

St. Petersburg University

Graduate School of Management

Master in Information Technologies and Innovation Management

TECHNICAL DEBT MANAGEMENT IN RUSSIAN SOFTWARE

DEVELOPMENT COMPANIES

Master’s Thesis by the 2nd year

student

Concentration – MITIM

Grinevskaia Iuliia

Research advisor:

Dmitry Kudryavtsev,

Associate Professor

St. Petersburg

2017

2

3

ABSTRACT

Master Student’s Name Iuliia I. Grinevskaia

Master Thesis Title Technical debt management in Russian software development

companies

Faculty Graduate School of Management

Main Field of Study Information Technologies and Innovation Management

Year 2017

Academic Advisor’s

Name

Candidate of Science, Associate Professor, Dmitry V. Kudryavtsev

Description of the goal,

tasks and main results

The concept of technical debt is relatively new in scientific

researches, moreover, this concept plays an important role in modern

software development companies.

In this paper, technical debt management in Russian software

companies was investigated. The purpose of this research is to study

the reasons of the emergence of technical debt, the ways to manage

technical debt, and also to identify factors that affect the decision-

making on technical debt management. Three Russian software

companies were investigated. An important idea in the study of

technical debt in these companies was to understand the context of

software development, which includes the market in which the

company operates, the development process, the structure and size

of the development team, and the age and the history of the system

development in the company. As results of this study, the common

for all companies reasons for the emergence of technical debt, the

ways of managing it, were identified. Furthermore, there were

identified common factors that influenced the decision-making on

the management of technical debt. In addition, the main differences

in the methods of managing technical debt in companies operating in

different markets were found as well as some recommendations were

given.

Keywords Technical Debt, Technical Debt management, software development

4

АННОТАЦИЯ

Автор Гриневская Юлия Ивановна

Название магистерской

диссертации

Управление техническим долгом в российских компаниях-

разработчиках программного обеспечения

Факультет Высшая Школа Менеджмента

Направление подготовки Информационные технологии и инновационный менеджмент

Год 2017

Научный руководитель Кандидат наук, доцент Кудрявцев Дмитрий Вячеславович

Описание цели, задач и

основных результатов

Концепция технического долга является относительно новой

в научных исследованиях, кроме того, эта концепция играет

важную роль в сфере разработки программного обеспечения.

В данной работе было исследовано управление техническим

долгом в российских компаний-разработчиках программного

обеспечения. Целью данного исследования является изучение

причин возникновения технического долга, способов

управления техническим долгом, а также выявление

факторов, которые влияют на принятие решений об

управлении техническим долгом. В работе были исследованы

три российские компании-разработчики программного

обеспечения. Важная роль в изучении технического долга в

указанных компаниях отводилось пониманию контекста

разработки программного обеспечения, который включает

рынок, на котором оперирует компания, процесс разработки,

состав и размер команды разработки, а также возраст и

историю развития системы в компании. В результате данного

исследования были выявлены общие для всех исследованных

компаний причины возникновения технического долга,

способы управления им, а также были выявленные общие

факторы, которые оказывают влияние на принятие решений

об управлении техническим долгом. Кроме того, были

выявлены основные различия в способах управления

техническим долгом в компаниях, оперирующих на разных

рынках.

Ключевые слова Технический долг, Управление техническим долгом,

Разработка программного обеспечения

5

TABLE OF CONTENTS

INTRODUCTION ... 6
1. CHAPTER 1: THEORETICAL BACKGROUND ... 7

1.1. The concept of technical debt .. 7

1.2. Technical debt in agile software development .. 12

1.3. The context of software development process .. 14

1.4. Causes of technical debt and its classification .. 15

1.5. Technical debt management .. 19

1.6. Technical debt management strategies .. 24

1.7. Examples of empirical studies of technical debt ... 25

1.8. Conclusions and research gap identification ... 29

1.9. Theoretical model of the study .. 30

2. CHAPTER 2: RESEARCH METHODOLOGY ... 31

2.1. Research questions .. 31

2.2. Research methodoogy.. 31

2.3. Data Collection and research design ... 33

2.4. Choice of the companies for the research .. 33

3. CHAPTER 3: CASE STUDY ANALYSIS ... 35

3.1. Company A case study .. 35

3.2. Company B case study .. 40

3.3. Company C case study .. 43

3.4. Cross-case study comparison .. 46

3.5. Discussion .. 51

3.6. Conclusion and implications ... 56

List of references ... 60

Appendix 1. Interview questions ... 64

Appendix 2. Company B team 1 development process (Figure 13) 67

Appendix 3. Company B team 2 development process (Figure 14) 68

Appendix 4. Company C development process (Figure 15Figure 14) 69

6

INTRODUCTION

Technical debt being an emerging concept attracts high attention from researchers and

practitioners. Despite wide discussions of this concept on IT conferences and practical workshops

as well as in academic articles, the concept of technical debt is not fully discovered and still lacks

of empirical studies and proven best practices (Falessi et al., 2014). Firstly appeared as a metaphor,

that compares technical debt with financial debt in order to explain its meaning to non-technical

stakeholders, technical debt concept has grown into independent area for the research. (Kruchten

et al., 2012).

Technical debt management practices are also not fully investigated, moreover, it is

confirmed by both – researchers and practitioners that technical debt management is context

dependent, but research on technical debt and its context also remains underdeveloped and some

of technical debt management activities still have lots of research areas uncovered (Fernandez-

Sanchez et al., 2015, Li et al., 2015).

The aim of this research is to investigate technical debt management practices in Russian

software development companies with high attention to the context of software development. The

context includes several components: the type of the market on which companies operate, the

structure and size of software development teams, the age of the system as well as its historical

development and the processes of software development.

In order to study the concept of technical debt management in Russian software

development companies the following research questions were conducted:

RQ1. How do software development process influence the sources of technical debt in

Russian software development companies?

RQ2. How does the context influence technical debt management in Russian software

development companies?

RQ3. What technical debt management activities could be considered as mature in Russian

software development companies? What methods are used to support these activities?

RQ4. What factors should be considered during decision-making processes about

managing technical debt?

In order to answer research questions above, a qualitative research was made. The

empirical part of this study is represented by multiple case study. The case study investigates

technical debt management peculiarities in three Russian software development companies that

operate in different markets: B2C, B2B and B2G.

7

1. CHAPTER 1: THEORETICAL BACKGROUND

1.1.The concept of technical debt

The concept of technical debt was introduced in 1992 by the American computer engineer,

Ward Cunningham, as a metaphoric definition aimed at explaining to different product

stakeholders the need for refactoring (Kruchten, Nord and Ozkaya, 2012). In computer science,

code refactoring is the process of changing an existing software system so that it improves its

internal code structure, but does not influence its external behavior (Fowler, 2013). Cunningham

explained debt metaphor in the following way. ‘If we failed to make our program align with what

we then understood to be the proper way to think about our financial objects, then we were going

to continually stumble over that disagreement and that would slow us down which was like paying

interest on a loan.’ ("Ward Explains Debt Metaphor", 2017)

Therefore, technical debt is a technical compromise, which, like a financial debt, has its

interest and principal payments. Interest payments occur from extra work effort needed for the

future code development, because of compromise made to the code design and structure in the

past. Principal of technical debt is the process of refactoring of the existing code into better

structured and designed. Companies could either continue with paying the interest on the technical

debt, fully cover the debt by making code refactoring (Fowler, 2003).

The difference between financial and technical debt is presented in the Table 1

Table 1. Financial and Technical debt analogy (composed by the author)

 Financial debt Technical debt

Concept definition Amount of money owed by

one party to another

Decision to defer necessary

work to improve code

imperfections

Interest payment Amount of money which

repays interest on a loan

Extra effort needed to the future

system development, while

keeping code imperfections as

it is

Principal payment Paying off the loan amount Code refactoring

Since initially used as a metaphor to explain the technical term to non-technical

stakeholders, technical debt concept has evolved and expanded from narrow coding perspective to

more broad view including software architecture, design, requirements, testing and documentation,

8

largely due to the number of scientific researches made in that field (Kruchten, Nord and Ozkaya,

2012). The most recent studies define technical debt as follows.

‘When taking short cuts and delivering code that is not quite right for the programming

task of the moment, a development team incurs Technical Debt. This debt decreases productivity.

This loss of productivity is the interest of the Technical Debt.’ (Letouzey and Declan, 2016)

The first classification of the technical debt types was made by Steve McConnell; the

representation of that taxonomy is presented in the Figure 1.

Figure 1: Technical debt classification (McConnell, 2007)

 According to McConnell, the higher hierarchy of technical debt is composed of the

unintentional and international debt. Unintentional technical debt usually occurs because of the

poor quality of work, without any intention. For instance, it could happen when a junior computer

engineer writes a low quality unstructured code, or it could be incurred unknowingly, when a

company acquire another company with large amount of technical debt, which could not be

identified before the acquisition.

Intentional technical debt is made by a company for a certain purpose or strategic reason

by sacrificing the quality of the code to the present needs. Usually it is made in order to save time-

to-market and not to lose competitive advantage in the present, to preserve startup capital or to

delay development expenses. Short-term technical debt is the one that is paid off by the company

for tactic reasons, which usually happens at a late stage of development or sprint to make the

release possible; short-term technical debt is supposed to be covered quite often. Long-term

technical debt is a strategic company’s decision, which is not expected to be paid off shortly, if at

all.

9

Furthermore, McConnell has identified what the technical debt is not. Not all incomplete

work and code shortcomings should be addressed as a technical debt, but only those that require

interest payments. Thus different cut and deferred features as well a feature backlog do not cause

technical debt. (McConnell, 2007)

Another classification of technical debt was proposed by Martin Fowler in the form of 2x2

quadrant, where horizontal axis represents intention and vertical axis – prudence (see Figure 2).

His model focused on the technical side of the technological debt – software development, was

further extended by Mohan Babu K by adding a complex view of the application portfolio and

enterprise architecture (Table).

Figure 2 Technical Debt Quadrant (Fowler, 2009)

 Table 2 Description of technical debt types

Type of technical debt Description

Reckless/deliberate Sometimes projects teams succumb to time-to-market tensions from

the business or market side without necessary analysis and foresight.

For instance, a financial business unit may require a different version

of the accounting system to be implemented without waiting for the

new ERP system to be set up across the organization. This kind of

debt should be paid off, when the new global ERP system would be

ready for implementation. (Babu K, 2016)

Prudent/deliberate Sometimes project teams could deliberately take over a short-term

technical debt with the explicit plans to repay it in the future. Such a

decision could be a reaction for the change in the external

environment. (Babu K, 2016)

10

Reckless/inadvertent Such technical debt occurs in the poorly managed companies, where

project teams do not know the consequences of taking technical debt

or recklessly disregard the guidelines. (Babu K, 2016)

Prudent/inadvertent Technical debt of this kind occurs when project teams might take a

reasonable decision that meet the functional needs at a certain time,

but which might also unexpectedly miss other situations and

requirements in the organization. (Babu K, 2016)

It was proved by many researchers, that technical debt is not just a metaphor, but a serious

issue that need to be addressed in a specific way. Technical debt decreases company’s productivity

(Letouzey, 2016) and could be a symptom of a more serious weakness in the companies

organization, especially in the communication process (Declan, 2016)

Technical Debt is used as a metaphoric definition of technical compromises with which a

company may cope or even may benefit from in short-run, but which may be threatening in the

long run. Firstly, this metaphor related to code level issues and was introduced by Ward

Cunningham about twenty years ago to clear up the need of code refactoring for nontechnical

stakeholders. Since that time, the concept of technical debt started to evolve and was expanded

from narrow coding perspective to more broad view including software architecture, design,

requirements, testing and documentation (Kruchten, Nord and Ozkaya, 2012).

