ion of X-species. When
the system is transformed in a basis of states so that the interaction
is localized within a small region of distances, the interaction is
restricted to two states strongly coupled in a localized non-adia-
batic region, the so-called two state approximation, and the reso-
nant charge-exchange process can occur through the interaction
of two distinct pathways owing to the symmetry of the quasi-mole-
cule states [11]. At large distances the molecular arrangements of
XmX

þ
n and Xþ

n Xm degenerate, and exchange interaction splits the
molecular states into a pair of symmetric gerade and antisymmetric
ungerade terms, with respect to the exchange of nuclei [11].

There are two widely used approaches for estimation of charge-
transfer cross-sections. The most rigourous quantum approach
solves the Schrödinger equations for the wave function, that makes
possible to represent the total scattering cross-section as a sum of
the cross-sections due to: (1) direct elastic scattering; (2) charge
exchange; and (3) the term due to the interference (achieves min-
imal value when the classical limit is attained) [11]. In colliding
systems involving open-shell atoms, the resonant charge-exchange
process usually occurs through more than one pair of gerade-
ungerade states and the relevant cross-section can be obtained
by averaging the partial contributions with suitable statistical
weights [11].

Another (asymptotic) approach for estimation of resonant
charge-transfer cross-sections is based on the idea of expanding
the cross-section in terms of small parameter connected to the
geometry of the collision [3,11]. This approach gives the form of
transport cross-section as a sum of doubled effective cross-section
and so-called polarization correction, which is usually neglected
for high-temperature flows [11]. With this in mind, effective
odd-order collision integrals are usually considered on the basis
Table 4
Atomic radius of neutral and ionized nitrogen and oxygen at the ground state calculated

Atom Configuration (term) r1, [Å

N 2s2.2p3 (4S) 0.678
O 2s2.2p4 (3P) 0.581
Nþ 2s2.2p2 (3P) 0.622

Oþ 2s2.2p3 (4S) 0.539
of the classical-trajectory formulation resulting in the geometrical
mean of elastic and inelastic resonant contributions [11]:

Xðl;sÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXðl;sÞ�

el Þ2 þ ðXðl;sÞ�
ch�trÞ

2
q

; l ¼ odd; ð24Þ

in which the transport cross-section has the following form:

r ¼ 2reff ¼ 2ðri þ rjÞ; ri ¼ 2n�
i þ 1
21

a0; ð25Þ

and atomic radii ri and rj can be found using the Slater formula.
Atomic radii of different species are presented in Table 4. While

r1 is calculated using the Slater’s approach, r2 is obtained through
the backward transformation from r4 (the data in [24]) to the
atomic radius. Comparison shows that for atomic nitrogen, using
the Slater’s approach yields slightly overestimated atomic radius,
whereas for atomic oxygen the radius is underestimated. The dis-
crepancy varies from 0.76% for N up to 5.24% for Nþ. Nevertheless
for the effective resonant ion-atom cross-section this discrepancy
is even lower and does not exceed 2.9% (see Table 2). Thus we
can conclude that applying the Slater’s approach yields a satisfac-
tory accuracy of the effective cross-Section (25) for the resonant
charge-transfer process.

Let us discuss now the variation of ionized species radius with
the electronic energy. In Table 5 the atomic radii of the first 1–14
electronic energy levels for Nþ and Oþ are shown. One can notice
a considerable increase in Nþ and Oþ radius from 12th and 11th
levels correspondingly. Nevertheless, this increase is lower than
that for neutral atomic species.

While for neutral atomic species the atomic radius increases
with the energy (especially for oxygen, see Fig. 2), for ionized spe-
cies starting from the energy about 25 eV this increase slows down
and rn fluctuates near the constant value of 4 Å (see Fig. 3). Thus
according to (25) the increase in charge-transfer collision diameter
with different models.

] r2, [Å] r1�r2
r2

� 100% [%]

43 0.67331 0.76
52 0.60624 �4.08
56 0.59155 5.24
97 0.54623 �1.15



Table 5
Nþ and Oþ Atomic Spectra Levels [39,40] and atomic radius, obtained using Slater’s approach.

