РЕКОМБИНАЦИЯ И КОМПЛЕМЕНТАЦИЯ В ЛОКУСЕ ADE₂ У ДРОЖЖЕЙ SACCHAROMYCES CEREVISIAE

С. Г. Инге-Вечтомов, И. А. Попова Кафедра генетики и селекции ЛГУ

Д. И. Гуковский, В. Н. Кривов Институт проблем управления АН СССР

Сопоставление карт внутригенной рекомбинации и межаллельной комплементации для одних и тех же локусов является подходом к изучению генетической детерминации третичной и четвертичной (субъединичной) структур ферментов (Финчем, 1968). Известны отдельные попытки предсказания третичной структуры белков на основании этого метода (Kapuler a. Bernstein, 1963; Ishikawa, 1965). Эти попытки стимулировали создание более или менее строгой общей теории межаллельной комплементации (Crick a. Orgel, 1964), однако не встретили особого энтузиазма как таковые. Некоторое падение интереса к генетическим методам исследования третичной и четвертичной структур белков в последнее время объясняется, по нашему мнению, недостаточной разработанностью используемых для этого моделей.

Возможность трезвой оценки перспективности генетических методов изучения структуры белков зависит от решения следующих вопросов:

1) Доступность экспресс-методов внутригенного картирования, обладающих большой разрешающей способностью и позволяющих однозначно устанавливать распределение мутаций по карте рекомбинации.

2) Наличие методов обработки и упрощения карт межаллельной комплементации (МАК) с целью вычленения их наиболее существенной части. Необходимость этого связана с тем, что карты МАК отражают одновременно негативную и позитивную комплементацию, а также влияние «посторонних» генотипических факторов и факторов среды на характер взаимодействия субъединиц фермента.

3) Необходимость сопоставления карт МАК и рекомбинации, включающих «большое число» мутаций, т. е. эти карты должны быть близки к насыщению.

4) Выделение, очистка и исследование in vitro белка, контролируемого данным геном. Очевидно, что последнее требование можно детализировать, однако в данной статье мы от этого воздержимся.

В настоящее время ни одна из известных нам мутационных систем не удовлетворяет всем перечисленным требованиям. Так, для локуса г II фага T4 существует подробнейшая карта рекомбинации, но МАК в этом локусе почти не исследована (Бензер, 1963; Benzer, 1961), белок «rII» не выделен и перспективы его выделения весьма туманны. Обширный материал, включенный в карту комплементации гена Ad-3B Neurospora crassa (De Serres e. a., 1967), представлен довольно бедной рекомбинационной картой (De Serres, 1956), фермент, контролируемый геном Ad-3B, не выделен, однако работы в этом направлении ведутся (Fisher, 1969a, b).

Ряд основополагающих данных о механизме МАК получен при работе с такими мутационными системами N. crassa, как Ad-4 (Woodward e. a., 1958; Woodward, 1959), am (Fincham a. Coddington, 1963), pyr-3 (Woodward, 1962), однако все они разработаны недостаточно, в особенности это касается соответствующих рекомбинационных карт (Fincham, 1967; Woodward, 1962).

35

3*

Подробно исследуются фермент триптофансинтетаза и соответствующие гены (trp-1 и trp-2) Escherichia coli (Yanofsky, 1960; Yanofsky e. a., 1964). Карта МАК в данном случае недостаточно подробна, а взаимодействие идентичных и неидентичных субъединиц при образовании четвертичной структуры фермента создает дополнительные трудности для интерпретации результатов.

Биохимическая и генетическая изученность ряда бактериальных систем ген-фермент (Schlesinger a. Levinthal, 1965; Shin e. a., 1970; Crawford e. a., 1970) позволяет надеяться на появление в будущем

Рис. 1. Реакции, контролируемые локусами $a4e_1$ и ade_2 у дрожжей S. cerevistae и соответственно генами Ad-3A. Ad-3B у N. crassa и ade_7 , ade_6 у Sch. pombe. идеальной системы для исследования МАК, хотя в настоящее время все они страдают теми или иными недостатками. í

Здесь упомянуты лишь некоторые, наиболее интенсивно разрабатываемые (согласно приведенным критериям), мутационные системы.

Наиболее существенным из переявляется недочетов нечисленных достаточная разработанность карт МАК. От этого недостатка у эукариотических организмов В наибольшей степени свободны системы, разрабатываемые на основе получения аденинзависимых мутанкрасных тов. Это — мутационные системы Ad-3A. Ad-3By N. crassa (De Serres,

1963, 1966), ade-7 — ade-6 y Sch. pombe (Leupold a. Gutz., 1964) и ade₁ — ade₂ y S. cerevisiae (Woods a. Bevan, 1966; Сойдла и др., 1967; Инге-Вечтомов, 1971).

Ферментативные реакции в синтезе пуриновых нуклеотидов, контролируемые этими генами, представлены на рис. 1. Межаллельная комплементация продемонстрирована и интенсивно исследуется у всех названных объектов в локусе, контролирующем фермент фосфорибозил-аминонмидазолкарбоксилазу (EC4.1.1.21), соответственно: Ad-3B. ade-6, ade_2 . Карта МАК, построенная для локуса ade_2 S. cerevisiae, сейчас является, пожалуй, наиболее подробной из всех опубликованзных (Сойдла и др., 1967). Применительно к этой карте Т. Р. Сойдла предложена система обработки карт МАК, в результате которой полувариант этой карты, чен упрощенный, так называемый «веронный». включающей 156 мутаций (Сойдла И др., 1967). Недавно ПОявились реальные перспективы выделения соответствующего фермента благодаря разработке методов получения препаративных количеств субстрата исследуемой реакции (Fisher, 1969а, б; Янулайтис и др., 1972).

