

St. Petersburg University

Master in Management Program

A QUANTITATIVE ANALYSIS OF THE SUCCESS
OF AGILE IT PROJECT

Master’s Thesis by the 2nd year student

Concentration – MIM

Grigorii Liubachev

Research advisor:

Senior Lecturer, Elvira V. Strakhovich

Saint-Petersburg
2017

 2

 3

АННОТАЦИЯ

Автор Григорий Михайлович Любачев
Название магистерской
диссертации

Количественный анализ успешности гибких проектов в сфере
информационных технологий

Направление
подготовки

Менеджмент

Год 2017
Научный Руководитель Эльвира Витаутасовна Страхович
Описание цели, задач и
основных результатов

Целью данного исследования является разработка
объединённого, приоритизированного количественного подхода
измерения успешности Agile проектов в сфере информационных
технологий. Он позволит менеджерам проектов измерять и
контролировать процесс разработки на разных этапах
жизненного цикла проекта, что приведет к максимизации
преимуществ от внедрения Agile.
Для достижения цели исследования был применён
трехступенчатый подход. Сначала современная литература была
проанализирована, чтобы выработать структурированное
мнение об успешности проектов и определить аспекты их
успешности. На втором этапе было оценено покрытие
выявленных аспектов успешности количественными метриками,
которые уже используются в организациях. Для этого метрики
были собраны и сопоставлены с критериями успешности
проекта и факторами, которые на них влияют. Ввиду их
недостаточности, дополнительные техники оценки были
предложены. В конце мнение экспертов было использовано для
приоритизации параметров оценки.
В результате был разработан подход для оценки успешности
Agile проектов в сфере информационных технологий.
Созданные список метрик и чек-лист лежат в его основе и могут
быть использованы для целостной оценки проектов.
Индустриальная специфика в разработанном подходе имеет
второстепенную роль. Это означает, что в будущем он может
быть использован как основа для разработки схожих подходов в
других индустриях.

Ключевые слова Гибкие методологии, Успешность, Оценка, Управление
проектами, Разработка ПО

 4

ABSTRACT

Master Student’s Name Grigorii Liubachev
Master Thesis Title A quantitative analysis of the success of agile IT project
Main Field of Study Management
Year 2017
Academic Advisor’s
Name

Elvira V. Strakhovich

Description of the goal,
tasks, and main results

The goal of this study is to develop a unified, prioritized quantitative
approach to measuring the success of Agile IT projects. It would
allow project managers to track and control the development process
at different stages of the project lifecycle, leading to the
maximization of Agile adoption benefits.
In order to achieve the goal a three step approach was adopted.
Firstly, contemporary literature was analyzed to develop a structured
view on the project success and define aspects of their
successfulness. Secondly, quantitative metrics, already used by
organizations were assigned to each of the success criteria and
factors to see if they cover all aspects of project success. Since they
didn’t, other assessment techniques were proposed. Finally, expert
opinion was used to prioritize evaluation parameters, when
necessary.
As a result, an approach for Agile IT project success evaluation was
created. A list of metrics and a checklist are a core of it. They can be
used to holistically evaluate Agile IT project success. Industry
specifics in the developed approach appeared to play a secondary
role. It means, that in the future it can be used as a base for the
development of similar approaches for other industries.

Keywords Agile, IT Project, Success, Evaluation, Project management,
Software development

 5

TABLE OF CONTENTS

ABSTRACT ... 4

INTRODUCTION .. 6

CHAPTER 1: AGILE PROJECT MANAGEMENT AND PROJECT SUCCESS 7
1.1 INTRODUCTION TO AGILE METHODOLOGY AND METHODS .. 8
1.2 AGILE IT PROJECT SUCCESS IN CONTEMPORARY LITERATURE .. 11
1.3 SUMMARY OF CHAPTER 1 ... 13

CHAPTER 2: VERSATILE ASSESSMENT OF AGILE IT-PROJECT SUCCESS 13
2.1 HOLISTIC VIEW ON THE AGILE PROJECT SUCCESS IN THE SOFTWARE INDUSTRY 14
2.2 ACCESSING THE COMPLETENESS OF EXISTING METRICS PORTFOLIO 16
2.3 SUMMARY OF CHAPTER 2 ... 31

CHAPTER 3: A CHECKLIST FOR ASSESSING PROJECT CONTEXT 32
3.1 FUZZY ANALYTIC HIERARCHY PROCESS (AHP) ANALYSIS METHOD 32
3.2 QUESTIONNAIRE FOR PRACTITIONERS OF AGILE PM IN IT PROJECTS 33
3.3 RESULTS INTERPRETATION AND DISCUSSION .. 35
3.4 SUMMARY OF CHAPTER 3 ... 37

IMPLEMENTATION PROCEDURE .. 38

CONCLUSION ... 40

REFERENCES .. 42

APPENDICES ... 46

	

 6

INTRODUCTION

Nowadays software significantly affects almost all aspects of our lives. Because the

applications of software are very diverse, there is no single best way to do software development.

New methodologies always emerge, and old get transformed.

In the early days, old “heavy” project managers applied processes that evolved during the

era of manufacturing to the IT projects. Later it became apparent, that with such a high pace of

technology development and ever-changing requirements of the business environment a different

approach should be taken. It wasn’t someone's decision, but rather the natural evolution of the

working process. In 2001 seventeen independent practitioners from the so-called «Agile

Alliance» officially formulated new ideas and published Agile Manifesto.

Today, agile projects are almost four times more likely to succeed than traditional,

sequential Waterfall projects - 39% vs. 11% (The Standish Group, 2015). However, Agile just

recently became a dominant approach in IT with 67% of organizations using pure agile or

leaning towards agile. A major uptick in Agile adoption began in 2009-10 (HP, 2016), with over

half of organizations switching to agile during the last five years.

That might be a reason why a lot of the existing research on the topic focuses on guiding

decision-making process of Agile adoption. Hummel M. identified that “Evaluation of Agile

Practices”, “Adaption / Combination / Extension”, “Tool Support”, “Team Characteristics” and

“Adoption” account for more than 60% of all studies on Agile. (Hummel, M., 2014).

As Agile becomes the new norm, tracking and control of methodology application start to

play a vital role. One of the latest “State of Scrum” reports showed that main challenges

organizations faced in achieving their goals with scrum were a lack of clearly determined metrics

to identify and measure the success of Scrum projects and delivery (The 2015 State of Scrum

Report, 2015).

The goal of this thesis is to develop a unified, prioritized quantitative approach to

measuring the success of Agile IT projects. It would allow project managers to track and control

the development process at different stages of the project lifecycle. It will lead to the

maximization of Agile adoption benefits.

As a means to achieve this goal, a three-step process is utilized. Firstly, contemporary

literature will be analyzed to develop a structured view on the project success. It will include

success criteria and factors affecting these criteria. Secondly, quantitative metrics, already used

by organizations will be assigned to each of the success criteria and factors to see if they cover

all aspects of project success if not, other assessment techniques will be proposed. Finally, expert

 7

opinion will be used to prioritize evaluation parameters, when necessary and conclusions will be

made.

As agile is spreading to new industries and geographies, it is just a question of time,

when sophisticated tracking and control would be needed outside of information technology

sector. This thesis can act as a base for the future research, since parameters are mostly based on

the unified criteria of project success, not related to a particular industry, and could be adopted to

new use-cases.

The rest of the thesis is organized in the following manner:

In the chapter one Agile project management will be introduced and compared with

alternatives. Different Agile methods will be presented. The literature on agile success will be

reviewed, and research gap will be identified. Research questions will be formulated.

In the chapter two review of existing literature on the project success criteria and factors

will be made. An overall view of project success will be developed. Then metrics used by

contemporary organizations will be found and structured. The full list will be checked for

duplication and assigned to different success criteria and factors.

In chapter three Fuzzy Analytic Hierarchy Process (AHP) analysis method for

incorporation of expert opinion will be introduced. The final questionnaire for the empirical part

will be presented. Results of the empirical study will be summarized and discussed.

Conclusion and suggested implementation procedure will follow.

CHAPTER 1: AGILE PROJECT MANAGEMENT AND PROJECT SUCCESS

Before the 1970s, mostly old project management processes that evolved during the era

of manufacturing were applied to the IT-projects. An example of such traditional sequential

approach to IT project management is Waterfall software development model. It was first

formally introduced in 1956 by Herbert D. Benington. In waterfall development process is

perceived as a sequence of steps. Transition to the next step can be made only when the previous

step is completed (Benington, 1983). This kind of project life cycle model is called predictable

model (PMBOK 5th edition).

It works well if all the requirements are presented upfront, but is inflexible (Rahmanian,

2014). With such a high pace of technology development and ever-changing needs of the

business environment, it became apparent that in some cases a different approach should be

taken. It wasn’t someone's decision, but rather the natural evolution of the working process.

At the same time, raising costs of IT-projects made failures even less tolerable. However,

that wasn’t reflected by a decrease in the project failure rate. In contrast, IT-projects were failing

distressingly frequently. While there is no precise statistics, due to the fact that accuracy of data

 8

in early CHAOS reports is now being challenged (Jørgensen et Moløkken-Østvold, 2006), some

sources indicate that at least 50% of IT-projects failed to meet the expectations of stakeholders

(Keil et Mark, 1995, p. 442). One trend can be clearly seen when analyzing types of project

failures. Projects start to “take on a life of its own” and get terminated after they went

significantly over the budget and timeframe. Commonly the reason for that is seen in poor

project management.

One of the attempts to distinguish good project management from the poor one was

undertaken by Boehm et al., (1989, p. 903), they argue that there are three principles that a

proper methodology for managing software projects should simultaneously follow. It should be

general, simple and specific.

However, further formalization of IT-project management was seen as a solution.

Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI) from

Software Engineering Institute can be mentioned as examples. The creation of documentation

and strict following of the process defined by CMM/CMMI became superior to the actual

software development. Developers opposed such formalization and eventually it was one of the

reasons behind the development of new approaches built upon new, agile principles.

1.1 Introduction to Agile methodology and methods
Back in 1974 alternative ideas regarding the project management started to be discussed.

(Edmonds, 1974). However, only in 2001, a new methodology called Agile was officially

formulated. It proposed new ideas, quite different from those in the conventional way of project

management (See Table 1). The methodology is based on 12 principles that rely on four primary.

values. According to the Agile Manifesto, these values are:

“Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan”

As it can be seen from the principal values, agile methodology is designed to simplify

and accelerate the process of delivering working software, by promoting communication,

collaboration among all stakeholders and eliminating risks of being unable to respond to the

challenges over the course of the project. (Agile Manifesto, 2001)

Table 1 Main differences between traditional development and agile development (Dybå
and Dingsøyr, 2008)
 Traditional development Agile development
Fundamental
assumption

Systems are fully specifiable, predictable,
and are built through meticulous and

High-quality adaptive software is
developed by small teams using the

 9

 Traditional development Agile development
extensive planning principles of continuous design

improvement and testing based on rapid
feedback and change

Management style Command and control Leadership and collaboration
Knowledge
management

Explicit Tacit

Communication Formal Informal
Development model Life-cycle model (waterfall, spiral or some

variation)
The evolutionary-delivery model

Desired
organizational
form/structure

Mechanistic (bureaucratic with high
formalization), aimed at large organizations

Organic (flexible and participative
encouraging cooperative social action),
aimed at small and medium- sized
organizations

Quality control Heavy planning and strict control. Late,
heavy testing

Continuous control of requirements, design,
and solutions. Continuous testing

A main distinguishable feature of agile is the fact that it is iterative (See Figure 1). The

process starts with the creation of the product backlog. Stakeholders collaboratively decide what

should and what shouldn’t be included in the product. Usually, the product owner who has the

vision of what product should deliver so-called “epics”. These epics are broad user stories that

should be broken down into smaller “stories”. These stories constitute the backlog. After stories

are prioritized, the backlog for future iteration is created.

Each iteration combines all the processes that are involved in the software development:

Planning, actual development, testing and receiving feedback, reacting to feedback and releasing.

All processes are interconnected, meaning that the outcome of one process influences the whole

loop (Huo, Ming, et al., 2004).

Figure 1 Agile project methodology product lifecycle (Huo, Ming, et al., 2004)

Agility in this methodology should be understood as an ability of an enterprise to react in

advance to the changes happening in internal and external environments. This implies that agile

organization strives for feedbacks since as they are incorporated into the product, it becomes

 10

more valuable for the customers which in turn guarantees their satisfaction. (Kumar and Bhatia,

2012)

The goal of Agile methods is to spend as little time and effort on planning as possible

since they were developed in response to plan-dominated methodologies. Planning is not

considered evil as such. The procedures required by planning are thought to take too much time,

slowing down the development process. That is why software features are broken down into

smaller parts, eliminating the long-term planning from being directly involved in the process of

features development. This means that agile approach to software development is also adaptive.

(Beck, 1999, pp. 70-73)

Since one of the main risks of projects is related to inaccurate estimations and plans,

managing software projects in this way promotes adjusting to the changing needs on every phase

of the process. As main risks are eliminated, this approach is expected to lead to fewer failures. It

is important to mention that according to the agile methodology a result of any single iteration

should be ready for release. However, it often needed to do several iterations before a particular

product, or a feature adds significant value.

The way how traditional way of project management evolved into the modern methods

can be graphically seen in the Figure 2.

Figure 2 Evolution from Waterfall to Agile (Source: Beck, 1999, p. 71)

For the past two decades, more and more IT companies were implementing Agile.

Actually, every company implemented agile a bit differently (Racheva, Daneva et al., 2010, p.

131). As several prevailing ways to implement agile are currently in use, it is important to

distinguish between them, in order to be able to analyze their success factors.

Table 2 Summary of key Agile frameworks

Name of the framework Key features References
Extreme Programming

(XP)
Simple Design: Development is started with a simple
design in mind. As more features are added, the design
is made to fit perfectly the current state of the product.
Pair Programming: Production code is then written

(Lindstrom and
Jeffries, 2004, p.
47-49);

 11

Name of the framework Key features References
by two developers sitting at the same machine.
Test-Driven Development: developers first write a
test and then try to make it work. So any iteration is a
combination of smaller test driven cycles.
Design Improvement: Every iteration can bring value
to customers and businesses only when the product is
designed well. This is achieved by engaging in quick
design sessions and design revisions through
refactoring.

Scrum Product owner: a person who communicates with
customers and users and represents their opinion in the
form of vision.
The Scrum development team: a multi-functional
team, meaning that there is no distinguishing between
developers, testers or designers. It acts as a single self-
organized entity.
Scrum Master: It is a person without direct
managerial power, who is responsible for enhancing
the communication between the team and product
owner and making it easier to apply the Scrum
techniques.
Sprint: An iteration, which usually is about 1-4 weeks.
A team working on those iterations are usually small.
However, it can easily scale for large teams with
hundreds of members.

(Schwaber, K.,
1997)

Feature Driven

Development (FDD)
FDD can be split into five main activities:
1. the desirable outcome is documented as a model and
notes.
2. Full list of features is created
3. The individual plan of feature is created
4. The individual design of model is created
5. The individual feature is developed.

(Beck and Beedle
et al. 2001, p. 4-9)

Crystal Method - Focus on people and not on tools and processes.
- A constructor, rather than a group of methods.
- The necessary methodology is developed for each
project, meaning no extra procedures will take place.
Nowadays it is mostly used in non-critical projects of
small size, where just a couple of people are involved.

(Cockburn, 2004,
p. 4-5)

1.2 Agile IT project success in contemporary literature
Considering the popularity of Agile methodology, it is not surprising that a lot of research

was done on the performance of Agile IT projects. However, a majority of research on the topic

is based on casual observations. Just recently a major cross-industry international study of 1002

projects was conducted in order to see whether Agile methods can improve the likelihood of

project success. It was found that implementing agile methods, compared to doing so with those

of other approaches, does have a positive influence on project success. Interestingly, the quality

of the vision/goals turned out to be a marginally significant moderator of the effect. (Serrador &

Pinto, 2015).

 12

There is a belief that agile methodologies that help small projects to succeed may fail to

scale for larger projects or projects with multiple teams (Rosser et al., 2014). A recent empirical

study, using a conceptual model (see Figure 3) suggests that project size cannot be used to

explain Agile project failure or success. The model was tested on 40 Dutch projects, and it

revealed that agile might be suitable for larger projects if there is “high value congruence, agility

and transformational leadership” (van Kelle et al., 2015).

Figure 3 A conceptual model of social factors that may be of influence on the success of

software development projects in general, and of Agile projects in particular (van Kelle et
al., 2015)

While there is evidence that Agile projects can succeed in different environments, the

evaluation of success is often subjective. For example, in work by Serrador and Turner

introduced earlier, authors used “a self-reporting (subjective) assessment of project success and

use of Agile methods.” Therefore, in their paper, they are looking at perceived project success as

reported by participants. (Serrador & Pinto, 2015).

Less formal nature of Agile project management requires even better measurement. Not

only Agile methods require different measurement techniques, but due to focus on simplification

risk associated with inappropriate success measurements are higher (Javdani et al.,2013).

When looked from the different perspective, in agile, involved parties can come to

disagreement more easily, due to the lack of documentation. A recent study revealed, that even

though agile promotes process transparency and closer communication, team members, team

leaders, and product owners have different views on team performance. This difference is even

larger than the one in traditional waterfall projects (Lindsjørn, 2016).

As agile moves towards larger enterprise projects, it faces the risk-averse public, that

needs to know whether implemented methodology really works. One way to get an objective

 13

evaluation is through the use of metrics. Currently, there are studies on metrics usage in project

management (they will be presented in the next chapter) but research is mostly based on case

studies, and there is no unified set that promises to cover all aspects of project success.

That is why the research questions of this thesis are:

RQ1: What parameters should be measured in order to differentiate a successful Agile IT

project, from the one that is not?

RQ2: What measuring techniques can be used to assess these parameters?

1.3 Summary of Chapter 1
A brief history of project management in software development industry was presented.

The drawbacks of the stepwise development process in IT were investigated, including the

context of such drawbacks. The transition from traditional waterfall project management

approach to agile approaches was discussed. Differences between approaches were summarized.

After that key concepts of all different agile frameworks were listed.

Several research areas related to agile project success were identified. The majority of

these papers focused on comparative studies of successfulness of projects developed following

an agile methodology, and those following traditional methodology. Other works investigated

whether agile could be successfully applied in different contexts, such as projects of different

sizes.

The majority of reviewed papers relied on perceived successfulness of the project as a

key identification method of project success. Works that discussed the quantitative assessment of

success were scarce. The importance of objective success measurement was further emphasized

by findings from recent publications. So the research gap was identified.

To sum up, contemporary research lacks studies that would focus on providing a unified

approach for quantitative evaluation of an agile IT-project. The need for such research leads to

the formulation of two research questions that will act as a basis for this thesis.

CHAPTER 2: VERSATILE ASSESSMENT OF AGILE IT-PROJECT SUCCESS

Assessment of any project success is not as straightforward as it may seem. It can be best

illustrated with an example. Sydney opera house construction took 15 years and project was 14

times over the budget. However, it became one of the main Australian landmarks and is now

considered as a successful project (Jugdev & Müller, 2015). Opposite happened with the

Motorola’s Iridium project. Even though it was well planned and managed it is now viewed as a

failure (Shenhar & Dvir, 2007).

