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value problem of the Navier—Stokes equations with distributed parameters on the net like
region of the space R™ (n > 2). The authors here develop an idea, advanced in their work for
the case of n = 1 (the problems with distributed parameters on the graph), in the direction
of the dimension increase n and in forming the correct Hadamard conditions for the studied
initial boundary value problem. The general scheme of the study is classical: the problem is
solved in the functional space which is selected (the space of feasible solutions) and a special
basis is formed for it, the problem of approximate solutions is settled by the Faedo—Galerkin
method, for which a priori estimates of the energy inequalities type are set and the weak
compactness of the family of these solutions is shown based on these estimates. Using non-
burdensome conditions, the smoothness of the solution to the time variable is demonstrated.
The uniqueness of the weak solution is shown in the particular case n = 2, a feature quite
often encountered in practice. The estimate for the norm of weak solution makes it possible to
establish the continuous dependence of the weak solution from the initial data of the problem.
The results obtained in this way are of interest to applications in the field of fluid mechanics and
related sections of continuum mechanics, namely for the analysis of optimum control dynamics
problems of multiphase media. It should be noted that the methods and approaches can be
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B pabore paccMaTpuBaeTCsi JOCTATOYHO IIMPOKHUN KPyI' BOIIPOCOB, OTHOCSIIMXCS K paspelln-
MOCTH HadJaJbHO-KpaeBoil 3aja4n Tuna Hasbe—CTOKCa ¢ pacipejie/leHHbIMU ITapaMeTpaMu Ha
cerenonobuoit obmactu R™ (n > 2). PasBuBaiorcsi njen, npejcTasieHHble B paboTax aBTOPOB
jg caydas n = 1 (3a7auu ¢ pacupesiesieHHbIME IapaMeTrpamu Ha rpade), B HalpaBIeHHN
YBEJIMYEHUsI Pa3MEPHOCTH N 1 (POPMHUPYIOTCs YCIOBUSI KOPPEKTHOCTH 110 Atamapy u3ydaeMoit
Ha4yaJbHO-KpaeBoil 3azadn. Oblias cxeMa HCCIIEeJOBaHUs OCTAETCsl KJIACCUYECKOi: BbIOMpaeT-
cs1 bYHKIMOHAIBHOE TIPOCTPAHCTBO, B KOTOPOM penraercs 3ajada (IIpOCTPAHCTBO JOIYCTUMBIX
pentenuii) u bOPMUPYETCsl CHENMAILHBIN 6a3KMC /sl HEro, CTPOSTCS NPHOJINKEHHs PEIIeHH
3azaan 1o merony PDasgo—lanepkuna, sl HUX yCTAHABJIUBAIOTCS AIPUOPHBIE OIEHKU THUIIA
SHEPreTUYeCKUX HEPABEHCTB M Ha OCHOBE STUX OIEHOK IIOKa3bIBaeTCsl cJiabasi KOMIIAKTHOCTH
[IOCTPOEHHOro ceMeiicTBa pertennii. C MOMOIIBI0 HEOOPEMEHNTEIBHBIX JIONOJHUTEIBHBIX yCJIO-
BU HAXOJUTCH IVIAJKOCTb PEIIeHNsl 110 BpDEMEeHHOI nepeMeHHOi. EauHcTBeHHOCTD Ci1aboro pe-
LIIEHNs] PACCMATPUBAETCs JJIsi YACTHOIO Cilydast m = 2, JIOCTATOYHO YacTO BCTPEYAIOUIErocs Ha
npakrtuke. OLeHKa J1JIsi HOPMBI CJ1Ia00r0 PelleHns! JaeT BO3MOXKHOCTh YCTAHOBUTH HEIIPEPLIBHYIO
3aBHCHMOCTD CJIA0OIO PEIEHHs] OT MCXOJHBIX JIAHHBIX 3a/a4i. Pe3yIpTarsl, IOy YeHHbIE TAKIM
IIyTeM, [IPEeJCTABIAIT UHTEPEC Il MPUJIOXKEHUH B O0JIaCTH IMIPOMEXAHUKH M CMEXKHBIX pas-
Jlejlax MEXaHUKH CILUIONIHBIX CPeJl, a MMEHHO, JUIsl aHa/In3a 3a]ad ONTUMAJIBHOIO yIPaBJIEHUs
auHaMUKOR MHOrodasueix cpef. Cilefyer OTMETHTbH, YTO HCIOJIB3YEMbIE METOZBI U IIOJIXOJbI
06JIJAI0T JOCTATOYHO GOJIBIION OOHIHOCTHIO M IIPUMEHUMBI K IIMPOKUM KJIaccaM HeJIMHEHHBIX
3a1a4. Bbubauorp. 20 na3s.

