St. Petersburg University
Graduate School of Management

Master in Information Technologies and Innovation Management

TECHNICAL DEBT MANAGEMENT IN RUSSIAN SOFTWARE
DEVELOPMENT COMPANIES

Master’s Thesis by the 2nd year
student
Concentration — MITIM

Grinevskaia luliia

Research advisor:
Dmitry Kudryavtsev,

Associate Professor

St. Petersburg
2017

IAFRIEHHE O CAMOCTOITENEHOM X APAKTEPE ERITONMHEHMT
BEIOTY CEHOH FE A THSHME ATTHOHHOH PAEOTEI

A, Tpeeeeceas HOmms HEaB0EH:, CTVEEHT ETOPOND EVPCE METECTPATYPER HaENPIEETSHHT
ahIemaTENeET), 2EEMER, 970 E MOSH METHCTEPCEOH THCCEDTAINME Hi Texry Y IpEsmeEHe
TEXERFECEEM TOAT0M B POCCEECEID EOMIENHD-paspadoTHHEL: OPOTPaMMHEITD O0eCIETEsmTy,
TpPESCTEETRRECH B OOy o0eCmeTanss Oporpasi MarECTPaTyPed ST MoCTETyoINes DepeTa
E MOCYJEDCTESHHVI) STTECTAIMOREYED EOMECCHED TTE MyOMEMEcH aOmTel, HE COTSpEHTCE
BISMEHTOE INIATHATA.

Ece mpmaEle 23DICTEQEINHE HE [MEUITHRD H AMENTPOHHEDD HOTOMEREQE, 3 TIECER HI
JAMODEEERLT pases EEOTYCEHECT XEAMBAEAMBOEHED paboT, FKaHTHTITCRNE B JOETOPCERR
MECCEPTAMHE AMENT COOTEETCTEYHIIHS CORIIEH.

LiEe mzEacTEO cogepaamne o 9.7.1 IlpaEs ofyIeHAE 00 OCHOEHEDM 00paz0ESTENRHERL
NPOTPEMBLEN ERICIOETD B CPeIHers Ipodel CHOEATRHOrD obpazoeasa & CTIOY o o, 310 «BER
ERMOMHEIETCE HETHEHTVAMEED HKIffehd CTVISHTOM OO0 PYECEONCTECM HITHIUEHREODD EAY
EIVEEOTD PYEOEOOHTENT:, H I 51 ¥orasa $egepanesors TocySIpoTESHHOMO OETHETEOTD
OOpaI0EATEMLEOTD VHPSEISHHE ERICIOErO NpodeccHoHATERONG obpaoBammts «CaHET-
ITeTepivproEHE MOCY RapPCTESHHE YERESPCHTET: O TOM, TT0 #CTYIRET DOITEEHT OTIHCISHIED
m Czppr-Tlerepdyprokoro VEMEBEDCHTSTZ 23 IPONCTIENSHMS EVDOOEOH HMH ERNTVCKEQHE

EEATHGMEEITHOEHOM pafoThL ERIOTHERIE0H TPy THA MHIM0AL {TIRIEN).

% (T lommece CTyTIeETA)

29.05.2017 {Mata)

STATEMENT ABCOUT THE INDEPEMDENMT CHAFRACTER. OF
THE MASTEFR. THESIS

I, Grinevzkaia Iuliia sacomd year master stodent, program «Mhanagerments state that my
master thesiz on the topic «Techniczl debt manzzement in Fuossizn software developmemt
companiess, which is preseated to the haster Office to be submittad to the Official Defensze
Comumittes for the public defensze, does not contain any elemeants of plagiarizm.

All direct barrowings from printed and elecronic sources, as well 22 from master theses,
PhD and doctorate thezas which wers defendad earlier, have aporopriate refarences.

I am aware that according to paragraph ©.7.1. of Owdelines for instruction m major
curriculum programs of higher and secondary professionz] education 2t St Petersturg University
#«A mastar thesis must be completed by each of the degree candidates mdividuslly under the
sapervision of his or her advisors, and according to paragraph 51 of Charter of the Federal State
Institation of Higher Professional Education Samt-Petersinog State University «a student can be
expelled from St Petersburg Uhuiversity for sobrmitting of the couwrse or graduation qualification
work developed by other perzon (persoms)s.

% (Stuwdent's siznature)

20.05.2017 (Date)

ABSTRACT

Master Student’s Name

luliia I. Grinevskaia

Master Thesis Title

Technical debt management in Russian software development

companies

Faculty

Graduate School of Management

Main Field of Study

Information Technologies and Innovation Management

Year

2017

Academic Advisor’s

Name

Candidate of Science, Associate Professor, Dmitry V. Kudryavtsev

Description of the goal,

tasks and main results

The concept of technical debt is relatively new in scientific
researches, moreover, this concept plays an important role in modern
software development companies.

In this paper, technical debt management in Russian software
companies was investigated. The purpose of this research is to study
the reasons of the emergence of technical debt, the ways to manage
technical debt, and also to identify factors that affect the decision-
making on technical debt management. Three Russian software
companies were investigated. An important idea in the study of
technical debt in these companies was to understand the context of
software development, which includes the market in which the
company operates, the development process, the structure and size
of the development team, and the age and the history of the system
development in the company. As results of this study, the common
for all companies reasons for the emergence of technical debt, the
ways of managing it, were identified. Furthermore, there were
identified common factors that influenced the decision-making on
the management of technical debt. In addition, the main differences
in the methods of managing technical debt in companies operating in
different markets were found as well as some recommendations were

given.

Keywords

Technical Debt, Technical Debt management, software development

AHHOTANIUA

ABTOp

I'punesckas Onusa VBanoBHa

HaszBanue wmarucrepckoii

JUCCEPTAIIIT

ynpaBHCHI/Ie TCXHUYCCKHUM A0JII'OM B pOCCI/IfICKI/IX KOMITaHUAX -

pa3paboTurKax IpOrpaMMHOr0 oOecreyeHus

DaKkynbTeT

Bricmas [IIkona MenemxmenTa

HaHpaBHCHI/IC IIOATrOTOBKH

HH(bOpMaHI/IOHHBIe TCXHOJIOI'MH 1 I/IHHOBaHI/IOHHHﬁ MCHCI)KMCHT

Ton

2017

HayuHblii pyKOBOIUTEIb

Kanngunar nayk, nouent Kyapsisues Jmutpuii BsuecnaBoBuy

Omnucanue 1ead, 3amad U

OCHOBHBIX PE3YyJIbTaTOB

KoHuenmnus TeXHU4eCKOro 10JIra siBJsI€TCsl OTHOCUTEIBHO HOBOM
B Hay4HBIX HUCCJIEIOBAaHUSAX, KDOME TOIO, 3Ta KOHILENIHS UIPAET
Ba)KHYIO POJIb B cepe pa3paboTKH IPOrpaMMHOIO 00eCIIeueHHU .
B nannoit pabote ObIJIO UCCIIEAOBAHO YIPABICHUE TEXHUYECKUM
JIOJITOM B POCCUMCKUX KOMITAaHUN-pa3padOTYMKaX IPOrpaMMHOTO
oOecnieueHus. L{enpro TaHHOTO NCCIIE0BAHUS SIBIISIETCS U3yUEHHE
OPUYMH BO3HUKHOBEHMS TEXHHMYECKOro Jojra, CrocoOoB
YIOPaBICHUS TEXHUYECKUM JIOJIIOM, a TakKKe BbIABICHUE
(GakTOpOB, KOTOpbIE BIMSIOT Ha MPHUHATHE pEUIeHud 00
yIpaBiIeHUU TEXHUUECKUM J10JroM. B paboTe Obu1H nccieqoBaHbl
TPU POCCUMCKHE KOMIIAHUU-Pa3pabOTUUKU [POTrPAMMHOIO
oOecnieueHus. BaxkHas posib B U3yUyE€HUU TEXHUYECKOrO J0JIra B
YKa3aHHbIX KOMIAHMSIX OTBOAMJIOCH IHOHMMAHHUIO KOHTEKCTa
pa3paboTKH HPOrpaMMHOro obOecreueHus, KOTOPbIH BKJIHOYAET
PBIHOK, Ha KOTOPOM OIEpUpPyeT KOMIaHMs, Ipolecc pa3paboTkH,
COCTaB M pa3Mep KOMaH/Abl Pa3pabOTKH, a TaKXe BO3pacT H
HCTOPUIO PA3BUTHSI CUCTEMBI B KOMITIAHUU. B pe3ynbTare 1aHHOTO
UCCIIeIOBaHMsI OBbLIN BBISBJIEHBI OOIIHE /ISl BCEX UCCIIEIOBAaHHBIX
KOMIIAaHUI TNPUYMHBI BO3HMKHOBEHMS TEXHMYECKOTo J0JIra,
CrocoObl yNpaBiIeHUS UM, a TakKe ObUIM BBISBICHHBIE OOIIME
(bakTopsl, KOTOpPBIE OKA3bIBAIOT BIUSHUE HAa MPUHATHE PELICHUN
00 ympaBleHHMM TeXHMYeCKHMM Joiarom. Kpome Toro, Obun
BBISIBIEHBl OCHOBHBIE pasziuuusi B cHoco0ax —yHmpaBiIeHHS
TEXHUYECKHUM JIOJIFOM B KOMIAHUSAX, ONEPUPYIOIINX Ha Pa3HBIX

PBIHKaX.

Kirouesrlie ciioBa

TexHUYecKnid 1OAT, YIpaBICHHUE TEXHUYECKUM JOJITOM,

Pa3zpaboTka mporpaMMHOT0O 0OecTICUeHMSI

TABLE OF CONTENTS

INTRODUGCTION ...ttt e et a e e snb e e e ssa e e e ba e e aseeeasaeeansneeas 6
1. CHAPTER 1: THEORETICAL BACKGROUNDccooviiiiiiieiienieeeesieienenes 7
1.1. The concept of technical debt............cooiiiiiiiiiii e 7
1.2. Technical debt in agile software developmentccoceieiiieniiin e, 12
1.3. The context of software development ProCeSScovereiererereniseseseeeeee e, 14
1.4. Causes of technical debt and its classifiCationcccccovvviiiniieninissce e, 15
1.5. Technical debt Mmanagementccvviieiieii i 19
1.6. Technical debt management StrategiesS........ccovuvieereriiriiereeie e e 24
1.7. Examples of empirical studies of technical debtcccooeiiiiii, 25
1.8. Conclusions and research gap identificationccccccevviieiieniecie s, 29
1.9. Theoretical model of the StUAYccocieiieiiie e 30
2. CHAPTER 2: RESEARCH METHODOLOGYccoceeiiieeiiee e 31
2.1, RESEAICN QUESLIONSveeiieeiecieeee ettt ettt 31
2.2. Research methodo0gy........ccccveiiiiieiiee e 31
2.3. Data Collection and research designcccooereriiiiinienieieeee e 33
2.4. Choice of the companies for the reSearch............c.ccovviiiieieicieceeeee 33
3. CHAPTER 3: CASE STUDY ANALYSIS ... 35
3.1, Company A CaSE SLUAYc.ciierieiriiiieeie ettt te ettt re e 35
3.2, Company B CaSe STUAYccceeiiiiiiiieieiie ittt 40
3.3, Company C CaSe STUAYc.ccvveiuieiiiieeieiie ettt te e re e re e 43
3.4, Cross-Case StudY COMPAIISONc.oiuirieriieiieieientesieste st sie s sbe bt ee e 46
TR T I 111 (o] o PR SS 51
3.6. Conclusion and iMPlICALIONSccceeiiiiieiicie e 56
LISt OF FEFEIEINCES ...t 60
APPeNdixX 1. INTEIVIEW QUESTIONSc.coviiiiiiiiiiesiieiieie ettt 64
Appendix 2. Company B team 1 development process (Figure 13).........cccccevvvrvvivninennnn 67
Appendix 3. Company B team 2 development process (Figure 14)........cccccevvvviiveinnnnne. 68
Appendix 4. Company C development process (Figure 15Figure 14)cccoevvevvevnenee. 69

INTRODUCTION

Technical debt being an emerging concept attracts high attention from researchers and
practitioners. Despite wide discussions of this concept on IT conferences and practical workshops
as well as in academic articles, the concept of technical debt is not fully discovered and still lacks
of empirical studies and proven best practices (Falessi et al., 2014). Firstly appeared as a metaphor,
that compares technical debt with financial debt in order to explain its meaning to non-technical
stakeholders, technical debt concept has grown into independent area for the research. (Kruchten
etal., 2012).

Technical debt management practices are also not fully investigated, moreover, it is
confirmed by both — researchers and practitioners that technical debt management is context
dependent, but research on technical debt and its context also remains underdeveloped and some
of technical debt management activities still have lots of research areas uncovered (Fernandez-
Sanchez et al., 2015, Li et al., 2015).

The aim of this research is to investigate technical debt management practices in Russian
software development companies with high attention to the context of software development. The
context includes several components: the type of the market on which companies operate, the
structure and size of software development teams, the age of the system as well as its historical
development and the processes of software development.

In order to study the concept of technical debt management in Russian software
development companies the following research questions were conducted:

RQ1. How do software development process influence the sources of technical debt in
Russian software development companies?

RQ2. How does the context influence technical debt management in Russian software
development companies?

RQ3. What technical debt management activities could be considered as mature in Russian
software development companies? What methods are used to support these activities?

RQ4. What factors should be considered during decision-making processes about
managing technical debt?