 14

2.1 Holistic view on the Agile project success in the software industry
View on the project success assessment changed significantly over the last decade.

Before, it was mostly focused on the Triple constraint, meaning that if the project met time, cost

and scope requirements, it was generally considered successful. Recently, an idea that

stakeholder satisfaction plays a major role in project success became widely recognized

(Serrador & Turner, 2015). Even the 5th edition of PMBOK, released in 2013 defines project

success beyond the triple constraint, which is not even mentioned there (PMBOK 5th edition).

The broader definition of project success became a topic of interest for many researchers.

According to Serrador and Turner, there are two competing measures of projects success:

“Project efficiency: meeting cost, time,
and scope goals; and
Project success: meeting wider business
and enterprise goals as defined by key
stakeholders.”

In their research, they wanted to see how “Project efficiency” and broader “Project

success” are related. After an extensive survey of 1,386 projects, authors found that project

efficiency correlates moderately strongly (correlation of 0.6 with R-squared equal to 0.36) to

overall project success. This means that other factors significantly contribute to the overall

project success as well. Possible other factors, introduced by authors, can be best characterized as

meeting stakeholder expectations in terms of product, performance, and risks. (Serrador &

Turner, 2015).

While measuring cost, schedule and scope is a relatively straightforward operation,

measuring meeting of stakeholder expectations is a more complex process. Turner and Zolin

believe that different stakeholders evaluate project success on different timescale. They define

three such time frames: End of the project, End plus months, End plus years. (Turner and Zolin,

2012).

In this work, we focus on the first time frame till, including, the point “End of the

project” for three reasons. First, it covers all stakeholders, including project manager and project

team. Second, as soon the project is finished and handed to the customer, the project

management ends. As we are mostly interested in fine tuning the project management process,

we need to focus on the stage, when it happens. Third, a study of other timeframes would require

longitude studies, which are out of the scope of this work and could be done in future research.

Based on the previously mentioned studies, we define 5 categories of success: Time, cost,

scope, quality & stakeholder expectations. Each category includes a set of factors.

 15

While categories are universal and don’t depend on the industry, specific factors are

industry specific. That is why it is needed to focus on more specialized studies, where it is

applicable.

In an international study of 109 agile projects, Chow and Cao wanted to define critical

success factors (CSFs) of agile software projects. First, based on existing literature, a preliminary

list of success factors was created. Then, using reliability and factor analyses, it was reduced to

12 items, and assigned to four success categories: time, cost, quality, and scope. Later, based on

survey data, using multiple regression techniques, six success factors appeared to be significant.

(Chow & Cao, 2008)

Since overall project success doesn’t depend only on project efficiency, it is important to

consider additional factors. It is needed to define factors for stakeholder expectations. Terry

Cooke-Davies (2002) aims to answer this question. After analyzing six “bodies of knowledge”

he identified 60 central topics in eleven topic areas. “Anticipated benefits” turned out to be a

core of formal and informal assessment of project success, by stakeholders. He points out that

those, who started the project (stakeholders) hope to achieve certain goals (benefits). Since

benefits delivery happens outside of the project group (see Figure 3), effective benefit delivery

and cooperative management process are needed.

Figure 3 The importance of project management and operations management working

together to deliver beneficial change from projects (Source: Cooke-Davies, 2002).

Using works of Chow, Cao and Terry Cooke-Davies, we can combine different

categories of success and corresponding factors into a matrix (See table 3). Having a structured

 16

view on the project success would allow us to explore the full range of project success variables

and be sure that nothing is missed or misinterpreted.

Table 3 Critical success factors

 Quality Scope Timeliness Cost Stakeholder
satisfaction

1. Team environment C - - - N/A

2. Team capability - - C C N/A

3. Customer involvement - C - - N/A

4. Project management process C - - - N/A

5. Agile software engineering
techniques

C C - - N/A

6. Delivery strategy - C C C N/A

7. Effective benefits delivery
and co-operative management
process

- - - - C

2.2 Accessing the completeness of existing metrics portfolio
It is common to see metrics used as a primary tool for quantification of observations,

including those in success assessment. General reasons for the use of metrics are quite broad.

Kupiainen et al. (2014) conducted a study, where they determined real use-cases for metrics in

agile context. According to authors, there are seven of them: “Iteration planning, Iteration

tracking, Motivating and improving, Identifying process problems, Pre-release quality, Post-

release quality and Changes in processes or tools.” It was found that majority of metrics is

focused on planning and tracking. Authors note that applicable quality metrics and metrics to

motivate and enforce improvement are potentially interesting for future research. (Kupiainen et

al., 2014).

Having a holistic view of the project success allows us to see that there are two

dimensions of success assessment. There are Success Criteria. By measuring them, it is possible

to see whether the project or a single iteration is perceived successful post-factum (lagging

indicators). Additionally, there are Critical Success Factors, the things that must go right (leading

indicators) for the project to succeed in terms of success criteria. This cause-effect relationship

between two means that measuring CSFs can be used to evaluate the general context of the

project or iteration. As success is relative, it is important not only to quantify whether success

criteria were met but also understand whether the general context was favorable or not.

 17

For example, project perceived as mildly successful might have been completed in the

context, where certain CSFs were not met at all. In this situation, other mildly successful

projects, where all CSFs seem to be met would raise a question. Are these two project equally

successful or team behind the project with less favorable context did a better job? As project

stakeholders might have limited control over the context or even no control over certain CSFs,

this questions becomes even more important for the adequate success evaluation.

This being said, knowing general context would help project managers to evaluate

projects more objectively, to compare projects between each other and to identify areas for future

improvements in a straightforward and structured way.

The metrics portfolio should cover both leading and lagging indicators in order to be

suitable for all-inclusive project success assessment. Interestingly, a single metric can be both

leading and lagging indicator (See figure 4). For example, employee engagement is a lagging

indicator for management process/ability but a leading indicator for development process

improvement, financial performance, etc.

Figure 4 The possible status of metrics from the perspective of leading and lagging

indicators.

The unequal distribution of metrics amongst use-cases calls for a systematic approach. In

order to guarantee that different aspects of success assessment are covered, success criteria and

CSFs were derived previously. To track changes, quantifiable metrics are needed. Since metrics

are already widely used by agile teams in the software industry, it is first needed to gain an

understanding of what areas of the success assessment matrix are already covered with existing

metrics.

A number of studies relating to different aspects of the use of Agile metrics in

contemporary organizations have been done. High-quality discussions on this topic can be found

in Abbas, N. et al. (2010), Petersen, K. et al. (2010), Petersen, K. et al. (2011), Petersen, K.

(2012), Staron, M. et al. (2010).

 18

In their work Kupiainen et al. (2015) conducted a systematic review of studies on the

usage of agile metrics in software projects, including those from the previous paragraph. The

systematic review covered 30 papers in total that were published till recently. Even though works

were of different scope and used different methodologies, they all presented metrics used by

contemporary organizations. Authors of the review analyzed those metrics and synthesized a list

of high influence metrics based on a number of occurrences and perceived importance factor

(See Table 4). This list will act as a basis for the future analysis. In order to keep the work brief

and focused, presentation of the detailed review of all the above papers will be avoided.

Therefore, interested readers are referred to Kupiainen et al. (2015), where they will be able to

get acquainted with a detailed overview of all the studies.

Table 4 High influence metrics based on number of occurrences and perceived importance
factor (Kupiainen et al., 2015)

Metric Number of
occurrences Importance factor Sum of ranks / 2

 Velocity 15 3 1
 Effort estimate 12 3 1.5
 Customer satisfaction 6 3 2.5
 Defect count 8 3 5
 Technical debt 2 3 5
 Build status 2 3 5
 Progress as working code 1 3 6.5
 Lead time 4 2 7
 Story flow percentage 1 2 9.5
 Velocity of elaborating features 1 2 9.5
 Story percent complete 1 2 9.5
 Number of test cases 1 2 9.5
 Queue time 1 2 9.5
 Processing time 1 2 9.5
 Defect trend indicator 1 2 9.5
 Work in progress 6 1 10
 Number of unit tests 5 1 11
 Cost types 1 1 14
 Variance in handovers 1 1 14
 Deferred defects 1 1 14
 Predicted number of defects in backlog 1 1 14
 Test coverage 1 1 14
 Test-growth ratio 1 1 14
 Check-ins per day 3 N/A 16
 Cycle time 2 N/A 16.5

However, it is not possible to rely only on the list derived from the systematic review. It

was published a couple of years ago, meaning that the most recently adopted metrics won’t be

 19

presented there. Since agile methodology is rapidly changing and evolving, more recent studies

should also be taken into account.

Greening, D. R. (2015) believes that behavioral metrics that are typically used by teams

for self-assessment have some flaws in larger settings. They can’t easily scale in larger

enterprises, where several independent small teams work simultaneously. That is why he looks

on the metrics from the different perspective and outlines scalable metrics that help to avoid

dysfunctions related to meeting metrics-based targets.

Table 5 List of metrics (Source: Greening, D. R., 2015)

 Metric Description
 True Sprint Length Number of time needed to really roll out a feature, might be

several sprints

 Velocity Number of BGIs or Story points per sprint
 Velocity deviation Deviation of velocity from sprint to sprint
 Forecast Horizon The point in the Product Backlog just before the first unestimated

Product Backlog Item

 Lead time Shortest sprint time or a minimum time for consecutive sprints of
several involved teams

 Downstream impact In case of team interdependencies, the number of downstream
teams affected

Padmini, K. J. et al. (2015) look at the overhead costs associated with the use of metrics

in agile software development. Moreover, authors believe, that due to the iterative and

incremental nature of the agile software development metrics used in traditional approaches

might be inappropriate. By analyzing practices of 24 development companies, they came up with

a list of 10 metrics that can be beneficial to the agile software development process. Meaning

that benefits from using these metrics outweigh the cost of measuring, tracking and other

processes involved.