Electronic level Configuration (term) Electronic level, [cm�1] r,Å

# Nþ Oþ Nþ Oþ Nþ Oþ

1. 2s2.2p2 (3P) 2s2.2p3 (4S) 0 0 0.62256 0.53977
2. 2s2.2p2 (3P) 2s2.2p3 (2D) 48.7 26810.55 0.62256 0.53977
3. 2s2.2p2 (3P) 2s2.2p3 (2D) 130.8 26830.57 0.62256 0.53977
4. 2s.2p3 (5S) 2s2.2p3 (2P) 46784.6 40468.01 0.62256 0.53977
5. 2s.2p3 (3D) 2s2.2p3 (2P) 92237.2 40470.00 0.62256 0.53977
6. 2s.2p3 (3D) 2s.2p4 (4P) 92250.3 119837.21 0.62256 0.53977
7. 2s.2p3 (3D) 2s.2p4 (4P) 92251.8 120000.43 0.62256 0.53977
8. 2s.2p3 (3P) 2s.2p4 (4P) 109216.6 120082.86 0.62256 0.53977
9. 2s.2p3 (3P) 2s.2p4 (2D) 109217.6 165988.46 0.62256 0.53977
10. 2s.2p3 (3P) 2s.2p4 (2D) 109223.5 165996.50 0.62256 0.53977
11. 2s.2p3 (1D) 2s2.2p2.3s (4P) 144187.94 185235.281 0.62256 2.13706
12. 2s2.2p.3s (3P) 2s2.2p2.3s (4P) 148908.59 185340.577 2.2679 2.13706
13. 2s2.2p.3s (3P) 2s2.2p2.3s (4P) 148940.17 185499.124 2.2679 2.13706
14. 2s2.2p.3s (3P) 2s2.2p2.3s (2P) 149076.52 188888.543 2.2679 2.13706
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for high electronic states is mainly due to increasing of the atomic
radius of neutral species. At the same time, an opposite effect is
observed for the effective cross-sections of neutral–neutral and
resonant neutral-ionized collisions: effective cross-sections for col-
lisions of neutral species remain nearly constant for 12–150 elec-
tronic energy levels (about 6 times larger for high-energy levels
compared to that for the ground electronic state), whereas for res-
onant charge-transfer collisions the effective cross-section for
high-energy levels is greater for both Nþ and Oþ, and, moreover,
keeps growing for Oþ. Thus we can conclude that for high energy
levels the ratio rnn=r11 for resonant charge-exchange collisions
(X � Xþ) is approximately two times higher than the corresponding
cross-section for neutral species collisions (X � X), as was pre-
dicted by (25).

5. Distribution of electronically excited states behind the shock
front

Since considerable increase in effective cross-sections leads to
high values of collision integrals, non-equilibrium distributions
over excited electronic levels may play an important role in calcu-
lation of transport properties. Let us consider a strongly non-equi-
librium flow behind the shock wave under Fire II conditions. This
experiment represents an excellent example of reentry from inter-
planetary flight mission, that is why the case of Fire II has been
staying in the focus of many researchers and remains widely dis-
cussed in the literature for the last fifty years [23,21,22,42,33,12].

In Refs. [21,22,42], a general mechanism of electronic excitation
of atomic species in electron-impact reactions is proposed. In these
studies a collisional radiative model developed in [43–45,21] is
implemented, and for the case of Fire II all relevant collisional
and radiative processes are taken into account [21,22,42]. For accu-
rate estimates of ionization and population of excited states
(including metastable) that are easily induced by electrons due
to their small mass and high velocity, the following numbers of
electronic energy levels are accounted: 46 for N, and 40 for O
[21,22,42]. For electronic transitions the rate coefficients represent
a function of the secondary quantum number l of each level for
optically allowed and forbidden transitions [21,22,42]. Thorough
analysis of obtained numerical results shows that behind the shock
front the distribution of atomic nitrogen and oxygen over elec-
tronic states becomes Boltzmannian at the distance of about
2.5 cm and further, while within the distance x ¼ 0� 1 cm, the dis-
tribution over electronic states represents a combination of the
Boltzmann distribution for low levels:

nn ¼ nat
gn expð� en

kTÞ
Zint

; ð26Þ
and the Saha distribution modified for electronic excitation [21,22]
for high levels:

nn ¼ nionne
h2

2mepkT

 !3=2
gn expð� en�eion

kT Þ
Zion
int

: ð27Þ

Here en and eion are respectively the energies of the electronic
state n and ionization energy of atomic species, nat; nion and ne

are number densities of neutral and ionized atomic species and
that of electrons, gn is the statistical weight for the electronic state
n; ZintðTÞ is the equilibrium internal partition function. These two
distributions are combined into the third one (further in the paper
it is called the combined distribution), for which low-lying elec-
tronic energy levels are highly populated whereas the population
of high-lying levels is greater than corresponding values for the
modified Saha distribution, but remains lower than values for the
Boltzmann distribution (this distribution represents an approxi-
mation of the results reported in [22]).

In the following section we evaluate the impact of electronic
excitation on the transport properties taking into account these
two kinds of distributions, which can be observed behind the shock
front: the combined state-to-state distribution representing a
superposition of the Boltzmann and Saha ones taken at the specific
point x ¼ 0:7 cm (T ¼ 12; 000 K, p ¼ 4200 Pa) behind the shock
wave [21,22], and the commonly used Boltzmann distribution
(see Fig. 4) calculated at x ¼ 2:5 cm (T ¼ 9000 K, p ¼ 4200 Pa).
For N and O we adopt this kind of distribution, whereas for ionized
Nþ and Oþ there is no data for distributions over electronic states
behind the shock front. Therefore due to the minor concentration
of ionized species compared to that of the neutral ones we imple-
ment only the Boltzmann distribution for ions. This assumption
about the Boltzmann distribution for ions makes sense for plasma
applications when highly located electronic states are significantly
populated. In Fig. 4 different distributions over electronic energy
for N and O atoms are compared. It is seen that at x ¼ 0:7 cm
low-lying electronic states are dominating while the population
of high-lying states is much lower and tends to the modified Saha
distribution. Similar under-population of high vibrational levels in
shock heated flows is reported in many papers devoted to the
state-to-state vibrational kinetics (see [16,46]).

6. Results and discussions

In this section we evaluate the influence of electronic excitation,
the size of excited species, and distributions over electronic energy
in pure and ionized atomic gases on the state-resolved transport
properties. Since no data are found in the literature for the collision

integrals Xðl;rÞ
cndm

of high-lying electronic states n and m, we propose



Fig. 4. Population of N and O electronic energy levels at x ¼ 0:7 cm and 2.5 cm behind the shock wave for two distributions.
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to evaluate them using the Slater’s approach for the calculation of
atomic radius of excited species and effective collision diameter for
neutral–neutral and ion-neutral collisions. The effect of the num-
ber of accounted electronic levels on the transport terms is also
estimated.

6.1. Thermal conductivity coefficient

In Figs. 5 and 6 the partial thermal conductivity coefficient k0 of
pure atomic N and O, and ionized N=Nþ=e� and O=Oþ=e� mixtures
is shown as a function of T. The coefficients are plotted for the fol-
lowing particular cases:

1. Atomic species at the ground electronic states (the ground-state
model). It is worth noting that under this assumption thermal
conductivity coefficient k0 corresponds to the translational ther-
mal conductivity coefficient ktr in the one-temperature
approach [16], without taking into account electronic excitation.

2. Combined distribution at x ¼ 0:7 cm (for fixed T ¼ 12;000 K)
considered with the following number of accounted electronic
energy levels: 170 for N, 157 for Nþ, 204 for O, 254 for Oþ. It
Fig. 5. Partial thermal conductivity k0 of N and O as a function of T for three cases: (1) the
neutral atoms; the Boltzmann for ionized atoms); and (3) the Boltzmann distribution ta
means that while using the combined distribution we take into
account all electronic states of all species. We should remind
that for this particular case, ionized atomic species are dis-
tributed accordingly to the Boltzmann distribution with the
temperature T, whereas neutral species follow the combination
of the Boltzmann and Saha distributions.