As for more formalized notion of Technical debt, it could be described as the costs that are

needed to be spent to increase the technical quality level to a point where it could be considered

as ideal. Additionally, technical debt has its own interest, that is the extra costs needed to maintain

and unsure the reliability of the software with a poor technical quality. (Marinescu, 2012).

However, this definition is not complete, because more recent studies characterize technical debt

from a bit different perspective. They consider technical debt as invisible results that appeared

because of the past decisions about software and that could influence the whole system in the

future. Moreover, the technical debt that is managed in a company in a logical and accurate manner

could bring valuable benefits and somehow can be considered as investments opportunities

(Falessi et al., 2014).

Some researches see technical debt as a core invisible part of software that lies between

visible parts of new features and additional functionality on the one hand and defects and bugs on

the other hand (see Figure 3).

11

Figure 3. The technical debt landscape. On the left, evolution or its challenges; on the right, quality

issues, both internal and external. (Source: Kruchten, Nord and Ozkaya, 2012)

Technical debt was proved to be not just a metaphor, but a complex concept that could be

valuable for practitioners. It was proved by asking 544 participants (coding and software architects

professionals) and 65% of respondents disagree that “Technical debt is just a metaphore”,

furthermore, 79% of respondents of the same group agreed on a statement that “Lack of awareness

of Technical debt is a problem” (Ernst et al., 2015)

Figure 4 High-level definitions of technical debt. (Source: Ernst et al., 2015)

The concept of technical debt is not mature yet, it is still evolving, however, there are

already number of studies dedicated to it. These studies cover wide range of topics, related to

technical debt, such as:

1. Overall research on the topic, a systematic literature review or a systematic

mapping study.

2. Investigation of causes of technical debt and its classification.

12

3. Core activities of technical debt management:

a. Identification of technical debt.

b. Methods of technical debt measurement.

c. Practices and tools for technical debt management.

4. Research on particular type of technical debt.

1.2.Technical debt in agile software development

Technical debt is often used in a context along with Agile software development. One of

the most popular feature of agile methods is to deliver working functionality quickly in resource

constrains and constantly changing requirements. Indeed, this short time period may lead to the

insufficient quality in software design, test coverage and non-optimized code. And all these may

cause the appearance and accumulation of technical debt. Hence, it is needed to clearly identify

such points of technical debt emergence and find the ways of manage it properly in agile software

development (Behutiye et al., 2017).

Though first attempts to change the approach to software development in more flexible

form started in the middle of 1980s, a kind of official date of agile methodology birth as a new and

separate methodology is the 2001 year. In 2001, the main leaders of different agile software

development approaches such as Kanban, Extreme Programming and Scrum together created the

Manifesto of Agile Software development. In this Manifesto were included core principles and

values that were aimed at optimization and facilitation of the software development processes. The

main proncioles from this Manifesto are listed below:

1. Software that is working is more important than comprehensive documentation.

2. Focus on collaboration with customers, not on the negotiations about the contract.

3. Individual minds and people interaction is more important than formal processes and

tools.

4. Ability to react quickly on changes is more important than strict plan following. (Beck

et al. 2001)

To sum up the main idea of agile approach it should be said that it focuses mainly on the

product features that could be delivered with existing resources (comparing to plan-focused

approach that cares more about pricing and budgeting modules). The second core idea of agile

approach is concentration on the people’s needs, their values and their positive experience using

the software. Hence, it is much more qualitative rather than quantitative approach (Schön,

Thomaschewski, Escalona 2017).

13

The move from plan-driven approach to agile one is shown on Figure 5.

Agile approach has several advantages, such as flexibility of process of software

development, moreover, it allows to avoid bureaucracy of traditional software development

approach. Agile development processes are based mostly on informal interaction between software

development team rather than on time-consuming planning and design. All of these allows

companies deliver ready-to-use solutions in shorter periods. However, Agile approach also has

some drawbacks that are tight closely with knowledge management. Through all period of system

development proper maintenance of project documentation is not the highest priority of the agile

team, because they rely mostly on informal collaboration among team members. This approach

may lead to the loss and of important knowledge during and after system development (Ru-Zhi et

al. 2005).

Figure 5Move from plan-driven to value-driven approach (Source: (Schön et al. 2017).

Moreover, recent years more crucial need came to the forefront. It is the need of constant

updating of stored knowledge and its maintenance to remain the stored knowledge actual. The core

issue there is that companies switched from Waterfall model of system development to Agile

approach. As the incredible pace of changes in modern world, companies should be flexible, they

should be able to adjust their strategy and their plan within changing environment conditions (these

conditions could be either changes in people preference or appearance of new technologies). The

main difference between Waterfall and Agile approaches is that Waterfall is reluctant to any

changes in the schedule and any kind of changes should be avoided. In contrast, Agile approaches

are aimed at getting the best value in frames of certain time period (Davis et al. 2014).

14

1.3.The context of software development process

Technical debt is highly related to the context (Fernandez-Sanchez et al. 2015), as well as

software development process through which technical debt appears is also highly context-

dependent (Kruchten 2011). Therefore, in order to define the context of technical debt it is

necessary to identify the context of software development processes.

There several studies which identify main factors that are needed to consider in order to

define software development context. Despite some of the studies define the context in order to

later determine, whether the company would be able to absorb agile development methodology,

their approach is also applicable for defining overall software development context. The

comparison of proposed factors is shown in Table 3.

Table 3 Comparison of factors needed to determine the context of software development

 Boehm-Turner, 2003 Cockburn &

Crystal, 2005

Ambler, 2009 Kruchten, 2011

F
a
ct

o
rs

 Size,

 Criticality,

 Personnel (their skill,

know-how),

 Dynamism (rate of

change) and

 Culture of the team:

thriving on chaos or

on order

 Size,

 Criticality

 Skills.

 Team Size

 Geographical

Distribution

 Compliance

 Organization &

Culture

 Organization

distribution

 Application

complexity

 Enterprise

discipline

 Governance

 Size

 Team

distribution

 Criticality

 Business

model

 Governance

 Age of

system

 Rate of

change

The model of Krutchen is described below as more recent one:

Size.

By this part the overall size of the system is implied. It is considered as one of the greatest

factor, because it act as a driver for the size of the team, the number of teams, the needs for

communication and coordination between teams, the impact of changes, etc.

Business model

15

This part relates to the money flow, and what is the main product of the company - internal

system, a commercial product, contract system for a customer, or not an independenty product but

instead a component of a large system involving many other parties? Is it commercial or free and

open-source software?

Team distribution

This aspect is linked to the size of the project. If the team is widely distributed, a lot of

attention should be put into communications and coordination of decisions. Moreover, stable

interfaces between teams, and between the software components could be needed.

 Rate of change

This rate implies the position of the system in modern changing environment, including

business environment, business stability, unknown risks and the role of the system in this

environment.

Age of system

This aspect relates to the amount of legacy code in the system as well as its architecture

that could be strongly affected by the historical decisions about the system development. If

considered system is quite young, it could contain less legacy code.

Are we looking at the evolution of a large legacy system, bringing in turn many hidden

assumptions regarding the architecture, or the creation of a new system with fewer constraints?

Criticality

This part of the context covers the questions that relate to the consequences of the system

fails and documentation that is needed to support this system.

Governance

This aspect relates to software development processes (how do they start and finish), to the

person (group of people) who makes critical decisions about the system and its development in

questionable or highly important moments and to the person (group of people) who manages

project managers.

There are also studies that define overall context of software development, not only for

agile practices. The context could be defined by these factors: Business, Architecture, Process,

Organization and by the interconnection of these factors (Betz, Wohlin, 2012).

1.4. Causes of technical debt and its classification

Technical debt can be classified based on the types of the causes of this debt (Li et al.,

2015). Classification, presented in Table 4.

Table 4. Types of technical debt (source: Li et al., 2015)

16

Technical Debt

type

Explanation Examples

1. Requirements The difference between the real processes

in the existing system and the optimal

requirements that couldn’t be met due to

system constrains.

 Over-engineering

2. Architectural Is caused by the decisions on system

architecture level to agree on some

compromises that could be crucial in the

future.

 Architecture smells

 Architectural anti-patterns

 Violating of good

architectural practices

 Architectural compliance

issues

3. Design Refers to technical shortcuts in detailed

design.

 Code smells

 Incomplete design

specifications

 Grime

4. Code Refers to the poor quality of the code (code

that goes againt the coding rules od coding

best practices).

 Low-quality code

 Duplicate code

 Code violations

5. Test Is caused by shortcuts while testing.  Lack of test

 Lack of test automation

 Residual defects not found in

tests

 Expensive tests

6. Build Is about drawbacks in the system or about

too complex processes in built system.

 Bad dependences

 Manual build processes

 Flawed automatic building

7. Documentation Is caused by incomplete or outdated

documentation in system description

(when the current state of the system could

be found only in code)

 Outdated documentation

 Insufficient documentation

 Lack of code comments

8. Infrastructure Refers to negative impact of infrastructure

on the team (when processes, technologies

and supporting tools are not optimal).

 Lack of continuous

integration

 Old technology in use

17

 Lack of automated

deployment

9. Versioning Is caused by inaccurate code versioning.  Multi-versioning support

 Code forks

10. Defect Is found in system bugs and failures.  Bugs

 Defects

Martini et al. in their work “Architecture Technical Debt: Understanding Causes and a

Qualitative Model” in 2014 investigate and classify the most frequent causes for accumulation of

architecture technical debt, however, their classification is highly compatible with the overall

causes of technical debt, not only architecture one, see Figure 6.

Figure 6 Causes of ATD accumulation (source: Martini et al., 2014)

Li et al. based types of technical debt on the causes of these types, but the causes in their

classification shows only by the technical side of the question. Martini et al. have more broad

causes: which included not only technical constrains but also business factors and human factor.

The point is that several causes may influence particular type of technical debt and one cause may

influence several types of technical debt and the proportion of the influence may vary. Hence, it

may be needed to build more clear interconnections between the causes of technical debt and the

types of debt that may appear.

As for causes of technical debt in agile software development, eight main causes can be

pointed out, see Figure 7 (Behutiye et al. 2017)

18

Figure 7. Number of related works about technical debt in ASD ranged by the cause (source:

Behutiye et al. 2017)

The most common consequences of incurring technical debt in agile software development

were also identified. The consequences are the following:

 Reduced productivity (in 17 papers)

 System quality degradation (in 17 papers)

 Increased cost of maintenance (in 15 papers)

 Complete redesign or rework of system (in 3 papers)

 Market loss/ hurt business relationships (in 3 papers) (Behutiye et al. 2017)

Although the classification of technical debt consequences is useful, it is needed to be

linked with the causes and types of technical debt as well as with the management practices to

avoid them.

0

2

4

6

8

10

12

14

16

18

Number of related works about technical
debt in ASD ranged by the cause

19

1.5.Technical debt management

Technical debt studies claim that technical debt could be taken on purpose to have a quick

win in a short-term. For example, release of new product feature prior to competitors may help the

company beat the competitor. However, existing and occurring technical debt should be identified,

measured and managed in a proper way. Technical debt is needed to be tracked and kept visible

because without proper management, technical debt accumulates and may create a lot of

challenges and problems in system maintenance and further development (Li et al., 2015).