Karouesvie cao6a: HadalbHO-KpaeBasi 3a/a4a, paclpe/iesIeHHbIe [IapaMeTpbl Ha CeTenomot-
HOW 00JIaCTH, CYIIECTBOBAHUE CJIAOOIO PEIEHHs, YCIOBUS €JMHCTBEHHOCTH, KOPPEKTHOCTH II0
A jamapy, ciiabble peleHusi, ONTHMAJIbHOE TPAHUYHOE YIIPABJIEHUE, CUHTE3 YIIPABJICHU, yIIPaB-
JISIEMOCTb.

Introduction. This paper considers the existence of a weak solution of an n-
dimensional nonlinear differential system with distributed parameters in a connected
bounded netlike domain, which represents a geometric graph in the one-dimensional
case. We introduce the space of admissible solutions and, using the Faedo—Galerkin
method, establish the existence of a solution from the class of summable on a netlike
domain functions. Taking into account the specifics of the Faedo—Galerkin method for the
construction of approximate solutions in form of cut-off functions, we demonstrate that
each such solution actually belongs to the space of functions with summable derivatives
with respect to the time variable; the elements of this space satisfy an analog of the energy
balance equation. The uniqueness of a weak solution is proved for the special case n = 2.
The obtained results can be used to analyze optimal control problems for differential
distributed parameter systems in netlike domains, which have interesting analogies with
multiphase problems of hydrodynamics. The paper continues the earlier research of [1-3].

Necessary notations, concepts and definitions. Consider an open bounded
domain § of the Euclidean space R™ (n > 2) that has a netlike structure [1], i. e.

S = (USk)UWMS:), where S; is a surface that separates adjacent domains Sy, O
k 1

indicates the boundary of &. The locus of conjugation of the adjacent domains & will be
called the node locus and further denoted by &; it represents the union of surfaces S;(€)
whose number coincides with the number of conjugated domains, that is, £ = |J S;(&).

1

For a vector function Y (x,t) = {yi(z,t),y2(x,t), ...,yn(x,t)} (x = {z1,22,..., 20 })
defined in a domain S = $ x (0,7T) (T < 00), consider the system
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—vAY + ZY,gZ f — gradp, (1)

i=1

divy =0 (i & = 0) (2)

with the relationships
Yiss© =Ylsp e (3)

oY oy _
2 ony st T 2l =0 4)

holding for each node locus & (which are known in the literature as the conjugation
conditions, see [3, 4]); here S; (¢€) and S;" (£) mean the unilateral surfaces for S;(€) defined
by the direction of the normals n; and nj to the surfaces S; (£) and SlJr (), respectively.
Supplementing (1)-(4) with the initial conditions

Y(z,0) =Yy(2), z € (5)
at time ¢ = 0 and the boundary conditions
Yios =0, (6)

we obtain the initial boundary value problem (1)-(6) to find the functions Y'(z,t) and
p(z,t) in the closed domain St = (S U IS) x [0,7].

In the applied problems of hydrodynamics, the netlike domain <& is actually
a hydrosystem that distributes the flows of a fluid (a multiphase medium); the
function Y'(z,t) describes the velocity vector of the hydraulic flow in the domain S7;
relationships (1), (2) (the Navier—Stokes system in the evolutionary case [5, 6]) reflect the
dynamics of an incompressible fluid with the coefficient of viscosity v > 0 in the domain
U Sk % (0,7T); the balance equalities (3), (4) define the fluid flow conditions in the node

1001 of the hydrosystem &

Let us define a weak solution of the initial boundary value problem (1)—(6) (a turbulent
solution in the terminology of [1]). To this end, introduce necessary spaces and present
preliminary considerations.

Designate by L2($)™ the space of measurable functions (classes) = {1, 12, ..., fin }
that are square summable over the domain . For p, p € La(S)™, the scalar product is
defined by

) =2 [ m(@)pi(@)de, (7)
where ||u|| = (p, £)'/?. Assume that D(S)™ forms the space of functions that are infinitely
differentiable in the domain & and have compact supports in .

Let D(3)" = {¢ : ¢ € D(I)", divg = 0} and denote by D'(3I)" the conjugate space
for D(J)™ (here and in the sequel, the symbol ’ indicates conjugate spaces). Define the
space H(S) as the closure of ©(J)™ in the norm Ly(3)™ with the scalar product (7),

1/2
lllrys) = ()" and H(S) = H(S) .