In order to answer research questions above, a qualitative research was made. The
empirical part of this study is represented by multiple case study. The case study investigates
technical debt management peculiarities in three Russian software development companies that
operate in different markets: B2C, B2B and B2G.

1. CHAPTER 1: THEORETICAL BACKGROUND

1.1.The concept of technical debt

The concept of technical debt was introduced in 1992 by the American computer engineer,
Ward Cunningham, as a metaphoric definition aimed at explaining to different product
stakeholders the need for refactoring (Kruchten, Nord and Ozkaya, 2012). In computer science,
code refactoring is the process of changing an existing software system so that it improves its
internal code structure, but does not influence its external behavior (Fowler, 2013). Cunningham
explained debt metaphor in the following way. ‘If we failed to make our program align with what
we then understood to be the proper way to think about our financial objects, then we were going
to continually stumble over that disagreement and that would slow us down which was like paying
interest on a loan.” ("Ward Explains Debt Metaphor", 2017)

Therefore, technical debt is a technical compromise, which, like a financial debt, has its
interest and principal payments. Interest payments occur from extra work effort needed for the
future code development, because of compromise made to the code design and structure in the
past. Principal of technical debt is the process of refactoring of the existing code into better
structured and designed. Companies could either continue with paying the interest on the technical
debt, fully cover the debt by making code refactoring (Fowler, 2003).

The difference between financial and technical debt is presented in the Table 1

Table 1. Financial and Technical debt analogy (composed by the author)

Financial debt Technical debt
Concept definition Amount of money owed by | Decision to defer necessary
one party to another work to improve code

imperfections

Interest payment Amount of money which | Extra effort needed to the future
repays interest on a loan system development, while
keeping code imperfections as

itis

Principal payment Paying off the loan amount | Code refactoring

Since initially used as a metaphor to explain the technical term to non-technical
stakeholders, technical debt concept has evolved and expanded from narrow coding perspective to

more broad view including software architecture, design, requirements, testing and documentation,

largely due to the number of scientific researches made in that field (Kruchten, Nord and Ozkaya,
2012). The most recent studies define technical debt as follows.

‘When taking short cuts and delivering code that is not quite right for the programming
task of the moment, a development team incurs Technical Debt. This debt decreases productivity.
This loss of productivity is the interest of the Technical Debt.’ (Letouzey and Declan, 2016)

The first classification of the technical debt types was made by Steve McConnell; the

representation of that taxonomy is presented in the Figure 1.

Not a Technical Debt Technical Debt

Incomplete work that
does not require
interest payments [

Long-term Short-term

Deferred features Focused Unfocused

Unintentional Intentional

Feature backlog

Cut features

Figure 1: Technical debt classification (McConnell, 2007)

According to McConnell, the higher hierarchy of technical debt is composed of the
unintentional and international debt. Unintentional technical debt usually occurs because of the
poor quality of work, without any intention. For instance, it could happen when a junior computer
engineer writes a low quality unstructured code, or it could be incurred unknowingly, when a
company acquire another company with large amount of technical debt, which could not be
identified before the acquisition.

Intentional technical debt is made by a company for a certain purpose or strategic reason
by sacrificing the quality of the code to the present needs. Usually it is made in order to save time-
to-market and not to lose competitive advantage in the present, to preserve startup capital or to
delay development expenses. Short-term technical debt is the one that is paid off by the company
for tactic reasons, which usually happens at a late stage of development or sprint to make the
release possible; short-term technical debt is supposed to be covered quite often. Long-term
technical debt is a strategic company’s decision, which is not expected to be paid off shortly, if at

all.

Furthermore, McConnell has identified what the technical debt is not. Not all incomplete
work and code shortcomings should be addressed as a technical debt, but only those that require
interest payments. Thus different cut and deferred features as well a feature backlog do not cause
technical debt. (McConnell, 2007)

Another classification of technical debt was proposed by Martin Fowler in the form of 2x2
quadrant, where horizontal axis represents intention and vertical axis — prudence (see Figure 2).
His model focused on the technical side of the technological debt — software development, was
further extended by Mohan Babu K by adding a complex view of the application portfolio and

enterprise architecture (Table).

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“Now we know how we

“What's Layering?” should have done it”

Figure 2 Technical Debt Quadrant (Fowler, 2009)

Table 2 Description of technical debt types

Type of technical debt Description

Reckless/deliberate Sometimes projects teams succumb to time-to-market tensions from
the business or market side without necessary analysis and foresight.
For instance, a financial business unit may require a different version
of the accounting system to be implemented without waiting for the
new ERP system to be set up across the organization. This kind of
debt should be paid off, when the new global ERP system would be
ready for implementation. (Babu K, 2016)

Prudent/deliberate Sometimes project teams could deliberately take over a short-term
technical debt with the explicit plans to repay it in the future. Such a
decision could be a reaction for the change in the external
environment. (Babu K, 2016)

Reckless/inadvertent Such technical debt occurs in the poorly managed companies, where
project teams do not know the consequences of taking technical debt

or recklessly disregard the guidelines. (Babu K, 2016)

Prudent/inadvertent Technical debt of this kind occurs when project teams might take a
reasonable decision that meet the functional needs at a certain time,
but which might also unexpectedly miss other situations and

requirements in the organization. (Babu K, 2016)

It was proved by many researchers, that technical debt is not just a metaphor, but a serious
issue that need to be addressed in a specific way. Technical debt decreases company’s productivity
(Letouzey, 2016) and could be a symptom of a more serious weakness in the companies
organization, especially in the communication process (Declan, 2016)

Technical Debt is used as a metaphoric definition of technical compromises with which a
company may cope or even may benefit from in short-run, but which may be threatening in the
long run. Firstly, this metaphor related to code level issues and was introduced by Ward
Cunningham about twenty years ago to clear up the need of code refactoring for nontechnical
stakeholders. Since that time, the concept of technical debt started to evolve and was expanded
from narrow coding perspective to more broad view including software architecture, design,
requirements, testing and documentation (Kruchten, Nord and Ozkaya, 2012).

As for more formalized notion of Technical debt, it could be described as the costs that are
needed to be spent to increase the technical quality level to a point where it could be considered
as ideal. Additionally, technical debt has its own interest, that is the extra costs needed to maintain
and unsure the reliability of the software with a poor technical quality. (Marinescu, 2012).
However, this definition is not complete, because more recent studies characterize technical debt
from a bit different perspective. They consider technical debt as invisible results that appeared
because of the past decisions about software and that could influence the whole system in the
future. Moreover, the technical debt that is managed in a company in a logical and accurate manner
could bring valuable benefits and somehow can be considered as investments opportunities
(Falessi et al., 2014).

Some researches see technical debt as a core invisible part of software that lies between
visible parts of new features and additional functionality on the one hand and defects and bugs on

the other hand (see Figure 3).

10

GIIN) CGEEEETTTIEEE) (RN

a architecture code
o
New features g Architectural debt Low internal quality Defects
Additional functionality g Structural debt Code complexity Code smells Low external quality
=
§ Test debt Coding style violations
= Documentation debt
Evolution issues: evolvability Quality issues: maintainability

Figure 3. The technical debt landscape. On the left, evolution or its challenges; on the right, quality
issues, both internal and external. (Source: Kruchten, Nord and Ozkaya, 2012)

Technical debt was proved to be not just a metaphor, but a complex concept that could be
valuable for practitioners. It was proved by asking 544 participants (coding and software architects
professionals) and 65% of respondents disagree that “Technical debt is just a metaphore”,
furthermore, 79% of respondents of the same group agreed on a statement that “Lack of awareness

of Technical debt is a problem” (Ernst et al., 2015)

Lack of awareness of TD is a problem 7% 14% - 79%
|
TD includes both principal and interest 3% 26% . 71%
1
TD is used strategically — 14% 25% . 61%
|
TD depends on future outcomes 17% 39% I 44%
1
TD is just a metaphor 65% 20% I 15%
|
Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree . Strongly Agree

Figure 4 High-level definitions of technical debt. (Source: Ernst et al., 2015)

The concept of technical debt is not mature yet, it is still evolving, however, there are
already number of studies dedicated to it. These studies cover wide range of topics, related to

technical debt, such as:

1. Overall research on the topic, a systematic literature review or a systematic
mapping study.
2. Investigation of causes of technical debt and its classification.

11

3. Core activities of technical debt management:
a. Identification of technical debt.
b. Methods of technical debt measurement.
c. Practices and tools for technical debt management.

4. Research on particular type of technical debt.

1.2.Technical debt in agile software development

Technical debt is often used in a context along with Agile software development. One of
the most popular feature of agile methods is to deliver working functionality quickly in resource
constrains and constantly changing requirements. Indeed, this short time period may lead to the
insufficient quality in software design, test coverage and non-optimized code. And all these may
cause the appearance and accumulation of technical debt. Hence, it is needed to clearly identify
such points of technical debt emergence and find the ways of manage it properly in agile software
development (Behutiye et al., 2017).

Though first attempts to change the approach to software development in more flexible
form started in the middle of 1980s, a kind of official date of agile methodology birth as a new and
separate methodology is the 2001 year. In 2001, the main leaders of different agile software
development approaches such as Kanban, Extreme Programming and Scrum together created the
Manifesto of Agile Software development. In this Manifesto were included core principles and
values that were aimed at optimization and facilitation of the software development processes. The

main proncioles from this Manifesto are listed below:

1. Software that is working is more important than comprehensive documentation.

2. Focus on collaboration with customers, not on the negotiations about the contract.

3. Individual minds and people interaction is more important than formal processes and
tools.

4. Ability to react quickly on changes is more important than strict plan following. (Beck
et al. 2001)

To sum up the main idea of agile approach it should be said that it focuses mainly on the
product features that could be delivered with existing resources (comparing to plan-focused
approach that cares more about pricing and budgeting modules). The second core idea of agile
approach is concentration on the people’s needs, their values and their positive experience using
the software. Hence, it is much more qualitative rather than quantitative approach (Schon,

Thomaschewski, Escalona 2017).

12

The move from plan-driven approach to agile one is shown on Figure 5.

Agile approach has several advantages, such as flexibility of process of software
development, moreover, it allows to avoid bureaucracy of traditional software development
approach. Agile development processes are based mostly on informal interaction between software
development team rather than on time-consuming planning and design. All of these allows
companies deliver ready-to-use solutions in shorter periods. However, Agile approach also has
some drawbacks that are tight closely with knowledge management. Through all period of system
development proper maintenance of project documentation is not the highest priority of the agile
team, because they rely mostly on informal collaboration among team members. This approach
may lead to the loss and of important knowledge during and after system development (Ru-Zhi et
al. 2005).

Product
»

o s
" value driven
/ A
! |
Process < | - » Human
| /
/

plan driven s
-

v

Project
Figure 5Move from plan-driven to value-driven approach (Source: (Schén et al. 2017).

Moreover, recent years more crucial need came to the forefront. It is the need of constant
updating of stored knowledge and its maintenance to remain the stored knowledge actual. The core
issue there is that companies switched from Waterfall model of system development to Agile
approach. As the incredible pace of changes in modern world, companies should be flexible, they
should be able to adjust their strategy and their plan within changing environment conditions (these
conditions could be either changes in people preference or appearance of new technologies). The
main difference between Waterfall and Agile approaches is that Waterfall is reluctant to any
changes in the schedule and any kind of changes should be avoided. In contrast, Agile approaches
are aimed at getting the best value in frames of certain time period (Davis et al. 2014).

13

1.3.The context of software development process

Technical debt is highly related to the context (Fernandez-Sanchez et al. 2015), as well as
software development process through which technical debt appears is also highly context-
dependent (Kruchten 2011). Therefore, in order to define the context of technical debt it is
necessary to identify the context of software development processes.

There several studies which identify main factors that are needed to consider in order to
define software development context. Despite some of the studies define the context in order to
later determine, whether the company would be able to absorb agile development methodology,
their approach is also applicable for defining overall software development context. The

comparison of proposed factors is shown in Table 3.

Table 3 Comparison of factors needed to determine the context of software development

Boehm-Turner, 2003 Cockburn & | Ambler, 2009 Kruchten, 2011
Crystal, 2005
e Size, e Size, e Team Size e Size
e Criticality, e Criticality e Geographical e Team
e Personnel (their skill, | e Skills. Distribution distribution
know-how), e Compliance e Criticality
e Dynamism (rate of e Organization & | e Business
" change) and Culture model
% e Culture of the team: ¢ Organization e Governance
(& thriving on chaos or distribution o Age of
on order e Application system
complexity e Rate of
e Enterprise change
discipline
e (Governance

The model of Krutchen is described below as more recent one:

Size.

By this part the overall size of the system is implied. It is considered as one of the greatest
factor, because it act as a driver for the size of the team, the number of teams, the needs for
communication and coordination between teams, the impact of changes, etc.

Business model

14

This part relates to the money flow, and what is the main product of the company - internal
system, a commercial product, contract system for a customer, or not an independenty product but
instead a component of a large system involving many other parties? Is it commercial or free and
open-source software?

Team distribution

This aspect is linked to the size of the project. If the team is widely distributed, a lot of
attention should be put into communications and coordination of decisions. Moreover, stable
interfaces between teams, and between the software components could be needed.

Rate of change

This rate implies the position of the system in modern changing environment, including
business environment, business stability, unknown risks and the role of the system in this
environment.

Age of system

This aspect relates to the amount of legacy code in the system as well as its architecture
that could be strongly affected by the historical decisions about the system development. If
considered system is quite young, it could contain less legacy code.

Are we looking at the evolution of a large legacy system, bringing in turn many hidden
assumptions regarding the architecture, or the creation of a new system with fewer constraints?