3. The Boltzmann distribution as a function of temperature T:
(a) for pure atomic gases, the thermal conductivity coefficient

k0 is calculated with 6, 13, 50 and 170 (204) electronic
states;

(b) for ionized mixtures, the thermal conductivity coefficient k0

as a function of T is calculated for both neutral atoms (50
and 170 for N, and 50 and 204 for O) and ionized atomic
species (50 and 157 for Nþ, and 50 and 254 for Oþ).

First we discuss the results for pure atomic gases with electronic
excitation (see Fig. 5). For the temperature range 1000–14,000 K all
the results coincide, because just behind the shock front the distri-
bution over electronic energy is determined mainly by the low-
lying states. As soon as high-lying states become populated, the
thermal conductivity coefficient sharply decreases. This decrease
ground electronic state; (2) the combined distribution (x ¼ 0:7 cm, T ¼ 12;000 K for
ken for different number of electronic energy levels.



Fig. 6. Partial thermal conductivity k0 of N and O atomic plasma as a function of T for three cases: (1) the ground electronic state; (2) the combined distribution (x ¼ 0:7 cm,
T ¼ 12;000 K for neutral atoms; the Boltzmann for ionized atoms); and (3) the Boltzmann distribution taken for different number of electronic energy levels.
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is governed by the number of levels taken into account since the
Boltzmann distribution strongly depends on the accounted levels.
This result is in line with those reported in [11]. Comparing the
results for N and O we should keep in mind that with the rise of
principal quantum number for O the collision diameter becomes
higher than for N (see Fig. 3). Due to this fact, k0 in oxygen decreases
faster compared to that in nitrogen. For the combined distribution,
the thermal conductivity coefficient k0 nearly coincideswith that for
the ground electronic state and even becomes a little bit greater for
O. This can be explained by the fact that the data [24] provides the
diameter of the ground electronic state about 1.64% higher than the
Slater’s one (see Table 3). Since we use the data [24] for the ground
electronic state and the Slater’s approach otherwise, the size of the
next four low-lying states becomes 1.64% less than that of the
ground one (from r = 3.01248 to 2.96303 [Å], see Table 3). In the
case of combined distributions, the molar fractions of atomic spe-
cies at the ground state and at the next four low-lying levels are
related roughly as 50/50%, and this discrepancy starts to influence
thermal conductivity, slightly increasing it.

Let us consider now the thermal conductivity coefficient in ion-
ized mixtures (see Fig. 6). It is worth mentioning that for signifi-
cantly ionized mixtures (the level of ionization of 5% corresponds
to the case of Fire II, 1634 s, 0.7 cm behind the shock front) the
thermal conductivity coefficient considerably exceeds that for the
case of single-component gases. This increase is caused by the
charge-transfer process, and by the presence of light and fast elec-
trons that are very effective in heat transfer (especially with the
rise of temperature) in the mixture. Thus we conclude that for ion-
ized atomic mixtures, the charge-transfer process gives a signifi-
cant contribution to thermal conductivity. This result confirms
the well known fact that the charge-transfer process is of impor-
tance in various plasma applications due to its great influence on
the process of ions diffusion (see also SubSection 6.3 on diffusion
coefficients) and energy transfer [47,3].

At the same time the increasing atomic radius does not consid-
erably influence the thermal conductivity coefficient calculated in
the state-to-state approach for realistic distributions contrarily to
the case of the Boltzmann distribution over electronic energy
levels. Since the molar fraction of electrons is high, and the reso-
nant charge-transfer process starts to play an important role in
the transport terms (keep in mind the second term under the
square root in (24)), one could expect a greater effect of the
cross-section (see Fig. 3) on the thermal conductivity. However
one can see that for the Boltzmann distribution, the behaviour is
exactly the same as for pure atomic gases. Moreover for the case
of combined distribution the effect of resonant charge-transfer
appears only for the temperature of 45,000 K and higher, and does
not exceed 10% for 60,000 K.