Consider a space H!(J) consisting of the elements p € Lo(3)" that have the
generalized derivative % € La(¥)", 1. e. gg’; € Ly(3), i = 1,n. The space H(J) is
equipped with the norm [|u(|y1(g) = (H“HLQ( g+l ‘9”HL2( )1/2 and represents a Hilbert
space with the scalar product (u, p)y gy = (1, p) + (g—g, %).
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Next, define a space V}(S) as the closure in the norm H!(S) for the set of elements
€ D(F)™ satisfying the conjugation conditions

op O _
2 @ lsr© 2 guflsie = 0

In other words, V(<) is the subspace of functions from H!(J) that “satisfy the conjugation
conditions” in all node loci £ of the domain & and “vanish” on 9S.
Consider the two forms

n du; dvj
p(u,v) = Zlf 87": ox; d(E (8)
=13
olu,v,w) = S w2 Lw;dx (9)
k=1

in functions u, v, w such that the integrals in the representations above are convergent.

First, prove several auxiliary results that are similar to the ones in [5, p. 79-81; 6,
p. 71].

Lemma 1. The bilinear (8) and trilinear (9) forms are continuous on Vi (3) x VH(S)
and Li(3)" x VH(S) x La(S)", respectively.

Proof. Applying the Cauchy—Bunyakowsky—Schwartz inequality to the functions

ng and axi in the right-hand side of form (8) yields

[ Sl <[] G2 e [ G e < luslyg il (10)

By analogy, using the Cauchy—Bunyakowsky—Schwartz inequality in the right hand side
of form (9), first for the functions ugw,; and a”’ - and then for the functions u? and w?, we

obtain
‘ J ggk widx‘ < [ (upw;)?da /f(g%:)zdx <
N2
< ,4/([“%6533,/([ () dﬂ?;ﬂ/([w?dﬂ? < ukll za@)lvillve @) lwsl ) (11)

And the statement of this lemma follows from inequalities (10) and (11).
Corollary. Inequality (11) implies the continuity of form (9) on (V(3) N Ly (S)™) x
Lemma 2. For any u,w € Vi (S), the following equalities are just:
D) ol 1.) = o)
2) o(u,w,w) =

3) o(w,w,w) = 0.

Proof. The first statement of this lemma follows from representation (9) on
integrating by parts the integrals in all terms over the domain J. Recall that the functions
of the class V}($) vanish on the boundary 3. And the second and third statements are
a direct consequence of the first one.

Lemma 3. Let sequences {um}m>1 and {vm}tm>1 from Lao()" weakly converge
in La()™ to elements u and v, respectively. Then the sequence {UmVm }tm>1 has weak
convergence in Lo(3)™ to the element uv.
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Proof. It is necessary to show that

f umvmgda:dt — f uvdzdt

ST

for any function ((z) € D(J)" satisfying the conjugation conditions at all node loci £ of
the domain S (or for any ((z) € V§(S3), due to the density of the set of such functions in
Vi)

First, we take notice of an important fact ensuing from the weak convergence of the
sequences {Um tm>1 and {vm,}m>1: the elements w,, and v, are collectively bounded,
e |lvmlloyoy + Wlloa@)r < ¢ and [[uml[posyn + [|ullzys)r < ¢ At the beginning,
demonstrate that the sequence {v;,(}m>1 strongly converges to v¢ in the space La($J)™.
Let € > 0 be an arbitrarily small number. As ((x), it is possible to choose m((x);

then the desired result follows from the chain of inequalities:

[vm¢ = v€llLa(s)n < l[vm — VllLa@)n < 2oy < €llvmllLo@yn + 0l La(s)n) < ec
The statement of Lemma 3 is obvious from the estimates

}fumvmg“dx — fquda:| f| Ugn Vyny, — uv)(}dw <

C[(HumHLz 2y [0mC = Cllacaye + 10l agayn emC = w2y de

and the considerations above. The proof of Lemma 3 is finished.

Introduce the spaces of functions u(x,t) of the variables z,t € Spr = & x (0,7
(T < o0) and consider u as a function of ¢ taking values in the space of functions of
x. Particularly, if V' represents a Hilbert space, then denote by Ly(0,7; V) the space of
functions (classes) u : (0,7) — V that are measurable, take values from V and

1/2
wllLa0.mv) = <f|u |th> < 0.

Note that the equality Lo(S7)™ = L2(0,T'; Lo()™) holds naturally.