Criticality

This part of the context covers the questions that relate to the consequences of the system
fails and documentation that is needed to support this system.

Governance

This aspect relates to software development processes (how do they start and finish), to the
person (group of people) who makes critical decisions about the system and its development in
questionable or highly important moments and to the person (group of people) who manages
project managers.

There are also studies that define overall context of software development, not only for
agile practices. The context could be defined by these factors: Business, Architecture, Process,

Organization and by the interconnection of these factors (Betz, Wohlin, 2012).

1.4. Causes of technical debt and its classification
Technical debt can be classified based on the types of the causes of this debt (Li et al.,

2015). Classification, presented in Table 4.

Table 4. Types of technical debt (source: Li et al., 2015)

15

Technical Debt
type

Explanation

Examples

1. Requirements

The difference between the real processes
in the existing system and the optimal
requirements that couldn’t be met due to

system constrains.

Over-engineering

2. Architectural

Is caused by the decisions on system

Architecture smells

architecture level to agree on some Architectural anti-patterns
compromises that could be crucial in the Violating of good
future. architectural practices
Architectural ~ compliance
issues
3. Design Refers to technical shortcuts in detailed Code smells
design. Incomplete design
specifications
Grime
4. Code Refers to the poor quality of the code (code Low-quality code
that goes againt the coding rules od coding Duplicate code
best practices). Code violations
5. Test Is caused by shortcuts while testing. Lack of test
Lack of test automation
Residual defects not found in
tests
Expensive tests
6. Build Is about drawbacks in the system or about Bad dependences

too complex processes in built system.

Manual build processes

Flawed automatic building

7. Documentation

Is caused by incomplete or outdated
documentation in system description
(when the current state of the system could

be found only in code)

Outdated documentation
Insufficient documentation

Lack of code comments

8. Infrastructure

Refers to negative impact of infrastructure
on the team (when processes, technologies

and supporting tools are not optimal).

Lack of continuous
integration

Old technology in use

16

e Lack of automated

deployment

9. Versioning Is caused by inaccurate code versioning. | ¢ Multi-versioning support

e Code forks

10. Defect Is found in system bugs and failures. e Bugs

e Defects

Martini et al. in their work “Architecture Technical Debt: Understanding Causes and a
Qualitative Model” in 2014 investigate and classify the most frequent causes for accumulation of
architecture technical debt, however, their classification is highly compatible with the overall
causes of technical debt, not only architecture one, see Figure 6.

Split of budget in Project budget and Maintenance
budget boosts the accumulation of debt.

Time pressure: deadlines with penalties
Business factors Uncertainty of use cases in the beginning
— S—

Business evolution creates ATD

Priority of features over product

Reuse of Legacy / third party / open source

Design and Architecture documentation: lack of
specification/emphasis on critical architectural requirements
N Parallel development
Technological factors _ Technology evolution

Non-completed Refactoring

Figure 6 Causes of ATD accumulation (source: Martini et al., 2014)

Li et al. based types of technical debt on the causes of these types, but the causes in their
classification shows only by the technical side of the question. Martini et al. have more broad
causes: which included not only technical constrains but also business factors and human factor.
The point is that several causes may influence particular type of technical debt and one cause may
influence several types of technical debt and the proportion of the influence may vary. Hence, it
may be needed to build more clear interconnections between the causes of technical debt and the
types of debt that may appear.

As for causes of technical debt in agile software development, eight main causes can be
pointed out, see Figure 7 (Behutiye et al. 2017)

17

Number of related works about technical
debt in ASD ranged by the cause
18
16 -
14 -
12 -
10 -
8 A
4 A
2 | l
O T T T T T T T
A o e S o < & &
\\Aé - é_}\,‘?' Q:"boo & & O"\Q & @Q}
¥ N St) Q/@ i}@ ,bé’ Q'Z’ (e)
o 5% © D & & A
© & g X > < R
& X X2 @ QO > \o
(N S < \\ c,'b \\e’ Qf)
&8 xS & ‘o°§ & & &
\(\’bf" \‘0‘ bQ/Q \(\Qo 0\' 0\ \)Q\\
3 «& @ @ S \& S
<<§° K & 0 L 5 RS
‘(‘5\ Q,@ ,b\\ \/e' C’O
¥ & o
£° >
o00 ,bQ
8\0 06
\,’b(\ O
& <
S O
6\\)
&
\:b

Figure 7. Number of related works about technical debt in ASD ranged by the cause (source:

Behutiye et al. 2017)

The most common consequences of incurring technical debt in agile software development

were also identified. The consequences are the following:

Altho
linked with t
avoid them.

Reduced productivity (in 17 papers)

System quality degradation (in 17 papers)

Increased cost of maintenance (in 15 papers)
Complete redesign or rework of system (in 3 papers)

Market loss/ hurt business relationships (in 3 papers) (Behutiye et al. 2017)

ugh the classification of technical debt consequences is useful, it is needed to be
he causes and types of technical debt as well as with the management practices to

18

1.5.Technical debt management

Technical debt studies claim that technical debt could be taken on purpose to have a quick
win in a short-term. For example, release of new product feature prior to competitors may help the
company beat the competitor. However, existing and occurring technical debt should be identified,
measured and managed in a proper way. Technical debt is needed to be tracked and kept visible
because without proper management, technical debt accumulates and may create a lot of
challenges and problems in system maintenance and further development (Li et al., 2015).

One of the key issues in technical debt management is the difference in indicating and
measuring different types of technical debts. Modern tools and techniques are mostly concentrated
on code quality analysis, this code evaluating methods are technical and can be measured with
quantity. In contrast, the existence of architecture debt, requirements debt, etc. challenges the way
of technical debt measure (Ernst et al. 2014). Hence, technical debt couldn’t be considered only in
frame of the code. It is a multidimensional problem, that could be solved with complex approach,
that includes and requires analysis of software evolution, qualitative research on a context program
analysis, software metrics and risk management (Shull et al., 2013).

Moreover, as researches states, very often technical debt is managed in implicit way — by
the project manager’s previous experience or even driven only by his or her instinct. In such cases,
critical information about technical debt, such as its location, amount, possible risks is hidden for
other stakeholders and, therefore, there is a high possibility, especially for large software projects
to lose controle over the project and over the system as a whole (Seaman et al., 2011).

Costs of managing technical debt

Systematic literature review conducted by Li et al. discovered eight different activities of
technical debt management, for each activity several approaches were found. Indicated activities
are presented on

Technical debt repayment helps to diminish and ease known technical debt. The most
popular and frequently used repayment approach is refactoring — a process by which internal code
quality or system architecture could be improved without changing external system behavior. Such
approaches as rewriting — rewriting the code with technical debt, automation — make automatic
previously manual work (deployment, tests, etc.) and reengineering — change not only code, but
also external features or operational quality of the system. The last three approaches are rarely
presented in the academic studies, they are repackaging — group connected modules with
dependencies that are convenient to manage in order to make the codebase simpler, bug fixing —

solve existing bugs in the system and fault tolerance — set runtime exceptions on purpose.

19

For identification of technical debt, source code analysis approach could be used, where
emphasis should be put on such issues as coding rules violation, flaws in design or architecture
and lack of tests. Another approach is to analyze dependences between modules or components of
the software. Approaches that are listed as approaches with minimum mentioning in research
studies are: check list of scenarios that were predefined and comparison of actual solution with an
optimal solutions in some dimensions.

Technical debt measurement activity implies quantification of costs and benefits caused by
technical debt through special estimation techniques, by measurement, the overall level of
technical debt in a system also could be estimated. The most frequently used approaches for
measurement technical debt are calculation model which uses mathematical models and formulas,
code metrics that also uses sources of code and human estimation which refers to experts in the
field of programming who based on their experience and knowledge are able to give quantitative
measure for technical debt.

Technical debt monitoring watches the changes of the cost and benefit of unresolved TD
over time.

Technical debt prioritization ranks identified TD according to certain predefined rules to
support deciding which TD items should be repaid first and which TD items can be tolerated until
later releases

Technical debt communication makes identified TD visible to stakeholders so that it can
be discussed and further managed by different stakeholders in the company as well as outside of
the company.

Technical debt prevention aims to prevent potential TD from being incurred. Prevention
methods include such methods as development processes improvement, architecture decision-
making support, lifecycle cost planning, and human factors analysis.

Technical debt representation/documentation provides a way to represent and codify TD
in a uniform manner addressing the concerns of particular stakeholders. The research conducted
by Li et al. points out that technical debt representation methods still do not have common
understanding by in research areas.

The concept map of technical debt management activities is shown on Figure 8.

20

Fault tolerance

TD dashhoard
F Backlog

Dependancy vizualization

communication % Code matrics vizoalization
* TD li=t

TD propazztion vizuzlization

echnical debt
manag&menﬁ Dievelopment procssses Improvement
activities \ prevention Z: Architecture decision maling support
Lifecycle cost planning
wt Hurnan factars analy=iz

Costrenafit analyzis

L o fi High remediation cost frst
leDIltEEE Ll F{III:'—
N Portfolio approach

\: High interest first

Threshald-bazed approach

Planned check
monitoring ¥TD monitaring with quality attribute focus
- TD plot
representation /
documentation FRapressntation wits TD items

Figure 8 Technical debt management activities (compound from Li et al. 2015)

Technical Debt Management Framework
Technical debt could be grouped by different elements that include core elements,

implementation elements and management elements, this grouping was obtained by conduction of

21

systematic mapping study (Fernandez-Sanchez et al. 2015). Figure 9 shows Framework for the

Elements for Technical Debt Management.

(" Identification of
Technical debt
L items

Core Elements Management Elements

Principal estimation

[Time-to-market J

[When to implement l

j

Technical debt impact
estimation

[Scenario analysis]

Interest estimation

-Cost-benefit analysis
-Prioritization of items

[Tracking technical l

Interest ‘
uncertainty

[Visualizing technical]
deht

Implementation Elements

Figure 9. Framework for the Elements for Technical Debt Management (source: Fernandez-

Sanchez et al. 2015)

The detailed description of the Framework is presented in Table 5.

Table 5. Description of the Elements of the Framework (source: Fernandez-Sanchez et al. 2015)

Core elements:

debt items.

Identification of technical

Technical debt identification focuses on two main types of technical
debt: code and architecture. To identify code debt different methods
based on lines of code and dynamic and static analysis of code
deficits are used. As for architectural debt, such methods as

modularity violation detection and rare class analysis are used.

Principal estimation

There were detected two main ways to estimate technical debt
principal. The first way is based on repository of previous projects,
where similar ones may help to estimate the principal. The second
way is to estimate items of technical debt and then apply typical

estimation of the organization.

Interest estimation

For the interest estimation, it is possible to use information from
previous projects with the same technology. Another way is to
estimate the difference between cost-per-change and cost-per-
defect.

Interest Uncertainty Estimation:

22

There were found several propositions to estimate the uncertainty
of the interest by the probability assignment, however, concrete

methods of estimation were not provided.

Technical Debt Impact

Estimation

This element is concentrated on analysis of economic consequences
caused by technical debt. However, proposed methods for this
estimation have not considered technical debt accumulation in
concrete modules or components in the system, but rather describe
the consequences for the system as a whole. Other studies provided
methods based on cost-benefit analysis, comparing effects from
incurring technical debt or developing new feature. Furthermore,
several studies include time dimension into analysis and propose to

evaluate technical debt evolution over the time.

Implementation elements:

Automated Estimates

For this type of estimation, there are also two different approaches.
The first is based on the historical repository of the previous
approaches. The second one is based on such resources as code base

or control version system.

Expert opinion

The studies point out the need of expert opinion in case of

estimations which cannot be estimated in another way

Management elements

Scenario analysis

There are several different types of scenarios that could be used:
technical debt goals analysis and estimation of the efforts to achieve
these goals, release analysis to find the most profitable release from

the point of architectural debt view.

Time-to-market

Studies are very limited in provision of explicit methods for time-

to-market decisions about technical debt

When-to-implement

decisions

Several studies report portfolio method or real option method for
evaluating when to implement decision in release. When to
implement secession refers to the decision whether it is necessary

refactor now or it is needed to release new feature.

Tracking technical debt

over time.

A lot of articles propose to look at the historical data in order to
estimate the interest of technical debt. However, the studies are
highly limited when it comes to tracking technical debt evolution

over time.

23

Visualizing technical | There were found several methods that are used for visualize

technical debt. One way is to create charts that show relationships
among interest, principle and time. Another way is to show different
type of relations among software modules or components.

However, these studies are limited.

1.6.Technical debt management strategies

Alves et al. in the research point out the technical debt management strategies that were

found more than in two papers, those strategies are:

Portfolio Approach.

The central concept of this strategy is to list TD items. This list contains debt items
identified for the project. Each TD item in the list should contain the registration
information, such as the location of the debt, the time at which it is identified, the
responsible person, the reason why it is considered TD, an estimation of the principal, as
well as estimation of the interest and also the estimation of the correlations of this item
with other TD items. After conducting the list the analysis should be done in order to
identify, which items should be paid off first and for which items the repayment could wait.
Cost-Benefit Analysis.

This type of analysis is used to evaluate whether the repayment oof technical debt is
justified by the high cost of the interest. It should be pointed out that the interest rate is
composed of two parts: the probability of interest and its value. The first part refers to the
probability that the debt, if not paid, will result in extra cost to the project. The second part
is an estimated amount of additional work that will be required if this item is not paid.
Analytic Hierarchy Process.