До настоящего времени внутригенную рекомбинацию довольно интенсивно исследовали в локусе *ade-6 Sch. pombe* (Leupold a. Gutz, 1964), известны попытки внутригенного картирования в локусе *Ad-3B* у *N. crassa* (Griffiths, 1970) и *ade*₂ у *S. cerevisiae* (Райпулис и др., 1966). В то же время рекомбинационная карта локуса *ade*₂ *S. cerevisiae* до сих пор отсутствовала.

В настоящей работе описан метод построения карты гена ade₂ на основании исследования спонтанных митотических гетероаллельных реверсий (рекомбинаций) в этом локусс. При этом мы ставили своей челью не столько определить относительные расстояния между сайтами, сколько установить их последовательность. Проделанная работа позволила сравнить расположение некоторых мутаций на рекомбинационной и комплементационной картах локуса ade2.

Материалы и методика. В работе использовали серию мутантов по локусу ade₂, происходящих от гаплоида 15В-П4, принадлежащего к Петергофским генетическим линиям дрожжей (Инге-Вечтомов, 1963). Мутации индуцированы ультрафиолетовыми и рентгеновыми лучами (Инге-Вечтомов, Кожин, 1964), а также азотистой кислотой (Райпулис, Кожин, 1966). Мутантные аллели охарактеризованы ранее по способности к комплементации (Сойдла и др., 1967) и по способности взаимодействовать с различными генами-супрессорами (Инге-Вечтомов, Симаров, 1967; Simarov e. a., 1971).

Метод изучения спонтанной митотической рекомбинации у гетероаллельных гибридов, основанный на учете вторичных колоний, и система проведенных скрещиваний аналогичны тем, которые использованы нами ранее при картировании мутаций в локусе *ade*₁ (Попова и др., 1968). Единственная особенность метода, примененного в настоящей работе, заключается в том, что чашки Петри с двуслойным агаром, на которые мы высевали гетероаллельные диплоиды, содержали 20 мг/л (а не 10 мг/л) аденина в верхнем слое среды.

Частоту рекомбинации на клетку на клеточное деление (а) вычисляли по формуле, использованной Райаном для определения частоты спонтанных реверсий, по количеству вторичных колоний на колониях бактериальных мутантов (Райан, 1959):

$$\alpha = \frac{m}{d} \,, \tag{1}$$

где *m* — число реверсий (вторичных колоний) на колонию; *d* — число клеточных делений в колонии к моменту учета, которое мы принимали равным числу клеток в колонии.

Число клеток в колонии (N) определяли по формуле:

$$N = \frac{97D}{1 - 0.3D} \cdot 10^4, \tag{2}$$

.....

где *D* — диаметр колонии. Формула выведена на основании эмпирически построечной кривой зависимости диаметра колонии от числа клеток в ней.

Каждое значение частоты рекомбинации получено на основании обработки вариационного ряда, вариансами которого служили величины а для отдельных колоний, исследованных в опыте. Статистическую обработку вариационных рядов проводили стандартными методами (Рокитский, 1967).

В работе по максимальному упорядочиванию матрицы всех проделанных скрещиваний использовали электронную вычислительную машину.

Построение рекомбинационной карты локуса *ade*₂

Существование МАК в локусе ade_2 накладывает некоторые ограничения на использование спонтанной митотической рекомбинации для картирования мутаций. Этот метод требует подсчета прототрофных вторичных колоний, вырастающих на ауксотрофных колониях после прекращения их роста вследствие истощения полуобогащенной среды. Таким образом, мы могли учитывать рекомбинацию только в некомплементирующих сочетаниях аллелей. Поэтому большинство мутаций, использованных нами для построения карты локуса ade_2 , относятся к классу полярных, несущих «длинные» функциональные повреждения,

Сочетание аллелей	Частота реверсий	Сочетание аллелей	Частота реверсий
72/72	< 0.1*	190/37	$125 \pm 3,2$
105/105	< 0,3*	190/99	133 ± 7,1*
158/158	0.8 ± 0.20	190/147	101 ± 5,6*
190/190	0,5+0,03	190/133	$110 \pm 1,2$
128/128	$1,4 \pm 0,62$	190/163	158 ± 5.2
188/188	< 0,4	190/237	$178 \pm 5,4$
46/46	< 0, 2	190/48	$196 \pm 8,5$
209/209	$1,5 \pm 0,21$	190/191	$108 \pm 5,1$
144/144	0.9 ± 0.26	190/123	258 ± 6.4
42,42	< 0, 1	128/144	$46 \pm 8,9*$
49/49	$0,7 \pm 0,22,$	128/147	$97 \pm 3.6^*$
5/5	$0,1 \pm 0,08$	128/133	$103 \pm 2,7$
74 74	$3,0\pm0.77$	188/46	(20)
47:47	0.8 ± 0.17	188/133	(100)
$111_{i}111_{i}$	$0,3 \pm 0,01*$	46/14-	$28\pm1,3$
98,98	$1,8\pm0,59^*$	46/111	$65 \pm 7.9*$
37/37	$0.3 \pm 0.03*$	46/133	$94 \pm 2,4$
99,99	$0,1+0,01^{\circ}$	40/103	118 ± 6.4
147/147	3.0 ± 0.16	200/144	109 ± 0.2
163 163	$1.4 \pm 0.96*$	1/1//1/49	$20 \pm 1,4$
237/237	1.2 ± 0.35	144/5	10 ± 0.0
48.48	1.0 ± 0.08	144/74	51 ± 1.7
191/191	0.5 ± 0.13	144/47	57 7 2 9
123/123	< 0.1	144/111	48 ± 2.5
72 105	10 ± 0.4	144/98	46 ± 2.5
72/158	$(\bar{1}47)$	144/37	55 ± 1.5
72 190	$126 \pm 4,0$	144/99	61 + 3.4
~ 72.188	65 ± 2.1	144/147	78 ± 2.4
72/46	116 ± 3.1	144/133	84 ± 3.0
72 209	43 ± 1.6	144/163	102 ± 2.6
73,144	$113 \pm 6.0*$	144/237	$96 \pm 2,2$
72 42	101 ± 6.7	144/48	$140\pm5,2$
79 111	00 ± 2.1		(132)
79/133	27 ± 1.4 103 ± 6 1	144/123	$155 \pm 6,1$
72463	133 ± 0.1 238 ± 8.1	42/49	$3 \pm 1,1$
105/190	$157 \pm 6.6*$	42/155	78 ± 3.4
105/144	$108 \pm 3.8*$	49,111	$38 \pm 1,6$
105.133	$186 \pm 7.8*$	5/133	$09 \pm 3,1$
158(190)	24 + 1.0	74/133	$52 \pm 3,0$
158.144	$94 \pm 3,3$	47/111	17 ± 1.0
158(147)	(118)	47/133	52 ± 1.4
158 133	$163 \pm 5.4*$	111/133	$45 \pm 3.3^*$
190 188	26 ± 0.9	111/48	83 + 4 3
100 40	48 ± 2.6	98/133	37 ± 1.7
190 144	$\frac{48 \pm 1,5}{22}$	37/133	28 + 1.3
190.14	$\frac{10 \pm 1.5}{27 \pm 2.0}$	99,133	13 + 0.9
190 5	$\frac{11 \pm 3.2^*}{75 \pm 4.4}$	147/133	15 ± 1.0
190 74	インナ4,4 ちら : ち ち 「	133/163	$41 \pm 1,6$
190 47		133/237	54 ± 3.5
190,98	81 ± 2.5	133/48	67 <u>+</u> 2,6
	······································	133/191	86 ± 3.5
1		105/125	$115 \pm 5,8^*$

