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The article is devoted to the problems of optimization of the charged particles’ beam dynamics in
accelerators. The increasing requirements to the output parameters of the accelerated particles
call for the development of new methods and approaches in the field of beam control for
charged particles. The present paper considers and sets out particular tasks of optimization
of the longitudinal motion of the charged particles in an RFQ accelerator. The particles’
dynamics is considered in the accelerating field of an equivalent travelling wave. As was
shown earlier, that approach allows one to consider the longitudinal motion and the transverse
motion separately. Besides, certain requirements for transverse motion can be considered in
the study of the longitudinal motion, which facilitates further optimization of the transverse
dynamics. Particular quality functionals are specified and explained in the article. What
distinguishes the present work is that it considers non-smooth functionals in combination with
smooth functionals, taking the particles distribution density along the beam of trajectories
into consideration. The mathematical model of simultaneous optimization of smooth and non-
smooth functionals is considered. The variation of the combined functional is obtained as well
as the necessary optimality condition. It should be noted that the considered approach might
be applied to the control problems in case of partial information about the initial conditions,
i. e. the problems of control of the beam of trajectories of various dynamic systems. Refs 15.
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OmnucebiBatoTCs TPOGJIEMBI ONTUMUBAIUN JUHAMUAKY 3aPs?>KEHHBIX YaCTHI] B yCKopuTesx. Heob-
XOJIMMOCTh Pa3spabOTKU HOBBIX METOJI0OB M IIOJXOJIOB B 3aJladax YIIPaBJIEHUs IIyYKaMH 3apsi-
JKEHHBIX YACTHI] BLI3BAHA BBICOKUMU TPEOOBAHUSIMU, MPEIbABISIEMBIMA K KAIECTBY BBIXOIHBIX
mapaMeTpoB yCKOPeHHBIX dacTull. CTaBATCA W PEIIalOTCs KOHKPETHbIE 3aJa4M OITHUMU3AINN
IIPOJIOJILHOIO JIBUXKEHUSI 3apsiPKEHHBIX YACTHUI[ B YCKOPHUTEJIE C MPOCTPAHCTBEHHO-OIHOPOIHOMN
KBaJIpyNOJBbHON (DOKyCHpPOBKO#. JInHAMMKA YACTHI[ U3y4aeTCd B YCKOPSIOIIEM IIOJI€ SKBUBA-
JIEHTHOI Geryieil BosiHbl. Kak ObLIO MMOKa3aHO paHee, TAKON MOAX0/I TO3BOJISIET OTIEJIBHO pac-
CMaTpUBaTh IIPOJOJILHOE U IONepedHoe IBuXKeHnsd. [Ipu 3TOM Ipu MCC/IefOBaHUK TPOI0JILHOIO
JBUXKEHUS] MOXKHO yYeCTh HEKOTOPbIE TPeOOBaHUS K IONEPEYHOMY JIBHUYKEHUIO, YTO ODJIErdaeT
B JaJIbHEAIIeM pelleHue MpobieMbl ONTUMUA3AIUN [IOIIEPEeYHON JUHAMUKY JacTull. 1lpusonsarcsa
KOHKpPEeTHBIE (DYHKIIMOHAJBI U JaeTcs uX pusndeckuit cmbicii. OCOGEHHOCTHIO JAHHON CTATbH SB-
JISIETCS TO, YTO HAPSILy € IVIAJIKUMU (DYHKIMOHAJIAMY UCCIIEYIOTCH U HerJiagKkue (OyHKINMOHAJIbI.
ITpu 3TOM yYUTBIBAETCS IIOTHOCTH PACIPEIEJIEHUS 3aPs?KEHHBIX YaCTHI] BIOJIb IIyYKa TPAEK-
Topuii. Paccmorpena mareMarwyeckasi MOJEIb ONTUMUBAIMU CBA3KHU TVIAJKUX U HEIJIQIKUX
dyukuuronasos. ITonydyena Bapualusi OCTPOEHHOrO (DYHKIMOHAJIA U TaHbl HEOOXOIUMBIE yCJIO-
Busi onrTuMaJsibHOCTU. CJle/lyeT OTMETUTD, 9TO MPEIJIOYKEHHBIN MTOIXO0/T MOYKET OBITH UCIIOJIb30BaH
U B 33Jlauax yIPABJICHUs [PU HEMOJHOW UHGMOPMAIMKA O HAYAIbHBIX JAHHBIX, T. €. B 3a7a9axX
yIIpaBJIeHUs] AaHCAMOJISIMA TPAEKTOPUIl PA3JIMYHBIX JUHAMUYECKUX cucTeM. bubsmorp. 15 Ha3B.
Wn. 4.