 One of the key issues in technical debt management is the difference in indicating and

measuring different types of technical debts. Modern tools and techniques are mostly concentrated

on code quality analysis, this code evaluating methods are technical and can be measured with

quantity. In contrast, the existence of architecture debt, requirements debt, etc. challenges the way

of technical debt measure (Ernst et al. 2014). Hence, technical debt couldn’t be considered only in

frame of the code. It is a multidimensional problem, that could be solved with complex approach,

that includes and requires analysis of software evolution, qualitative research on a context program

analysis, software metrics and risk management (Shull et al., 2013).

Moreover, as researches states, very often technical debt is managed in implicit way – by

the project manager’s previous experience or even driven only by his or her instinct. In such cases,

critical information about technical debt, such as its location, amount, possible risks is hidden for

other stakeholders and, therefore, there is a high possibility, especially for large software projects

to lose controle over the project and over the system as a whole (Seaman et al., 2011).

Costs of managing technical debt

Systematic literature review conducted by Li et al. discovered eight different activities of

technical debt management, for each activity several approaches were found. Indicated activities

are presented on

Technical debt repayment helps to diminish and ease known technical debt. The most

popular and frequently used repayment approach is refactoring – a process by which internal code

quality or system architecture could be improved without changing external system behavior. Such

approaches as rewriting – rewriting the code with technical debt, automation – make automatic

previously manual work (deployment, tests, etc.) and reengineering – change not only code, but

also external features or operational quality of the system. The last three approaches are rarely

presented in the academic studies, they are repackaging – group connected modules with

dependencies that are convenient to manage in order to make the codebase simpler, bug fixing –

solve existing bugs in the system and fault tolerance – set runtime exceptions on purpose.

20

For identification of technical debt, source code analysis approach could be used, where

emphasis should be put on such issues as coding rules violation, flaws in design or architecture

and lack of tests. Another approach is to analyze dependences between modules or components of

the software. Approaches that are listed as approaches with minimum mentioning in research

studies are: check list of scenarios that were predefined and comparison of actual solution with an

optimal solutions in some dimensions.

Technical debt measurement activity implies quantification of costs and benefits caused by

technical debt through special estimation techniques, by measurement, the overall level of

technical debt in a system also could be estimated. The most frequently used approaches for

measurement technical debt are calculation model which uses mathematical models and formulas,

code metrics that also uses sources of code and human estimation which refers to experts in the

field of programming who based on their experience and knowledge are able to give quantitative

measure for technical debt.

Technical debt monitoring watches the changes of the cost and benefit of unresolved TD

over time.

Technical debt prioritization ranks identified TD according to certain predefined rules to

support deciding which TD items should be repaid first and which TD items can be tolerated until

later releases

Technical debt communication makes identified TD visible to stakeholders so that it can

be discussed and further managed by different stakeholders in the company as well as outside of

the company.

Technical debt prevention aims to prevent potential TD from being incurred. Prevention

methods include such methods as development processes improvement, architecture decision-

making support, lifecycle cost planning, and human factors analysis.

Technical debt representation/documentation provides a way to represent and codify TD

in a uniform manner addressing the concerns of particular stakeholders. The research conducted

by Li et al. points out that technical debt representation methods still do not have common

understanding by in research areas.

The concept map of technical debt management activities is shown on Figure 8.

21

Figure 8 Technical debt management activities (compound from Li et al. 2015)

Technical Debt Management Framework

Technical debt could be grouped by different elements that include core elements,

implementation elements and management elements, this grouping was obtained by conduction of

22

systematic mapping study (Fernandez-Sanchez et al. 2015). Figure 9 shows Framework for the

Elements for Technical Debt Management.

Figure 9. Framework for the Elements for Technical Debt Management (source: Fernandez-

Sanchez et al. 2015)

The detailed description of the Framework is presented in Table 5.

Table 5. Description of the Elements of the Framework (source: Fernandez-Sanchez et al. 2015)

Core elements:

Identification of technical

debt items.

Technical debt identification focuses on two main types of technical

debt: code and architecture. To identify code debt different methods

based on lines of code and dynamic and static analysis of code

deficits are used. As for architectural debt, such methods as

modularity violation detection and rare class analysis are used.

Principal estimation There were detected two main ways to estimate technical debt

principal. The first way is based on repository of previous projects,

where similar ones may help to estimate the principal. The second

way is to estimate items of technical debt and then apply typical

estimation of the organization.

Interest estimation For the interest estimation, it is possible to use information from

previous projects with the same technology. Another way is to

estimate the difference between cost-per-change and cost-per-

defect.

Interest Uncertainty Estimation:

23

There were found several propositions to estimate the uncertainty

of the interest by the probability assignment, however, concrete

methods of estimation were not provided.

Technical Debt Impact

Estimation

This element is concentrated on analysis of economic consequences

caused by technical debt. However, proposed methods for this

estimation have not considered technical debt accumulation in

concrete modules or components in the system, but rather describe

the consequences for the system as a whole. Other studies provided

methods based on cost-benefit analysis, comparing effects from

incurring technical debt or developing new feature. Furthermore,

several studies include time dimension into analysis and propose to

evaluate technical debt evolution over the time.

Implementation elements:

Automated Estimates For this type of estimation, there are also two different approaches.

The first is based on the historical repository of the previous

approaches. The second one is based on such resources as code base

or control version system.

Expert opinion The studies point out the need of expert opinion in case of

estimations which cannot be estimated in another way

Management elements

Scenario analysis There are several different types of scenarios that could be used:

technical debt goals analysis and estimation of the efforts to achieve

these goals, release analysis to find the most profitable release from

the point of architectural debt view.

Time-to-market Studies are very limited in provision of explicit methods for time-

to-market decisions about technical debt

When-to-implement

decisions

Several studies report portfolio method or real option method for

evaluating when to implement decision in release. When to

implement secession refers to the decision whether it is necessary

refactor now or it is needed to release new feature.

Tracking technical debt

over time.

A lot of articles propose to look at the historical data in order to

estimate the interest of technical debt. However, the studies are

highly limited when it comes to tracking technical debt evolution

over time.

24

Visualizing technical

debt

There were found several methods that are used for visualize

technical debt. One way is to create charts that show relationships

among interest, principle and time. Another way is to show different

type of relations among software modules or components.

However, these studies are limited.

1.6.Technical debt management strategies

Alves et al. in the research point out the technical debt management strategies that were

found more than in two papers, those strategies are:

 Portfolio Approach.

The central concept of this strategy is to list TD items. This list contains debt items

identified for the project. Each TD item in the list should contain the registration

information, such as the location of the debt, the time at which it is identified, the

responsible person, the reason why it is considered TD, an estimation of the principal, as

well as estimation of the interest and also the estimation of the correlations of this item

with other TD items. After conducting the list the analysis should be done in order to

identify, which items should be paid off first and for which items the repayment could wait.

 Cost-Benefit Analysis.

This type of analysis is used to evaluate whether the repayment oof technical debt is

justified by the high cost of the interest. It should be pointed out that the interest rate is

composed of two parts: the probability of interest and its value. The first part refers to the

probability that the debt, if not paid, will result in extra cost to the project. The second part

is an estimated amount of additional work that will be required if this item is not paid.

 Analytic Hierarchy Process.

In AHP, the problem is structured by running a comparison of alternatives that are

compared with the help of specific criteria. For each alternative the overall ranking is

determined. The usage of AHP in technical debt management implies the identification of

technical debt and the outcome of this method is a prioritized list of technical debt items

with identification of the most crucial technical debt items for paying off..

 Calculation of technical debt Principal.

The strategy is focused on the estimation of the principal. The principal is estimated and

associated with quality attributes, which helps the managers to “feel” these technical debt

items better and with this feeling to make better decisions.

 Marking of dependencies and Code Issues

25

This strategy is used to manage problems and dependencies in the project source code. by

conducting these dependences, the special tags in the code are inserted in order to ease for

the developers the visibility of technical debt items and to support their decisions about

when and how to pat off technical debt.

Behutiye et al. in their research provides a different view on technical debt strategies

classification. The strategies are:

1. Specific approaches, tools and models to manage TD in ASD

2. Refactoring

3. Enhanced visibility of TD

4. Test automation

5. Common (agreed) DoD

6. Planning in advance for TD

7. Code analysis

8. Agile practices such as pair programming, TDD (test driven development) and CI

(continuous integration)

9. Prioritizing

10. Improving estimation techniques

11. Transparent communication as to the level of TD with business stakeholders

12. Establishing an acceptable level of TD

1.7.Examples of empirical studies of technical debt

Table 6 Literature review of empirical studies (compound by the author)

Author Type of

study

Conclusions Comment

Zazworka

et al, 2013

Single case-

study.

Brazilian

company

The tools used are especially useful

for identifying defect debt but cannot

help in identifying many other types

of debt, so involving humans in the

identification process is necessary.

Single company case,

Concentrated on

identification methods

and tools, lacks of

context about software

development process.

Klinger et

al., 2011

Single

company, 4

Decisions related to TD issues were

often informal and ad hoc,

A case of single

company, the study

can be quite outdated,

26

interviews at

IBM (USA)

Which led to a lack of tracking and

quantifying the decisions and

issues. The study also identified that

there was a large communication gap

between technical and business

people as regards discussion about

TD.

lack of view from

organizational

perspective.

Guo et al.,

2016

Single case-

study, Brazil

Goal of this study was to uncover the

costs of explicit TD management.

Through data analysis, were

identified three major themes

regarding TD management – costs of,

obstacles to applying explicit TD

management to the project, and

deviation of the actual TD

management process from the

proposed one.

Describes only one

project from the very

beginning to the end.

Yli-

Huumo et

al., 2016

Single

company,

several

teams,

Finland

The goal was to identify technical

debt management activities in

different teams and generalize them

by the level of maturity.

Generalization of the

results, lack of

organizational view

perspective.

Falessi,

Voegele,

2015

Single case-

study,

quantitative-

qualitative

analysis

The aim is to explore the interest

associated with violating quality

rules.

Technical paper, lack

of the context of

system development

and organizational

view.

Yli-

Huumo et

al., 2017

Single

company

case, Finland

The aim was to find and identify

processes for technical debt

identification, documentation and

prioritization in order to increase its

manageability and visibility.

Covers only several

technical debt

management

activities, lack of

organizational view.

The framework of technical debt activities maturity levels developed by by Yli-Huumo et al. is shown

in Table 7.

Table 7 Technical debt management framework (source: Yli-Huumo et al., 2016)

TDM

activity/

TDM

levels

TD repayment

TD prevention

TD

representation/

documentation

TD

identification

TD measurement TD

monitoring

TD

communicati

on

TD

prioritization

Organized

(Level 3)

Continuous

repayment with

monthly

assigned

percentage of

the

development

tasks.

Mandatory

prevention

practices used

by the team.

Continuous

practice during

development.

Documentation

is a mandatory

practice in

development.

Issues are

documented in

a separate TD

backlog.

Continuous

identification

conducted

manually

and/or with

tools during

development.

Continuous

measurement

during

development.

Data analysis

(various data used

(e.g. quality.

performance)).

Assisted with

trials

Continuous

monitoring

during

developmen

t with

various data

(e.g. quality,

performanc

e). Tools

used to

support.

Continuous

discus-

sions/meetin

gs about TD

issues with

all the

necessary

stakeholders

involved.