「ないな」のないない

ないのであると、ための時代で、「ないない」

Частоты спонтанных изо- и гетероаллельных реверсий ($imes 10^{-8}$ на клетку на деление) в локусе ade_2

Примечание. Звездочкой отмечены комбинации, исследованные в одной повторности. В скобках указаны ориентировочные данные — средние величины из результатов достоверно отличающихся повторностей. Конкретные цифры, полученные в этих повторностях: $72/158 - 134 \pm 4.7$; 161 ± 4.8 ; $158/147 - 129 \pm 9.1$; 108 ± 4.0 ; $188/46 - 24 \pm 2.0$; 17 ± 1.6 ; $188/133 - 109 \pm 3.1$; 91 ± 3.4 ; $144/191 - 105 \pm 4.9$; 159 ± 5.2 .

или вовсе неспособны к комплементации, судя по карте МАК, опубли-кованной ранее (Сойдла и др., 1967).

Результаты учета внутригенной рекомбинации в 82 исследованных гетероаллельных сочетаниях и результаты учета реверсий в 25 исслеизоаллельных сочетаниях приведены дованных в таблице. Цифры собой средние, вычисленные на основании 2-4-х попредставляют за исключением тех случаев, которые отмечены в вторностей опыта таблице звездочкой. Результаты, полученные в разных повторностях эксперимента, объединяли только в том случае, если они были однородными согласно критерию Стъюдента. Для 5 гетероаллельных сочетаний получены достоверно различающиеся частоты рекомбинации в повторных экспериментах. Соответствующие цифры приведены, в примечании к таблице. Для этих случаев в таблице в скобках представлены ориентировочные данные (средние величины из результатов разных повторностей).

При построении карты локуса *ade*₂ мы пренебрегали частотами реверсий каждой из аллелей в отдельности. Как показывают частоты ревертирования в изоаллельных комбинациях (таблица), вклад этих величин в общую частоту гетероаллельных реверсий незначителен. Результаты таблицы послужили материалом, на основании которого мы установили последовательность сайтов в локусе *ade*₂.

В настоящей работе исследовали лишь часть возможных гетероаллельных сочетаний, т. е. матрица скрещиваний является неполной и несимметричной. При определении последовательности сайтов *ade*₂ мы исходили из следующего принципа. Чем дальше от данной точки расположена мутация, тем больше должна быть частота ее рекомбинации с этой точкой. Используемый принцип является следствием правила линейности, сформулированного Тессманом (Tessman, 1965). Это правило позволяет строить рекомбинационные карты (определять последовательность мутаций) независимо от соблюдения аддитивности частот рекомбинации. Как известно, нарушение аддитивности частот рекомбинации — распространенное явление при построении внутригенных карт (Smith, 1965; Fincham, 1967; Murray, 1963; Esposito, 1968; Parker a. Sherman, 1969).

Итак, наша задача сводилась к максимальному упорядочиванию матрицы скрещиваний таким образом, чтобы частоты рекомбинации возрастали слева направо в каждой строке и снизу вверх в каждом столбце матрицы.

Работа по упорядочиванию матрицы была выполнена «вручную» и с применением ЭВМ. При этом мы принимали во внимание только средние значения частот рекомбинации, приведенные в таблице, без учета их варьирования (ошибки среднего). При обработке матрицы «вручную» мы приняли за основу следующее расположение трех мутаций: 190 — 144 — 133, установленное в экспериментах, результаты которых опубликованы ранее (Райпулис, Ле Динь Лыонг, 1969), а также проделанных в ходе выполнения настоящей работы. Большинство исследованных мутаций были картированы нами по отношению именно к данным трем мутациям (см. таблицу).