Karouesvie caosa: ynpaBieHne, ONTUMA3AINS, MUHIMAKC, JIHHEHHBIN YCKOPUTEIIb.

1. Introduction. The problem of charged particles dynamics optimization in
accelerating structures is well studied. The approach to that problem presented in the
current paper is based on two major developments in this field: simultaneous optimization
of a program motion and an ensemble of trajectories and minimax optimization.

Minimization of smooth and non-smooth functionals on the beam of trajectories
in various statements was considered in [1-5]. In the works by D. A. Ovsyannikov [6,
7] problems of the charged particles’ beam control were studied. As for simultaneous
optimization of some program motion and an ensemble of trajectories, we should mention
works by D. A. Ovsyannikov and A. D. Ovsyannikov [8, 9]. But those works dealt only with
smooth functionals, so once we bring a minimax functional into action, we get something
new — an approach based on simultaneous use of integral and minimax functionals for
optimization of a program motion and an ensemble of trajectories that was introduced in
[10, 11].

In the present paper application of the combined functional for the problem of
optimization of the longitudinal motion of the charged particles in a radio-frequency
quadrupole (RFQ) accelerator is proposed. The latest version of the combined functional
contains a density variable which allows us to take particles distribution density into
consideration.

2. Beam dynamics in a RFQ structure. The longitudinal motion of the charged
particles in an RFQ structure is described by the following equation [12]:

A8 4eUT

dr N W()L
Here 7 = ct is the independent variable (¢ is time, ¢ is the speed of light), z is the
longitudinal coordinate of a particle in the beam, 3 is the reduced speed of a particle,
W = 2nw/e, w is the effective frequency of the accelerating RF field, U is the voltage on
the electrodes, T' is the acceleration effectiveness, Wy and e are the rest energy and the
charge of the particle, K = 27/L, where L is the length of the period, ¢ is the phase of
the synchronous particle. We also assume that L = G5\, where ) is the wave length of the
accelerating field and [, is the reduced velocity of the synchronous particle.

cos(K z) cos(@T + ¢). (1)
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We will consider the longitudinal motion of the particles in an equivalent travelling
wave and take into account only the accelerating half-wave, so that the motion equation
(1) for the synchronous particle can be rewritten in the following form [3, 13]:

(A%) = 2kn cos ¢. (2)
The equation in deviations from the synchronous particle will be [14]

"

A n
NN Yl VA S g —0.
V2 4 = g (cos ¢ —cos(¢ +9)) =0 (3)
Here ¢ = K(zs — 2), zs is the coordinate of the synchronous particle, A = 35/80 (0o is
the initial reduced velocity of the synchronous particle), n = ﬁ, k=Q/w, s=Qr €

[0, Ts] is the new independent variable, €2 is defined by the expression below:

02 — 47e(UT ) max
T T Wolz

where LO = ﬁo/\

In equations (2) and (3) the derivatives are taken with respect to the new independent
variable s.

3. Numerical simulation. The mathematical model of the charged particles’ beam
dynamics in an RFQ accelerator was implemented in the BDO-RFQ software developed
at the Faculty of Applied Mathematics and Control Processes of Saint Petersburg State
University.

The target parameters for optimization are:

— synchronous particle output energy equal to 5 MeV;

— minimum deviation of the beam from the synchronous particle in energy at the
output of the structure;

— the value of the defocusing factor — an important parameter of the accelerating
process, should be less than 1 along the process.

The limitation on the value of the defocusing factor in this case is of special importance
due to the separate modeling and optimization of the longitudinal and transverse motions
of the particles. Some of the results, based on the mathematical model described in the
previous section, are shown in the following pictures.