Just behind the shock front for Fire II and Hermes cases, the
temperature drops fast and achieves the values in the range
5000–12,000 K (see Ref. [12]), where results for all distributions
are similar. Therefore, it is not necessary to take into account
increasing atomic radius for the thermal conductivity coefficient
calculation at the sufficient distance from the shock front. This con-
clusion is quite encouraging since allows considerable simplifica-
tion of the transport algorithm.
6.2. Shear viscosity coefficient

In Figs. 7 and 8, the shear viscosity coefficient g of single-com-
ponent nitrogen and oxygen and ionized mixtures of atomic N and
O is given as a function of T for the same distributions as indicated
in the previous section. Contrarily to thermal conductivity coeffi-
cients, viscosity coefficients for ionized mixtures and neutral gases
do not differ considerably because viscosity-type collision integrals
(see (24) for l ¼ even) are independent of the charge-transfer cross
sections. For pure atomic N and O, similarly to k0, just behind the
shock front the combined distribution over electronic states yields
practically the same results as for the ground state. On the con-
trary, shear viscosity calculated using the Boltzmann distribution
strongly depends on the accounted number of electronic energy
levels. The influence of the atomic size on the shear viscosity calcu-
lated for realistic distributions is stronger compared to thermal
conductivity: starting from 30,000 K, g decreases with the temper-
ature. This fact follows from the nature of the resonant charge-
transfer process: while increasing effective cross-sections influ-
ence stronger the odd-term collision integrals (24), the even (vis-
cous) terms do not contain resonant inelastic contribution of the
charge-transfer process. This means that the bracket integrals

Hcndm
00 in Eq. (11) containing the ratio of even to odd collision inte-

grals start to decrease as fast as effective cross-sections of the
charge-transfer process increase. Nevertheless, for hypersonic
reentry problems the effect of state-dependent collision cross-sec-
tions on the shear viscosity remains weak since for realistic distri-
butions its considerable decrease starts at T > 30000 K.



Fig. 8. Shear viscosity g of N and O atomic plasma as a function of T for three cases: (1) the ground electronic state; (2) the combined distribution (x ¼ 0:7 cm, T ¼ 12;000 K
for neutral atoms; the Boltzmann for ionized atoms); and (3) the Boltzmann distribution taken for different number of electronic energy levels.

Fig. 7. Shear viscosity g of N and O as a function of T for three cases: (1) the ground electronic state; (2) the combined distribution (x ¼ 0:7 cm, T ¼ 12;000 K for neutral
atoms; the Boltzmann for ionized atoms); and (3) the Boltzmann distribution taken for different number of electronic energy levels.

V.A. Istomin, E.V. Kustova / Chemical Physics 485–486 (2017) 125–139 135
6.3. Diffusion coefficient

Whereas diffusion of excited vibrational species was recently
studied in several papers [48–51,46], investigation of diffusion
and thermal diffusion of electronically excited gases, especially
atomic ones, is still an open problem. Calculation of state-resolved
diffusion coefficients is of importance for predictions of the heat
flux (7) and diffusion velocity (6) near the surface of reentry space-
craft. This is particularly important because in the state-to-state
approach, the heat flux is determined mainly by diffusion pro-
cesses coupled with heat transfer due to thermal conductivity, con-
trarily to the one-temperature model, in which for single-
component gases diffusion processes do not exist [35,16].

In Fig. 9, self-diffusion coefficients Dnn of various electronic
states of pure atomic nitrogen and oxygen are given at fixed
T ¼ 12;000 K as functions of electronic energy levels n for different
distributions over electronic energy levels. Three kinds of distribu-
tions are studied: the combined and Boltzmann distribution, men-
tioned in the previous section as well as an equiprobable
distribution of atomic species over electronic energy levels. This
last distribution is in some sense artificial, however, due to the fact
that diffusion coefficients strongly depend on the species molar
fraction (it is clearly seen in the Fig. 9), this approach can be very
useful for understanding behaviour of state-resolved diffusion
coefficients depending on the atomic radius. One can see that for
the equiprobable distribution the diffusion coefficient slowly
decreases with the electronic energy level and, consequently,
atomic radius. At the same time, for the Boltzmann and combined
distributions, diffusion coefficients are inversely proportional to
the molar fraction, and depend on the atomic radius. As the result,
for the Boltzmann distribution Dnn is nearly constant for electronic
energy levels higher than 10, and for the combined distribution,
Dnn increase with n (especially for O). This gives evidence of strong
dependence of the diffusion coefficient not only on the molar
fraction, but also on the atomic radius (i.e. effective cross-
section).