Table 6 List of metrics (Source: Padmini, K. J. et al., 2015)

 Metric Description
 Delivery on time Ratio of features done in planned release schedule
 Work capacity The sum of all work reported during the Sprint, whether the SBI

toward which the work was applied finished or not.

 Unit test coverage for the
developed code

% of code covered by unit tests

 Percentage of adopted work ∑(Original Estimates of Adopted Work) ÷ (Original Forecast for
the Sprint)

 Bug correction time from new-
to-closed state

Bug correction time from new-to-closed state

 Sprint-level effort burndown Sprint burn-down chart for tracking of team level work progress
during a sprint, identifying the work remaining.

 Velocity ∑ of original estimates of all accepted work
 Percentage of found work ∑(Original Estimates of Found Work) ÷ (Original Forecast for

the Sprint)

 Open defect severity index Number and severity of open defects

 20

 Focus factor Velocity ÷ Work Capacity

The problematic of reporting to stakeholders was taken further by Boeman M.P. (2015).

They developed a practical model. The model was then checked for reliability, usefulness, and

feasibility using a case-study approach. The practical value of separate metrics and monitoring

method was confirmed.

Table 7 List of metrics (Source: Boeman M.P., 2015)

 Metric Description
 Added PBIs % of PBIs that are new on the backlog of a given iteration
 Changed PBIs % of Changed PBI in a iteration
 Enhancement Rate % of items from the last backlog included to the production in

the next backlog

 Estimation Shift Positive or negative % change in estimation of an iteration
 Expenses Prognosis Extrapolation of expected product costs
 Effort At Risk Sum of rejection impact ratios per PBI
 Priority Shift Sum of difference (shifts) in priorities
 Project Size Sum of size estimates or quantity of PBIs
 Project Size Remaining Number of PBIs remaining
 Rejected PBIs Number of rejected PBIs
 Scope Prognosis Expected level of functional completness
 Software Quality Measured, using quality properties described in ISO/IEC 25010
 Time Prognosis Expected end iteration

Till now a list of metrics should be quite extensive. However, since it may take more than

a year for research articles to be published and available it is also needed to look for data beyond

the academic literature. Annual “State of Agile” report is a largest and longest-running agile

survey in the world. It is being conducted since 2006. 3880 respondents participated in the 10th

annual report, that was released in 2016. Respondents were asked “How is success measured on

a day-to-day basis?”, bases on the answers, a list of metrics used in organizations was comprised:

• Velocity
• Iteration burndown
• Release burndown
• Planned vs. actual stories per iteration
• Burn-up chart
• Work-in-Process (WIP)
• Planned vs. actual release dates
• Customer/user satisfaction
• Defects in to production
• Defects over time
• Budget vs. actual cost
• Business value delivered
• Defect resolution
• Cycle time Estimation accuracy
• Individual hours per iteration/week

 21

• Test pass/fail over time
• Scope change in a release
• Cumulative flow chart
• Earned value Customer retention
• Revenue/sales impact
• Product utilization

After metrics from all the sources had been merged, the list included 75 metrics. Since

original definitions of those metrics were available in the papers, it was possible to eliminate

duplications not only by looking for the direct matches of names but also by analyzing the exact

parameters that those metrics were made to measure. After accounting for duplicates, the list

comprised 55 items. The second check of the list was made based on the time scale parameter.

As it was mentioned earlier, we are interested in the project evaluation happening the latest at the

end of the project. 4 metrics that do not comply with the requirements mentioned above were

removed from the list. The final list included 51 metrics.

As the goal of this thesis is to develop a unified, prioritized set of quantitative metrics of

success of Agile IT projects it is needed to check whether all aspects of the success assessment

matrix are covered by the list of metrics brought together in the previous chapter.

Firstly, we will see, whether these metrics can act as lagging indicators for evaluating the

project based on the success criteria. In the following paragraphs metrics from the list that was

developed in the previous chapter will be assigned to five success criteria.

Metrics by success criteria
Quality
Based on the work by Chow & Cao (2008) quality means delivering good product or

project outcome. However, measuring the quality of a software product is not a straightforward

process. Software products are very diverse and are usually extremely customized, meaning that

it is challenging to create up-to-date, objective and universal quality test, so companies have to

rely on rules of thumb in many cases.

 All else equal, product with less defects can be considered as a product of a higher

quality. It is important to mention, that an automated testing is a popular technique utilized by

agile teams in order to find defects throughout all products faster. Automated testing might be

perceived as something more related with faster development, rather than product quality. It is

not the case, since writing tests requires substantial time and effort investments that outweigh

gains in speed.

 That is why metrics that allow to measure an absolute number or changes in defects and

that show how good product is covered with tests should be assigned to the “Quality” success

criteria.

 22

 After reviewing the list of metrics that was comprised earlier, it turned out, that 16

metrics, or almost ⅓ of all metrics is related to quality.

Scope
Chow & Cao (2008) define scope category as meeting all requirements and objectives.

As it was mentioned, agile is an iterative framework, that welcomes new requirements based on

the feedback from end users and/or customers, those who in the end evaluate whether all

requirements and objectives were met.

In scrum working process is divided into relatively short iterations, during each of which

a certain functionality should be developed. Team decides on their own about the number of

backlog items (usually measured in story points) that will be included to the iteration. This

means that scope can be positively affected by productivity of the team. More story points it

includes into the sprint, means more features it builds in the limited period of time.

Since usually after each iteration product is evaluated and scope is refined, it is crucial for

the team to have a working piece of software in the end of each sprint.

That is why metrics that determine the productivity of the team and its ability to deliver

working software in the end of iterations will be assigned to the scope criteria of success. After

analyzing the list, it turned out that there are 10 (19.6%) such metrics there.

Timeliness
Time category means delivering product on time, as planned (Chow & Cao, 2008). It is

one of the most fundamental success criteria. In agile, in particular, it plays an interesting role, as

projects are split into limited number of iterations, meaning that instead of one big deadline,

there are several small ones throughout the whole project.

This opens more possibilities for evaluating the delays, interdependencies and makes it

easier to change and adjust the process.

That is why metrics associated with process time and end date estimations were included

into this category. There were 13 of them, or a bit over a ¼ of all metrics. Meaning that this

category is perceived as really important.

Cost
Cost category means delivering product within estimated cost and effort. Interestingly, in

the software industry, time spent on the project and it’s cost are usually highly correlated, due to

the high proportion of variable costs in the development process. Basically, salaries of the

developers comprise a significant share of above mentioned variable costs.

For this reason, in addition to classical financial observations, hours spent on a project

may be used to judge, whether the project is under control in terms of costs.

 23

 Using the principles described above, metrics from the list were assigned. In total, just 4

(7.8%) of them fell into this success category.

Stakeholders satisfaction
Stakeholder satisfaction is the least obvious success category. Agile practitioners, by

promoting stakeholder collaboration are trying to ensure the engagement of all parties involved

in the process. Engagement then makes it possible to find out the expectations that stakeholders

have for a certain project.

An additional aspect that should be taken into account is predictability. It can be used to

assure that expectations that were already set by stakeholders are regularly met.

In the list, there were 8 (15.6%) metrics that could help to measure either predictability of

development or engagement of stakeholders

Summary

Metrics were assigned to certain success categories, meaning that assigned metrics may

be used as an indicator of project success in a certain category. It is already clear that metrics

used by contemporary organizations are predisposed towards success criteria, as no metrics were

left unassigned.

Their distribution is not equal between different criteria (see Figure 5). The three leading

criteria are Quality (31%), Timeliness (25%), Scope (20%). This can be partially explained by

the nature of the relationship between time and cost criteria, mentioned in a corresponding

section of this chapter. Interestingly, Stakeholder Satisfaction is measured quite extensively.

Figure 5: Distribution of metrics amongst different success criteria

 24

Metrics by Critical Success Factors

Attributes of the majority of CSFs was presented in work by Chow & Cao (2008). For

this reason, the structure of the following paragraphs will be as follows. For each CSF its

attributes will be briefly discussed, and metrics will be assigned, if possible. The formulations

will be interpreted using the information from the same source as used for those from the original

paper: “Agile software development” by Leon & Koch (2004).

Team environment

• Collocation of the whole team

It is an organizational attribute which basically intends to clarify, whether the

whole team is located in the same physical location or not. Today it is not uncommon to

see teams working remotely, thanks to the development of teleconferencing software.

However Agile has a prejudgment against such setups, since communication assumptions

mentioned in the agile principles are much easier to meet when the whole team is

together.

There are no metrics that allow detecting whether the team is collocated in the

list.

• Coherent, self-organizing teamwork

The agile principle states that working in self-organizing, i.e. self-managed teams

is a way to achieve technological excellence. Additionally, in this Philosophy team is

perceived as an independent unit, that can influence decisions and provide insight to

management and clients. This positively affects the motivation of team members as well,

as they see the impact of their work.

In the list, there are no metrics that make it possible to distinguish self-organizing

team from a traditional command and control team.

• Projects with small team

Emphasis on face to face communication over extensive documentation puts a

“natural” limit on the team size. This means that in agile team size is assumed to be

somewhat small, while there are no direct restrictions. Of course agile can be applied to

projects where large teams might be needed, but in this case, the team is usually split into

smaller sub-teams that operate more or less autonomously.

Metrics that could allow tracking the team size are not present on the list.

• Projects with no multiple independent teams

Agile does not offer any straightforward approaches to managing multiple teams.

As mentioned earlier, if a larger team is needed it is possible to split it into independent

 25

sub-teams. It is challenging, and project management has to be flexible and innovative to

make it work, but it is possible.

There is 1 metric that indirectly addresses issues of working with multiple teams.