Каждую мутацию мы поочередно принимали за «точку начала отсчета» и располагали остальные мутации слева и справа от нее по мере возрастания частот рекомбинации. Все мутации были предварительно грубо локализованы по отношению к упомянутым трем точкам. Взаимное расположение мутаций 190, 144, 133 считали при этом неизменным. В результате такой процедуры была получена серия «перекрывающихся последовательностей» для мутаций *ade*₂. Расположение сайтов *ade*₂ было несколько различным в разных последовательностях. Мы приняли ту последовательность сайтов, которая встречалась чаще.

1. 1. 1.

39

5										Ā	ЛЛ	Л	EЛ	H	ad	e.,										
		72	105	158	190	128	188	46	209	144	42	49	5	74	47	111	98	37	9 9	147	133	163	237	48	191	123
-	72		10	(147)	126		65	116	43	113	151	i	60	· ·		27					193	238				
	● 105				157					108	<u>.</u> 		<u>. </u>	1							186					
	158				24					94	1	1		<u> </u>						(118)	163					
	190						26	48	48	70		77	75	56	79		84	125	133	101	110	158	178	196	108	258
	128				i					46								•		97	103					
	188							(20)						1						ł	(100)					<u> </u>
	46									28						65					94	118				159
	209				1					25		1														<u> </u>
	144											10	26	- 51	51	13	43	55	61	78	84	102	96	140	(132)	155
- 24	42							1				3								•	78			 		<u> </u>
ade	49							[_		38	1				69					
И	5]										1									62		ĺ		1	
F ə	74										(ļ					.			52	ļ	1		<u> </u>	<u> </u>
5	47						<u> </u>									17		1		1	52	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>
<	111		<u> </u>															1			45			83	<u> </u>	1
	98																				37			<u> </u>	<u> </u>	
	37	<u> </u>		}										ł	1	1				1	28					
	99								l												13					
	147													-							16				Ï,	
	133	1															1			1		41	54	67	86	115
	163				1							1								1		1				
	237			1				1	[}	1					1	1	1	1		1	1	
	48							1							1.	<u></u>	1									1
-	191					- <u> </u>								1			. <u>.</u>	<u> </u>	<u> </u>		- <u> </u>	1				
-	123		i		<u> </u>	<u> </u>	. <u> </u>	—— i			!	<u></u>	: 	1	<u>.</u>	<u> </u>	1	<u>-</u>	1	1	. <u>.</u>	1	 }			

The second s

Рис. 2. Упорядоченная матрица средних значений частот митотической рекомбинации у диплоидов, гетероаллельных по локусу adeq.

Окончательный вариант матрицы скрещиваний, упорядоченной «вручную», представлен на рис. 2. На рис. 3 и 4 представлены серии кривых, отражающих изменения частоты рекомбинации по мере удаления мутаций от условных «точек начала отсчета» влево (рис. 3) и вправо (рис. 4). По оси абсцисс на обоих рисунках изображено чередование сайтов ade2, установленное на основании упорядочивания матрицы скрещиваний. Расстояния между соседними сайтами пропорциональны частотам спонтанной митотической рекомбинации. По оси ординат — частоты спонтанной митотической рекомбинации. Каждая

Рис. 3. Изменение частоты рекомбинации в локусе *ade*₂ по мере удаления мутаций влево от "точки начала отсчета" (пулевая точка каждой кривой).

Скобки объединяют мутации, черезование которых не определено (см. рис. 2). Пунктир показывает точки, нанесенные условно, поскольку частоты рекомбинации для дэнных сочетаний достоверно варьиповали от повторности к повторности (см. таблицу).

точка на кривой показывает частоту рекомбинации той мутации, на которую она проецируется, и мутации, лежащей в начале кривой («точки начала отсчета»). Тенденция к увеличению частоты рекомбинации но мере удаления мутаций от «точки пачала отсчета» подтверждает в общем справедливость пайденного расположения сайтов *ade*₂ в соответствии с правилом линейности.

Данные рис. 2, 3, 4 показывают, что наряду с общей тенденцией возрастания частоты рекомбинации по мере удаления мутаций вправо или влево от «точки начала отсчета» встречено несколько случаев «нарушения линейности» карты рекомбинации. На рис. 3 и 4 эти случаи выражаются в том, что мутация, расположенная на карте ближе к «точке начала отсчета», рекомбинирует с ней чаще, пежели мутация, расположенная дальше. Число этих псключительных случаев удалось уменьщить при дальнейшем упорядочивании матрицы с помощью ЭВМ.

Задача выбора наиболее вероятной последовательности мутаций трудна не только для решения ее «вручную», но и при использовании ЭВМ. Решение задачи перебором для нашей матрицы скрещиваний не представляется возможным на ЭВМ.

Регулярные методы, позволяющие существенно сократить перебор всех возможных вариантов при упорядочивании матрицы и найти оптимальное решение в смысле заданного критерия (например, минимума нарушений правила линейности), неизвестны. В связи с этим была разработана эвристическая программа. В качестве критерия решения выбрано число отклонений от правила линейности.

Рис. 4. Изменение частоты рекомбниации в локусе *ade*₂ по мере удаления мутации вправо ог "точки начала отсчета". См. поясления к рис. 3.

Если исходную симметричную матрицу размерностью N обозначить через X, то критерий, вычисляемый, например, по правой половине матрицы, запишется как

$$R = K_{ijk} + K_{ijk}^* \,, \tag{3}$$

где

C.L.C. HUNCHING

$$K_{ijk} = \begin{cases} 1 \text{ при } X_{ij} > X_{ik} \\ 0 \text{ при } X_{ij} \leqslant X_{ik} \end{cases}$$
(4a)

лля всех $i = 1, \ldots, N-2; j = i+1, \ldots, N-1; k = j+1, \ldots, N,$ где элементы X определены;

$$\mathcal{K}_{ijk}^{*} = \begin{cases} 1 & \text{при } X_{ij} > X_{kj} \\ 0 & \text{при } X_{ij} \leqslant X_{kj} \end{cases}$$
(46)

A.18 BCex j = N, N - 1, ..., 3; i = j - 1, ..., 2; k = i - 1, ..., 1.