Figure 1 represents the dynamics of the synchronous particle (its energy) and the
value of the defocusing factor. With the chosen initial conditions the defocusing factor
is well below 1, which is good and it should remain this way, while the energy of the
synchronous particle is somewhat less than the target 5 MeV.

Beam reduced energy depicted in Figure 2 doesn’t reach 5 MeV and also shows some
spread at the end of the accelerating structure.

Phase deviations oscillations shown in Figure 3 decrease well into the last third of the
process, which is well but can be further improved.

Figure 4 shows the phase portrait at the output of the process, each dot corresponding
to a certain particle in the beam. Decreasing the energy spread in these coordinates would
mean squeezing the picture vertically.
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Figure 1. Synchronous particle reduced energy and defocusing factor
1 — reduced energy of the synchronous particle; 2 — actual value of the defocusing factor;
8 — limitation of the defocusing factor; 4 — target energy of the synchronous particle
at the output of the accelerating structure.
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Figure 2. Beam reduced energy
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Figure 3. Phase deviations of the beam
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Figure 4. Phase portrait at the end of accelerating structure
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4. Statement of the optimization problem. Once the optimization objectives are
formulated we can move on to the statement of the optimization problem and write down
the quality functionals.

Let us introduce a smooth functional that evaluates the deviation of the kinetic energy
of the synchronous particle from the target value at the end of the accelerating structure
and also considers the defocusing factor restrictions for s € [0, T]

T
Jl(u) = /h(pdef,ad) dS + (AQ(TS) — CLE)Q. (4)
0

Here aq4, ap are some fixed values, defocusing factor pgey is defined as follows [14]:

2k2| sin ¢|
Pdef = — 3 -

Penalty function h(p, a) is defined by expression

(p - G)Q, p>a,
h(p7 a) =
0, p<a.
Let us also introduce a minimax functional with the particles distribution density
variable p = p(s,,1’) on the set of terminal positions of the system (3)

Jo(u) = 2 o(Ts, br, , ). 5
2(u) ( Wﬁf}g)eypwp( o, r,) (5)

Parameter p,, = (Wj, — W) /W relates to the deviations of the energies of the particles
in the beam from the energy of the synchronous particle, which in terms of A and v can
be written

A/
po=(ps+1)°—1, pg=—k (z//erK).

Functional (5) is a minimax functional that allows to include the most deviating
particles into the optimization considering the particles distribution density at the output
of the accelerating structure.

5. Mathematical optimization. The problem stated in the previous sections can
be generalized in the following form.

Let us consider systems of differential equations

dz

% = f(t,x,u), ZZ,‘(O) = Zo, (6)
d
= Fltayw), () =y € Mo, (")

where t € [0,7] is independent variable instead of s; z is n-dimensional phase-vector;
u = u(t) is r-dimensional piecewise continuous control vector-function from a class D that
takes value in a compact set U; y is n-dimensional phase-vector; f(t,z,u), F(t,z,y,u) is
n-dimensional reasonably smooth vector-functions; My is a compact set.

The new variables x and y refer to A and (¢, 1) used in the previous sections, control
vector-function u represents the acceleration intensity and the phase of the synchronous
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particle (n(s), ¢(s)), so that equations (6), (7) represent equations (2), (3) rewritten in the
normal form using new notations.

The solution of sub-system (6) is called program motion and the trajectories of system
(7) are called disturbed motions or the ensemble of trajectories.

Let us also introduce the equation, describing the dynamics of the particles
distribution density p = p(¢, y(t)) on the trajectories of sub-system (7)

dp = —p-div,F(t,z,y,u), p(0)= po(yo). (8)

dt
By analogy with functional (4), on the solution of system (6) we will introduce an
integral functional I (u)

T
/ o1 (@(t, 0, u)dt + g(a(T)). (9)
0

And on the trajectories of system (7) we introduce a generalized minimax functional (5),
that takes particles distribution density into consideration

Ir(u) = max ea2(yr, p(yr)), (10)

where Y is the set of terminal positions of the sub-system (7), defined by the following
expression:
Y= {y(T7 x07y07u) | u € D7x(0) = $07y(0) =1Yo € MO}

Functions @1, @2, ¢ in the expressions for the functionals (9) and (10) are non-negative
smooth functions.
In this paper we consider a combination of I1 (u) and I (u)

I(u) = I (u) + I2(w). (11)

The combined functional (11) allows us to simultaneously optimize program motion and
the ensemble of trajectories, take particles distribution density into consideration and not
only evaluate the dynamic process in general, but also include the “worst”, particles into
the optimization process.