In general, this CSF is quite specific, as it focuses on the team design technicalities. The

total number of metrics from the list that allow measuring attributes of this CSF = 1.

Team capability

● Team members with high competence and expertise

In the core of agile Philosophy, there is an assumption that teams are built around

competent and motivated people. The competent team is a team that feels that it is able to

complete the tasks of the project. Availability of all individuals with all necessary

expertise within the team is another key for the development of a technically excellent

product.

There are no metrics that would help to identify competencies and expertise of the

team.

● Team members with great motivation

Agile principles suggest building projects around motivated individuals. For this

reason, an environment of trust and support is created. Basically, it is expected from

motivated teammates to go an extra mile, behave how they believe is best for the project

success or at least openly raise questions and discuss concerns they have.

There are no metrics in the list that would allow measuring the motivation of team

members.

● Managers knowledgeable in agile

The role of managers in agile changes significantly compared to the one in the

waterfall setting. Instead of actually planning the project and giving orders, a manager

would rather collaborate with the team in order to come to a consensus on how and when

things should be done. Understanding of such change is critical for the agile project

success.

There are no metrics that could directly indicate the knowledge managers have

about agile.

● Managers who have adaptive management style

The goal of project manager doesn’t change in agile. It is still about keeping the

project on track. What is different is the approach. Instead of using power leverage,

 26

project managers in agile rely on leadership. Project manager creates a collaboration-

friendly environment where he or she then leads the way in this cooperation.

Metrics that would allow defining the management style are not present on the

list.

● Appropriate technical training to team

This attribute relates to the fact that team members should be aware of the

paradigm where they operate. No only should they know their own responsibilities and

what is expected from them, but also to be able to assist those who might have questions

about the development process. This can be achieved by holding technical training

sessions.

There are no metrics that would help to distinguish a team that has appropriate

technical training from the one that doesn’t.

Customer involvement

● Good customer relationship

The key to good relationship with customers is in finding a balance between

collaboration and contract. A good relationship should be started by both parties

(customer and contractor) initially agreeing that agile requires learning, that might lead to

changes in scope and timeliness of the project. When customers are presented with

benefits of such approach and make an independent decision, there will be much less

room for conflicts, meaning that good relationship will prosper.

In the list, there are no metrics that provide insight into the relationship with

customers.

● Strong customer commitment and presence

Agile requires a strong customer commitment since customers are ideally

involved to the project on the full-time basis as an equal team member. It is an additional

cost from the customers’ perspective since people involved in the project should spend

less time on other responsibilities they might have. Not understanding this and not

willing to commit, would threaten the project success, since customers provide valuable

feedback and re-define requirements from the project.

There are 2 metrics that indirectly allow measuring the customer commitment.

● Customer having full authority

Agile welcomes change and because of that project requirements are specified in

fewer details and allowed to evolve. Constant approving, disapproving and prioritizing

ever-changing requirements is needed. Customer (with technical input from the

 27

development team) has full authority to do it since it is one of the vital tasks in the

development process.

There are no metrics in the list, that would allow to quantify this attribute.

To sum up, this CSF emphasizes the customer role in the project success. In the list, there

are only 3 metrics that might be used to measure this CSF.

Project management process

● Following agile-oriented requirement management process

There are two extremes in the requirement management process. It can be

completely informal when everything happens in oral form or by chaotic email exchange.

It can be rigorously formal when all requirements are written down in a very detailed

manner, and every single change to initial requirements needs to be discussed and

evaluated by a certain Configuration Control Board. In agile, especially Scrum, a mixed

approach is utilized. Requirements are written down to the product backlog, then

prioritized by a client who then may or may not accept them as done.

3 metrics can be used to indirectly define the requirement management process.

● Following agile-oriented project management process

Similarly, to the requirement management process, project management can also

be either informal or very formal. Agile, as a lightweight framework, tends to be closer to

the informal part of the spectrum. Instead of estimating product attributes, such as size,

effort and schedule are being estimated. The progress is tracked quite thoroughly. When

changes are identified, instead of taking corrective actions, the whole plan is changed.

In the list, there are 2 metrics that are related to the project management process.

● Following agile-oriented configuration management process

While configuration management process is not directly provided by the agile

framework, certain assumptions can be made. On the one hand, automated code version

control tools should be in place, since agile welcomes changes and they shouldn’t

overwrite each other. On the other hand, formal document control is not crucial, as the

role of documentation is de-emphasized in agile. As teams work in an iterative manner, a

certain baseline should be developed early on, to act as a basis for future work. Moreover,

releases in agile are happening much more often and faster, meaning that configuration

item identification and build management processes should be adjusted as well. Modern

tools allow for that, but additional training might be needed.

There are no metrics on the list that would allow gaining insight about the

 28

configuration management process.

● Good progress tracking mechanism

Agile allows tracking progress during and in-between increments. The main

challenge of such tracking is related to dealing with all the changes that are happening. It

may be problematic to estimate the project end date, while product backlog is constantly

growing. However, there is a solution. Changes in backlog are expected to level out

eventually. If the velocity of the team is greater than the rate at which new backlog items

are added, it is possible to estimate when all backlog items will be developed. Good

progress tracking allows to do that and take actions if needed.

There are 4 metrics that allow judging about the progress tracking mechanism.

● Strong communication focus with daily face-to-face meetings

As one of 12 Agile Principles states: “The most efficient and effective method of

conveying information to and within a development team is face-to-face conversation.”.

The agile framework values verbal and nonverbal communication between team

members in person more than extensive documentation, because it is believed that much

more information can be shared this way. One of the best examples is Scrum daily stand-

up meeting, during which team members are sharing their current status and concerns

they have.

There are no metrics that allow measuring whether there is a strong

communication focus on daily in-person meetings.

● Honoring regular working schedule

Overtime is a norm for many modern organizations, where teams are struggling to

meet high expectations that were set from outside. Agile is a framework, where overtime

is seen as something abnormal. The nature of agile allows for leveling up demands and

maintaining a pace that everyone, including customer, would approve.

There is 1 metric that indirectly might allow estimating the working schedule in

the organization.

Agile software engineering techniques

● Well-defined coding standards up front

Coding standards have two key benefits. First, they help to keep the technological

excellence of the code high. Second, they facilitate the development process. It is better,

when developers have a common ground, i.e. understand the code of each other more

easily and quickly, by having a common approach to coding.

 29

There are no metrics that would help to understand the quality of coding standards

in the organization.

● Pursuing simple design

As estimates about the future are often inaccurate, developers shouldn’t account

for them, when developing a certain story. What is meant by that, is that simplest

possible solution should be developed for each single feature, without accounting for

interdependencies with the planned features. It is believed that this approach would lead

to less rework compared to the one where future features are taken into consideration.

There are no metrics that might help to identify pursuing simple design.

● Rigorous refactoring activities

Refactoring is related to keeping the integrity of the product high. Developers

should aim at keeping the system as a whole as simple as possible. That is why, when

there is an opportunity to improve previously written code, it should be done.

Metrics helping to identify whether there is refactoring done, are not present in

the list.

● Right amount of documentation

While in Agile working software is valued more than comprehensive

documentation, there is still no direct indication of how documents should be managed.

The general idea is that documents should have a clear purpose, be concise and simply

engineered.

There are no metrics related to the documentation in the list.

● Correct integration testing

Instead of integrating all the code at the end of each increment, most agile

methods propose to do it more regularly. Some teams do continuous integration. The idea

is that each developer should integrate their code as soon as it is done. If there are any

problems with integration, then work is not considered done.

 Metrics related to integration testing are not on the list.

Delivery strategy

● Regular delivery of software

Software should be delivered regularly and often in order to mitigate risks. This

way customers can provide feedback on the product and needed adjustments can be

verified.

There are three metrics that help to identify, whether the software is delivered on

a regular basis.

 30

● Delivering most important features first

Customer or product owner as a main representative of the customer is the one

who is responsible for prioritizing items in the backlog. Same people decide whether

developed functionality matches with the one intended by the backlog item. To comply

with the direction set by the customer, a team should try to deliver items with higher

priority first.

There is one metric that indirectly helps to identify whether most important

features are delivered first

Effective benefits delivery and co-operative management process

• Predictable development process

Effective processes lead to predictable results that in turn can make stakeholders

continuously see the value of the product developed. In most cases, final benefits are not

directly delivered by direct subordinates

There are six metrics that can help to see whether the development process is

predictable.

• Stakeholders are engaged

All parties involved in the development process should be satisfied with the

process. Active engagement allows sharing opinions and expectation in a consistent

manner, meaning there is a higher chance they will be heard.

There is just one metric that helps to measure the engagement of stakeholders.

Summary
It turns out that existing metrics portfolio, used in contemporary organizations is not

suitable for the evaluation of the project context. This means that other measuring techniques

should be used. To understand which ones are more suitable, it is needed to define the purpose of

dealing with factors. As mentioned earlier, factors are the things that “must go right for the

project to succeed”, meaning that they represent a best practice of development with accordance

to agile project management.

The checklist seems most suitable for this purpose. Hales B. and Pronovost P. define

checklist as “a list of action items or criteria arranged in a systematic manner, allowing the user

to record the presence/absence of the individual items listed to ensure that all are considered or

completed.” However, a checklist is not just a simple enumeration of items; rather it is a

prioritized list that points out to essential attributes that should be considered in a certain field.

(Hales, B. M. and Pronovost, P. J., 2006)

 31

That is why it is needed to additionally develop a checklist for CSFs of project success

and their attributes. The checklist should not only list factors and their attributes but also provide

information about the relative importance of certain factors.

2.3 Summary of Chapter 2
The complexity of project success was noted, and it was decided to develop a holistic

view of project success. In order to define success criteria, the concept of project success was

split into two components: Project efficiency and General project success. Based on those

findings and other insights from the literature it was decided to make a list of success criteria that

would include: Cost, Timeliness, Quality, Scope and Stakeholder satisfaction.