Prioritization

conducted

continuously

during

development.

Prioritization

follows a

specific method

or model.

Received

(Level 2)

Repayment

during normal

development

tasks and

previously

identified

repayment

tasks.

Repayment

conducted

based on

current needs.

Optional

prevention

practices. Not

mandatory to

use, but

recommended.

Conducted

based on

current time

constraints.

Documentation

an optional

practice, but

recommended.

Issues

documented in

a general

development

backlog

without TD id.

Identification

optional

during

normal

development.

Conducted

based on

current time

constraints.

Measurement an

optional practice.

Measurement

done with simple

data (number of

TD issues) from

development. and

the data not

necessarily used

for other

activities.

Monitoring

based on

simple data

(number of

TD issues).

Conducted

occasionally

.

Discussions/

meetings

organized

only with

some

stakeholders.

Prioritization

based on

hunches and

rough

estimations

based on

previous

experiences.

Prioritization

done in a

simple way

without any

specific model.

28

Unorganiz

ed (Level

1)

Repayment not

conducted at

all or only

when it is not

possible to

avoid the issue

any longer.

Prevention not

assigned as

part of the

development

practices.

Conducted

only

occasionally.

Documentation

not part of

development.

Issues are left

in developers'

own minds and

notes.

Identification

practices not

assigned as

part of

development.

Conducted

only when

issues occur.

Measurement not

part of

development

practices.

Monitoring

not part of

developmen

t practices.

TD not a

topic in

discus-

sions/meetin

gs and often

handled only

in coffee

table

discussions.

Prioritization

not conducted,

and decisions

done without

reasoning or

discussions.

Responsib

ility for

activity

Development

team, software

architect(s)

Development

team, software

architect(s)

Development

team, software

architect(s)

Development

team,

software

architect(s)

Software

architect(s), team

manager

Software

architect(s),

team

manager

Developmen

t team,

software

architect(s),

team

manager

Software

architect(s),

team manager

Practices /

tools for

activity

Refactoring.

redesigning,

rewriting

Coding

standards, code

reviews.

Definition of

Done.

Technical debt

backlog/list,

Documentation

practice,

project

management

tool (/IRA.

Wiki)

Time

reservation

for manual

code

inspection.

Use of code

analysis tools

(SonarQube.

Data from

measurement

tools (SonarQube)

and data from

project

Monitoring

tools

(SonarQube

). Project

managemen

t tools

(jIRA.

Wiki)

Specific TD

meetings,

TD included

in discussion

topics.

Cost/Benefit

model. Issue

rating

1.8.Conclusions and research gap identification

The conclusion about current situation on technical debt research can be formulated in a

such way:

 Despite the description of different types of technical debt, the strategies and

management practices in majority does not linked with these types, this link is needed

to find effective technical debt tracking activities. Moreover, while investigating a

technical debt, it is always needed to look at the big picture and avoid focusing only on

details.

 There are limited studies on influencing of the system software visualization on

technical debt and its management.

 Technical debt management strategies are not fully investigated and understood. Many

of the proposed strategies need further and deeper investigation as well as more clear

classification

 The studies in TD are quite recent, and the subject is not mature (Martini et al., 2015)

 In current technical debt research the focus on particular types of technical debt is

noticeable (architecture, design, code and defect). However, the concept of technical

debt implies the importance of other types of technical debt and their further

investigation. (Ernst et al., 2015, Alves et al., 2016).

 Most of the empirical studies of TDM take in consideration only few aspects of the

eight TDM activities (Li et al., 2015).

The concept of technical debt has wide range of research areas that are to research

opened from academic perspective. The following areas may introduce the possible

direction of further research on the topic of technical debt:

1. Investigation of the ways for technical debt management.

2. Tools for tracking technical debt.

3. Models for technical debt evaluation.

4. Examination of relationships between the causes and the consequences of technical

debt.

5. Strategies of repaying the technical debt. (Li et al., 2015, Alves et al., 2016, Behutiye

et al. 2017).

30

1.9.Theoretical model of the study

The concept of technical debt was studied by the number of scholars from different

perspectives. Previous studies have reported technical debt classification in terms of causes, types,

identification tools, measurement techniques, consequences and management strategies.

Visualized concept of technical debt is presented on the Figure 6.

Figure 10 Theoretical model of the study (compound by the author using sources: Kruchten, 2011, Betz,

Wohlin, 2012, Li et al., 2015)

31

2. CHAPTER 2: RESEARCH METHODOLOGY

2.1. Research questions

In this chapter the research methodology will be introduced, it includes the research

design, approach of the study, methods of the data collection and, finally, possible limitations.

The literature review in the previous chapter clearly shown a research gap in the field

of technical debt studies. This gap occurs when technical debt management practices meet the

complex of system architecture, organizational design and development methodology. Finally,

the research on technical debt in Russian software development companies is also highly

limited. Therefore, in order to investigate the topic more deeply the following research

questions were asked:

RQ1. How do software development process influence the sources of technical debt in

Russian software development companies?

RQ2. How does the context influence technical debt management in Russian software

development companies?

RQ3. What technical debt management activities could be considered as mature in Russian

software development companies? What methods are used to support these activities?

RQ4 What factors should be considered during decision-making processes about

managing technical debt?

2.2.Research methodoogy

This research consists of several parts: The first one is theoretical and is represented by

literature review. This theoretical background is necessary to provide a strong fundamental basis

for further research. The literature review helped to identify core causes and types of technical

debt as well as modern methods and tools to manage technical debt. By conducting the literature

review the research gap was found and research questions were determined.

There are two main types of research that is recognized by researches: quantitative analysis

and qualitative analysis. The difference between these two types lies on the type of data used for

the research. Quantitative research underlines quantification in the analysis of data, while

qualitative research emphasizes words. Moreover, in the base of qualitative research is an

inductive approach that analyze the relationships between theory and research (Bryman and Bell,

2003).

32

For the analysis of technical debt management practices in Russian software companies

using agile the qualitative research was chosen. The main reason of that lies in the findings of the

first chapter. Technical debt management is a complex concept that includes a lot of data many of

which is very hard to evaluate quantitatively.

This study is qualitative, and it uses case study as the research methodology. A case study

is an empirical inquiry that investigates a contemporary phenomenon within its real-life context,

especially when the boundaries between phenomenon and context are not clearly evident. (Yin,

2003). A case study that is used as a research strategy could contribute to the knowledge of

individual or group. .Despite being highly useful for economic research, case study is becoming

more and more popular approach to make a research in the field of software development. And

taking into account the fact the software is developed by individuals, groups and organizations and

impose social context, a case study could be considered as a relevant approach (Runeson and Hest.

2008).

Technical debt could be studied by analysis of code sources, and further special analysis

of code quality. Hovewer, theis study has the aim ton investigate technical debt from the

organizational point of view and should be performed with qualitative methods.

The empirical study stands for the second part of this research. The second part would be

practical and would be aimed at investigate the technical debt management practices in Russian

software development companies.

The following methods for the second part of the research were chosen:

 Interviews.

 Documentation analysis and participant observation for one of the company.

Both of them are targeted on getting a deep understanding of current technical debt

management situation in companies as well as their attitude towards this topic form inside. By

using these methods it is planned to run an exploratory qualitative research and as a result to

present a multiple case study of technical debt management practices of Russian software

development companies that use agile. This multiple case study would have a comparison of two

types of such companies: the ones, who focus on B2B and the others, whose focus is B2C.

In order to meet the reliability requirements, the one operating market was chosen – the

Russian market. Moreover, due to the fact that technical debt is closely tight with software

development processes, the companies chosen for the research should use agile development

methodology.

33

2.3.Data Collection and research design

To run high quality qualitative research, it is needed to have a deep investigation about the

market and chosen companies. The analysis of current situation of technical debt of Russian

software development companies should be conducted with the help of data from news and IT-

journals. After understanding the market, it is needed to understand business models of the chosen

companies and what kind of system lies in their core business. These types of analysis are called

the desk research. While doing the desk research it is also needed to pay attention to the identified

in the first chapter models and tools which might be helpful in further, field research.

After completion of the desk research, the field research should be started. This research

would include indepth interviews with the companies’ representatives. It would be needed to

interview a number of different people with different positions from each company, for example:

developers, projects managers, IT and infrastructure architects. It is possible that in some

companies the level of awareness about technical debt would be higher and in other companies

this level might be very law. Hence, it is needed to be prepared to adjust conducting interview with

these different levels of awareness.

The research design is shown on Figure 11

Figure 11 Research design

2.4.Choice of the companies for the research

The choice of the companies for the analysis was built on the several criteria:

1. The industry.

34

Despite the variety of companies, which could be considered as IT-companies, it was

important to define precisely software development companies and not the software

implementation companies or hardware producers.

2. The age of the company.

Technical debt management practices may vary greatly for young start-up companies and

for mature companies which were operating on the market for several years. For the research were

chosen that companies that were operating on the market at least 10 years.

3. The market.

As it was mentioned in the previous chapter, one of the research questions is to investigate

the differences between technical debt management practices for companies with B2C and B2B

(or b2g) market in order to identify, how external business-client may influence technical debt

management in a company.

All three companies that were chosen for the analysis have expressed their willingness to

remain undisclosed, so in this research they would be named as “Company A”, “Company B” and

“Company C”. This fact could have indirect positive influence on the interview results, because

companies’ representatives, being sure to remain unclosed, could be more honest answering

questions related to obstacles and difficulties in technical debt management inside the company.

For the research five interviews with different people were conducted. Each interview

lasted from 1,5 hours to 2 hours and took 9 hours in total. Interviewees and their positions in each

company are presented in Table 8.

Table 8 Interviewees and their experience

Position Company Years in IT Years in the company

System architect A 14 9

Project Manager A 5 2

Head of channel solutions B 20 2

Architect/ team lead B 13 12

Project Manager C 5 2

35

3. CHAPTER 3: CASE STUDY ANALYSIS

In this chapter the description of the companies for case study would be presented as well

as the choice of the companies would be justified. For each case, detailed case description would

be provided as well as cross-case study analysis would be given with further conclusions,

implications and limitations.

3.1.Company A case study

Company A is a fin-tech company which operates on the market about 15 years. Despite

having both – individual users and companies as clients, the company has internal product owners,

who facilitate and drive product development according to the main company strategy. The main

products of the company are aimed at satisfying desires on both B2B and B2C markets. Due to the

fact that company A provides services, instead of final product as well as its B2B clients are “mass

market” – small and medium enterprises which do not require customize solution and pay for

services, company A could be considered as a company with B2C market. The company is quite

big, it has more than 600 employees with several offices in different Russian cities. It operates

primarily on the Russian market but has a pool of foreign clients.

System architecture

The system of company A has a service-oriented architecture (SOA). This type of

architecture implies several components that could act as clients as well as services for other

components (modules) in the system. The components are linked through a communication

protocol over a network. SOA architecture has the main basic principle which lies on the

independence of products, vendors and technologies. In SOA architecture service is a functional

unit with independent update and remote access.

For SOA there are four main points about the service:

 It has defined outcome and particular business logic.

 It is closed element.

 For consumers, it should be a black box.

 It may group other services. (Welke et al. 2010).

Several years ago the strategic decision by the top-management was made and a course on

microservices architecture was taken. That meant important changes in particular services in the

system in terms of separation of system modules (components) into several, more independent

components. Moreover, in order to support these planned changes, the company also revised

current system components in order to identify those, which would require separation.