Next, introduce the following spaces: W%(Sr) as the space of functions u(z,t) €
Lo (7)™ that have the generalized first derivative with respect to x belonging to Lo (S7)",
with the norm in W10(Sr) defined by

1/2
lullwroey = (13 0y + 122130000 )

W1(J7) as the space of functions from Lo(S7)" that have the generalized first derivatives
also belonging to La(S7)", with the norm defined by

1/2
lullws@ry = (12 ppn + 153202 0 + 13213000 )

Using the properties of the traces of elements from W*!(S7) on each section of Sr by
the plane t =ty (to € [0,7]) as elements of Ly(J)™ that are continuous in ¢ in the norm
Ly ()™ (see [7, p. 70]), define Qo(J7) as the set of functions u(x,t) € W (Sr) belonging
to the class V{(3) for fixed t € [0,T]. Denote by W§(Sr) the closure of the set Qo(Sr)

3)
in the norm W1(Sr).
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Next, let ﬁo(%T) be the set of all functions u(z,t) € W10(S7) that
a) have the finite norm

[[ul

— o) .
297 = max uC, Dl + 13l e (12)

b) have the trace defined on the sections of the domain Sp by the plane ¢ = ¢
(to € [0,T]) as a function of the class V; (S), i. e. for each element u € QO(ST) and fixed
t € [0,7), there exists a sequence {u,} of functions u,(z,t) € V§(3) converging to this
trace in the norm H!(3);

c) for each t € [0, T], belong to the space V(SJ) and are continuous in ¢ in the norm
HY(Q) on [0,T7, 1. e. for any t € [0, T], [|u(-, t+At)—u(-,t)|41(3) — 0 as At — 0 uniformly
on the interval [0, 7.

Designate by V {'°(S7) the closure of the set QO(ST) in norm (12); clearly, Vo %(S7) ©
Wl’O(ST).

Remark 1. If Y € V§%(S7), then Y = 0 on 9, i. . relationships (3), (4), and (6)
should be treated as the conditions of belonging of Y to the space V5 (37). Equality (5)
is considered almost everywhere on .

Remark 2. The statements of Lemmas 1-3 remain in force for the functions that are
defined in the domain §; = $ x (0,7) and have traces for any ¢t € (0,7), where 7 takes
any fixed value within the interval [0, T']. The proofs of these results are exactly the same.

Remark 2 naturally leads to the following definition of a solution of problem (1)—(6),
where the initial data (i. e. the functions f and Yp) satisfy the conditions

flz,t) € La1(S7), Yo(z) € H(S). (13)

Here Ly 1(S7) is a space whose elements belong to Li(Sr) and have the finite norm
T

1/2
1 loesom = | (f f2dx> dt, Lo(Sr) C Loy (7).
0

Definition. A weak solution of the initial boundary value problem (1)—(6) is a pair
{Y,p} as follows. The function Y (x,t) € Vé’O(ST) satisfies the integral identity

t t
(Y (@, ), () = [ Y (2, 7) 28 dadr +v [ p(Y,n)dr + [ oY, Y, n)dr =
Sy 0 0
— (Yo(@).n(.0)) + [ f(z, T)n(a, 7)dadr (14)
S
for any t € [0,T] and any n(x,t) € W(St), while the function p(z,t) belongs to the
class D' (). Here D' (7)™ is the conjugate space for the space D(Sr)", the elements
of D(S7)™ are infinitely differentiable in St functions with a compact support from Sp
(see the analogous spaces D ()™ and D'(I)™).

Remark 3. Despite the apparent rigor, the above definition of a solution of
problem (1)-(6) (i. e. a pair {Y,p}) has the explicit ambiguity caused by the variational
statement (14) of this problem “eliminating” the function p(z,t). Notably, there is no
information concerning the function p(x,t) except for relationship (14), and hence it
suffices to find an appropriate function p(x,t) within the class, i. e. p(x,t) € D'(S7)™.
In terms of applications, this is an acceptable condition that guarantees the nonzero fluid
dynamics in the domain S (as a matter of fact, in many applications p(z,t) is an a priori
given function). According to the aforesaid, in the sequel we consider the function Y (z,t)
as a “solution” of problem (1)—(6); the existence of the function p(x,t) and its belonging to
the class ©'(S7)™ directly follow from the existence of Y (z,t) within the class V(7).
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The forthcoming sections are dedicated to the existence of a weak solution of the initial
boundary value problem (1)-(6). Some considerations are similar to the ones presented
in [5, p. 77].