In AHP, the problem is structured by running a comparison of alternatives that are
compared with the help of specific criteria. For each alternative the overall ranking is
determined. The usage of AHP in technical debt management implies the identification of
technical debt and the outcome of this method is a prioritized list of technical debt items
with identification of the most crucial technical debt items for paying off..

Calculation of technical debt Principal.

The strategy is focused on the estimation of the principal. The principal is estimated and
associated with quality attributes, which helps the managers to “feel” these technical debt
items better and with this feeling to make better decisions.

Marking of dependencies and Code Issues
24

This strategy is used to manage problems and dependencies in the project source code. by
conducting these dependences, the special tags in the code are inserted in order to ease for
the developers the visibility of technical debt items and to support their decisions about

when and how to pat off technical debt.

Behutiye et al. in their research provides a different view on technical debt strategies

classification. The strategies are:

Specific approaches, tools and models to manage TD in ASD
Refactoring

Enhanced visibility of TD

Test automation

Common (agreed) DoD

Planning in advance for TD

Code analysis

O N o g B~ w D P

Agile practices such as pair programming, TDD (test driven development) and CI
(continuous integration)

9. Prioritizing

10. Improving estimation techniques

11. Transparent communication as to the level of TD with business stakeholders

12. Establishing an acceptable level of TD

1.7.Examples of empirical studies of technical debt

Table 6 Literature review of empirical studies (compound by the author)

Author Type of | Conclusions Comment
study
Zazworka | Single case- | The tools used are especially useful | Single company case,
etal, 2013 | study. for identifying defect debt but cannot | Concentrated on
Brazilian help in identifying many other types | identification methods
company of debt, so involving humans in the | and tools, lacks of
identification process is necessary. context about software

development process.

Klinger et | Single Decisions related to TD issues were | A case of single
al., 2011 | company, 4 | often informal and ad hoc, company, the study

can be quite outdated,

25

interviews at | Which led to a lack of tracking and | lack of view from
IBM (USA) | quantifying the decisions and organizational
issues. The study also identified that | perspective.
there was a large communication gap
between technical and business
people as regards discussion about
TD.
Guo et al., | Single case- | Goal of this study was to uncover the | Describes only one
2016 study, Brazil | costs of explicit TD management. | project from the very
Through data analysis, were | beginning to the end.
identified three major themes
regarding TD management — costs of,
obstacles to applying explicit TD
management to the project, and
deviation of the actual TD
management process from the
proposed one.
Yli- Single The goal was to identify technical | Generalization of the
Huumo et | company, debt management activities in | results, lack of
al., 2016 | several different teams and generalize them | organizational view
teams, by the level of maturity. perspective.
Finland
Falessi, Single case- | The aim is to explore the interest | Technical paper, lack
Voegele, | study, associated with violating quality | of the context of
2015 quantitative- | rules. system development
qualitative and organizational
analysis view.
Yli- Single The aim was to find and identify | Covers only several
Huumo et | company processes for technical debt | technical debt
al., 2017 | case, Finland | identification, documentation and | management
prioritization in order to increase its | activities, lack of
manageability and visibility. organizational view.

The framework of technical debt activities maturity levels developed by by Yli-Huumo et al. is shown

in Table 7.

26

Table 7 Technical debt management framework (source: Yli-Huumo et al., 2016)

TD TD measurement | TD TD TD

TDM TD repayment | TD prevention | TD identification monitoring | communicati | prioritization

activity/ representation/ on

TDM documentation

levels

Organized | Continuous Mandatory Documentation | Continuous Continuous Continuous | Continuous | Prioritization

(Level 3) | repayment with | prevention is a mandatory | identification | measurement monitoring | discus- conducted
monthly practices used | practice in | conducted during during sions/meetin | continuously
assigned by the team. | development. | manually development. developmen | gs about TD | during
percentage of | Continuous Issues are | and/or with | Data analysis | t with | issues with | development.
the practice during | documented in | tools during | (various data used | various data | all the | Prioritization
development development. | a separate TD | development. | (e.g. quality. | (e.g. quality, | necessary follows a
tasks. backlog. performance)). performanc | stakeholders | specific method

Assisted with | €). Tools | involved. or model.
trials used to
support.

Received | Repayment Optional Documentation | Identification | Measurement an | Monitoring | Discussions/ | Prioritization

(Level 2) | during normal | prevention an optional | optional optional practice. | based on | meetings based on
development practices. Not | practice, but | during Measurement simple data | organized hunches and
tasks and | mandatory to | recommended. | normal done with simple | (number of | only with | rough
previously use, but | Issues development. | data (number of | TD issues). | some estimations
identified recommended. | documented in | Conducted TD issues) from | Conducted | stakeholders. | based on
repayment Conducted a general | based on | development. and | occasionally previous
tasks. based on | development current time |the data not experiences.
Repayment current time | backlog constraints. necessarily used Prioritization
conducted constraints. without TD id. for other done in a
based on activities. simple way
current needs. without any

specific model.

Unorganiz | Repayment not | Prevention not | Documentation | Identification | Measurement not | Monitoring | TD not a | Prioritization
ed (Level | conducted at | assigned as | not part of | practices not | part of | not part of | topic in | not conducted,
1) all or only|part of the|development. |assigned as | development developmen | discus- and decisions
when it is not | development Issues are left | part of | practices. t practices. | sions/meetin | done without
possible to | practices. in developers' | development. gs and often | reasoning or
avoid the issue | Conducted own minds and | Conducted handled only | discussions.
any longer. only notes. only when in coffee
occasionally. ISsues occur. table
discussions.
Responsib | Development | Development | Development | Development | Software Software Developmen | Software
ility for | team, software | team, software | team, software | team, architect(s), team | architect(s), |t team, | architect(s),
activity architect(s) architect(s) architect(s) software manager team software team manager
architect(s) manager architect(s),
team
manager
Practices / | Refactoring. Coding Technical debt | Time Data from | Monitoring | Specific TD | Cost/Benefit
tools for | redesigning, standards, code | backlog/list, reservation measurement tools meetings, model. Issue
activity rewriting reviews. Documentation | for manual | tools (SonarQube) | (SonarQube | TD included | rating
Definition of | practice, code and data from|). Project | in discussion
Done. project inspection. project managemen | topics.
management Use of code t tools
tool (/IRA. | analysis tools (IRA.
Wiki) (SonarQube. Wiki)

28

1.8.Conclusions and research gap identification

The conclusion about current situation on technical debt research can be formulated in a

such way:

W np e

Despite the description of different types of technical debt, the strategies and
management practices in majority does not linked with these types, this link is needed
to find effective technical debt tracking activities. Moreover, while investigating a
technical debt, it is always needed to look at the big picture and avoid focusing only on
details.

There are limited studies on influencing of the system software visualization on
technical debt and its management.

Technical debt management strategies are not fully investigated and understood. Many
of the proposed strategies need further and deeper investigation as well as more clear
classification

The studies in TD are quite recent, and the subject is not mature (Martini et al., 2015)

In current technical debt research the focus on particular types of technical debt is
noticeable (architecture, design, code and defect). However, the concept of technical
debt implies the importance of other types of technical debt and their further
investigation. (Ernst et al., 2015, Alves et al., 2016).

Most of the empirical studies of TDM take in consideration only few aspects of the
eight TDM activities (Li et al., 2015).

The concept of technical debt has wide range of research areas that are to research
opened from academic perspective. The following areas may introduce the possible
direction of further research on the topic of technical debt:

Investigation of the ways for technical debt management.

Tools for tracking technical debt.

Models for technical debt evaluation.

Examination of relationships between the causes and the consequences of technical
debt.

Strategies of repaying the technical debt. (Li et al., 2015, Alves et al., 2016, Behutiye
et al. 2017).

1.9.Theoretical model of the study

The concept of technical debt was studied by the number of scholars from different
perspectives. Previous studies have reported technical debt classification in terms of causes, types,
identification tools, measurement techniques, consequences and management strategies.
Visualized concept of technical debt is presented on the Figure 6.

. m— =
Context of software development
Business Software development process
System architecture Teams’ structure

Technical Debt sources

Technical Debt management activities

Identification Repayment Measurement Prioritezation
.. : .. Representation /

Communication Prevention Monitoring p :
© Documentation

Figure 10 Theoretical model of the study (compound by the author using sources: Kruchten, 2011, Betz,
Wohlin, 2012, Li et al., 2015)

30

2. CHAPTER 2: RESEARCH METHODOLOGY

2.1. Research questions

In this chapter the research methodology will be introduced, it includes the research
design, approach of the study, methods of the data collection and, finally, possible limitations.

The literature review in the previous chapter clearly shown a research gap in the field
of technical debt studies. This gap occurs when technical debt management practices meet the
complex of system architecture, organizational design and development methodology. Finally,
the research on technical debt in Russian software development companies is also highly
limited. Therefore, in order to investigate the topic more deeply the following research
questions were asked:

RQ1. How do software development process influence the sources of technical debt in
Russian software development companies?

RQ2. How does the context influence technical debt management in Russian software
development companies?

RQ3. What technical debt management activities could be considered as mature in Russian
software development companies? What methods are used to support these activities?

RQ4 What factors should be considered during decision-making processes about

managing technical debt?

2.2.Research methodoogy

This research consists of several parts: The first one is theoretical and is represented by
literature review. This theoretical background is necessary to provide a strong fundamental basis
for further research. The literature review helped to identify core causes and types of technical
debt as well as modern methods and tools to manage technical debt. By conducting the literature
review the research gap was found and research questions were determined.

There are two main types of research that is recognized by researches: quantitative analysis
and qualitative analysis. The difference between these two types lies on the type of data used for
the research. Quantitative research underlines quantification in the analysis of data, while
qualitative research emphasizes words. Moreover, in the base of qualitative research is an
inductive approach that analyze the relationships between theory and research (Bryman and Bell,
2003).

31

For the analysis of technical debt management practices in Russian software companies
using agile the qualitative research was chosen. The main reason of that lies in the findings of the
first chapter. Technical debt management is a complex concept that includes a lot of data many of
which is very hard to evaluate quantitatively.

This study is qualitative, and it uses case study as the research methodology. A case study
is an empirical inquiry that investigates a contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not clearly evident. (Yin,
2003). A case study that is used as a research strategy could contribute to the knowledge of
individual or group. .Despite being highly useful for economic research, case study is becoming
more and more popular approach to make a research in the field of software development. And
taking into account the fact the software is developed by individuals, groups and organizations and
impose social context, a case study could be considered as a relevant approach (Runeson and Hest.
2008).

Technical debt could be studied by analysis of code sources, and further special analysis
of code quality. Hovewer, theis study has the aim ton investigate technical debt from the
organizational point of view and should be performed with qualitative methods.

The empirical study stands for the second part of this research. The second part would be
practical and would be aimed at investigate the technical debt management practices in Russian
software development companies.

The following methods for the second part of the research were chosen:

e Interviews.

e Documentation analysis and participant observation for one of the company.

Both of them are targeted on getting a deep understanding of current technical debt
management situation in companies as well as their attitude towards this topic form inside. By
using these methods it is planned to run an exploratory qualitative research and as a result to
present a multiple case study of technical debt management practices of Russian software
development companies that use agile. This multiple case study would have a comparison of two
types of such companies: the ones, who focus on B2B and the others, whose focus is B2C.

In order to meet the reliability requirements, the one operating market was chosen — the
Russian market. Moreover, due to the fact that technical debt is closely tight with software
development processes, the companies chosen for the research should use agile development

methodology.

32

2.3.Data Collection and research design

To run high quality qualitative research, it is needed to have a deep investigation about the
market and chosen companies. The analysis of current situation of technical debt of Russian
software development companies should be conducted with the help of data from news and IT-
journals. After understanding the market, it is needed to understand business models of the chosen
companies and what kind of system lies in their core business. These types of analysis are called
the desk research. While doing the desk research it is also needed to pay attention to the identified
in the first chapter models and tools which might be helpful in further, field research.

After completion of the desk research, the field research should be started. This research
would include indepth interviews with the companies’ representatives. It would be needed to
interview a number of different people with different positions from each company, for example:
developers, projects managers, IT and infrastructure architects. It is possible that in some
companies the level of awareness about technical debt would be higher and in other companies
this level might be very law. Hence, it is needed to be prepared to adjust conducting interview with
these different levels of awareness.

The research design is shown on Figure 11

Develop the
o d INTEMView
guide

Choose

Conduct the Identify research Formalize

methodology
Iterature research) theoretical
=ra and formulate —>
review gap _ ~ framework
research

questions

Conduct the Analyze the Make

interviews results conclusions

Choose

s o COMpanies for
the interview

Figure 11 Research design

2.4.Choice of the companies for the research

The choice of the companies for the analysis was built on the several criteria:

1. The industry.

33

Despite the variety of companies, which could be considered as IT-companies, it was
important to define precisely software development companies and not the software

implementation companies or hardware producers.

2. The age of the company.
Technical debt management practices may vary greatly for young start-up companies and
for mature companies which were operating on the market for several years. For the research were

chosen that companies that were operating on the market at least 10 years.

3. The market.

As it was mentioned in the previous chapter, one of the research questions is to investigate
the differences between technical debt management practices for companies with B2C and B2B
(or b2g) market in order to identify, how external business-client may influence technical debt
management in a company.

All three companies that were chosen for the analysis have expressed their willingness to
remain undisclosed, so in this research they would be named as “Company A”, “Company B” and
“Company C”. This fact could have indirect positive influence on the interview results, because
companies’ representatives, being sure to remain unclosed, could be more honest answering
questions related to obstacles and difficulties in technical debt management inside the company.