36

Organizational design and teams’ structure

There are fourteen different teams in company A, and each team is responsible for

particular product of the company (particular service development). Each team has project

manager, one or more product owner (if team is responsible for several services), one or more

front-end developer, one or more backend developer, one or more quality assurance engineer.

Some teams have an analyst as a team member, but more often one analyst could be assigned for

a project of different teams. Looking only at departments, which have direct impact on the system

(not including commercial, accounting, marketing and other departments), the company has

different departments for such positions as front-end developers, back-end developers, quality

assurance engineers, projects managers and analytics. Moreover, the company has positions of

business architect and system architect who are responsible for approval of solutions.

Software development process

For the purpose of investigation technical debt management practices in the company it is

needed to study the processes of product development. Each team has several projects in quarter

plan which should be formally approved, however, plans could be reconciled. There are planned

short sprints inside each project and also development process is regulated by agreement processes

in all stages of development. The company uses agile development methodology called SCRUM

but with several adjustments in accordance with accumulated natural processes in the company.

The steps of development process are presented below:

1. Formulation of the idea / request.

2. Verification of the ides / request.

3. Formulation of upper-level requirements.

4. Analysis, preparation of detailed technical solution.

5. Solution agreement with architects.

6. Product / new feature development.

7. Code review.

8. Testing.

9. Bugs correction.

10. Release.

It should be mentioned that as the company uses agile methodology, for each step from 5

to 9 can be repeated for each project, moreover, it is possible that product owner decides to add

new requirements and therefore some changes would appear.

Technical debt causes

37

As it was mentioned above, technical debt causes could be operational and strategic, these

types of causes could occur because of business or technological factors. The causes of technical

debt for company A are presented in

Table 9.

Table 9 Causes of technical debt in company A

Operational Strategic

 the pressure of time limits for the

development of a new functional;

 insufficient coverage of the code by tests

(due to lack of time or money resources);

 insufficient competence of some

developers;

 changing the requirements by the product

owner in the course of the project

implementation - insufficient funds for a

full analysis and testing.

 needed changes in the architecture;

 a way of deliver new feature more quickly;

 the "legacy" of an existing system - it's

hard to write beautiful code quickly,

because everything is strongly tied to the

current working processes;

 technology evolution and retirement of

particular technologies.

The overall development process with possible appearance of technical debt and its causes

along with stakeholders communication during the process are presented on Figure 12.

Technical debt management activities

Identification

Identification of technical debt could appear in several processes. First, when new feature

is developing, system analyst, discussing together with the developer future process may come

across a technical debt. Another way to identify technical debt is to look through the code manually

or with the help of special tools to identify code violations. However, it is necessary to point out

that in these cases, developers usually know, where to look for this technical debt, because they

feel and remember the parts of code where “it was painful to develop new feature”. Moreover, due

to historically development of the system, there are several components (modules) in the system,

which are the core components and have the largest number code lines, hence, it is common that

these components contain technical debt.

Measurement

When technical debt was identified, developers estimate, how much time it may be needed

to pay off this debt. There is no automated estimations, developers give their evaluation based on

expertise and previous experience. The cost of paying off technical debt is estimated in human-

38

weeks (human-days) and in order to translate this value into the money, it is needed to multiply it

by the price of developer work.

Figure 12 Company A possible technical debt appearance through development process.

39

Technical debt management activities

Identification

Identification of technical debt could appear in several processes. First, when new feature

is developing, system analyst, discussing together with the developer future process may come

across a technical debt. Another way to identify technical debt is to look through the code manually

or with the help of special tools to identify code violations. However, it is necessary to point out

that in these cases, developers usually know, where to look for this technical debt, because they

feel and remember the parts of code where “it was painful to develop new feature”. Moreover, due

to historically development of the system, there are several components (modules) in the system,

which are the core components and have the largest number code lines, hence, it is common that

these components contain technical debt.

Measurement

When technical debt was identified, developers estimate, how much time it may be needed

to pay off this debt. There is no automated estimations, developers give their evaluation based on

expertise and previous experience. The cost of paying off technical debt is estimated in human-

weeks (human-days) and in order to translate this value into the money, it is needed to multiply it

by the price of developer work.

Repayment

The process of repayment of technical debt is divided into two main directions: strategic

and operational. Strategic repayment is related to overall vision of the system by CIO, and these

strategic tasks are done by special “refactoring”. This team consists of 4 front-end and 5 back-end

developers with one project manager and one product owner who has the position of system

architect and more than 10 years of development experience. This strategic team doesn’t develop

new features, instead, they refactor the code, to make it more flexible and convenient for future

development.

Operational tasks appear when some minor tasks appear during new feature development

processes. These tasks could be done by particular team itself and these tasks are put into teams;

backlog tasks. In company A backlog task is defined by the task that could be done in less than a

week.

Communication

Is supported by company meetings in order to ensure the common understanding of current

technical debt situation and its further management activities. For operational level it is needed to

build a common idea with product owner in order to explain him/her what consequences for the

business could be.

40

Prevention

By approving by architectural comity of new solutions, by test coverage, require code

review, by setting the culture of high-standards programming (along with seniors development in

refactoring team there are several junior developers, who accumulating best coding practices).

Prioritization

By running cost-benefit analysis, by expert opinion, by communication with product owner

Monitoring

By checking the readiness of set tasks, by covering code by tests.

Representation / documentation

Detailed description of the components in a system (including visualized processes),

description of the desired functions of the components, written plan of actions (what should be

changed and where). Also by other teams’ backlog tasks.

3.2.Company B case study

Company C was launched in 1996 and more than twenty years shows stable positive

results. The company works on B2B market and has banks as business clients (external product

owners). Company С represents innovative technological solutions for automating payment

services based on cards. Currently the company has more than 500 employees. The core company

business is built on payment services provision, which includes the following:

 a wide range of operations on payment cards, from the issuance of bank cards to the

provision of banking services at all stages,

 the processes of routing monetary transactions,

 operations related to mobile wallets, prepaid and fuel cards,

 management of remote banking services (RB) channels,

 management of loyalty programs, electronic and mobile commerce platforms,

Besides core business of services for card payments provision, Company C also has a

direction of channel solutions - internet and mobile banking. This direction is tight closely with

the core payments solution, despite having separate department and separate clients. This channel

department was launched in 2004 and since that time had several evolution steps.

Talking about the development of channel solutions it is needed to say that the core component of

this system was developed that time and had minor changes. Channel solutions department has

two main teams with different processes in technical debt management.

System architecture

41

Because of two teams with different products, there are two separate systems with SOA in

company B. One system is independent and another one is tight closely with the core system of

the company which enables payments services

Teams’ structure

Despite the common idea of the final product (for both teams it is internet banking and

mobile banking) the teams itself and their processes are vary significantly.

Team 1 is responsible for the first solution of internet banking which was developing since

the creation time of this solution. The problem of this solution is extremely high cohesion of the

internet-banking logic with core payment services logic, the reason of this is the idea, that internet-

banking would be the part of the whole payment services, but not independent and alienable

solution. By the time when the understanding of the role of this solution as a separate one came, a

huge volume of system logic and code lines were already developed and it was too hard and risky

to try to set apart both of these system objects. As a head of channel solutions said during the

interview: “This logic could be separated only by surgical methods”. Team 1 is responsible for

front-end and back-end components as well as integration of back-end with payment services and

also for the integration with other external systems.

Team 2 is responsible for the relatively new solution (was introduced four years ago). This

solution was partially based on the external ready-to-use back-end solution and front-end solution

was developed by the team itself. This approach helped to avoid past problems with connectivity

of payment services and internet-banking.

Software development process

Team composition also matters for software development process. Team 1 consists of 10

developers that are separated by front-end and back-end, 2 quality assurance engineers, and also

architect of e-channels. In processes of team 1 people from implementation department also plays

significant role, despite not having direct contribution to software development process, they

communicate directly with clients in order to go through several steps, which are necessary to

deliver ready solution for the client:

Team 1 Team 2

 Formulation of request / idea

 Requirements gathering

 Requirements formulation (in user

stories)

 Agreement on solution

 Development

 Formulation of request / idea

 Requirements gathering and

formulation (in user stories)

 Agreement on solution

 Development

 Code review

42

 Code review

 Testing

 Bugs fixing

 Release

 Implementation

 Testing and Commercial operation

 Formulation of additional requirements

 Additional development

 Testing

 Bugs fixing

 Release

 Implementation

 Testing and Commercial operation

 Formulation of additional requirements

 Additional development

Despite development processes steps are very similar for team 1 and team 2, inside they

have a dramatic difference – team 1 has implementation engineers as intermediaries, and team 2

interacts with client directly, with the help of product owner. Detailed processes with stakeholders

for team 1 and 2 are presented in Appendixes on Figure 13 and Figure 14.

It was said that employees from implementation department could act as integration

engineers, system analysts, business analysts, project managers besides the main role of

implementation engineer. The problem that is hide there is that because of the gap implementation

engineers could not know the realization in precise details, which leads to the work through usual,

gained implementation scenarios. This non-optimal implementation solutions may lead to

increasing costs of maintenance and also increase the time of development of new features.

 Team 2 consists only of 4 people, two of them are full-stack developers, one is front-end

developer and one is back-end. The team also has product owner, who is responsible for

communication with clients, requirements gathering and final solution delivery. The team along

with product owner, gather clients’ requirements and implements it on a client side. Also team 2

teats developed solutions by itself.

Technical debt management activities

Identification

While developing new feature or manually by architect or developer, special tools are not

used as for this moment integrated development environment is enough. Recently, the project of

test coverage was launched. Also, periodically there is a technical debt inventory.

Measurement

By expert estimation or by blind votes of developers and after discussions of the results.

Repayment

43

Mostly, when experienced team member feels that the critical moment of the system

reliability is close, by initiating refactoring task. Sometimes, when there is a vacant development

forces, by doing refactoring during this time. Sometimes in cases when system falls.

Communication

Could be divided into internal and external communication. Among developers

communication is working well, but if consider communication between developers and

implementation department or business development side, sometimes communication may be

difficult because of contradictory goals.

Communication with clients also vary: for majority of the clients technical debt constrains

would be shown as delays, but with some clients (who have their own development, technical debt

is discussed)

Prevention

By informal agreement on particular solutions in some cases, by formal approve from

architect, by required code reviews.

Prioritization

By the feeling of developers, by requirements from business.

Monitoring

By checking the readiness of inventoried tasks, but them are rarely checked and some tasks

could even expire.

Representation / documentation

By technical debt inventory and backlog tasks.

3.3.Company C case study

The company C is an IT company that specializes in the development of software for

medical institutions and also provides various services such as consulting, supplying,

implementing and maintaining this specialized software. Automation of medical institutions and

introduction of medical information technologies are the main specialization of the company.

The company operates in the market for 10 years, and since that time it is hard to say

exactly, when the company started to feel the burden of technical debt. But it could be noted, when

the company became more involved modifications of the system to the requirements of current

customers than when it was time "to capture the market" and numerous implementations of model

functionality. The market right now is divided, the system meets the basic requirements of the

federal legislation, so customers began to develop their existing system to fit their specific

requirements – “And here were revealed system imperfections and drawbacks”.

44

For example, recently there was a case: Customers began to complain about the poor

performance of one module after another new version. Climbed into the code - a bunch of code all

made once for a specific customer. The company decided to remove pieces of "outdated" code and

the code of the customer, who is no longer on the system (moved to another system, or use some

old version and have not in the tech support).