Суть алгоритма состоит в том, что для всех заданных элементов матрицы X проверяются соотношения линейности (неравенства в (4а)

и (4б)), и в случае их нарушения перебором отыскивается такое положение К-того сайта, при котором критерий R имел бы меньшее значение. Поскольку такой алгоритм не гарантирует нахождение глобального экстремума, в программе предусмотрена возможность введения «шума», выбивающего решение из локальных экстремумов, а также просматривается вариант перестановки соседних мутаций.

Программа написана для диалогового режима работы, так что управление поиском может осуществлять человек. Таким образом, решение зависит как от начальных условий, так и от управления поиском. Из начальных условий, за которые был принят вариант упорядоченной матрицы, найденный «вручную», программа снизила критерий R для нашей матрицы с 50 до 42. В этом варианте решения данные таблицы, представленные в скобках, не учитывали. Еще один вариант решения был получен при учете и этих данных (рис. 5).

A	72	105	158	190	128	188	(46)	209)	141	42	49	5	74	47	111	98	37	
	(99	147)	133	163	237	48	(191	123)										
Б	72	105 -	191-	188	158	190	128	46	209	144	42	49	5	74	47	111	98	37
	147	9 9	133	163	237	48	123											
В	72	105	209	158	190	128	188	46	144	42	49	5	74	47	111	98	37	147
	99	133	163	237	191	48	123											

Рис. 5. Взаимное расположение сайтов *ade*₂, установленное при помощи ручного (*A* и машинного (*Б* и *B*) упорядочивания матрицы скрещиваний.

Вариант Б получен без учета данных таблицы, стоящих в скобках. В варианте А скобки объединяют те мутации, которые мы не могли рэсположить однозначно. В вариантах Б и В подчеркнуты мутации, положение которых изменилось в результате машинной обработки варианта А.

Мы не пытались представить карту *ade*² в традиционной форме, поскольку данные таблицы и рис. 2, 3, 4 и 5 содержат всю полученную информацию о взаимном расположении мутаций и частотах рекомбинации между ними.

Сопоставление карт рекомбинации и комплементации

Основная проблема сопоставления карт рекомбинации и комплементации сводится к задаче сравнения взаимного расположения отрезков (групп комплементации) и взаимного расположения точек (сайтов на карте рекомбинации). Для локуса ade₂ у S. cerevisiae эта задача в значительной мере упрощена благодаря разработке веронного варианта карты МАК (Сойдла и др., 1967), основой которой служат 8 веронов или истинных единиц комплементации. Все восемь мутаций, маркирующих вероны, взаимнокомплементарны.

Построенная нами карта рекомбинации ade₂ включает мутации, отнесенные к разным веронам этого локуса (Сойдла и др., 1967). Сравнение расположения этих мутаций на картах рекомбинации и МАК, представленное на рис. 6, указывает на сильную тенденцию к колинеарности обеих карт.

e

3)

a)

N,

6

OB

a)

Ранее в нашей лаборатории было определено направление трансляции по отношению к группам карты комплементации *ade*₂: справа налево — от VIII к I верону (Сойдла и др., 1967). Учитывая колинеарность карт рекомбинации и комплементации, следует сделать вывод, что трансляция в локусе *ade*₂ происходит в том же направлении и относительно сайтов рекомбинационной карты этого гена (рис. 6): инициация — справа, терминация — слева.

Обсуждение. Рекомбинационная делимость генов и линейность расположения мутационных сайтов в настоящее время являются общим местом в работах по исследованию тонкой структуры гена. Тем не

менее во многих экспериментах было показано нарушение правила аддитивности частот рекомбинации при построении внутригенных карт (Миггау, 1963; Tessman, 1965; Esposito, 1968; Ishikawa, 1962). Эти обстоятельства заставляют опираться на правило линейности, а не на правило аддитивности при установлении взаимного расположения муправило аддитивности при установлении взаимного расположения мутаций в пределах гена. В таких экспериментах удобнее пользоваться скрещиваниями, включающими три и более тесно сцепленные мутации. Во многих случаях это оказывается невозможным по ряду обстоятельств, и картирование ведется на основании учета рекомбинации в скрещиваниях, объединяющих мутации попарно. Именно так построен

Рис. 6. Сравнение расположения мутаций *ade*₂ на картах рекомбинации (А) и комплементации (Б).

В скобках – номера веронов. Викзу – номера единиц комплементации (по Сойдла и др., 1967). * – нонсенсы I типа, ** – нонсенсы II типа (Инге-Вечтомов. Симаров, 1967; Simarov e. a., 1971).

иелый ряд генных карт (Hartman e. a., 1960; Fisher a. Bernstein, 1965; Leupold a. Gutz, 1964; Esposito, 1968).

Матрицы скрещиваний при этом чаще всего оказываются неполными. Тем не менее степень соответствия получаемых карт правилу линейности не обсуждается, и необходимые для этого критерии не выработаны. В настоящей работе мы попытались предложить критерий для расположения мутаций ade₂ в линейном порядке. Нам представляется наиболее логичным строить внутригенные карты (на основании попарных сочетаний мутаций), сводя к минимуму число нарушений правила линейности. Таким образом, необходимо сравнение всех возможных матриц рекомбинации. При этом мы не можем, исходя из использованного алгоритма, гарантировать, что найденный нами порядок является наилучшим. Однако преимущества использования ЭВМ в такой работе очевидны. Дальнейшее уточнение карты возможпо также при включении в эксперимент новых мутаций ade₂.