For the research five interviews with different people were conducted. Each interview
lasted from 1,5 hours to 2 hours and took 9 hours in total. Interviewees and their positions in each
company are presented in Table 8.

Table 8 Interviewees and their experience

Position Company | YearsinIT | Years in the company
System architect A 14 9

Project Manager A 5 2

Head of channel solutions | B 20 2

Architect/ team lead B 13 12

Project Manager C 5 2

34

3. CHAPTER 3: CASE STUDY ANALYSIS

In this chapter the description of the companies for case study would be presented as well
as the choice of the companies would be justified. For each case, detailed case description would
be provided as well as cross-case study analysis would be given with further conclusions,

implications and limitations.

3.1.Company A case study

Company A is a fin-tech company which operates on the market about 15 years. Despite
having both — individual users and companies as clients, the company has internal product owners,
who facilitate and drive product development according to the main company strategy. The main
products of the company are aimed at satisfying desires on both B2B and B2C markets. Due to the
fact that company A provides services, instead of final product as well as its B2B clients are “mass
market” — small and medium enterprises which do not require customize solution and pay for
services, company A could be considered as a company with B2C market. The company is quite
big, it has more than 600 employees with several offices in different Russian cities. It operates
primarily on the Russian market but has a pool of foreign clients.

System architecture

The system of company A has a service-oriented architecture (SOA). This type of
architecture implies several components that could act as clients as well as services for other
components (modules) in the system. The components are linked through a communication
protocol over a network. SOA architecture has the main basic principle which lies on the
independence of products, vendors and technologies. In SOA architecture service is a functional
unit with independent update and remote access.

For SOA there are four main points about the service:

e It has defined outcome and particular business logic.
e ltis closed element.
e For consumers, it should be a black box.

e It may group other services. (Welke et al. 2010).

Several years ago the strategic decision by the top-management was made and a course on
microservices architecture was taken. That meant important changes in particular services in the
system in terms of separation of system modules (components) into several, more independent
components. Moreover, in order to support these planned changes, the company also revised

current system components in order to identify those, which would require separation.

35

Organizational design and teams’ structure

There are fourteen different teams in company A, and each team is responsible for
particular product of the company (particular service development). Each team has project
manager, one or more product owner (if team is responsible for several services), one or more
front-end developer, one or more backend developer, one or more quality assurance engineer.
Some teams have an analyst as a team member, but more often one analyst could be assigned for
a project of different teams. Looking only at departments, which have direct impact on the system
(not including commercial, accounting, marketing and other departments), the company has
different departments for such positions as front-end developers, back-end developers, quality
assurance engineers, projects managers and analytics. Moreover, the company has positions of
business architect and system architect who are responsible for approval of solutions.

Software development process

For the purpose of investigation technical debt management practices in the company it is
needed to study the processes of product development. Each team has several projects in quarter
plan which should be formally approved, however, plans could be reconciled. There are planned
short sprints inside each project and also development process is regulated by agreement processes
in all stages of development. The company uses agile development methodology called SCRUM
but with several adjustments in accordance with accumulated natural processes in the company.

The steps of development process are presented below:

Formulation of the idea / request.

Verification of the ides / request.

Formulation of upper-level requirements.

Analysis, preparation of detailed technical solution.
Solution agreement with architects.

Product / new feature development.

Code review.

Testing.

© 0o N o g B~ w D PE

Bugs correction.

10. Release.

It should be mentioned that as the company uses agile methodology, for each step from 5
to 9 can be repeated for each project, moreover, it is possible that product owner decides to add
new requirements and therefore some changes would appear.

Technical debt causes

36

As it was mentioned above, technical debt causes could be operational and strategic, these
types of causes could occur because of business or technological factors. The causes of technical
debt for company A are presented in

Table 9.

Table 9 Causes of technical debt in company A

Operational Strategic

e the pressure of time limits for the | ¢ needed changes in the architecture;
development of a new functional; e away of deliver new feature more quickly;

e insufficient coverage of the code by tests | o the "legacy” of an existing system - it's

(due to lack of time or money resources); hard to write beautiful code quickly,
e insufficient competence of some because everything is strongly tied to the
developers; current working processes;

e changing the requirements by the product | e technology evolution and retirement of
owner in the course of the project particular technologies.

implementation - insufficient funds for a

full analysis and testing.

The overall development process with possible appearance of technical debt and its causes
along with stakeholders communication during the process are presented on Figure 12.
Technical debt management activities

Identification

Identification of technical debt could appear in several processes. First, when new feature
is developing, system analyst, discussing together with the developer future process may come
across a technical debt. Another way to identify technical debt is to look through the code manually
or with the help of special tools to identify code violations. However, it is necessary to point out
that in these cases, developers usually know, where to look for this technical debt, because they
feel and remember the parts of code where “it was painful to develop new feature”. Moreover, due
to historically development of the system, there are several components (modules) in the system,
which are the core components and have the largest number code lines, hence, it is common that
these components contain technical debt.

Measurement

When technical debt was identified, developers estimate, how much time it may be needed
to pay off this debt. There is no automated estimations, developers give their evaluation based on

expertise and previous experience. The cost of paying off technical debt is estimated in human-
37

weeks (human-days) and in order to translate this value into the money, it is needed to multiply it

by the price of developer work.

Company A

Development process

Communication with

Type of technical debt possible
apperance

Causes of possible technical debt

Product Owner /

Business

Formulation of
request / idea

e —
Verification of the

Product owner

Architectural debt

New requirements that are
hard to develop with the

Infrastructure debt

0w
n Q 1
=2 idea / request Business current system conditions
n = J
= ©
ol
Formulation of the New requirements that are
upper-level * Architectural debt hard to develop with the
requirements) current system conditions
: . Architectural debt 2 i
Technical solution Developers Déilan dabi Improper solution decision
creation Architects g Improper input data

Architect comity [System Analyst [Product owner

Technical solution
approval

System analyst

Architectural debt
Design debt

Approval of improper
decision

el 1L L

z Bevelopment System analyst Code debt Development with
§' P Product owner Defect debt code rules violation
o
5
a
(=9
B p
& 2 Code debt A
. pproval of non-
= O 7
27° Codzasvin Bievelonsty Defect debt optimal code
& B
% =3
<3
w
g Lack of automated tests
~°ED Testing Developers Test debt Not fully coverage of the
S code by tests
<
(@4
w |] : Code debt Not all bugs were
5 . QA engineers
§_ Bugs fixing N Defect debt fixed
2
Q
A
.g § st e doti Unforeseen load on the system
Z E Product owner e Deployment problems
S 5 Versioning debt 3 5
o Release Developers ; The difference between technical
2 o Documentation debt : A
=] solution and realization

Figure 12 Company A possible technical debt appearance through development process.

38

Technical debt management activities

Identification

Identification of technical debt could appear in several processes. First, when new feature
is developing, system analyst, discussing together with the developer future process may come
across a technical debt. Another way to identify technical debt is to look through the code manually
or with the help of special tools to identify code violations. However, it is necessary to point out
that in these cases, developers usually know, where to look for this technical debt, because they
feel and remember the parts of code where “it was painful to develop new feature”. Moreover, due
to historically development of the system, there are several components (modules) in the system,
which are the core components and have the largest number code lines, hence, it is common that
these components contain technical debt.

Measurement

When technical debt was identified, developers estimate, how much time it may be needed
to pay off this debt. There is no automated estimations, developers give their evaluation based on
expertise and previous experience. The cost of paying off technical debt is estimated in human-
weeks (human-days) and in order to translate this value into the money, it is needed to multiply it
by the price of developer work.

Repayment

The process of repayment of technical debt is divided into two main directions: strategic
and operational. Strategic repayment is related to overall vision of the system by CIO, and these
strategic tasks are done by special “refactoring”. This team consists of 4 front-end and 5 back-end
developers with one project manager and one product owner who has the position of system
architect and more than 10 years of development experience. This strategic team doesn’t develop
new features, instead, they refactor the code, to make it more flexible and convenient for future
development.

Operational tasks appear when some minor tasks appear during new feature development
processes. These tasks could be done by particular team itself and these tasks are put into teams;
backlog tasks. In company A backlog task is defined by the task that could be done in less than a
week.

Communication

Is supported by company meetings in order to ensure the common understanding of current
technical debt situation and its further management activities. For operational level it is needed to
build a common idea with product owner in order to explain him/her what consequences for the

business could be.
39

Prevention

By approving by architectural comity of new solutions, by test coverage, require code
review, by setting the culture of high-standards programming (along with seniors development in
refactoring team there are several junior developers, who accumulating best coding practices).

Prioritization

By running cost-benefit analysis, by expert opinion, by communication with product owner

Monitoring

By checking the readiness of set tasks, by covering code by tests.

Representation / documentation

Detailed description of the components in a system (including visualized processes),
description of the desired functions of the components, written plan of actions (what should be
changed and where). Also by other teams’ backlog tasks.

3.2.Company B case study

Company C was launched in 1996 and more than twenty years shows stable positive
results. The company works on B2B market and has banks as business clients (external product
owners). Company C represents innovative technological solutions for automating payment
services based on cards. Currently the company has more than 500 employees. The core company

business is built on payment services provision, which includes the following:

e a wide range of operations on payment cards, from the issuance of bank cards to the
provision of banking services at all stages,

e the processes of routing monetary transactions,

e operations related to mobile wallets, prepaid and fuel cards,

e management of remote banking services (RB) channels,

e management of loyalty programs, electronic and mobile commerce platforms,

Besides core business of services for card payments provision, Company C also has a
direction of channel solutions - internet and mobile banking. This direction is tight closely with
the core payments solution, despite having separate department and separate clients. This channel
department was launched in 2004 and since that time had several evolution steps.
Talking about the development of channel solutions it is needed to say that the core component of
this system was developed that time and had minor changes. Channel solutions department has
two main teams with different processes in technical debt management.

System architecture

40

Because of two teams with different products, there are two separate systems with SOA in
company B. One system is independent and another one is tight closely with the core system of
the company which enables payments services

Teams’ structure

Despite the common idea of the final product (for both teams it is internet banking and
mobile banking) the teams itself and their processes are vary significantly.

Team 1 is responsible for the first solution of internet banking which was developing since
the creation time of this solution. The problem of this solution is extremely high cohesion of the
internet-banking logic with core payment services logic, the reason of this is the idea, that internet-
banking would be the part of the whole payment services, but not independent and alienable
solution. By the time when the understanding of the role of this solution as a separate one came, a
huge volume of system logic and code lines were already developed and it was too hard and risky
to try to set apart both of these system objects. As a head of channel solutions said during the
interview: “This logic could be separated only by surgical methods”. Team 1 is responsible for
front-end and back-end components as well as integration of back-end with payment services and
also for the integration with other external systems.

Team 2 is responsible for the relatively new solution (was introduced four years ago). This
solution was partially based on the external ready-to-use back-end solution and front-end solution
was developed by the team itself. This approach helped to avoid past problems with connectivity
of payment services and internet-banking.

Software development process

Team composition also matters for software development process. Team 1 consists of 10
developers that are separated by front-end and back-end, 2 quality assurance engineers, and also
architect of e-channels. In processes of team 1 people from implementation department also plays
significant role, despite not having direct contribution to software development process, they
communicate directly with clients in order to go through several steps, which are necessary to
deliver ready solution for the client:

Team 1 Team 2
e Formulation of request / idea e Formulation of request / idea
e Requirements gathering e Requirements gathering and
e Requirements formulation (in user formulation (in user stories)
stories) e Agreement on solution
e Agreement on solution e Development
e Development e Code review

41

e Code review e Testing

e Testing e Bugs fixing

e Bugs fixing e Release

e Release e Implementation

e Implementation e Testing and Commercial operation

e Testing and Commercial operation e Formulation of additional requirements
e Formulation of additional requirements e Additional development

e Additional development

Despite development processes steps are very similar for team 1 and team 2, inside they
have a dramatic difference — team 1 has implementation engineers as intermediaries, and team 2
interacts with client directly, with the help of product owner. Detailed processes with stakeholders
for team 1 and 2 are presented in Appendixes on Figure 13 and Figure 14.

It was said that employees from implementation department could act as integration
engineers, system analysts, business analysts, project managers besides the main role of
implementation engineer. The problem that is hide there is that because of the gap implementation
engineers could not know the realization in precise details, which leads to the work through usual,
gained implementation scenarios. This non-optimal implementation solutions may lead to
increasing costs of maintenance and also increase the time of development of new features.

Team 2 consists only of 4 people, two of them are full-stack developers, one is front-end
developer and one is back-end. The team also has product owner, who is responsible for
communication with clients, requirements gathering and final solution delivery. The team along
with product owner, gather clients’ requirements and implements it on a client side. Also team 2
teats developed solutions by itself.

Technical debt management activities

Identification

While developing new feature or manually by architect or developer, special tools are not
used as for this moment integrated development environment is enough. Recently, the project of
test coverage was launched. Also, periodically there is a technical debt inventory.

Measurement

By expert estimation or by blind votes of developers and after discussions of the results.
Repayment

42

Mostly, when experienced team member feels that the critical moment of the system
reliability is close, by initiating refactoring task. Sometimes, when there is a vacant development
forces, by doing refactoring during this time. Sometimes in cases when system falls.

Communication

Could be divided into internal and external communication. Among developers
communication is working well, but if consider communication between developers and
implementation department or business development side, sometimes communication may be
difficult because of contradictory goals.