Let us consider state-dependent diffusion coefficients Dnm

(n– m) calculated on the basis of equiprobable distribution. Let
us limit the number of accounted electronic energy levels to the
first six levels. This is done because as is seen from Table 3, for both
N and O atoms the radius is equal for n ¼ 1 . . .5 and increases
starting from n ¼ 6. We distinguish two cases in order to under-
stand the effect of atomic radius:

1. rn ¼ r1; 8n ¼ 1::6;
2. rn ¼ r1; 8n ¼ 1::5; r6 – r1.



Fig. 9. Diffusion coefficient Dnn of N and O as a function of electronic energy level n at fixed T ¼ 12;000 K for three cases: (1) the combined distribution (x ¼ 0:7 cm); (2)
Boltzmann distribution; (3) equiprobable distribution of atoms over electronic energy levels.
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For these two cases in the Fig. 10 the diffusion coefficients Dnm

are shown. Note that for the equiprobable distribution all Dnm are
equal if rn ¼ const. This is not the case for the realistic distribu-
tion. Another result that might be expected from the state-to-
state approach implemented for diffusion of vibrational molecular
states [52,53], is that cross diffusion coefficients are equal to each
other Dnm ¼ Dmn for every pair of ðn;mÞ for the first cases, but
D6m – Dnm if n – 6 for the second case. Increasing atomic radius
of one state in a mixture of six leads to the decrease in all diffu-
sion coefficients in pure atomic gases. This effect can be seen also
from the self-diffusion coefficient Dnn, especially for n ¼ 6, that
differs significantly from the value of Dnn for n ¼ 1 . . .5 species.
Nevertheless, this effect must be taken into account in the real
flows only for the temperature range 14,000–60,000 K, which is
in line with the results for thermal conductivity and shear viscos-
ity coefficients.

6.4. Thermal diffusion coefficient

In Fig. 11, the thermal diffusion coefficient DTn is plotted as a
function of temperature T for pure atomic N and O (6 electronic
Fig. 10. Diffusion coefficient Dnm of N and O (6 electronic energy levels are taken into acc
radius of species on 6th level differs.
energy levels taken into account), and for ionized mixtures
N=Nþ=e� and O=Oþ=e� (6 electronic energy levels of neutral and
ionized atoms are taken into account). One has to keep in mind
that in the one-temperature approach for pure atomic gases this
coefficient does not appear at all [35,16]. For equiprobably dis-
tributed over first six electronic energy levels molar fractions of
pure atomic gases we can see that increasing atomic radius influ-
ences significantly DTn: the value of DT6 is six times higher than
corresponding absolute value for DTn;n ¼ 1 . . .5 which are equal
one to another since the first five levels of N and O have the same
value for atomic radius (see Table 5). For ionized mixtures we plot
the absolute values of thermal diffusion coefficients of ions and
electrons. Since we do not account for the presence of electro-mag-
netic field in a plasma, the effect of ambipolar diffusion is out of
consideration. As a result, large values of thermal diffusion coeffi-
cients for electrons and the corresponding heat flux can be
obtained [12]. On the other hand the presence of electro-magnetic
field induces the increasing effect of ambipolar diffusion which
reduces the effect of thermal diffusion [54,55]. It is seen that ther-
mal diffusion coefficient DTX of neutral species is two orders of
magnitude higher than DTXþ of ionized species (X ¼ N;O); more-
ount) as a function of temperature T for two cases: (1) equal radius of all species; (2)



Fig. 11. Thermal diffusion coefficient DTn as a function of temperature T: (1) pure N and O, 6 electronic energy levels taken into account; (2) N and O plasma, 6 electronic
energy levels of neutral and ionized atoms are taken into account.