Некоторая неоднозначность полученных нами результатов в значительной степени связана с тем, что целый ряд условий эксперимента был недостаточно стандартизирован: число и равномерность распределения колоний на чашке, в связи с этим и варьирование диаметра колоний. По-видимому, этим можно объяснить случаи достоверных различий между частотами рекомбинации одного и того же сочетания мутаций в разных повторностях (таблица).

Случаи нарушения линейности карты рекомбинации *ade*₂ могут быть связаны не с реальным снижением частоты рекомбинации в некоторых сочетаниях мутаций, а скорее с непроявлением части рекомбинантов в виде «бородавок» вторичного роста. Такое объяснение представляется вполне возможным исходя из известных свойств некоторых аллелей, входящих в «исключительные» комбинации, а также учитывая особенности локуса ade2 (наличие МАК). Все исключительные комбинации (см. рис. 3, 4) содержат аллели, несущие супрессируемые мутации-нонсенсы (Инге-Вечтомов, Симаров, 1967). Как известно, в генотипе Петергофских линий дрожжей обнаружены слабые супрессоры, в том числе нонсенс-супрессоры (Кожин, 1971). Следовательно, существует возможность для неполного мутантного проявления некоторых аллелей, в результате чего колонии соответствующих гетероаллельных диплоидов не будут прекращать роста на среде, ограниченно обогащенной аденином, и тем самым будет затруднено проявление рекомбинантных вторичных колоний. Следует также учесть, что мутации, соответствующие коротким функциональным повреждениям и входящие в «исключительные» комбинации, относятся в локусе ade2 к наиболее активно комплементирующим. Нельзя исключить возможность слабой комплементации в некоторых изученных сочетаниях аллелей, хотя такая комплементация и не может быть обнаружена стандартными методами, используемыми для этого. Наконец, слабая комплементация может быть индуцирована генами-модификаторами комплементации.

Таким образом, очевидно, что может существовать несколько причин, потенциально способных затруднить проявление рекомбинантных «бородавок» в виде вторичных колоний. В таком случае нарушения линейности рекомбинационной карты *ade*² вполне закономерны.

Окончательное установление расположения мутаций будет зависеть от разработки качественных методов картирования типа метода перекрывающихся делеций. Качественные методы картирования свободны от целого ряда недостатков, свойственных методу, который мы использовали в своей работе.

Принимая полученную последовательность мутаций в качестве предварительной рекомбинационной карты *ade*₂, мы сопоставили ее с веронным вариантом карты МАК того же локуса. Наблюдаемая колинеарность карт и положение мутаций, соответствующих полярно-комплементирующим аллелям, являются дополнительными аргументами в пользу реальности построенной карты рекомбинации. Нарушение колинеарности правых частей карт (мутации 48 и 191) может быть связано с тем, что мутация 191 была исследована только в трех комбинациях. При этом воспроизводимые результаты получены только в двух из этих трех комбинаций.

На карту рекомбинации ade_2 нанесены четыре мутации, имеющие полярный тип комплементации. Мутации 72 и 105, занимающие крайне левое положение (дистально от точки инициации), относятся к одной группе комплементации, которая на 7 комплонов короче, нежели другая полярная группа комплементации, к которой относятся мутации 46 и 144. Эти мутации расположены в локусе ade_2 ближе к точке инициации. Такое расположение мутаций 144, 72 и 105 представляется закономерным, учитывая, что все они являются мутациями-нонсенсами, т. е. соответствующие аллели содержат терминирующий кодон (сигнал прекращения трансляции) в мутационном сайте. Тем из них, которые расположены дальше от точки инициации, соответствуют более длинные фрагменты полипептидной цепи, и, следовательно, такие мутации должны относиться к более коротким группам комплементации.

Следует отметить также, что некомплементирующие мутации, среди которых многие идентифицированы как нонсенсы, распределяются по рекомбинационной карте случайно. Сейчас еще преждевременно пытаться оценить значение этого факта, тем более, что мы опираемся в настоящей работе на комплементационные характеристики лишь 156 мутантов, исследованных ранее (Сойдла и др., 1967). В то же время в работе Коваль и Сойдла исследуется МАК еще 246 мутаций, индуцированных этилметансульфонатом (Сойдла, Коваль, 1974). О распределении этих мутаций на ранее построенной карте МАК получены лишь предварительные данные. В этой же работе проведен анализ внутригенной специфичности всех четырех мутагенов (рентгеновы и ультрафиолетовые лучи, азотистая кислота, этилметансульфонат), основанный на полученных нами данных о колинеарности карт МАК и рекомбинации для локуса ade2. Полученные результаты являются дополнительным аргументом в пользу справедливости построенной рекомбинационной карты.

По

Pa

Ρa

Ρa

Ρa

Ρo

Сc

Сc

Ó

R

B-

С

С

E

F

F

F

F

F

(

ł

Колинеарность карт МАК и рекомбинации для локуса ade2 указы. вает на то, что при попарном испытании аллелей на комплементацию в этом локусе соблюдается основное правило теории Крика - Оргела (Crick a. Orgel, 1964), а именно, что основным механизмом позитивной комплементации является взаимодействие аллелей по принципу «плохое исправляется хорошим».

Выводы

1. На основании исследования спонтанных митотических гетероаллельных реверсий (рекомбинаций) построена карта ade_2 y локуса дрожжей S. cerevisiae, включающая 25 мутаций.

2. Продемонстрирована сильная тенденция к колинеарности карты рекомбинации и веронного варианта карты комплементации, построенной ранее.

3. Обсуждается преимущество использования правила линейности перед использованием правила аддитивности для построения генных карт на основании неполной матрицы скрещиваний.

Summary

Recombinational mapping of 25 ade2 mutations has been performed. Intragenic spontaneous recombination has been studied at mitosis. Distribution of ade_2 sites achieved basing on linearity principle instead of additivity principle. Linear arrangement of muta-tions has been done "by hands" and with the aid of computer.