The system was originally written on commercial American platform. Convenient

document management system, which has turned out very quickly build up the necessary

functionality for the medical information system (MIS). At first everything was great, but after

several months it became clear that technical limitations of the platform has bad influence on the

system development. However, lots of code was already written and system functionality works

with this code and in was too difficult to change the platform However, for the other part f the

business (regional solutions) was decided to switch to the open-source platforms, but the old

solution still was “living” on the old platform. Finally, when the government have forbidden the

usage of commercial foreign software for public companies, company C had no choice except

from moving its old solution to the not-forbidden open-source platform. to free software and all

new products are developing with free software.

Software development process

 Formulation of request / idea

 Requirements gathering

 Requirements formulation (in user stories)

 Agreement on solution

 Development

 Code review

 Testing

 Bugs fixing

 Release

 Implementation

 Testing and Commercial operation

 Formulation of additional requirements

 Additional development

Detailed processes with stakeholders for company C is presented in Appendixes on Figure

15..

45

Technical debt causes

In company C were identified the following causes of technical debt:

 the pressure of deadlines for the development of new functionality;

 insufficient code coverage by tests;

 lack of competence of some developers;

 is too complex to implement new process into existing the system, partly because of

customization for different clients

 "legacy" of the existing system;

 changing customer requirements during the project;

Identification

Mostly by accident (when it is difficult to develop new feature or when the system couldn’t

cope with overload). When there is some kind of global critical situation with the system (critical

speed is reduced, falls stupidly system) - begins a massive refactoring.

Measurement

By expert estimations.

Repayment

Mostly in cases when the system falls. Repayment is made by refactoring of the code and

this process could be time-consuming. Example - last summer fell Electronic Registry and a month

and a half the company was doing refactoring.

Communication

For the external clients technical debts is not shown, all drawbacks of the systems are

presented as temporary issue. Inside the company the topic of technical debt is discussed widely

on different levels of organizational structure.

Prevention

By required code review procedure before release. By required approve of the solution

from a particular number of people in the company.

Prioritization

By developers’ opinion, by clients needs. When making decisions is taken into account,

the demand for functional at the customer. For example, there was a unit "Medical institution web-

site" where everything was working poorly, and only 3-4 client used it, and this module interfered

the other modules. The solution for the problem was: “Well, we just removed it from the new

version”.

Monitoring

By checking the readiness of set tasks.

46

Representation / documentation

By expert estimations. Also with All the tasks on rework - a programmer in the internal

system indicates a separate task that goes to the analyst.

3.4.Cross-case study comparison

Software development processes

One of the main differences between Company A which provides services and Companies

B and C which creates products for particular clients is that for delivering final solution to the

clients, companies B and C need implementation engineers as an intermediary between clients and

development. This fact creates additional complexity in directions below:

 Requirements gathering.

 Feedback receiving.

 Implementation processes.

Implementation engineers may become sources of technical debt in several ways. First of

all, implementation engineer remembers, how he acted in previous projects, he usually considers

implementation for new client as an implementation of the same product he delivered before.

However, very often, solution for a new client was changed by the development team and now

implementation may be done in a different way, but implementation engineer doesn’t aware of

this changes and will act as of old. Another possible source of debt caused by implementation

engineer is their mentality of enduring inconvenience: tight deadlines, clients’ requirements – all

of these cause the attitude which is based on clear goal: deliver solution to the client at time and

with budget frames. It means that implementation engineer may find non-optimal, rough ways of

implementation using existing system capabilities, instead of say out about the problem and find

better solution with development team.

To reduce the negative impact on the system caused by implementation processes, the team

1 of Company B is trying to engage developers in implementation activities – starting from

requirements gathering and going to implementation. These procedures help not only straighten

communication with the client but also establish better mutual relations of implementation team

and development team.

Company A has no implementation, however, the gap between initial requirements and

development may appear when system analysts develop technical solution. It should be pointed

out, that there is a difference between technical specification which answers the question “what?”

and technical solution, which answers the question “how?”. Therefore, if system analyst has lack

47

of communication with development team, it may lead to the choice of wrong direction from the

very beginning or to the usage of incorrect input data. Outdated documentation may be the source

of incorrect input data if system analyst develops the solution for the running process to add the

new feature. Currently, the formal approval of technical solution is done by architects who read

the final text, prepared by the analyst. However, there is a plan of changing development and

approval of technical solutions processes by make it more communicative among all stakeholders.

The comparison of the companies’ context is shown in Table 10. Cross-cases context

description

The comparison of companies’ technical debt management activities are presents in Table

11.

Table 10. Cross-cases context description

 Company A Company B Company C

Market B2C B2B B2G

Product Payment services Internet and mobile banking Medical information systems

Software

development process

Quarter planning, several projects in quarter,

inside project planned short sprints,

regulated agreement processes in all stages

of development.

After receiving requirements from client, the

process from building definitions of done to

the final implementation.

After signing the contract with client,

standard process from requirements

gathering to implementation with formal

controls on each stage.

Development

methodology

Agile, SCRUM-like Agile, Scrum and Kanban-like Waterfall-like

Teams’ structure 14 teams, each has project manager, one or

more product owner, one or more front-end

developer, one or more backend developer,

one or more quality assurance engineer.

Some teams has analyst as a team member.

4 different teams, which has no required

roles (several teams consist only of

developers, one team consists of developers,

quality assurance engineers and

implementation engineers who are not the

formal members of the team, but may play

role of project managers)

There is no team-like organizational

structure instead, company is divided in

departments (web-applications

development, development based on foreign

commercial software platform, quality

assurance, implementation).

Architecture of the

system

SOA, strategic goal to make it more micro

services-like.

Two separate systems with SOA. One

system is independent and another one is

tight closely with the core system of the

company which enables payments services

Two separated SOA systems (one is based on

free software and the other is based on

foreign commercial software platform)

Product owners Internal, each team has product owner External, banks. In one company there is

internal product owner, who closely

communicate with client

External (medical institutions, 95% from

public sector)

Table 11. Cross-cases analysis of technical debt management activities

 Company A Company B Company C

Identification Sometimes when new feature is

development; manually, by software

architect or by special tools by

developers (ex. Jenkins).

While developing new feature or

manually by architect or developer,

special tools are not used as for this

moment integrated development

environment is enough. Recently, the

project of test coverage was launched.

Also, periodically there is a technical

debt inventory.

Mostly by accident (when it is difficult

to develop new feature or when the

system couldn’t cope with overload).

Measurement By expert estimation in human-weeks

(human-days).

By expert estimation or by blind votes

of developers and after discussions of

the results.

By expert estimations.

Repayment Is divided into two main directions:

strategic – one team of 4 front-end and 5

back-end developers was created only

for conducting refactoring/ rewriting

tasks with system architect as a product

owner.

Operational – by assigning particular

time for backlog refactoring tasks related

to the team.

Sometimes in cases when system falls,

mostly, when experienced team

member feels that the critical moment

of the system reliability is close, by

initiating refactoring task. Sometimes,

when there is a vacant development

forces, by doing refactoring during this

time.

Mostly in cases when the system falls.

Repayment is made by refactoring of

the code and this process could be time-

consuming.

Communication Is supported by company meetings in

order to ensure the common

understanding of current technical debt

situation and its further management

activities. For operational level it is

needed to build a common idea with

Could be divided into internal and

external communication. Among

developers communication is working

well, but if consider communication

between developers and

implementation department or business

For the external clients technical debts

id not shown, all drawbacks of the

systems are presented as temporary

issue. Inside the company the topic of

technical debt is discussed widely on

50

product owner in order to explain

him/her what consequences for the

business could be.

development side, sometimes

communication may be difficult

because of contradictory goals.

Communication with clients also vary:

for majority of the clients technical

debt constrains would be shown as

delays, but with some clients (who have

their own development, technical debt

is discussed)

different levels of organizational

structure.

Prevention By approving by architectural comity of

new solutions, by test coverage, require

code review, by setting the culture of

high-standards programming (along with

seniors development in refactoring team

there are several junior developers, who

accumulating best coding practices).

By informal agreement on particular

solutions in some cases, by formal

approve from architect, by required

code reviews.

By required code review procedure

before release. By required approve of

the solution from a particular number

of people in the company.

Prioritization By running cost-benefit analysis, by

expert opinion, by communication with

product owner

By the feeling of developers, by

requirements from business.

By developers’ opinion, by clients

needs.

Monitoring By checking the readiness of set tasks,

by covering code by tests.

The readiness of inventoried tasks is

rarely checked

By checking the readiness of set tasks.

Representation /

documentation

Detailed description of the components

in a system (including visualized

processes), description of the desired

functions of the components, written

plan of actions (what should be changed

and where). Also by other teams’

backlog tasks

By technical debt inventory and

backlog tasks

By upper-level description of the

drawbacks in the system.

3.5.Discussion

The research aim was to investigate how technical debt is managed across Russian software

development companies. The answers on research questions are presented below.

RQ1. What sources of technical debt appear through software development process in

Russian software development companies?

It was found out during the interviews, that all three firms are exposed to both types of

technical debt: short-term and long-term, and the sources of each type differs crucially.

Sources of short-term technical debt.

Short-term debt was defined as an operational or tactical one, that appears during the

development process in the form of small bugs and other code imperfections. The following

sources of short-term technical debt sources were identified. The sources are shown in Table 12.

Table 12 The sources of technical debt

Sources of short-

term TD

Description (companies)

Communication

issues

 Lack of communication in the project team (A, B, C)

 Lack of communication with business client (B, C)

 Indirect communication between business client and

programmers (B, C)

 ‘Mentality of patience’ inside the implementation team (C)

Requirements issues Change of the business client’s or internal requirements for the system

(A, B, C)

Testing issues (A, B, C)

Infrastructure issues Hardware does not keep up with the software; performance issues (A, B,

C)

Time issues Software should be developed in very tight time frames. (A, B, C)

Developers

competences issues

Developers with lower competences tend to make more mistakes and

shortcomings in the code design and structure which leads to the

emergence of technical debt (A, B, C)

52

Four out of five interviewed experts stated that communication flaw in the project team

and with the business client is the primary source of the 'bad technical debt’.

The system architect of the company A mentioned that ‘there is no much communication

and interaction between analyst teams (those who prepare the requirements for the system

changes) and the development team’. This results in the increasing the timing and inconvenience

of the development process and growing number of system imperfections. Furthermore, ‘the

process of technical solution alignment is not perfect as well’. At this moment the process is the

following. Analyst team prepares technical solutions and upload it in the internet portal for review

and approval of system architects. System architects read the solution and discuss it in the architect

commission with our project team members. Such a process according to the interviewed experts

causes a long debate, and make the project team concentrate on the small details, but not the whole

picture.

In the company B, as it was mentioned previously, there are two teams. In the one team

there is a complex indirect communication between project team and business client resulting in

the emergence of high amount of operational technical debt. In the other team, the communication

process is much smoother, because of the ‘developer-in-the-field’, working on the client side and

gathering the requirements. Furthermore, in that team client is fully involved in the process of

software development. There are even common practices of managing and prioritizing of technical

debt interest payments. Now the company is thinking about transferring these communication

practices to both teams.

Company C project manager admitted that ‘client and project team communication, being

the largest source of operational technical debt, is a stumbling block for the company’.

Implementation team which is responsible for designing system device as well as gathering system

requirements. In company C implementation team tend to ‘go on about the business client’,

without proper advising with programmers. As a result, a lot of ‘crutches and bugs’ appear that

would need to be paid off sometime.