Communication with clients also vary: for majority of the clients technical debt constrains
would be shown as delays, but with some clients (who have their own development, technical debt
is discussed)

Prevention

By informal agreement on particular solutions in some cases, by formal approve from
architect, by required code reviews.

Prioritization

By the feeling of developers, by requirements from business.

Monitoring

By checking the readiness of inventoried tasks, but them are rarely checked and some tasks
could even expire.

Representation / documentation

By technical debt inventory and backlog tasks.

3.3.Company C case study

The company C is an IT company that specializes in the development of software for
medical institutions and also provides various services such as consulting, supplying,
implementing and maintaining this specialized software. Automation of medical institutions and
introduction of medical information technologies are the main specialization of the company.

The company operates in the market for 10 years, and since that time it is hard to say
exactly, when the company started to feel the burden of technical debt. But it could be noted, when
the company became more involved modifications of the system to the requirements of current
customers than when it was time "to capture the market" and numerous implementations of model
functionality. The market right now is divided, the system meets the basic requirements of the
federal legislation, so customers began to develop their existing system to fit their specific

requirements — “And here were revealed system imperfections and drawbacks”.

43

For example, recently there was a case: Customers began to complain about the poor
performance of one module after another new version. Climbed into the code - a bunch of code all
made once for a specific customer. The company decided to remove pieces of "outdated™ code and
the code of the customer, who is no longer on the system (moved to another system, or use some
old version and have not in the tech support).

The system was originally written on commercial American platform. Convenient
document management system, which has turned out very quickly build up the necessary
functionality for the medical information system (MIS). At first everything was great, but after
several months it became clear that technical limitations of the platform has bad influence on the
system development. However, lots of code was already written and system functionality works
with this code and in was too difficult to change the platform However, for the other part f the
business (regional solutions) was decided to switch to the open-source platforms, but the old
solution still was “living” on the old platform. Finally, when the government have forbidden the
usage of commercial foreign software for public companies, company C had no choice except
from moving its old solution to the not-forbidden open-source platform. to free software and all
new products are developing with free software.

Software development process

e Formulation of request / idea

e Requirements gathering

e Requirements formulation (in user stories)
e Agreement on solution

e Development

e Code review

e Testing
e Bugs fixing
e Release

e Implementation
e Testing and Commercial operation
e Formulation of additional requirements

¢ Additional development

Detailed processes with stakeholders for company C is presented in Appendixes on Figure
15..

44

Technical debt causes
In company C were identified the following causes of technical debt:

e the pressure of deadlines for the development of new functionality;

¢ insufficient code coverage by tests;

e lack of competence of some developers;

e is too complex to implement new process into existing the system, partly because of
customization for different clients

e "legacy" of the existing system;

e changing customer requirements during the project;

Identification

Mostly by accident (when it is difficult to develop new feature or when the system couldn’t
cope with overload). When there is some kind of global critical situation with the system (critical
speed is reduced, falls stupidly system) - begins a massive refactoring.

Measurement

By expert estimations.

Repayment

Mostly in cases when the system falls. Repayment is made by refactoring of the code and
this process could be time-consuming. Example - last summer fell Electronic Registry and a month
and a half the company was doing refactoring.

Communication

For the external clients technical debts is not shown, all drawbacks of the systems are
presented as temporary issue. Inside the company the topic of technical debt is discussed widely
on different levels of organizational structure.

Prevention

By required code review procedure before release. By required approve of the solution
from a particular number of people in the company.

Prioritization

By developers’ opinion, by clients needs. When making decisions is taken into account,
the demand for functional at the customer. For example, there was a unit "Medical institution web-
site” where everything was working poorly, and only 3-4 client used it, and this module interfered
the other modules. The solution for the problem was: “Well, we just removed it from the new
version”.

Monitoring

By checking the readiness of set tasks.

45

Representation / documentation

By expert estimations. Also with All the tasks on rework - a programmer in the internal
system indicates a separate task that goes to the analyst.

3.4.Cross-case study comparison

Software development processes

One of the main differences between Company A which provides services and Companies
B and C which creates products for particular clients is that for delivering final solution to the
clients, companies B and C need implementation engineers as an intermediary between clients and

development. This fact creates additional complexity in directions below:

e Requirements gathering.
e Feedback receiving.

e Implementation processes.

Implementation engineers may become sources of technical debt in several ways. First of
all, implementation engineer remembers, how he acted in previous projects, he usually considers
implementation for new client as an implementation of the same product he delivered before.
However, very often, solution for a new client was changed by the development team and now
implementation may be done in a different way, but implementation engineer doesn’t aware of
this changes and will act as of old. Another possible source of debt caused by implementation
engineer is their mentality of enduring inconvenience: tight deadlines, clients’ requirements — all
of these cause the attitude which is based on clear goal: deliver solution to the client at time and
with budget frames. It means that implementation engineer may find non-optimal, rough ways of
implementation using existing system capabilities, instead of say out about the problem and find
better solution with development team.

To reduce the negative impact on the system caused by implementation processes, the team
1 of Company B is trying to engage developers in implementation activities — starting from
requirements gathering and going to implementation. These procedures help not only straighten
communication with the client but also establish better mutual relations of implementation team
and development team.

Company A has no implementation, however, the gap between initial requirements and
development may appear when system analysts develop technical solution. It should be pointed
out, that there is a difference between technical specification which answers the question “what?”

and technical solution, which answers the question “how?”. Therefore, if system analyst has lack

46

of communication with development team, it may lead to the choice of wrong direction from the
very beginning or to the usage of incorrect input data. Outdated documentation may be the source
of incorrect input data if system analyst develops the solution for the running process to add the
new feature. Currently, the formal approval of technical solution is done by architects who read
the final text, prepared by the analyst. However, there is a plan of changing development and
approval of technical solutions processes by make it more communicative among all stakeholders.

The comparison of the companies’ context is shown in Table 10. Cross-cases context
description

The comparison of companies’ technical debt management activities are presents in Table

11.

47

Table 10. Cross-cases context description

Company A Company B Company C
Market B2C B2B B2G
Product Payment services Internet and mobile banking Medical information systems
Software Quarter planning, several projects in quarter, | After receiving requirements from client, the | After signing the contract with client,

development process

inside project planned short sprints,

regulated agreement processes in all stages
of development.

process from building definitions of done to

the final implementation.

standard process from requirements

gathering to implementation with formal
controls on each stage.

Development
methodology

Agile, SCRUM-like

Agile, Scrum and Kanban-like

Waterfall-like

Teams’ structure

14 teams, each has project manager, one or
more product owner, one or more front-end
developer, one or more backend developer,
one or more quality assurance engineer.

Some teams has analyst as a team member.

4 different teams, which has no required
roles (several teams consist only of
developers, one team consists of developers,
quality assurance engineers and
implementation engineers who are not the
formal members of the team, but may play

role of project managers)

There is no team-like organizational
structure instead, company is divided in
departments (web-applications
development, development based on foreign
commercial

software platform, quality

assurance, implementation).

Architecture of the

system

SOA, strategic goal to make it more micro

services-like.

Two separate systems with SOA. One
system is independent and another one is
tight closely with the core system of the

company which enables payments services

Two separated SOA systems (one is based on
free software and the other is based on

foreign commercial software platform)

Product owners

Internal, each team has product owner

External, banks. In one company there is

internal product owner, who closely

communicate with client

External (medical institutions, 95% from

public sector)

Table 11. Cross-cases analysis of technical debt management activities

Company A

Company B

Company C

Identification

Sometimes when new feature is
development; manually, by software
architect or by special tools by
developers (ex. Jenkins).

While developing new feature or
manually by architect or developer,
special tools are not used as for this
moment integrated development
environment is enough. Recently, the
project of test coverage was launched.
Also, periodically there is a technical
debt inventory.

Mostly by accident (when it is difficult
to develop new feature or when the
system couldn’t cope with overload).

Measurement By expert estimation in human-weeks By expert estimation or by blind votes | By expert estimations.
(human-days). of developers and after discussions of
the results.
Repayment Is divided into two main directions: Sometimes in cases when system falls, | Mostly in cases when the system falls.

strategic — one team of 4 front-end and 5
back-end developers was created only
for conducting refactoring/ rewriting
tasks with system architect as a product
owner.

Operational — by assigning particular
time for backlog refactoring tasks related
to the team.

mostly, when experienced team
member feels that the critical moment
of the system reliability is close, by
initiating refactoring task. Sometimes,
when there is a vacant development
forces, by doing refactoring during this
time.

Repayment is made by refactoring of
the code and this process could be time-
consuming.

Communication

Is supported by company meetings in
order to ensure the common
understanding of current technical debt
situation and its further management
activities. For operational level it is
needed to build a common idea with

Could be divided into internal and
external communication. Among
developers communication is working
well, but if consider communication
between developers and
implementation department or business

For the external clients technical debts
id not shown, all drawbacks of the
systems are presented as temporary
issue. Inside the company the topic of
technical debt is discussed widely on

product owner in order to explain
him/her what consequences for the
business could be.

development side, sometimes
communication may be difficult
because of contradictory goals.
Communication with clients also vary:
for majority of the clients technical
debt constrains would be shown as
delays, but with some clients (who have
their own development, technical debt
is discussed)

different levels of organizational
structure.

Prevention

By approving by architectural comity of
new solutions, by test coverage, require
code review, by setting the culture of
high-standards programming (along with
seniors development in refactoring team
there are several junior developers, who
accumulating best coding practices).

By informal agreement on particular
solutions in some cases, by formal
approve from architect, by required
code reviews.

By required code review procedure
before release. By required approve of
the solution from a particular number
of people in the company.

Prioritization

By running cost-benefit analysis, by
expert opinion, by communication with
product owner

By the feeling of developers, by
requirements from business.

By developers’ opinion, by clients
needs.

Monitoring

By checking the readiness of set tasks,
by covering code by tests.

The readiness of inventoried tasks is
rarely checked

By checking the readiness of set tasks.

Representation /
documentation

Detailed description of the components
in a system (including visualized
processes), description of the desired
functions of the components, written
plan of actions (what should be changed
and where). Also by other teams’
backlog tasks

By technical debt inventory and
backlog tasks

By upper-level description of the
drawbacks in the system.

50

3.5.Discussion

The research aim was to investigate how technical debt is managed across Russian software
development companies. The answers on research questions are presented below.

RQ1. What sources of technical debt appear through software development process in
Russian software development companies?

It was found out during the interviews, that all three firms are exposed to both types of
technical debt: short-term and long-term, and the sources of each type differs crucially.

Sources of short-term technical debt.

Short-term debt was defined as an operational or tactical one, that appears during the
development process in the form of small bugs and other code imperfections. The following

sources of short-term technical debt sources were identified. The sources are shown in Table 12.

Table 12 The sources of technical debt

Sources of short- Description (companies)
term TD
Communication e Lack of communication in the project team (A, B, C)
issues o Lack of communication with business client (B, C)

e Indirect communication between business client and

programmers (B, C)

‘Mentality of patience’ inside the implementation team (C)

Requirements issues | Change of the business client’s or internal requirements for the system
(A, B, C)

Testing issues (A, B, C)

Infrastructure issues | Hardware does not keep up with the software; performance issues (A, B,

C)
Time issues Software should be developed in very tight time frames. (A, B, C)
Developers Developers with lower competences tend to make more mistakes and

competences issues | shortcomings in the code design and structure which leads to the

emergence of technical debt (A, B, C)

Four out of five interviewed experts stated that communication flaw in the project team
and with the business client is the primary source of the 'bad technical debt’.

The system architect of the company A mentioned that ‘there is no much communication
and interaction between analyst teams (those who prepare the requirements for the system
changes) and the development team’. This results in the increasing the timing and inconvenience
of the development process and growing number of system imperfections. Furthermore, ‘the
process of technical solution alignment is not perfect as well’. At this moment the process is the
following. Analyst team prepares technical solutions and upload it in the internet portal for review
and approval of system architects. System architects read the solution and discuss it in the architect
commission with our project team members. Such a process according to the interviewed experts
causes a long debate, and make the project team concentrate on the small details, but not the whole
picture.

In the company B, as it was mentioned previously, there are two teams. In the one team
there is a complex indirect communication between project team and business client resulting in
the emergence of high amount of operational technical debt. In the other team, the communication
process is much smoother, because of the ‘developer-in-the-field’, working on the client side and
gathering the requirements. Furthermore, in that team client is fully involved in the process of
software development. There are even common practices of managing and prioritizing of technical
debt interest payments. Now the company is thinking about transferring these communication
practices to both teams.

Company C project manager admitted that ‘client and project team communication, being
the largest source of operational technical debt, is a stumbling block for the company’.
Implementation team which is responsible for designing system device as well as gathering system
requirements. In company C implementation team tend to ‘go on about the business client’,
without proper advising with programmers. As a result, a lot of ‘crutches and bugs’ appear that
would need to be paid off sometime.

Overall, it was confirmed from the interviews, that sources of short-term technical debt
falling into five different categories are quite the same for all three companies with the
communication issues being the most serious source of short-term technical debt.

Sources of long-term technical debt.

Long term technical debt is a strategic one aimed at fulfilling a strategic goal not only of
the software development unit, but also of the whole enterprise.

In the company A (B2C), the source of the long-term technical debt come from the internal

environment. Recently a new ClO was hired. Having his own vision, he had changed the priorities

52

for system development to the side of the agile microservices system, which required a lot of
changes (refactoring) in the current system.