Strong tendency to colinearity of the recombinational map and complementation map previously published has been demonstrated for the *ade*₂ locus.

The linearity principle is being discussed as more adequate for intragenic mapping then principle of additivity.

ЛИТЕРАТУРА

Бензер С. Тонкая структура гена. — В кн.: Молекулярная генетика. М., 1963, 32 с. Инге-Вечтомов С. Г. Новые генетические линии дрожжей Saccharomyces cere-visiae. — Вестн. Ленингр. ун-та, 1963, № 4, с. 117—125. Инге-Вечтомов С. Г. Структура, функция и взаимодействие генов у дрожжей. Автореф. докт. дис. Л., 1971, 46 с. Инге-Вечтомов С. Г., Кожин С. А. Сравнение специфичности действия ультрафиолетовых и рентгеновых лучей на мутабильность дрожжей. — В кн.: Инге-Вечтомов С. Г., Симаров Б. В. Связь супрессии и межаллельной ком-илементации в локусе ade₂ у Saccharomyces cerevisiae. — В кн.: Исследования по

плементации в локусе ade₂ у Saccharomyces cerevisiae. В кн.: Исследования по генетике. Л., 1967, вып. 3, с. 127—148.

Кожин С. А. Влияние генотипа на фенотипическое проявление мутаций у дрож-жей.— Вестн. Ленингр. ун-та, 1971, № 21, с. 134—137.

Попова И. А., Инге-Вечтомов С. Г., Райпулис Е. П. Использование спонтанной митотической рекомбинации для анализа тонкой структуры локуса ad₁ у дрожжей Saccharomyces cerevisiae. — «Генетика», 1968, № 11, с. 116—122. Райан Ф. Дж. Механизм адаптации у бактерий. П. Роль мутации и селекции. — «Микробиология», 1959, т. 28, с. 21—24. Райпулис Е. П., Кожин С. А. Сравнительная мутабильность локусов ad₁—ad₂ у дрожжей Saccharomyces cerevisiae под действием азотистой кислоты. — Труды Моск общ. испыт. приролы. 1966. т. 22 с. 135—139

Моск. общ. испыт. природы, 1966, т. 22, с. 135-139.

Райпулис Е. П., Инге-Вечтомов С. Г., Кожин С. А. Система для уче-та внутригенной рекомбинации у дрожжей Saccharomyces cerevisiae в мейозе.— «Генетика», 1966, № 10, с. 102—107. Райпулис Е. П., Ле Динь Лыонг. Митотическая конверсия в локусе ad₂

у дрожжей Saccharomyces cerevisiae. — «Генетика», 1969, № 5, с. 129—136.

Рокитский П. Ф. Биологическая статистика. Минск, 1967. 326 с.

- Сойдла Т. Р., Инге-Вечтомов С. Г., Симаров Б. В. Межаллельная комплементация в локусе ad₂ у дрожжей S. cerevisiae. В кн.: Исследования по генетике. Л., 1967, вып. 3, с. 148—164. Сойдла Т. Р., Коваль А. М. Распределение мутаций по веронной карте ком-
- плементации локуса ade₂ у дрожжей Saccharomyces cerevisiae. В кн.: Иссле-дования по генетике. Л., 1974, вып. 5, с. 48—58. Финчем Дж. Генетическая комплементация. М., 1968. 183 с. Янулайтис А. А., Субботина М. Ф., Смирнов М. Н. Изучение фосфо-

рибозил-аминоимидазолкарбоксилазы у мутантных штаммов дрожжей Saccha-romyces cerevisiae. I. Выделение и очистка 4(5)-аминоимидазолрибозида из культуральной среды. — Вестн. Ленингр. ун-та, 1972, № 9, с. 144—152. Вепzer S. On the topography of the genetic fine structure. — Proc. nat. acad. sci.

USA, 1961, vol. 47, p. 403-415. Crick F. H. C., Orgel L. E. The theory interallelic complementation. - J. molec.

biol., 1964, vol. 8, p. 161-165. Crawford I. P., Sikes S., Belser N. O., Martinez L. Mutants of E. coli-defective in the B protein of tryptophan synthetase. III. Intragenic clastering. --Genetics, 1970, vol. 65, No 2, p. 201-211.

Esposito M. S. X-ray and meiotic fine structure mapping of the adenine-8 locus in Saccharomyces cerevisiae. — Genetics, 1968, vol. 58, No 4, p. 507—527.
Fincham J. R. S. Recombination within the am gene of Neurospora crassa. — Genet. res., 1967, vol. 9, No 1, p. 49—63.
Fincham J. R. S., Coddington A. Complementation at the am locus of Neuro-

- spora crassa: a reaction between different mutation forms of glutamate degydrogenase. - J. molec. biol., 1963, vol. 6, No 7, p. 361-373.
- Fisher C. R. Enzymology of pigmented adenine-requiring mutants of Saccharomyces. and Schizosaccharomyces. Biochem. biophys res. comm., 1969a, vol. 34, No 3,

p. 306—310. Fisher C. R. Phosphoribozyl-aminoimidazol-succino-carboxamide synthetase from N. crassa. I. Partial purification and properties. - Biochim. biophys. acta, 1969b, vol. 178, p. 380-388.