Next, it was mentioned that industry-specific success factors should be taken into

consideration. After reviewing the literature, a paper investigating CSFs of project success was

found. That way CSFs for four out of five success criteria were found. To fill in the gap, other

works were reviewed, and CSF for stakeholder satisfaction was found. By combining success

criteria with the factors that influence those criteria, a matrix of agile project success was

created.

It was decided to see whether existing measurement techniques utilized by the

contemporary organization could potentially be used to both get an insight about meeting success

criteria and CSFs influencing those criteria. As metrics are widespread in software industry a

unified list of metrics that would reflect the actual metrics used in contemporary organizations

was created. To do that an extensive literature review published in 2015 was taken as a basis and

metrics from several more recent papers and the largest survey of agile teams were added. After

cleaning from duplicates, the final list included 51 metrics.

After the list of metrics was comprised it was decided to check whether it could cover

both success criteria and factors. The possibility to do so was explained by the fact that certain

metrics can be leading indicators (Factors) and lagging indicators (Metrics) at once. In the case

of criteria, it turned out that all metrics could be assigned to certain success criteria. In the case

of factors, just a few metrics were suitable. This lead to a conclusion, that current measurement

techniques utilized in a modern organization are partly biased towards lagging indicators.

In order to compensate for such a bias, it was decided to develop a checklist of factors,

that could be used in addition to metrics currently in use. It was found in the literature, that good

checklist should emphasize areas that need more attention. For that purpose, the expert opinion

could be used.

 32

CHAPTER 3: A CHECKLIST FOR ASSESSING PROJECT CONTEXT

 As mentioned earlier, a checklist should be organized in a systematic manner. There is no

need to do categorization. Critical success factors are the categories, and their attributes are the

criteria that should be considered. The question that is left unanswered is their relative

importance. Finding it would make the checklist more useful for party assessing the project

success. There are three reasons for that. First, assuming limited time resources of the team that

can be spent on progress and context tracking, it is needed to know what should be measured and

what is optional. Second, to make better decisions one must clearly understand the

interrelationship of items on the checklist. Third, the perceived importance of industry specific

CSFs, such as “Agile software engineering techniques” is interesting, since it would allow to see

how easily this checklist could be adopted to use cases beyond software development.

 Additionally, the list of CSFs that was developed by Chow and Cao (2008) was

supplemented by a new category “Effective benefits delivery and co-operative management

process” as a part of this work. The relative importance of this category could act as an evidence

that the addition to the list was beneficial. Moreover, Chow and Cao (2008) propose their own

view on the relative importance of CSFs, implying that more categories a factor influences, more

is its relative importance. Study might help to see if their view is confirmed.

 To define the relative importance of categories on the checklist it was decided to make

use of expert opinion. There are few methods available that might be used for this task, but the

fuzzy Analytical Hierarchy Process (AHP) fits best of all.

3.1 Fuzzy Analytic Hierarchy Process (AHP) analysis method
 In our case, multiple different CSFs need to be assessed. Multi attribute decision making

(MADM) techniques are suitable for this task, since they allow to deal with a selection of criteria

that are measured on different scales. Since project context estimation is a vague process, another

advantage of MADM over other decision-making methods is that no single measurement scale is

needed for all criteria. Out of all MADM techniques the Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS), Outranking, and AHP are used most often.

AHP, developed by Saaty (1980) is the most popular method used in the literature. It

breaks down complex systems, into easier to comprehend elements, organized into a hierarchical

system. The main tool that is proposed by this method is a pairwise comparison. Basically every

element on every level of hierarchy is compared with each other on a nominal scale. Based on

 33

these individual comparisons, an individual matrix is created. From the matrix it is possible to

derive comparative weights of each of the categories.

The major drawback of these methods, including AHP, is that they require input of

objective information. In reality, this type of information is either lacking, or there is no

sufficient amount of it. In these cases, it is needed to rely on opinion and knowledge of experts.

To mathematically account for imprecise estimation and general uncertainty that come with the

involvement of experts, additional components were incorporated to the methods mentioned

above. These components follow fuzzy logic that was developed by Zadeh (1965) who

introduced the fuzzy set theory. It was developed to help to deal with uncertainty of human

thought. This theory was then applied in variety of fields, including decision-making.

 Fuzzy AHP is actively used for incorporation of expert opinion. Calabrese et al. (2013)

apply the fuzzy AHP approach to a company in ICT field. Their goal was to get an understanding

of best practices in competing organizations. They obtained data by interviewing managers of the

analyzed companies and used it to rank several organizational aspects by their importance. Other

examples of applications of fuzzy AHP in IT include works of Lee et al. (2008) and Cebeci

(2009).

There are many fuzzy AHP methods proposed by various authors. In this paper, it was

decided to follow the approach developed by Chang (1996), since it allows to estimate the

relative weights of the categories, without tremendous computations, that other methods have in

order to offer possibilities out of the scope of this research. Fuzzy AHP method by Chang uses

triangular fuzzy numbers and is computed in a similar manner to the crisp AHP, thus not

requiring additional operations (Bozbura et al., 2007).

3.2 Questionnaire for practitioners of Agile PM in IT projects
Since there are seven CSFs to compare, the number of pairs in pairwise comparison was

equal to 21. Respondents were asked to choose a factor that is equally or more important out of

pairs and to evaluate the relative importance of each on the scale of 1 to 9 (1 being “equally

important” and 9 “absolutely more important”). The question that was asked for each of the 21

pairs can be seen below (Table 8).

Table 8 Questionnaire for Fuzzy AHP

When you evaluate the context of the project, for you, it is more important to assess…

1 Team environment or Team capability

2 Team environment or Customer involvement

 34

When you evaluate the context of the project, for you, it is more important to assess…

3 Team environment or Project management process

4 Team environment or Agile software engineering techniques

5 Team environment or Delivery strategy

6 Team environment or Effective benefits delivery and co-operative management process

7 Team capability or Customer involvement

8 Team capability or Project management process

9 Team capability or Agile software engineering techniques

10 Team capability or Delivery strategy

11 Team capability or Effective benefits delivery and co-operative management process

12 Customer involvement or Project management process

13 Customer involvement or Agile software engineering techniques

14 Customer involvement or Delivery strategy

15 Customer involvement or Effective benefits delivery and co-operative management process

16 Project management process or Agile software engineering techniques

17 Project management process or Delivery strategy

18 Project management process or Effective benefits delivery and co-operative management process

19 Agile software engineering techniques or Delivery strategy

20
Agile software engineering techniques or Effective benefits delivery and co-operative management

process

21 Delivery strategy or Effective benefits delivery and co-operative management process

A mix of purposive sampling and self-selection sampling techniques were used. Speakers

of major agile conferences and notable experts in the field were approached individually, and

links to the survey were published in closed online communities of agile practitioners.

In total 14 responses were received from experts. The respondents had many years of

experience as scrum masters, product owners, and senior software developers. Respondents

worked both for Russian and international companies and came from diverse backgrounds.

Answers of experts were transformed into triangular fuzzy numbers. For example, if an

expert indicated that Team capability is more important than Delivery strategy and that it is

 35

“Strongly important”, their answer would be transformed into (6, 7, 8) when comparing Team

capability and Delivery strategy and into (1/8, 1/7, 1/6) when comparing them vice versa. This

way the whole pairwise comparison matrix is filled in with fuzzy numbers.

After all matrices had been created, they were aggregated into a single matrix. Then

fuzzy comparison values were found, transformed into relative fuzzy weights and finally into

normalized relative weights for each CSF.

Based on these weights, as a result, a prioritized list of CSF was created. Results of the

study and managerial application were then discussed.

3.3 Results interpretation and discussion
Critical Success Factors were ranked by their relative importance using the Fuzzy AHP

method. Table 9 shows the final ranking (where 1 – most important, 7 – least important) of each

CSF, including the normalized relative weight. Since the fuzzy version of AHP was used, it is

possible to declare that vagueness of expert opinion was accounted for.

Table 9 Results of Fuzzy Analytic Hierarchy Process

 Rank Critical Success Factors Normalized relative weights (Ni)
1 Team capability 19%

2 Customer involvement 18%

3
 Effective benefits delivery and

co-operative management process 17%

4 Agile software engineering techniques 14%

5 Project management process 12%

6 Delivery strategy 10%

7 Team environment 9%

 It can be seen from the results, that the most important factor for evaluating the project

context is Team capability, it is followed by Customer involvement and Effective benefits

delivery and co-operative management process. Positions 4 to 7 are occupied in the following

order: Agile software engineering techniques, Project management process, Delivery strategy, Team

environment. There are three takeaways based on the results of the study.

First, it can be clearly seen that experts view on the relative importance of CSFs differs

from the one of Chow and Cao (2008). According to the authors, there are two different groups

of factors based on the amount of success criteria they influence (>1 or =1). First group includes:

Delivery strategy (3), Team capability (2), Agile software engineering techniques (2). Second

group includes: Team environment (1), Project management process (1), Customer involvement

 36

(1). This can be explained by the fact that while a certain factor can influence several success

criteria at once, its cumulative perceived impact on project might be relatively small.

 Second, while first two factors in the ranking can be expected to be in the top, since they

are the cornerstones of the Agile methodology. The third factor was added to explain the

Stakeholder Satisfaction success criteria. The fact that it found its place in the top half of the

ranking can act as a further confirmation that Stakeholder Satisfaction plays an important role in

the project success assessment and should be considered.

 Third, it is possible to split CSFs into two categories. First three factors with Ni, higher

than average (14,28%) would be considered as core items that should be considered, when

evaluating the project context. Last four factors would fall into the recommended category,

meaning that it would be beneficial to consider these factors, when evaluating the project

context.

