Please use this identifier to cite or link to this item: http://hdl.handle.net/11701/1953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorN. V. Antonov-
dc.contributor.authorN. M. Gulitskiy-
dc.date.accessioned2016-04-07T19:52:00Z-
dc.date.available2016-04-07T19:52:00Z-
dc.date.issued2014-06-15-
dc.identifier10.1103/PhysRevE.91.013002-
dc.identifier.issn10.1103/PhysRevE.91.013002-
dc.identifier.urihttp://hdl.handle.net/11701/1953-
dc.description.abstractInertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form $\propto \delta(t-t') / k_{\bot}^{d-1+\xi}$, where $k_{\bot}=|{\bf k}_{\bot}|$ and ${\bf k}_{\bot}$ is the component of the wave vector, perpendicular to the distinguished direction (`direction of the flow') -- the $d$-dimensional generalization of the ensemble introduced by Avellaneda and Majda [{\it Commun. Math. Phys.} {\bf 131}: 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier--Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale $L$ has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of $L$. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for correlation functions of arbitrary order.en_GB
dc.description.sponsorshipThis work was supported by the Saint Petersburg State University within research Grant No. 11.38.185.2014 and by the Russian Foundation for Basic Research within Project No. 12-02-00874-a. N.M.G. was also supported by the Dmitry Zimin’s Dynasty foundation.en_GB
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.subjectPhysics - Statistical Mechanicsen_GB
dc.subjectPhysics - Statistical Mechanicsen_GB
dc.subjectNonlinear Sciences - Chaotic Dynamicsen_GB
dc.titleLogarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector fielden_GB
dc.typeArticleen_GB
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
PhysRevE_91_013002.pdf1,14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.