An analogue of the local time for non-Gaussian Levy processes
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Работа состоит из двух частей. В первой части был построен аналог локального времени для специального класса процессов Леви, включающих устойчивые процессы с показателем устойчивости из интервала (1,2). Для последних построенный аналог совпадает с самим локальным временем, что позволяет говорить об обобщенном локальном времени. Была доказана предельная теорема, связывающая обобщенное локальное время с решением неоднородного дифференциального уравнения, порожденного генератором устойчивого процесса.
Во второй части были построены два семейства процессов, первое из которых позволяет представить резольвенту генератора устойчивого процесса в виде функционала от устойчивого процесса, а второе – в виде функционала от сложного пуассоновского процесса. Были изучены свойства данных семейств.
The work consists of two parts. In the first part, an analogue of the local time was constructed for a special class of Lévy processes, including stable processes with a stability parameter from the interval (1,2). For the latter, the constructed analogue coincides with the local time itself, and that allows us to call it a generalized local time. Results that associate the generalized local time with a solution of a differential equation generated by a generator of the stable process were obtained. In the second part, two families of processes were constructed. The first one allows us to represent the resolvent of the generator of the stable process as a functional of a stable process, and the second one as a functional of a compound Poisson process. The properties of these families were studied.
The work consists of two parts. In the first part, an analogue of the local time was constructed for a special class of Lévy processes, including stable processes with a stability parameter from the interval (1,2). For the latter, the constructed analogue coincides with the local time itself, and that allows us to call it a generalized local time. Results that associate the generalized local time with a solution of a differential equation generated by a generator of the stable process were obtained. In the second part, two families of processes were constructed. The first one allows us to represent the resolvent of the generator of the stable process as a functional of a stable process, and the second one as a functional of a compound Poisson process. The properties of these families were studied.