Fisher K., Bernstein H. The additivity of intervals in the II. A cistron of phage T4 D. — Genetics, 1965, vol. 52, No 6, p. 1127—1136.
Griffiths A. J. F. Topography of the ad-3 region of *Neurospora crassa*. — Canad. j. genet. and cytol., 1970, vol. 12, No 3, p. 420—424.
Hartman P. E., Loper J. C., Sherman D. Fine structure mapping by complete transduction between histidine-requiring *Salmonella mutants*. — J. gen. microbiol., 1960, vol. 22, p. 323—330. 1960, vol. 22, p. 323-330.

studies of ad-8 mutants in Neurospora crassa. I. Genetic Ishikawa, Genetic

fine structure of the ad-8 locus. — Genetics, 1962, vol. 47, No 9, p. 1147—1161. k a w a. A molecular model for an enzyme based on the genetic and comple-mentation analysis at the ad-8 locus in Neurospora.—J. molec. biol., 1965, vol. 13, Ishikawa. A molecular

No 2, p. 586-591. Kapuler A. M., Bernstein H. A molecular model for an enzyme based on a correlation between the genetic and complementation maps of the locus specifying the enzyme. — J. molec. biol., 1963, vol. 6, No 6, p. 443—451.
 Leupold U., Guts H. Genetic fine structure in Shizosaccharomyces. — Genetics to-day. Proc. XI Int. Cong. Genet., 1964, vol. 2, p. 31—35.
 Murray N. E. Polarized recombination and fine structure within the me-2 gene of Naurospece constinct 1062 and 48. No. 0, p. 1162, 1195.

Neurospora crassa. — Genetics, 1963, vol. 48, No 9, p. 1163—1185.
 Parker J. H., Sherman F. Fine structure mapping and mutational studies of genes controlling yeast cytochrome c. — Genetics, 1969, vol. 62, No 1, p. 9—22.
 Schlesinger M. J., Levinthal C. Complementation at the molecular level of enzyme interaction — Ann. roy. microbiol. 1965. vol. 19, p. 267–284.

- enzyme interaction Ann. rev. microbiol., 1965, vol. 19, p. 267-284.
- De Serres F. J. Studies with purple adenine mutants in Neurospora crassa. I. Structural and functional complexity in the ad-3 region. - Genetics, 1956, vol. 41, No 5, p. 668-676.

De Serres F. J. Studies with purple adenine mutants in N. crassa. V. Evidence for allelic complementation among ad-3B mutants. — Genetics, 1963, vol. 48, No 3,

p. 351-300. De Serres F. J. The utilization of leaky ad-3-mutants of N. crassa in heterokaryon tests

p. 301-300.
De Serres F. J. The utilization of leaky ad-3-mutants of N. crassa in heterokaryon tests for allelic complementation. — Mutation res., 1966, vol. 3, No 1, p. 3—12.
De Serres F. J., Brockman H. E., Barnett W. E., Kolmark H. G. Allelic complementation among nitrous acid-induced ad-3B mutants of N. crassa. _ Mutation res., 1967, vol. 4, p. 415—424.
Shin Lin, Villarejo M., Zabin I. β-galactosidase: α — complementation of a deletion mutants with cyanogen bromide peptides. — Biochem. biophys. res. comm., 1970, vol. 40, No 2, p. 249—254.
Simarov B. V., Mironova L. N., Inge-Vechtomov S. G. Nonsense-missense suppression in yeast. — Molec. and gen. genet., 1971, vol. 113, p. 302—307.
Smith B. R. Interallelic recombination at the his-5 locus in Neurospora crassa.—Heredity, 1935, vol. 20, pt. 2, p. 267—276.

dity, 1935, voi. 20, pt. 2, p. 267-276.
Tessman J. Genetic ultrafine structure in the T4 *rll region*. - Genetics, 1965, vol. 51, No 1, p. 63-75.
Woods R. A., Bevan E. A. Interallelic complementation at the ade-2 locus of S. cere.

 wisiae. — Heredity, 1966, vol. 21, No 1, p. 121—1307
 Woodward D. O. Enzyme complementation in vitro between mutants of *Neurospora crassa*. — Proc. nat. acad. sci. adenylosuccinase-less USA, 1959, vol. 45, p. 846-850.

Woodward V. W. Complementation and recombination among pyr-3 heteroallelic of Neurospora crassa. — Proc. nat. acad. sci. USA, 1962, vol. 48, p. 348—356 Woodward D. O., Partridge C. W. H., Giles N. H. Complementation at ad-4

locus in Neurospora crassa. — Proc. nat. acad. sci. USA, p. 1237—1244. 1958, vol. 44

Yanofsky C. The triptophan synthetase system. — Bacteriol. revs., 1960, vol. 24, No 2, p. 221—245. Yanofsky C., Carlton B. C., Guerst J. R., Helinski D. R., Henning U.

On the colinearity of gene structure and protein structure. - Proc. nat. acad. sci. USA, 1964, vol. 51, p. 266-272.

РАСПРЕДЕЛЕНИЕ МУТАЦИЙ ПО ВЕРОННОЙ КАРТЕ комплементации локуса *ADE*₂ У Дрожжей SACCHAROMYCES CEREVISIAE

Т. Р. Сойдла

Кафедра генетики и селекции ЛГУ

А. М. Коваль

Институт микробиологии и вирусологии АН УССР

В наших предыдущих работах (Сойдла, Инге-Вечтомов, Симаров, 1967; Коваль и Сойдла, 1972, 1973) был изложен способ построения упрощенных карт комплементации, так называемых веронных карт. Было описано построение веронной карты для 411 мутаций, индуцированных разными мутагенами в локусе ade2, и рассмотрены ее основные свойства. Оказалось, что форма веронной карты мало зависит от конкретного набора мутаций, использованных для ее построения, и, следовательно, должна отражать некоторые основные закономерности соответствия локуса ade2 и фермента АИР-карбоксилазы. В тех же работах веронная карта комплементации позволила выявить специфичность разных мутагенов, использованных для получения коллекции мутантов по локусу ade2. В настоящем сборнике (Инге-Вечтомов, Попова, Гуковский, Кривов, 1973) сообщается о колинеарности карты рекомбинации и комплементационной карты локуса ade2. Это позволяет нам соотносить данные комплементационного анализа со структурой самого локуса ade2.