 Based on the findings of the study, it is possible to compose a checklist for project

managers (See Table 10).

Table 10 Checklist for evaluating the project context
CORE ITEMS

Category: Team capability

□ Team members have high competence and expertise

□ Team members have great motivation

□ Managers are knowledgeable in agile

□ Managers have an adaptive management style

□ There is an appropriate technical training to the team

Category: Customer involvement

□ There is a good customer relationship

□ There a good customer commitment and presence

□ Customer has a full authority

Category: Effective benefits delivery and co-operative management process

□ Development process is predictable

□ Stakeholders are engaged

RECOMMENDED ITEMS

Category: Agile software engineering techniques

□ Well-defined coding standards are available up front

 37

□ Team is pursuing simple design

□ Rigorous refactoring activities are present

□ Right amount of documentation is developed

□ Correct integration testing is done

Category: Project management process

□ Agile-oriented requirement management process is followed

□ Agile-oriented project management process is followed

□ Agile-oriented configuration management process is followed

□ There is a good progress tracking mechanism

□ There is a strong focus on communication with daily face-to-face meetings

□ Regular working schedule is honored

Category: Delivery strategy

□ Software is delivered regularly

□ The most important features are delivered first

Category: Team environment

□ The whole team is collocated

□ Teamwork is coherent and self-organizing

□ Team size is small

□ There are no multiple independent teams

3.4 Summary of Chapter 3
 In the beginning of the chapter, the need to have a prioritized checklist was supported

with three arguments. Project managers would be able to save time by focusing on core items, to

make better decision by understanding relative importance of each category and to understand

whether it is possible to apply the checklist beyond the IT related implications.

MADM techniques were presented, and AHP was chosen as the most appropriate in

terms of goal and scope of the project. The concept of fuzzy logic was then presented as a way to

incorporate the ambiguity of human thought into the analysis. A fuzzy AHP approach proposed

by Chang (1996), making use of triangular fuzzy numbers, was chosen.

The pairwise-comparison questionnaire, was developed and presented. Purposive

sampling and self-selection sampling techniques were then announced and the process of

collecting the data was presented. In total 14 responses from diverse group of experts were

received.

 38

 Based on the fuzzy AHP analysis output the final ranking of CSFs was created. Three

major takeaways were presented. First, relative importance of factors cannot be solely explained

by the number of criteria these factors influence. Second, factor related to the Stakeholder

Satisfaction success criteria, that was added to CSFs identified by Chang (1996) proved to have a

normalized relative weight higher than average, confirming that the above mentioned category

should be considered when assessing the project success. Third, two groups of factors were

composed, based on their Ni: core items and recommended items.

 In the end, based on the findings of the study a checklist for project managers was

developed.

IMPLEMENTATION PROCEDURE

In order to simplify the onboarding process for project managers that are willing to

implement the proposed approach an implementation procedure was formulated. It can be split

into three steps.

First step happens in the beginning of the project. Checklist is filled in to record the

initial setting of the team and make project manager aware of all possible attributes that

influence the project success. Right after the checklist is filled in, certain changes might be made,

based on the items left unmatched or mismatch of checked items in the current checklist

compared to those in the checklists of the previous projects. Next, during first iterations, team

identifies their own benchmarks for metrics, such as team velocity. Based on them it is possible

to make better projections regarding the ongoing project.

Second step takes place throughout the project. On this step, project managers track

metrics, compare them with team benchmarks. They can adjust project estimations. Also on this

stage certain metrics, especially those that can be easily represented visually, can be used to

deliver development status updates to external stakeholders in consistent and organized manner.

Lastly, third stage occurs in the end of the project. Based on metrics and projection

accuracy throughout the project it is decided to what degree a project was successful. Then,

previous projects with similar perceived success level are identified (while team benchmarks are

unique to every project, it is possible to compare deviations or differences in differences for

majority of metrics). After that, checklist is compared to those of projects with similar perceived

successfulness. Checklists help to put perceived project success into context, and see whether

teams managed to “walk the extra mile”, or failed to benefit from the favorable project

environment. Knowing that information allows to assess project success more objectively and

enhances report on project results, by providing “a bigger picture”.

 39

In the end Checklist and data collected for metrics are sent to the company knowledge

base. That information is stored, in order to be used to help better evaluate future projects.

The implementation procedure is summarized in the figure 5.

Figure 5 Implementation procedure summary

 40

CONCLUSION

Strive for continuous improvement of all processes is one of the vital components of the

success in the modern, ever-changing world. In IT project management, it first led to the

transition from strict and “heavy” project management methodologies towards those that are

flexible and lightweight. This transition was accelerating during past several years, making agile

a new dominant project management methodology in the information technology sector.

Scholars didn’t leave the rise of agile unnoticed. Recently, a lot of research on the topic

was published with majority of papers being focused on guiding the decision-making process of

agile adoption. As more players adopt agile, tracking and control of the methodology becomes

increasingly important for sustaining a competitive advantage. Despite that, few papers covered

this aspect and those that did, were mostly based on the case studies. There was no unified

approach for evaluating the agile IT project success and latest industry surveys showed that

organizations were perceiving this issue as one of the main challenges in achieving their goals

with methodology.

The goal of this study was to fill the gap by developing a unified, prioritized quantitative

approach to measuring the success of Agile IT projects. To reach this goal, two research

questions were formulated: What parameters should be measured in order to differentiate a

successful Agile IT project, from the one that is not? What measuring techniques can be used to

assess these parameters?

As project success evaluation appeared to be not a straightforward process, due to several

parties, time scales and perspectives involved, it was first decided to develop a holistic view of

project success. As a result, a matrix comprised of success criteria and critical success factors

that affect these criteria was created.

 In order to find appropriate measurement techniques for every component of the success

matrix, it was needed to see what tools contemporary organizations already use for tracking and

control. A unified list of metrics used in organizations was created based on various sources,

including those from the most up to date academic papers and industry surveys. It turned out that

metrics cover success criteria really well while are unsuitable for measuring the CSFs.

 A checklist was proposed as a tool for recording statuses of CSFs. As checklist is a

prioritized set of items, it was needed to prioritize CSFs. Fuzzy Analytic Hierarchy Process was

chosen, as it allowed to incorporate experts’ opinion, while accounting for the uncertainty of

human thought. Prioritized list of CSFs was used for the checklist composition, however it also

revealed several interesting moments that will be also discussed in the next paragraphs.

 41

In terms of scientific contribution, there are several aspects worth mentioning. Firstly,

the fact that CSF, related to Stakeholder satisfaction, that was added as a part of this work turned

out to be perceived as relatively more important than half of the CSFs. It can act as a further

confirmation that Stakeholder Satisfaction plays an important role in the project success

assessment and should be considered. Secondly, a unified approach to project success evaluation

was created. It can act as a base for the future research e.g. on different time scales. Lastly,

results of fuzzy AHP reveal that industry specific CSFs are thought not to play a major role in

project success. This means that project success evaluation approach proposed by this paper

could be adopted to other industries in the future research.

 Practical contribution can be also split into several parts or “applications”. Firstly,

implementation of the proposed tracking and control methodology provides an ability to evaluate

project success more objectively. Secondly, checklist and list of metrics allow to recognize

potential deviations and take actions to counter them. Lastly, methodology proposed in this paper

simplifies reporting to external stakeholders, which is extremely important as agile is facing

more risk-averse public in larger enterprises.

 42

REFERENCES

Alliance, A. (2001). Agile manifesto. Online at http://www.agilemanifesto.org, 6(1).

Alliance, S. (2015). The 2015 State of Scrum Report. Online at www. scrumalliance.
org/why-scrum/state-of-scrumreport/2015-state-of-scrum.

Abbas, N., Gravell, A. M., & Wills, G. B. (2010, August). The impact of organization,
project and governance variables on software quality and project success. In AGILE Conference,
2010 (pp. 77-86). IEEE.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70-
77.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
... & Kern, J. (2001). Manifesto for agile software development.

Benington, H. D. (1983). Production of large computer programs. Annals of the History
of Computing, 5(4), 350-361.

Boehm, B. W., & Ross, R. (1989). Theory-W software project management principles
and examples. IEEE Transactions on Software Engineering, 15(7), 902-916.

Bozbura, F. T., Beskese, A., & Kahraman, C. (2007). Prioritization of human capital
measurement indicators using fuzzy AHP. Expert Systems with Applications, 32(4), 1100-1112.

Calabrese, A., Costa, R., & Menichini, T. (2013). Using Fuzzy AHP to manage
Intellectual Capital assets: An application to the ICT service industry. Expert Systems with
Applications, 40(9), 3747-3755.

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy
AHP. European journal of operational research, 95(3), 649-655.

Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems
in textile industry by using balanced scorecard. Expert Systems with Applications, 36(5), 8900-
8909.

Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile
software projects. Journal of systems and software, 81(6), 961-971.

Cockburn, A. (2004). Crystal clear: a human-powered methodology for small teams.
Pearson Education.

Cooke-Davies, T. (2002). The “real” success factors on projects. International journal of
project management, 20(3), 185-190.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and software technology, 50(9), 833-859.

Edmonds, E. A. (1974). A process for the development of software for non-technical
users as an adaptive system. General Systems, 19(215C18), 8.

Greening, D. R. (2015, January). Agile Enterprise Metrics. In System Sciences (HICSS),
2015 48th Hawaii International Conference on (pp. 5038-5044). IEEE.

Hales, B. M., & Pronovost, P. J. (2006). The checklist—a tool for error management and
performance improvement. Journal of critical care, 21(3), 231-235.

 43

Hastie, S., & Wojewoda, S. (2015). Standish Group 2015 Chaos Report.

Hewlett Packard Enterprise Development Company LP. (2016). Capitalize on current IT
trends.