In the company B (B2B), historically, internet banking and card processing systems were
inextricably linked. There was no intention in the past to separate those system, and now because
of that limitation company B is struggling at growing its customer base. Some clients may need
only internet banking without processing, but technically it is not possible to provide such an
option. Furthermore, it is becoming harder to develop additional program feature in that unified
complex system.

Company C (B2G and B2B) had its major product built on the American commercial
platform, and because of the recent Russian law that forbid the usage of foreign software in public
companies, company C is switching to the open (free) platform, having a lot code to be refactored.

The long-term technical source common for all three companies is the shifts in the external
environment, like change in customer preferences, competitors moves or emergence of a new
technologies, which could make the companies to recognize technical debt and make them to start
code refactoring in order to remain competitive with their product.

Overall, long-term technical debt sources are very context oriented and depend on many
factors like company’s business model, internal vision and changes in the external environment.

RQ2. What context-related technical debt management practices could be identified in
Russian software development companies?

In all the researched companies after the technical debt has been identified, there is a
dilemma: to pay it off right away, to delay the payment of the technical debt interest or to forget
about the technical debt at all. At first, the technical debt is being analyzed by the programmer
who has identified it, whether it is a critical one, which should be tackled right away, or not a
critical one, which could be delayed. Three out of five experts said this evaluation is usually done
intuitively with the appliance of some sort of the cost-benefit analysis where the programmer
together with people from business side compare cost (or consequences) and benefits of holding
technical debt to the benefits and cost of paying it off. If total benefit of paying it off outweigh,
then refactoring is done, otherwise, refactoring is being deferred.

In the company A, if a programmer identifies flaw in the code logic, the special task (ticket)
should be created in the special bug tracking task management system. That flaw is added into the
system in accordance with the defect priority matrix developed by the company, and is tackled
respectively. The time to pay off the technical debt in this case is set in the ticket according to the
priority matrix and usually is solved on time.

In the company B, the technical debt inventory is held every six months. That inventory is

aimed at revising the system architecture, and all the found code inconsistencies are being added
53

into the task pool for the execution. ‘Despite the existence of the task pool of the technical debt
(defects, bugs, code revisions, etc.), the executing of these tasks are not tracked by anyone, and
after six months there could be still a lot of tasks in the task pool. Some of them could be outdated
and would not require to be paid off anymore .

In the company C there is no special procedure to cope with technical debt. Usually it is
paid off, only on the demand of the business client, or when the incident occurs affecting the
reliability and vital functions of the system. ‘We change something only when there is a vital need
for this’ - the company’s project manager said. The main reason for this is the lack of time and
resources for prevention methods.

Based on the company's business model, it was found out that that B2C companies
(company A) are more willing to pay off technical debt than B2B and B2G software development
companies (companies B and C). The system architect of the company A states that this is fact,
because ‘in B2C software development business the risk and the level of responsiveness of making
the mistake is lower, whereas in B2B (or B2G) there is a very high level of responsiveness to the
business client, with whom usually you have a strict service level agreement (SLA). That SLA
usually includes strict fines for the system malfunctioning, therefore these companies are very
cautious about changes in the system code structure.’ Moreover, due to the market conditions,
clients are perceived by B2B (B2G) companies like this: “They are few and each of them is higly
important for us”. Therefore, when it comes to the decision of paying of technical debt or
implement new feature, very often the decision is taken in a favor of second options, in order to

correspond clients’ needs.

RQ3. What technical debt management activities could be considered as mature in Russian
software development companies? What methods are used to support these activities?

The conducted research has shown that there are two groups of prevention method used by
Russian software development companies: industry common methods and companies specific
methods.

Industry common method are the ones used across all the software development company
to prevent the appearance of technical debt. According to the company’s B head of channel
solution, such methods are like a ‘rules of good taste, and every IT company should adopt them in
order to ‘keep themselves afloat’. These methods include code review, testing, automatic
deployment, alignment of technical solutions.

Companies specific methods are the ones that only adopted by the certain companies, and

which are not commonly spread across the industry.

54

In the company A such practice are ‘Junior-senior refactoring” and ‘Analyst-architect

communication’. ‘Junior-senior refactoring’ is the practice of involving junior developers in the
process of refactoring together with senior colleagues. As result, junior developers would acquire
best practices from the more senior colleagues, and the quality of the code would increase,
consequently leading to the prevention of technical debt emergence. ‘Analyst - architect direct
communication’ would lead to better communication and as a result to higher quality technical
solutions, which would allow developers to code easily without inventing any ‘crutches’.
In the company B the culture of a beautiful code is widely promoted. Beautiful code is the one that
has a perfect structure and would be easy to edit in the future. Furthermore, in order to increase
the quality of communication, the developers are involved in the process of gathering requirements
and designing the device of the system together with the business client. The head of company’s
technical solutions called this procedure as ‘Developer- in-the-field’

Company C does not have any specific practices devoted to prevention of technical debt,
except industry common methods. The attitude to the technical debt prevention is quite immature
in that company. The overall comparison is shown in Table 13 Technical debt prevention methods

Table 13 Technical debt prevention methods

Methods Company A | Company B | Company C
Code review + + +
Testing + + +
Automatic deployment + + +
Alignment of technical solution + + +
(formal) (informal) (sometimes formal)
‘Developer-in-the-field’ not applicable | + -
‘Junior-senior refactoring’ + - -
‘ Analyst-architect direct communication’ | + - -
‘Beautiful code culture’ + + -

RQ4 What factors should be considered during decision-making processes about

managing technical debt?

55

Based on the conducted interviews, five key factors affecting technical debt management

were identified. They are shown in the Table 14.

Table 14 Factor that affect decisions on technical debt management

Factor Description

Time Could refactoring of the component be
postponed without affecting company's

performance?

Team size and structure Are there enough resources to make the
refactoring?
Is the team aware of the importance of dealing

with technical debt?

Top management attitude Does top management understand the
importance of technical debt and have it's own

vision towards managing it?

Type of client How demanded is our client in terms of
technical debt management (B2B or B2C
client)?

How the system of our client may be affected

by our changes?

Importance of the module (component) | How important is the component for the
system development ? (Prioritization of the
component refactoring based on it's
importance)

Is refactoring done to the business needs or to

the needs of code beauty?

3.6.Conclusion and implications

In this study the practices of technical debt management in Russian software companies
were investigated. The purpose of this research was to study the reasons of the emergence of
technical debt, to investigate the ways to manage technical debt in Russian software development
companies, and also to identify factors that affect the decision-making on technical debt
management. Three Russian software development companies were analyzed. An important aim
in the study of technical debt in these companies was to understand the context of software

development, which includes the market in which the company operates the development process,
56

the structure and size of the development team, and the age and the history of the system
development in the company. As results of this study, the reasons for the emergence of technical
debt, the common ways of managing it in all studied companies were found. Furthermore, there
were identified common factors that influence the decision-making on the management of
technical debt. In addition, the main differences in the methods of managing technical debt in
companies operating in different markets were shown as well as some recommendations were
given.

Managerial implication

The results of this research could be applied into business practices in several directions.
Nowadays, software development companies are seeking ways to manage technical debt, to find
the ways to prevent avoidable technical debt. This study by mapping software development
process steps with active participants in each step helped to identify the steps on which technical
debt could occur and to classify the possible type and the cause technical debt appearance. In each
company common practices for improving the quality of final solutions were revealed, they are:
solutions agreement (formal or informal), code review, testing, bugs fixing. Furthermore, for some
companies could be useful informal practices, such as ‘Junior-senior refactoring’ and ‘Beautiful
code culture’.

However, by conducting this analysis, the communication gap was also revealed for all
companies. This gap relates to interpretation of business requirements by different participants and
lack of communication between them on each step. Moreover, communication gap affects B2B
companies during implementation stage, because of mentality and goals of implementation
engineers. Therefore, in order to prevent avoidable technical debt, it is necessary to apply practices
which allow striating the communication between business people, analysts and developers for
B2C companies and clients, implementation engineers and developers for B2B (B2G) companies.
These methods could be formal and could require direct interactions of all needed participants.

From the research it was revealed that B2B (B2G) companies are highly client-dependent.
In shows off in two ways. The first cause is that they are beware of changing something in the
system until the high or critical need for it comes out. The second cause is that due to the business
environment, when market is a kind of already divided, the major source of finance for companies
is provision of improvements or customization for existing clients. Therefore, very often,
companies decide to implement new feature for the client instead of paying off technical debt.

A possible way to overcome this problem is to include the risk of technical debt payment
during development phase and to define longer time frame for a particular project. Another
possible way is to set up a process of technical debt communication with the client. It is not

applicable for all clients (for example, it could not work with B2G client), however, if the client
57

has his own development team, it is possible to communicate on technical debt topic and together,
with client development team provide more smooth solution.

Considering B2C companies, they are more about to change the system, because they do
not have limitations from the clients’ side and also they are interested in more flexible and
convenient development process. Some problems could occur, when business need meets the
obstacles from development side — the impossibility of developing new feature in short-term,
because of system limitations (the need of paying off technical debt before developing). And at
this moment communication process between product owner (business people of the company)
and development appear. Through communication it is needed to answer several questions:

What does new functionality give for the business?

What would happen if we do not pay off technical debt?

By answering these questions though communication, it is possible to reach an agreement
based on facts and logic come both from business side and development side.

Research implication

This research was conducted in order to contribute to empirical studies of technical debt
management in Russian software development companies. Another contribution of this study is
that the research investigated deeply the context of technical debt management in studied
companies. The context includes companies’ markets (B2C, B2B and B2G), the age of the system,
software development processes, active participants of development processes, and historical
overview of companies’ systems development with emphasis on some important points, critical in
decision-making process. The sources of technical debt was also investigated the context with the
sources were linked with technical debt management activities. It was identified that the context,
including past decisions, made at the dawn of the company, have significant influence on current
decisions regarding technical debt management.

The research also revealed high importance of communication process though
development process for all companies in order to prevent technical debt and therefore, opens
directions for further research in investigation of the impact of the quality of communication
during development process on the amount unconscious technical debt.

The study has also identified the importance of clients’ needs for B2B and B2G companies
during decision-making process about whether to pay off technical debt. And external client could
be considered as additional limitation factor in prioritizing technical debt pay offs.

Research limitations

It also should be noted that technical debt management, being emerging concept, do not
have yet commonly accepted “best practices”. As for studied companies, technical debt

management practices have different level of maturity for different activities. For example,
58

prioritizing process of technical debt for all companies is more ad hoc, without applying special
models or frameworks. Therefore, is hard to say, whether the practice of one company is definitely
more efficient than the practice of the other one. Furthermore, in order to compare the practices
financial data about projects and costs of technical debt payment is needed and this information
could be closed for the research (for example, one of the companies agreed to give an interview,
only if there is no revealing of financial data).

Time frame could also be considered as limitation, some approaches of technical debt
management was implemented in company not long time ago, and, therefore, the long-term effect
of implemented strategy has not shown up yet.

The number of companies for the research are also can be considered as a limitation,
however, as the aim of the study was to investigate technical debt management practices in a
context of the company, the deepness of the research was more important.

Respondents’ bias could also be considered as a limitation, however, for companies A and
B it was partly mitigated by conduction interviews with two representatives of these companies

separately.

59

List of references

Alves, Nicolli S.r., Thiago S. Mendes, Manoel G. De Mendonga, Rodrigo O. Spinola, Forrest
Shull, and Carolyn Seaman. "Identification and management of technical debt: A systematic
mapping study.” Information and Software Technology 70, 2016

"Ward Explains Debt Metaphor”. 2017. Wiki.c2.Com. Accessed May 05.
http://wiki.c2.com/?WardExplainsDebtMetaphor.

Ambler, S.W.: Agility at Scale: Become as agile as you can be. IBM, Toronto (2009). eBook at
ftp://ftp.software.ibm.com/software/au/201106/Agility _at scale.pdf

Beck et al. (2001), Manifesto for Agile Software Development. http://www.agilemanifesto.org/
(accessed November 24, 2016).

Behutiye, Woubshet Nema, Pilar Rodriguez, Markku Oivo, and Ayse Tosun. "Analyzing the
concept of technical debt in the context of agile software development: A systematic literature

review." Information and Software Technology 82, 2017, 139-58.

Boehm, B.W., Turner, R.: Balancing Agility and Discipline--A guide for the perplexed. Addison-
Wesley, Boston, MA (2003) p. 20

Bryman, A. and Bell, E. Business research methods. Oxford University Press, 2003
Cockburn, Alistair. 2005. Crystal Clear. 1st ed. Boston: Addison-Wesley. p. 45-48

Ernst, Neil A., Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and lan Gorton. "Measure it?
Manage it? Ignore it? Software practitioners and technical debt." Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, 2015.

Falessi D., Voegele A. Validating and prioritizing quality rules for managing technical debt: An
industrial case study. Conference Pape October 2015. Conference: 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD)

Falessi, Davide, Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. "Technical debt at the
crossroads of research and practice."” ACM SIGSOFT Software Engineering Notes 39, 2014

Fernandez-Sanchez, Carlos, Juan Garbajosa, Carlos Vidal, and Agustin Yague. "An Analysis of

Techniques and Methods for Technical Debt Management: A Reflection from the Architecture

60

ftp://ftp.software.ibm.com/software/au/201106/Agility_at_scale.pdf
http://www.agilemanifesto.org/

Perspective.” 2015 IEEE/ACM 2nd International Workshop on Software Architecture and Metrics,
2015.

Fowler, Martin. 2003. "Technicaldebt". Martinfowler.Com.

https://martinfowler.com/bliki/TechnicalDebt.html.