Fig. 12. Thermal diffusion coefficient DTn of N and O for the combined (x ¼ 0:7 cm) and Boltzmann distributions: (1) at the fixed point T ¼ 12;000 K; (2) at the fixed point
T ¼ 24;000 K.
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over increasing atomic radius enhances this effect. However, ther-
mal diffusion coefficients of ions are still much lower than DTe of
electrons.

In Fig. 12 the dependence of thermal diffusion coefficient DTn (as
a function of electronic energy level) on different distributions over
electronic energy states is represented. Boltzmann and combined
distributions are used for the calculation for two fixed points
T ¼ 12;000 K and T ¼ 24;000 K behind the shock wave. For
T ¼ 12;000 K, the results of DTn for two distributions are nearly
coincide, while at T ¼ 24;000 K DTn for levels higher than 10 are
3 times higher for N and 5 times higher for O correspondingly. Thus
the distribution over electronic energy levels behind the shock
front may play an important role in the case of increasing atomic
radius not through the thermal conductivity, which nearly coin-
cides with that calculated for the ground state for combined distri-
bution, but via the channel of thermal diffusion, which is
undetermined for pure atomic gas in the one-temperature
approach (i.e. for the ground-state model).
7. Conclusions

A theoretical model for the state-specific transport coefficients
in neutral and ionized atomic gas mixture flows with electronically
excited states is developed. Different cutoff criteria for electroni-
cally excited states are considered, and the maximum allowed
atomic radius are calculated under various conditions. The influ-
ence of increasing atomic size on the transport properties of
high-temperature flows is evaluated. It is shown that the Slater’s
approach can be used for preliminary estimations of the state-
resolved transport coefficients in pure atomic gases. It is found that
for atomic oxygen O, the diameter of an excited atom increases
faster than for N, which, in turn, affects the transport coefficients
of O. Effective collision cross-section are calculated for atoms with
varying size. For ionized mixtures resonant charge-transfer process
is taken into account while computing cross-sections.

Different distributions on electronic energy levels, such as the
Boltzmann distribution, modified for electronic excitation Saha
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distribution, and combination of these two distributions are imple-
mented for the calculation of transport properties.

State-dependent diffusion coefficients of atomic gases with
electronic degrees of freedom are investigated. The influence of
atomic size on diffusion coefficients is pointed out. It is shown that
similarly to molecular vibrationally excited gases in state-to-state
approach, for electronically excited atomic gas cross diffusion coef-
ficients satisfy the same rule: Dnm ¼ Dmn (n –m). Thermal diffusion
coefficients of neutral and ionized gases are calculated. While the
weak influence of increasing radius is found for the case of six
low-lying electronic levels, the role of distribution occurs more
important. Thus thermal diffusion coefficients of each electronic
level strongly depend on the distribution over electronic energy
levels and therefore can modify the heat flux and diffusion velocity.

Using of the state-to-state and one-temperature (ground-state)
models and different number of excited levels yields practically the
same partial thermal conductivity and shear viscosity coefficients
in the temperature range 1000–14,000 K. Beyond 14,000 K the
increasing radius of excited atoms causes a strong decrease in
the transport coefficients calculated on the basis of the Boltzmann
distributions, especially for the case when all electronic states are
considered. The charge-transfer process influences mostly the
shear viscosity coefficient and weakly affects the thermal conduc-
tivity coefficient. It is worth mentioning that in the high-tempera-
ture region just behind the shock front, the populations of high-
lying levels do not follow the Boltzmann distribution, molar frac-
tions of high-lying states are quite low, and, consequently, the
increased atomic size does not affect the flow around reentering
vehicles. Therefore it justifies implementation of simplified trans-
port models for hypersonic flow simulations. However in some
plasma applications with different distributions over electronically
excited states the state-specific transport coefficients may consid-
erably modify the predicted heat and mass transfer.
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