Hummel, M. (2014, January). State-of-the-art: A systematic literature review on agile
information systems development. In System Sciences (HICSS), 2014 47th Hawaii International
Conference on (pp. 4712-4721). IEEE.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004, September). Software quality and
agile methods. In Computer Software and Applications Conference, 2004. COMPSAC 2004.
Proceedings of the 28th Annual International (pp. 520-525). IEEE.

Javdani, T., Zulzalil, H., Ghani, A. A. A., Sultan, A. B. M., & Parizi, R. M. (2013). On
the current measurement practices in agile software development.

Jørgensen, M., & Moløkken-Østvold, K. (2006). How large are software cost overruns?
A review of the 1994 CHAOS report. Information and Software Technology, 48(4), 297-301.

Jugdev, K., & Müller, R. (2005). A retrospective look at our evolving understanding of
project success. Project Management Institute.

Keil, M. (1995). Pulling the plug: Software project management and the problem of
project escalation. MIS quarterly, 421-447.

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software
Development Process. International Journal of Computer Technology and Electronics
Engineering (IJCTEE), 2(4).

Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2014, June). Why are industrial agile teams
using metrics and how do they use them?. In Proceedings of the 5th International Workshop on
Emerging Trends in Software Metrics (pp. 23-29). ACM.

Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean
Software Development–A systematic literature review of industrial studies. Information and
Software Technology, 62, 143-163.

Lee, A. H., Chen, W. C., & Chang, C. J. (2008). A fuzzy AHP and BSC approach for
evaluating performance of IT department in the manufacturing industry in Taiwan. Expert
systems with applications, 34(1), 96-107.

Leon, A., & Koch, A. S. (2004). Agile software development evaluating the methods for
your organization. Artech House, Inc..

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and agile software
development methodologies. Information systems management, 21(3), 41-52.

Lindsjørn, Y., Sjøberg, D. I., Dingsøyr, T., Bergersen, G. R., & Dybå, T. (2016).
Teamwork quality and project success in software development: A survey of agile development
teams. Journal of Systems and Software, 122, 274-286.

One, V. (2015). 9th annual state of agile survey. Technical report, Version One.

 44

Padmini, K. J., Bandara, H. D., & Perera, I. (2015, April). Use of software metrics in
agile software development process. In Moratuwa Engineering Research Conference (MERCon),
2015 (pp. 312-317). IEEE.

Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-driven to an
incremental software development approach with agile practices. Empirical Software
Engineering, 15(6), 654-693.

Petersen, K., & Wohlin, C. (2011). Measuring the flow in lean software development.
Software: Practice and experience, 41(9), 975-996.

Petersen, K. (2012, May). A palette of lean indicators to detect waste in software
maintenance: A case study. In International Conference on Agile Software Development (pp.
108-122). Springer Berlin Heidelberg.

Project Management Institute. (2013). A Guide to the Project Management Body of
Knowledge (PMBOK guide), 5th Edition.

Racheva, Z., Daneva, M., Sikkel, K., & Buglione, L. (2010). Business value is not only
dollars–results from case study research on agile software projects. In Product-Focused Software
Process Improvement (pp. 131-145). Springer Berlin Heidelberg.

Rahmanian, M. (2014). A comparative study on hybrid IT project management.
International Journal of Computer and Information Technology, 3(05), 1096-1099.

Rosser, L., Marbach, P., Lempia, D., & Osvalds, G. (2014). Systems Engineering for
Software Intensive Projects Using Agile Methods. International Council on Systems Engineering
IS2014, Las Vegas, US-NV, 30.

Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource
allocation.

Schwaber, K. (1997). Scrum development process. In Business Object Design and
Implementation (pp. 117-134). Springer London.

Serrador, P. and Turner, R. (2015). The Relationship Between Project Success and
Project Efficiency. Project Management Journal, 46(1), pp.30-39.

Serrador, P. and Pinto, J. K. (2015). Does Agile work?—A quantitative analysis of agile
project success. International Journal of Project Management, 33(5), 1040-1051.

Shenhar, A. J., & Dvir, D. (2007). Project management research-the challenge and
opportunity. Project management journal, 38(2), 93.

Staron, M., Meding, W., & Söderqvist, B. (2010). A method for forecasting defect
backlog in large streamline software development projects and its industrial evaluation.
Information and Software Technology, 52(10), 1069-1079.

Turner, R. and Zolin, R. (2012). Forecasting Success on Large Projects: Developing
Reliable Scales to Predict Multiple Perspectives by Multiple Stakeholders Over Multiple Time
Frames. Project Management Journal, 43(5), pp.87-99.

van Kelle, E., van der Wijst, P., Plaat, A., & Visser, J. (2015, May). An empirical study
into social success factors for agile software development. In Proceedings of the Eighth
International Workshop on Cooperative and Human Aspects of Software Engineering (pp. 77-
80). IEEE Press.

 45

Vinodh, S., Balagi, T. S., & Patil, A. (2016). A hybrid MCDM approach for agile concept
selection using fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS. The International Journal of
Advanced Manufacturing Technology, 83(9-12), 1979-1987.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

 46

APPENDICES

Appendix 1 Final list of metrics

Metric Definition
Budget vs. actual cost Comparison between
Build status Build broken or not
Burn-up chart Graphical representation

Check-ins per day Number of commits (code, automated test, specification) per day
Cost types Not defined in primary study
Cumulative flow chart Not defined
Customer/user satisfaction Customer buy-in in %

Cycle time Time it takes for x size story to be completed
Cycle time Estimation
accuracy

Difference between planned and actual cycle time

Defect count Number of defects

Defect resolution Average time it takes to resolve a defect

Defect trend indicator
Indicates if amount of defects in the coming week will increase, stay the
same or decrease from this week

Defects into production Not defined

Deferred defects
Probably means a number of defects that are known but are not fixed for
the release.

Downstream impact
In case of team interdependencies, the number of downstream teams
affected

Effort At Risk Sum of rejection impact ratios per PBI
Effort estimate Estimated effort per story in ideal pair days

Enhancement Rate
% of items from the last backlog included to the production in the next
backlog

Estimation Shift Positive or negative % change in estimation of an iteration
Expenses Prognosis Extrapolation of expected product costs
Focus factor Velocity ÷ Work Capacity

Forecast Horizon
The point in the Product Backlog just before the first unestimated Product
Backlog Item

Individual hours per
iteration/week Not defined
Iteration burndown Graphical representation of the work completed and left in the iteration

Lead time
The average time it takes for one request to go through the entire process
from start to finish

Number of test cases Not defined in primary study
Number of unit tests Number of unit tests

Percentage of adopted work
∑(Original Estimates of Adopted Work) ÷ (Original Forecast for the
Sprint)

 47

Metric Definition
Percentage of found work ∑(Original Estimates of Found Work) ÷ (Original Forecast for the Sprint)
Planned vs. actual release
dates

Difference between planned and actual release dates

Planned vs. actual stories per
iteration Not defined
Predicted number of defects
in backlog Predicted number of defects in backlog in the coming week.
Priority Shift Sum of difference (shifts) in priorities
Progress as working code Product is demonstrated to the customer who then gives feedback
Project Size Sum of size estimates or quantity of PBIs

Queue time
The average time between sub-processes that the request sits around
waiting

Rejected PBIs Number of rejected PBIs
Release burndown Not defined
Scope change in a release Sum of work added or removed from the release

Software Quality Measured, using quality properties described in ISO/IEC 25010
Story flow percentage Estimated implementation time per actual implementation time *100
Story percent complete Not clearly defined in primary study
Technical debt Technical debt in amount of hours it would take to fix all the issues
Test coverage Percent of code covered by tests

Test pass/fail over time Not defined
Test-growth ratio Difference of amount of tests per difference of amount of Source Code.
Variance in handovers Changes in amount of handed over requirements
Velocity Amount of developed scenarios per developer per week
Velocity deviation Deviation of velocity from sprint to sprint
Velocity of elaborating
features

Probably the time it takes to clarify a feature from customer into
requirements that can be implemented

Work-in-Process (WIP) Amount of features or feature level integrations team is working on

Appendix 2 Aggregated Pairwise-comparison matrix
ALL DECISION MAKERS TE TC CI PMP ASE DS EBD
Team environment 1.0 1.0 1.0 0.2 0.2 0.3 1.4 1.7 2.0 3.7 4.2 4.7 1.4 1.6 1.9 2.2 2.7 3.2 1.5 1.8 2.2
Team capability 5.5 6.3 7.1 1.0 1.0 1.0 2.4 2.8 3.1 3.4 3.8 4.3 3.6 4.2 4.8 3.1 3.7 4.2 2.4 3.0 3.6
Customer involvement 4.2 4.6 5.1 2.7 3.3 3.9 1.0 1.0 1.0 3.6 4.1 4.5 2.8 3.3 3.8 4.0 4.5 5.1 1.9 2.4 2.9
Project management process 1.7 2.1 2.5 1.9 2.3 2.8 2.0 2.3 2.7 1.0 1.0 1.0 1.7 2.1 2.6 0.2 2.3 2.8 2.7 3.2 3.6
Agile software engineering techniques 2.9 3.5 4.2 1.5 1.9 2.3 2.0 2.3 2.7 2.7 3.0 3.4 1.0 1.0 1.0 2.5 3.0 3.6 1.7 2.2 2.7
Delivery strategy 3.2 3.7 4.2 2.3 2.7 3.1 1.2 1.4 1.7 3.1 3.6 6.6 1.4 1.8 2.2 1.0 1.0 1.0 0.3 0.4 0.4
Effective benefits delivery
and co-operative management process

3.8 4.3 4.8 2.5 2.9 3.4 2.3 2.6 2.9 2.4 2.9 3.3 2.7 3.2 3.7 4.1 4.8 5.5 1.0 1.0 1.0