Fowler, Martin. 2009. "Technical Debt Quadrant”. Martinfowler.Com.
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html.

Fowler, Martin. 2013. Refactoring: Improving The Design Of Existing Code. 2nd ed. Boston:
Addison-Wesley.

Guo Yuepu, Carolyn Seaman, and Fabio Q.B. da Silva. 2016. "Costs And Obstacles Encountered
In Technical Debt Management — A Case Study". Journal Of Systems And Software 120: 156-169.

Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "Technical Debt: From Metaphor to Theory
and Practice." IEEE Software 29, no. 6, 2012: 18-21.

Kruchten, Philippe. 2011. "Contextualizing Agile Software Development". Journal Of Software:
Evolution And Process 25 (4): 351-361. doi:10.1002/smr.572.

Letouzey, Jean-Louis, and Declan Whelan. 2016. "Introduction To The Technical Debt Concept".
https://www.agilealliance.org/wp-
content/uploads/2016/05/Introductiontothe TechnicalDebtConcept-V-02.pdf.

Letouzey, Jean-Louis. 2016. "Introduction To The Technical Debt Concept”. Agilealliance.Org.
https://www.agilealliance.org/wp-
content/uploads/2016/05/Introductiontothe TechnicalDebtConcept-V-02.pdf.

Li, Zengyang, Paris Avgeriou, and Peng Liang. "A systematic mapping study on technical debt
and its management.” Journal of Systems and Software 101, 2015: 193-220.

Marinescu, R. Assessing technical debt by identifying design flaws in software systems, IBM
Journal of Research and Development, 56(5), p. 9:1-9:13, 2012

Martini, Antonio, Jan Bosch, and Michel Chaudron. "Architecture Technical Debt: Understanding
Causes and a Qualitative Model." 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, 2014.

61

McConnell, Steve. 2007. "Technical Debt Taxonomy". Construx.Com.

http://www.construx.com/10x_Software_Development/Technical _Debt/.

Mohan, Babu K. " Vendor-Driven Technical Debt: Why It Matters and What to Do About It."
Cutter IT Journal 29, no. 3, 2016: 33-37.

Mohan, Babu K. "Vendor-Driven Technical Debt: Why It Matters and What to Do About It" Cutter
IT Journal 29, no. 3, 2016: 33-37.

Nord, Robert L., Ipek Ozkaya, Philippe Kruchten, and Marco Gonzalez-Rojas. "In Search of a
Metric for Managing Architectural Technical Debt." Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software Architecture, 2012.

Radford, Barbara Davis & Darren. Going Beyond The Waterfall: Managing Scope Effectively
Across the Project Life Cycle. J. Ross Publishing, 2014.

Runeson, P., Host, M., 2008. Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131-164.

Ru-zZhi, X., Tao, H., Dong-Sheng, C., Yun-Jiao, X., & Le-Qiu, Q. Reuse-oriented process
component representation and retrieval. The Fifth International Conference on Computer and
Information Technology (CIT'05), 2005

Schon, E., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements Engineering: A
systematic literature review. Computer Standards & Interfaces, 49, 79-91.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software engineer-ing. IEEE
Trans. Softw. Eng. 25, 557-572.

Seaman, Carolyn, and Yuepu Guo. "Measuring and Monitoring Technical Debt." Advances in
Computers, 2011, 25-46.

Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman. Technical debt: Showing the way for better
transfer of empirical results. In Perspectives on the Future of Software Engineering, pages 179-
190, 2014

Stefanie Betz, Claes Wohlin, 2012. Alignment of business, architecture, process, and organisation
in a software development context. ESEM 2012: 239-242

62

Tim Klinger , Peri Tarr , Patrick Wagstrom , Clay Williams, 2011. An enterprise perspective on
technical debt, 2nd Workshop on Managing Technical Debt, May 23-23, 2011, Waikiki, Honolulu,
HI, USA

Welke Richard, Rudy Hirschheim, and Andrew Schwarz. 2010. "Service Oriented Architecture
Maturity". Computer.

Yli-Huumo J., Maglyas A., Smolander K., Haller J., Tornroos H. (2016) Developing Processes to
Increase Technical Debt Visibility and Manageability — An Action Research Study in Industry. In:
Abrahamsson P., Jedlitschka A., Nguyen Duc A., Felderer M., Amasaki S., Mikkonen T. (eds)
Product-Focused Software Process Improvement. PROFES 2016. Lecture Notes in Computer

Science, vol 10027. Springer, Cham

Yli-Huumo Jesse, Andrey Maglyas, and Kari Smolander. 2014. The Sources and Approaches to
Management of Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish
Software Company. Conference Paper, December 2014 Conference: 15th International
Conference, PROFES 2014, Helsinki, Finland, December 10-12, 2014, At Helsinki, Finland,
Volume: 8892

Yli-Huumo, Jesse, Andrey Maglyas, and Kari Smolander. 2016. "How Do Software Development
Teams Manage Technical Debt? — An Empirical Study”. Journal Of Systems And Software 120:
195-218.

Yin, R.K., 2003. Case Study Research: Design and Methods. Sage Publications, Thousand Oaks,
Calif.

Zazworka N., Spinola R., Vetro’ A., Shull F. ; Seaman C. (2013). A Case Study on Effectively
Identifying Technical Debt. In: 17th International Conference on Evaluation and Assessment in
Software Engineering, Porto de Galinhas, Brazil, April 14th - 16th , 2013. pp. 42-47

63

Appendix 1. Interview questions

1.
3)
b)
2.
3)
b)

b)

General questions about the experience and positions of interviewee
How many years have you been working in the industry? How old is the company?
What is your role in the company?
General questions about the architecture and system:
Please describe the system architecture.
What do you remember the transitional moments in understanding architecture in the
system?
The process of developing new functionality:
What development methodology used by your company?
How is the process of adding new functionality to the system?
e The idea, the formulation of requirements
e Analysis, writing the technical solution
e Development
e Code Review
e Testing
e Bug fixes
¢ Release functionality
What methods of control still exist?
If in the process of writing code the programmer knows that the resulting solution is
not optimal, if he makes some notes in code or on a separate page?
Organizational structure and composition of teams
What positions in the company are directly related to the process of creating new
features?
What are the size and structure of the teams which are responsible for software
development?
Technical debt
At what point about it was clear that the system contains a technical debt, which must
be fought?
Have there been any major changes in the understanding of those. debt for the
company?
How did the attitude of the technical debt on the org structure in the company, in the

development process?
64

d)
6.
3)

What has influenced a change in attitude to the technical debt?
The causes of technical debt:
What are the main causes of the technical can be distinguished?

e timing pressure;

e insufficient code coverage (due to lack of time or financial resources);

e lack of competence of some developers;

e "Legacy" of the existing system - it is difficult to write code quickly and
beautifully for a new functionality, because all tied strongly that the current
running process, so you have to "crutches";

e changing customer requirements during the project - not enough money for a
full analysis and testing;

e changing the system architecture;

e technological obsolescence;

e anything else;

Identification of technical debt:

What methods from a strategic point of view are used for the detection of technical
debt? It examines whether the separate components of the system is particularly
important, which contains the basic logic?

Allocated if such components, in which a large technical debt is valid and is not critical
to the functioning of the system?

What methods are used to identify the technical debt from an operational point of view?
(special programs for the detection of code coverage, code duplication detection, etc.)
Technical debt Measurement

how to measure the amount of technical debt? (in man-hours?)

Technical debt repayment:

How do you conduct the repayment technical debt?

During the development of new functionality simultaneously refactor code

separate project or a separate team for refactoring Provided?

. Other processes that relate to technical debt:

Prioritization;
Monitoring;
Prevention;
Document;

Communication (. to make the debt visible for all stakeholders).

65

. What factors should be considered when the decision about technical debt is being

made?

. Optional:

How does the management of technical debt that you are working in B2C / B2B / B2G
market? What limitations do you see for managing technical debt?

What is the general attitude in the management of the technical debt? Do managers
understand that you need to refactor the code or perceived as a clean waste of resources
to nowhere?

Usually programmers do not like to read someone else's code, but love to write
something new from scratch. But there are some programmers who like "clean code".

Do you pay attention to the personal qualities of the programmer, giving him the task?

66

Appendix 2. Company B team 1 development process (Figure 13)

Figure 13 Company B team 1 possible technical debt appearance through development process.

Company B (Team 1)
Development process Communication with Type of technical debt possible Causes of possible technical debt
apperance
Formulation of request / Developers
= idea Architects
2
o
&
E
5= Requirements Client .
E3 gathering
B
=3
£
E Requirements Architectural debt s
g5 formulation (in user Client Design debt Clients neec]s oppose
G 2 stories) Infrastructure debt system architechture
T ——
E5
=
5
= E Architectural debt I Luti
Z 2 Agreement on solution Developers Design debt mpIseps;S;u on
z = Infrastructure debt
£73
5
< <
w Implementation Code debt Development with code
5 Devel t) R
§ evelopmen engineers Defect debt rules violation
-]
=
3
[s]
b
o
f=5
3 {]
B ow _— . Code debt Approval of non-
3 g Code review Developers Defoct debt aptimal code
£c
.%ﬂ E
<3
4 Lack of automated tests
E Testing Developers Test debt Not fully coverage of
%D the code by tests
b
o
w Implementation
2 Bugs fixing engineers Code debt Not all bugs were fixed
2 = = = Defect debt =
T QA engineers
%
[s]
Infrastructure debt Unforeseen load on the
= Release Developers . system
S5 Versioning debt
2 E Deployment problems
B S
5%
g
b=} Implementation
sE Implementation Client Design debt engineer works with
= 9 5
g 2 “old scheme”
]
= 3
2
= Testing and . Client Design debt Non-optimal 1mp1ementatton
Z5 Commercial operation Developers decision
52
E2
= 8
: ‘ Architectural debt New requirements are hard to
Formulation of Implementation . develop with current system
- - . Design debt
w additional equirements engineers = processes
=}
|9}
= E
S a2 Architectural debt New requirements may need
= % Additional Developers Design debt “crutches”
2 & development Code debt Time pressure
SR

67

Appendix 3. Company B team 2 development process (Figure 14)

Figure 14 Company B team 2 possible technical debt appearance through development process

Company B (Team 2)
Development process Communication with Type of techmical debi possible Causes of possible technical debt
apperance
Formulation of request / - - -
- idea
2
o]
L om
S g
z B Requirements Client - -
& 3 .
53 gathering and
== formulation
22
£E
=
=
£ : Architectural debt Improper solution
£ z Agreement on solution - Design debt prdep:isjon
B B Infrastructure debt
£3
3
&S
n Code debt Development with code
§ Development Product owner Defect debt rules violation
k]
=
L
a
n . - Code debt Approval of non-
% Code review Defect debt optimal code
=]
=
L
a
Lack of automated tests
w
5 Testing - Test debt Not fully coverage of
‘_3' the code by tests
g
o
=]
g Code debt
g . o
‘_8' Bugs fixing - Defect debt Not all bugs were fixed
S
L
a
)
. sl Infrastructure debt Unforesee:tlcad on the
53 elease Operation department Versioning debt system
E— = Deployment problems
g
L
a
L@
S5 —
z '_5" : : Non-optimal implementation
1?, g Implementation Client Design debt decision
=
23
£ E
=
]
5 y
g Testing and Client Infrastructure debt Unforeseel;tload on the
= g Commercial operation e Versioning debt system
=R = Deployment problems
£3 -1
3
£ <
scdionalcquiements nd developes Arcitectrl ety dovelop withcuzest e
z e P Design debt P R
3 _ = processes
o]
w
2 dditional
5 Additiona
= Product owner Code debt
) , ,
E development Defect debt Not all bugs were fixed

68

Appendix 4. Company C development process (Figure 15Figure 14)

Figure 15 Company C possible technical debt appearance through development process

Company C
Development process Communi cation with Type of technical debt possible Causes of possible technical debt
apperance
Formulation of request / Developers
= idea Architects
3
o]
n Requirements Client -
Zm .
S % gathering
Z 5
o2
2=
g
E Requirements Architectural debt Lo
g5 formulation (in user Client Design debt Clients neec!s OPposE
35 2 stories) Infrastructure debt system architechture
=Y —
Es
£
5
2 E Architectural debt Improper solution
5 E Agreement on solution Developers Design debt Pr d.epceision
£ E Infrastructure debt
=T
S =
< 3
w Implementation Code debt Development with code
5 Devel t
“é. evelopmen engineers Defect debt rules violation
=
=
o
a
o
-]
o,
g ‘
& w e . Code debt Apvproval of non-
E g Code review Developers Defect debt optimal code
53
2
zo
<=
2 Lack of automated tests
E Testing Developers Test debt Not fully coverage of
o the code by tests
w
=y
<&
w Implementation
2 Bugs fixing engineers Code debt Not all bugs were fixed
] = = = Defect debt =
EJ QA engineers
af
Infrastructure debt Unforeseen load on the
= Release Developers . system
£ 3 Versioning debt
£ g = Deployment problems
EE
22
&3
g ,
= Implementation
5 Implementation Client Design debt engineer works with
£ ‘“old scheme™
=
£
]
g
£ Tesﬁng and ‘ Client Design debt Non-optimal 1l111.plementat10n
] Commercial operation Developers decision
=
£
]
: ‘ Architectural debt New reqmlémenis are hard to
Formulation of Implementation Desien debt develop with current system
w additional equirements engineers = processes
o NE—
=]
w
g . Devel Architectural debt New requirements may need
% Additional evelopers Design debt “crutches™
4 development Code debt Time pressure
[=]

69