Overall, it was confirmed from the interviews, that sources of short-term technical debt

falling into five different categories are quite the same for all three companies with the

communication issues being the most serious source of short-term technical debt.

Sources of long-term technical debt.

Long term technical debt is a strategic one aimed at fulfilling a strategic goal not only of

the software development unit, but also of the whole enterprise.

In the company A (B2C), the source of the long-term technical debt come from the internal

environment. Recently a new CIO was hired. Having his own vision, he had changed the priorities

53

for system development to the side of the agile microservices system, which required a lot of

changes (refactoring) in the current system.

In the company B (B2B), historically, internet banking and card processing systems were

inextricably linked. There was no intention in the past to separate those system, and now because

of that limitation company B is struggling at growing its customer base. Some clients may need

only internet banking without processing, but technically it is not possible to provide such an

option. Furthermore, it is becoming harder to develop additional program feature in that unified

complex system.

Company C (B2G and B2B) had its major product built on the American commercial

platform, and because of the recent Russian law that forbid the usage of foreign software in public

companies, company C is switching to the open (free) platform, having a lot code to be refactored.

The long-term technical source common for all three companies is the shifts in the external

environment, like change in customer preferences, competitors moves or emergence of a new

technologies, which could make the companies to recognize technical debt and make them to start

code refactoring in order to remain competitive with their product.

Overall, long-term technical debt sources are very context oriented and depend on many

factors like company’s business model, internal vision and changes in the external environment.

RQ2. What context-related technical debt management practices could be identified in

Russian software development companies?

In all the researched companies after the technical debt has been identified, there is a

dilemma: to pay it off right away, to delay the payment of the technical debt interest or to forget

about the technical debt at all. At first, the technical debt is being analyzed by the programmer

who has identified it, whether it is a critical one, which should be tackled right away, or not a

critical one, which could be delayed. Three out of five experts said this evaluation is usually done

intuitively with the appliance of some sort of the cost-benefit analysis where the programmer

together with people from business side compare cost (or consequences) and benefits of holding

technical debt to the benefits and cost of paying it off. If total benefit of paying it off outweigh,

then refactoring is done, otherwise, refactoring is being deferred.

In the company A, if a programmer identifies flaw in the code logic, the special task (ticket)

should be created in the special bug tracking task management system. That flaw is added into the

system in accordance with the defect priority matrix developed by the company, and is tackled

respectively. The time to pay off the technical debt in this case is set in the ticket according to the

priority matrix and usually is solved on time.

In the company B, the technical debt inventory is held every six months. That inventory is

aimed at revising the system architecture, and all the found code inconsistencies are being added

54

into the task pool for the execution. ‘Despite the existence of the task pool of the technical debt

(defects, bugs, code revisions, etc.), the executing of these tasks are not tracked by anyone, and

after six months there could be still a lot of tasks in the task pool. Some of them could be outdated

and would not require to be paid off anymore’.

In the company C there is no special procedure to cope with technical debt. Usually it is

paid off, only on the demand of the business client, or when the incident occurs affecting the

reliability and vital functions of the system. ‘We change something only when there is a vital need

for this’ - the company’s project manager said. The main reason for this is the lack of time and

resources for prevention methods.

Based on the company's business model, it was found out that that B2C companies

(company A) are more willing to pay off technical debt than B2B and B2G software development

companies (companies B and C). The system architect of the company A states that this is fact,

because ‘in B2C software development business the risk and the level of responsiveness of making

the mistake is lower, whereas in B2B (or B2G) there is a very high level of responsiveness to the

business client, with whom usually you have a strict service level agreement (SLA). That SLA

usually includes strict fines for the system malfunctioning, therefore these companies are very

cautious about changes in the system code structure.’ Moreover, due to the market conditions,

clients are perceived by B2B (B2G) companies like this: “They are few and each of them is higly

important for us”. Therefore, when it comes to the decision of paying of technical debt or

implement new feature, very often the decision is taken in a favor of second options, in order to

correspond clients’ needs.

RQ3. What technical debt management activities could be considered as mature in Russian

software development companies? What methods are used to support these activities?

The conducted research has shown that there are two groups of prevention method used by

Russian software development companies: industry common methods and companies specific

methods.

Industry common method are the ones used across all the software development company

to prevent the appearance of technical debt. According to the company’s B head of channel

solution, such methods are like a ‘rules of good taste, and every IT company should adopt them in

order to ‘keep themselves afloat’. These methods include code review, testing, automatic

deployment, alignment of technical solutions.

Companies specific methods are the ones that only adopted by the certain companies, and

which are not commonly spread across the industry.

55

In the company A such practice are ‘Junior-senior refactoring’ and ‘Analyst-architect

communication’. ‘Junior-senior refactoring’ is the practice of involving junior developers in the

process of refactoring together with senior colleagues. As result, junior developers would acquire

best practices from the more senior colleagues, and the quality of the code would increase,

consequently leading to the prevention of technical debt emergence. ‘Analyst - architect direct

communication’ would lead to better communication and as a result to higher quality technical

solutions, which would allow developers to code easily without inventing any ‘crutches’.

In the company B the culture of a beautiful code is widely promoted. Beautiful code is the one that

has a perfect structure and would be easy to edit in the future. Furthermore, in order to increase

the quality of communication, the developers are involved in the process of gathering requirements

and designing the device of the system together with the business client. The head of company’s

technical solutions called this procedure as ‘Developer- in-the-field’

Company C does not have any specific practices devoted to prevention of technical debt,

except industry common methods. The attitude to the technical debt prevention is quite immature

in that company. The overall comparison is shown in Table 13 Technical debt prevention methods

Table 13 Technical debt prevention methods

Methods Company A Company B Company C

Code review + + +

Testing + + +

Automatic deployment + + +

Alignment of technical solution +

(formal)

+

(informal)

+

(sometimes formal)

‘Developer-in-the-field’ not applicable + -

‘Junior-senior refactoring’ + - -

‘Analyst-architect direct communication’ + - -

‘Beautiful code culture’ + + -

RQ4 What factors should be considered during decision-making processes about

managing technical debt?

56

Based on the conducted interviews, five key factors affecting technical debt management

were identified. They are shown in the Table 14.

Table 14 Factor that affect decisions on technical debt management

Factor Description

Time Could refactoring of the component be

postponed without affecting company's

performance?

Team size and structure Are there enough resources to make the

refactoring?

Is the team aware of the importance of dealing

with technical debt?

Top management attitude Does top management understand the

importance of technical debt and have it's own

vision towards managing it?

Type of client How demanded is our client in terms of

technical debt management (B2B or B2C

client)?

How the system of our client may be affected

by our changes?

Importance of the module (component) How important is the component for the

system development ? (Prioritization of the

component refactoring based on it's

importance)

Is refactoring done to the business needs or to

the needs of code beauty?

3.6.Conclusion and implications

In this study the practices of technical debt management in Russian software companies

were investigated. The purpose of this research was to study the reasons of the emergence of

technical debt, to investigate the ways to manage technical debt in Russian software development

companies, and also to identify factors that affect the decision-making on technical debt

management. Three Russian software development companies were analyzed. An important aim

in the study of technical debt in these companies was to understand the context of software

development, which includes the market in which the company operates the development process,

57

the structure and size of the development team, and the age and the history of the system

development in the company. As results of this study, the reasons for the emergence of technical

debt, the common ways of managing it in all studied companies were found. Furthermore, there

were identified common factors that influence the decision-making on the management of

technical debt. In addition, the main differences in the methods of managing technical debt in

companies operating in different markets were shown as well as some recommendations were

given.

Managerial implication

The results of this research could be applied into business practices in several directions.

Nowadays, software development companies are seeking ways to manage technical debt, to find

the ways to prevent avoidable technical debt. This study by mapping software development

process steps with active participants in each step helped to identify the steps on which technical

debt could occur and to classify the possible type and the cause technical debt appearance. In each

company common practices for improving the quality of final solutions were revealed, they are:

solutions agreement (formal or informal), code review, testing, bugs fixing. Furthermore, for some

companies could be useful informal practices, such as ‘Junior-senior refactoring’ and ‘Beautiful

code culture’.

 However, by conducting this analysis, the communication gap was also revealed for all

companies. This gap relates to interpretation of business requirements by different participants and

lack of communication between them on each step. Moreover, communication gap affects B2B

companies during implementation stage, because of mentality and goals of implementation

engineers. Therefore, in order to prevent avoidable technical debt, it is necessary to apply practices

which allow striating the communication between business people, analysts and developers for

B2C companies and clients, implementation engineers and developers for B2B (B2G) companies.

These methods could be formal and could require direct interactions of all needed participants.

From the research it was revealed that B2B (B2G) companies are highly client-dependent.

In shows off in two ways. The first cause is that they are beware of changing something in the

system until the high or critical need for it comes out. The second cause is that due to the business

environment, when market is a kind of already divided, the major source of finance for companies

is provision of improvements or customization for existing clients. Therefore, very often,

companies decide to implement new feature for the client instead of paying off technical debt.

 A possible way to overcome this problem is to include the risk of technical debt payment

during development phase and to define longer time frame for a particular project. Another

possible way is to set up a process of technical debt communication with the client. It is not

applicable for all clients (for example, it could not work with B2G client), however, if the client

58

has his own development team, it is possible to communicate on technical debt topic and together,

with client development team provide more smooth solution.

Considering B2C companies, they are more about to change the system, because they do

not have limitations from the clients’ side and also they are interested in more flexible and

convenient development process. Some problems could occur, when business need meets the

obstacles from development side – the impossibility of developing new feature in short-term,

because of system limitations (the need of paying off technical debt before developing). And at

this moment communication process between product owner (business people of the company)

and development appear. Through communication it is needed to answer several questions:

What does new functionality give for the business?

What would happen if we do not pay off technical debt?

By answering these questions though communication, it is possible to reach an agreement

based on facts and logic come both from business side and development side.

Research implication

This research was conducted in order to contribute to empirical studies of technical debt

management in Russian software development companies. Another contribution of this study is

that the research investigated deeply the context of technical debt management in studied

companies. The context includes companies’ markets (B2C, B2B and B2G), the age of the system,

software development processes, active participants of development processes, and historical

overview of companies’ systems development with emphasis on some important points, critical in

decision-making process. The sources of technical debt was also investigated the context with the

sources were linked with technical debt management activities. It was identified that the context,

including past decisions, made at the dawn of the company, have significant influence on current

decisions regarding technical debt management.

The research also revealed high importance of communication process though

development process for all companies in order to prevent technical debt and therefore, opens

directions for further research in investigation of the impact of the quality of communication

during development process on the amount unconscious technical debt.

The study has also identified the importance of clients’ needs for B2B and B2G companies

during decision-making process about whether to pay off technical debt. And external client could

be considered as additional limitation factor in prioritizing technical debt pay offs.

Research limitations

It also should be noted that technical debt management, being emerging concept, do not

have yet commonly accepted “best practices”. As for studied companies, technical debt

management practices have different level of maturity for different activities. For example,

59

prioritizing process of technical debt for all companies is more ad hoc, without applying special

models or frameworks. Therefore, is hard to say, whether the practice of one company is definitely

more efficient than the practice of the other one. Furthermore, in order to compare the practices

financial data about projects and costs of technical debt payment is needed and this information

could be closed for the research (for example, one of the companies agreed to give an interview,

only if there is no revealing of financial data).