6. Variation of the functional. Let us write down the variations equations
corresponding to systems (6)—(8) [15]

déx  Of
déoy OF oF
— = —z ) ALF, 6 =0; 12
TR vl y(0)=0 (12)
dop _ d(div,dy) _
o —dp-divyF —p T dp(0) = 0.
Also let us introduce the variation equation for div,dy
d(div,dy)  O(divyF) d(divy F) . .
d;j = 8; ox + 8; 0y + Aydivy F,  divydy(0) = 0. (13)
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Here and further operator A,, of some function f is defined the following way:
Ayf (tyx,u) = f(t,z,u+ Au) — f(E z,u).

The variation of the functional represented by a smooth function is

T

o6 :/%chdt—!— %cﬁ(]ﬂ). (14)

0

Variation of the functional I>(u) considering the particles distribution density is [7]

Opa

0, = max {%5,7;(7’)4— o

sp(T)| | 15
o 1, p(T) (15)

where Rp(u) is a set defined by expression

RT(”) = {@0 : ﬂo € MO,QDQ(@/(T7 $07g0»u>7p> = yn,éaj\i[( SDQ(y(T7 x07y07u>7p>}'
Yo 0

The variation of the functional (11) is
01 = 61y + 61>. (16)

Using (12)—(15) let us choose auxiliary vector-functions ), A and scalar function y so
that

o 0f 001 (GOF Oy E) o O9(a(T)
v OF _ 9(divy F) comy _ Op2(yr, pr) |
AT+ A oy Xp oy AN(T) = oy (17)
X = xdivyF, x(T)= —78(’02%;"%).

Here and further symbol * stands for the operation of transposition of a vector or matrix.
The variation of the functional (16) using expressions (17) can be written as follows:

T

0I(u) = H}{ax( - /(w*Auf + N ALF — xpA,div, F)dt. (18)
YoERT(u
0

Expression (18) can be used for the directional methods of optimization.
7. Optimality condition. Let us introduce Hamilton’s function

H(t,z,y,p,9,\ X, u) = f(t,x, u) + N F(t 2, y,u) — xpdivy F. (19)
Using (19) we can rewrite the expression for the variation (18), so that

T

61(“‘) :y g}%ax( )_/(H(t71‘7y7p7w7)‘aX7a) _H(t7x7y5p5¢aA7Xau))dtv
0 (U

where 4(t) = u(t) + Au e U.
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Optimal control u® = u°(t), optimal trajectories ¥ = 2°(¢t), v? = y°(¢t) and

distribution density on the optimal trajectories p{ = p°(¢,4?) comprise the so-called
optimal process.

Theorem. If u® = u°(t) is the optimal control, then for all t € [0,T] except for the
discontinuity points of the control function we have

min  max (H(t7 :,C?, y& p?7 wgv )‘1(&)» X?» u) - H(tv x?» yg» p?7 wgv )‘1(&)7 X?7 u0>) =0,
u€U yo€ R (u)
where ¥, A0 x? are found from equations (17) alongside the optimal process.

8. Conclusion. The study of the combination of smooth and non-smooth functionals
considering the distribution density of the particles leads us to the conclusion that in the
problem of simultaneous optimization of the program motion and disturbed motions not
only y(t) depends on the program motion due to the setting of the problem (6), but also
x(t) turns out to be affected by the dynamics of the ensemble of the trajectories in the
optimization process as can be seen from equations for the auxiliary functions (17).

Simultaneous use of smooth and non-smooth functionals in the problem of optimal
control allows to perform optimization not only for the averaged values, but also
considering the most deviating particles. The obtained expression for the variation of the
functional can be used for directional methods of minimization in various applications, in
this particular paper the application for the mathematical model of the charged particle
beam dynamics in RFQ structures was considered.

The next steps in the development of this approach in applications to accelerating
structures include considering the interaction of the charged particles and constructing
more complex functionals considering wider range of characteristics of the dynamics of a
charged particle beam.
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