Time frame could also be considered as limitation, some approaches of technical debt

management was implemented in company not long time ago, and, therefore, the long-term effect

of implemented strategy has not shown up yet.

The number of companies for the research are also can be considered as a limitation,

however, as the aim of the study was to investigate technical debt management practices in a

context of the company, the deepness of the research was more important.

Respondents’ bias could also be considered as a limitation, however, for companies A and

B it was partly mitigated by conduction interviews with two representatives of these companies

separately.

60

List of references

Alves, Nicolli S.r., Thiago S. Mendes, Manoel G. De Mendonça, Rodrigo O. Spínola, Forrest

Shull, and Carolyn Seaman. "Identification and management of technical debt: A systematic

mapping study." Information and Software Technology 70, 2016

"Ward Explains Debt Metaphor". 2017. Wiki.c2.Com. Accessed May 05.

http://wiki.c2.com/?WardExplainsDebtMetaphor.

Ambler, S.W.: Agility at Scale: Become as agile as you can be. IBM, Toronto (2009). eBook at

ftp://ftp.software.ibm.com/software/au/201106/Agility_at_scale.pdf

Beck et al. (2001), Manifesto for Agile Software Development. http://www.agilemanifesto.org/

(accessed November 24, 2016).

Behutiye, Woubshet Nema, Pilar Rodríguez, Markku Oivo, and Ayşe Tosun. "Analyzing the

concept of technical debt in the context of agile software development: A systematic literature

review." Information and Software Technology 82, 2017, 139-58.

Boehm, B.W., Turner, R.: Balancing Agility and Discipline--A guide for the perplexed. Addison-

Wesley, Boston, MA (2003) p. 20

Bryman, A. and Bell, E. Business research methods. Oxford University Press, 2003

Cockburn, Alistair. 2005. Crystal Clear. 1st ed. Boston: Addison-Wesley. p. 45-48

Ernst, Neil A., Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton. "Measure it?

Manage it? Ignore it? Software practitioners and technical debt." Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, 2015.

Falessi D., Voegele A. Validating and prioritizing quality rules for managing technical debt: An

industrial case study. Conference Pape October 2015. Conference: 2015 IEEE 7th International

Workshop on Managing Technical Debt (MTD)

Falessi, Davide, Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. "Technical debt at the

crossroads of research and practice." ACM SIGSOFT Software Engineering Notes 39, 2014

Fernandez-Sanchez, Carlos, Juan Garbajosa, Carlos Vidal, and Agustin Yague. "An Analysis of

Techniques and Methods for Technical Debt Management: A Reflection from the Architecture

ftp://ftp.software.ibm.com/software/au/201106/Agility_at_scale.pdf
http://www.agilemanifesto.org/

61

Perspective." 2015 IEEE/ACM 2nd International Workshop on Software Architecture and Metrics,

2015.

Fowler, Martin. 2003. "Technicaldebt". Martinfowler.Com.

https://martinfowler.com/bliki/TechnicalDebt.html.

Fowler, Martin. 2009. "Technical Debt Quadrant". Martinfowler.Com.

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html.

Fowler, Martin. 2013. Refactoring: Improving The Design Of Existing Code. 2nd ed. Boston:

Addison-Wesley.

Guo Yuepu, Carolyn Seaman, and Fabio Q.B. da Silva. 2016. "Costs And Obstacles Encountered

In Technical Debt Management – A Case Study". Journal Of Systems And Software 120: 156-169.

Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "Technical Debt: From Metaphor to Theory

and Practice." IEEE Software 29, no. 6, 2012: 18-21.

Kruchten, Philippe. 2011. "Contextualizing Agile Software Development". Journal Of Software:

Evolution And Process 25 (4): 351-361. doi:10.1002/smr.572.

Letouzey, Jean-Louis, and Declan Whelan. 2016. "Introduction To The Technical Debt Concept".

https://www.agilealliance.org/wp-

content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf.

Letouzey, Jean-Louis. 2016. "Introduction To The Technical Debt Concept". Agilealliance.Org.

https://www.agilealliance.org/wp-

content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf.

Li, Zengyang, Paris Avgeriou, and Peng Liang. "A systematic mapping study on technical debt

and its management." Journal of Systems and Software 101, 2015: 193-220.

Marinescu, R. Assessing technical debt by identifying design flaws in software systems, IBM

Journal of Research and Development, 56(5), p. 9:1–9:13, 2012

Martini, Antonio, Jan Bosch, and Michel Chaudron. "Architecture Technical Debt: Understanding

Causes and a Qualitative Model." 40th EUROMICRO Conference on Software Engineering and

Advanced Applications, 2014.

62

McConnell, Steve. 2007. "Technical Debt Taxonomy". Construx.Com.

http://www.construx.com/10x_Software_Development/Technical_Debt/.

Mohan, Babu K. " Vendor-Driven Technical Debt: Why It Matters and What to Do About It."

Cutter IT Journal 29, no. 3, 2016: 33-37.

Mohan, Babu K. "Vendor-Driven Technical Debt: Why It Matters and What to Do About It" Cutter

IT Journal 29, no. 3, 2016: 33-37.

Nord, Robert L., Ipek Ozkaya, Philippe Kruchten, and Marco Gonzalez-Rojas. "In Search of a

Metric for Managing Architectural Technical Debt." Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software Architecture, 2012.

Radford, Barbara Davis & Darren. Going Beyond The Waterfall: Managing Scope Effectively

Across the Project Life Cycle. J. Ross Publishing, 2014.

Runeson, P., Host, M., 2008. Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131-164.

Ru-Zhi, X., Tao, H., Dong-Sheng, C., Yun-Jiao, X., & Le-Qiu, Q. Reuse-oriented process

component representation and retrieval. The Fifth International Conference on Computer and

Information Technology (CIT'05), 2005

Schön, E., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements Engineering: A

systematic literature review. Computer Standards & Interfaces, 49, 79-91.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software engineer-ing. IEEE

Trans. Softw. Eng. 25, 557-572.

Seaman, Carolyn, and Yuepu Guo. "Measuring and Monitoring Technical Debt." Advances in

Computers, 2011, 25-46.

Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman. Technical debt: Showing the way for better

transfer of empirical results. In Perspectives on the Future of Software Engineering, pages 179-

190, 2014

Stefanie Betz, Claes Wohlin, 2012. Alignment of business, architecture, process, and organisation

in a software development context. ESEM 2012: 239-242

63

Tim Klinger , Peri Tarr , Patrick Wagstrom , Clay Williams, 2011. An enterprise perspective on

technical debt, 2nd Workshop on Managing Technical Debt, May 23-23, 2011, Waikiki, Honolulu,

HI, USA

Welke Richard, Rudy Hirschheim, and Andrew Schwarz. 2010. "Service Oriented Architecture

Maturity". Computer.

Yli-Huumo J., Maglyas A., Smolander K., Haller J., Törnroos H. (2016) Developing Processes to

Increase Technical Debt Visibility and Manageability – An Action Research Study in Industry. In:

Abrahamsson P., Jedlitschka A., Nguyen Duc A., Felderer M., Amasaki S., Mikkonen T. (eds)

Product-Focused Software Process Improvement. PROFES 2016. Lecture Notes in Computer

Science, vol 10027. Springer, Cham

Yli-Huumo Jesse, Andrey Maglyas, and Kari Smolander. 2014. The Sources and Approaches to

Management of Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish

Software Company. Conference Paper, December 2014 Conference: 15th International

Conference, PROFES 2014, Helsinki, Finland, December 10-12, 2014, At Helsinki, Finland,

Volume: 8892

Yli-Huumo, Jesse, Andrey Maglyas, and Kari Smolander. 2016. "How Do Software Development

Teams Manage Technical Debt? – An Empirical Study". Journal Of Systems And Software 120:

195-218.

Yin, R.K., 2003. Case Study Research: Design and Methods. Sage Publications, Thousand Oaks,

Calif.

Zazworka N., Spínola R., Vetro’ A., Shull F. , Seaman C. (2013). A Case Study on Effectively

Identifying Technical Debt. In: 17th International Conference on Evaluation and Assessment in

Software Engineering, Porto de Galinhas, Brazil, April 14th - 16th , 2013. pp. 42-47

64

Appendix 1. Interview questions

1. General questions about the experience and positions of interviewee

a) How many years have you been working in the industry? How old is the company?

b) What is your role in the company?

2. General questions about the architecture and system:

a) Please describe the system architecture.

b) What do you remember the transitional moments in understanding architecture in the

system?

3. The process of developing new functionality:

a) What development methodology used by your company?

b) How is the process of adding new functionality to the system?

 The idea, the formulation of requirements

 Analysis, writing the technical solution

 Development

 Code Review

 Testing

 Bug fixes

 Release functionality

c) What methods of control still exist?

d) If in the process of writing code the programmer knows that the resulting solution is

not optimal, if he makes some notes in code or on a separate page?

4. Organizational structure and composition of teams

a) What positions in the company are directly related to the process of creating new

features?

b) What are the size and structure of the teams which are responsible for software

development?

5. Technical debt

a) At what point about it was clear that the system contains a technical debt, which must

be fought?

b) Have there been any major changes in the understanding of those. debt for the

company?

c) How did the attitude of the technical debt on the org structure in the company, in the

development process?

65

d) What has influenced a change in attitude to the technical debt?

6. The causes of technical debt:

a) What are the main causes of the technical can be distinguished?

 timing pressure;

 insufficient code coverage (due to lack of time or financial resources);

 lack of competence of some developers;

 "Legacy" of the existing system - it is difficult to write code quickly and

beautifully for a new functionality, because all tied strongly that the current

running process, so you have to "crutches";

 changing customer requirements during the project - not enough money for a

full analysis and testing;

 changing the system architecture;

 technological obsolescence;

 anything else;

7. Identification of technical debt:

a) What methods from a strategic point of view are used for the detection of technical

debt? It examines whether the separate components of the system is particularly

important, which contains the basic logic?

b) Allocated if such components, in which a large technical debt is valid and is not critical

to the functioning of the system?

c) What methods are used to identify the technical debt from an operational point of view?

(special programs for the detection of code coverage, code duplication detection, etc.)

8. Technical debt Measurement

a) how to measure the amount of technical debt? (in man-hours?)

9. Technical debt repayment:

b) How do you conduct the repayment technical debt?

c) During the development of new functionality simultaneously refactor code

separate project or a separate team for refactoring Provided?

10. Other processes that relate to technical debt:

 Prioritization;

 Monitoring;

 Prevention;

 Document;

 Communication (. to make the debt visible for all stakeholders).

66

11. What factors should be considered when the decision about technical debt is being

made?

12. Optional:

a) How does the management of technical debt that you are working in B2C / B2B / B2G

market? What limitations do you see for managing technical debt?

b) What is the general attitude in the management of the technical debt? Do managers

understand that you need to refactor the code or perceived as a clean waste of resources

to nowhere?

c) Usually programmers do not like to read someone else's code, but love to write

something new from scratch. But there are some programmers who like "clean code".

Do you pay attention to the personal qualities of the programmer, giving him the task?

67

Appendix 2. Company B team 1 development process (Figure 13)

Figure 13 Company B team 1 possible technical debt appearance through development process.

68

Appendix 3. Company B team 2 development process (Figure 14)

Figure 14 Company B team 2 possible technical debt appearance through development process

69

Appendix 4. Company C development process (Figure 15Figure 14)

Figure 15 Company C possible technical debt appearance through development process