Existence of weak solution of problem (1)—(6). The idea to prove the existence
of at least one weak solution of problem (1)—(6) remains the same as in [4, 8] for similar
distributed parameter problems on a geometrical graph (network), but there is an essential
difference that forms the main obstacle. In particular, the domain of variation of the spatial
variable in problem (1)—(6) is the bounded domain & of the Euclidean space R™, i. e. the
spatial variable and the function Y (x,t) are both wvectors. This feature causes addltlonal
technical difficulties, mostly affecting the structure and properties of the spaces that are
selected to describe the weak solutions of problem (1)—(6). The above-mentioned spaces
lose many “good” properties intrinsic to the spaces of the functions of one variable The
nonlinearity of problem (1)—(6) has no small share in this process (the term Z Y;— in (1)

i=1
defines the convection of an incompressible fluid [9, p. 10]).

Prior to proving the existence of a weak solution of the initial boundary value
problem (1)-(6), in the domain & consider the spectral problem

VAU =AU, Ulss =0,

by analogy to its counterpart on a graph I' [2]. This problem is to find the set of numbers A
each associated with at least one nontrivial solution U(x) € V}(S) satisfying the identity

v((U;n)) = AU, n)
for any function n(z) € V3(S); here ((+,-)) denotes the scalar product of the form

(W) = 5 (3, 88 s

This means that U(z) is a generalized eigenfunction from the class V}(S) and A is the
corresponding eigenvalue.

Proposition 1. The eigenvalues are real and have finite multiplicities, and they can
be indexed in the ascending order of their magnitudes taking into account multiplicities,
i. e. {\i}is1; the generalized eigenfunctions are indexed accordingly, {U;(x)}i>1.

Proposition 2. The system of the generalized eigenfunctions {U;(x)};>1 forms an
orthogonal basis in the space VE(S) and in the space L2(J)".

These results are established by the methods presented in [2].

Remark 4. These propositions remain in force for the spectral problem, where the
boundary condition Ulsg = 0 is replaced by the more general one of the form

al+0U|ag=0

(each domain ; has a specific constant o, and 8U designates the derivative along the
inner normal inside the domain ). In this case, the generalized eigenfunction belongs to
the space V1(3) (the definitions of the spaces Vl(\f) and V{(S) differ in the boundary
conditions, V|sg = 0 and the above-mentioned general boundary condition, used in the
description of the set Q) and also satisfies the identity

v(U,m) + CGZ(’)“ oUn = MU,n)

for any function n(z) € W§(S;,3), X is an eigenvalue.
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Theorem 1. There exists at least one weak solution of the initial boundary value
problem (1)—(6) for arbitrary finite T > 0.

P r o o f. Use the system of the eigenfunctions {U;(x)}i>1 as a basis to represent the
approximate solution Y;,(z,t) as the cut-off function

Yon(2,) = igim(t)Ui(x)

(the scalar functions g; ., (t) are absolutely continuous on [0,7]) that satisfies the system

(Do Uy) + vp(Yin, Us) + 0(Yom, Y, Ud) = (f,Us), i=T,m, te€0,7], (15)
Yin(2,0) = Yom(z), (16)

where Yo, (z) = Z g2 . Ui(z) (99, = gim(0)); Yom(x) — Yo(z) in the norm H(S).

System (15) (16) is a system of differential equations in the functions g;n, (¢), which
allows to find Y;, for any ¢t € [O,le. Let us demonstrate this by obtaining the a priori
estimates of the norms of Y;, in V§"(S7).

Multiplication of (15) by gim(t) and summation over i = 1, m yield

35 1Yml3pn +vo(Yim, Yin) = (£, Yin) (17)

(recall that Q(Ym, Yo, Ym) = 0 by statement 3 of Lemma 2). In expression (17), the left-
hand side is 12 911Y;, ,HLz @)+ v[(Yin)a HL ). and the right-hand side obeys the estimate
(f,Ym) < Ifllza)n Yol £o(gyn - In comb1nat1on with (17), it follows that

35 1Ymll0pn + 21 (Ym)alZ,apn < IF Loy Yl zao)n-

And integration over ¢ between 0 and ¢ gives the inequality

t
3 1Ym0y +V0f”(ym)w||2L2(gt)ndT <

< 31V GO gy + A1, 50 max [V (5 7)) (18)
for arbitrary t € [0, 7.
Introduce the notation z(t) = m[aOX]HY m (5 T)ll1o(s) and multiply both sides of
€lo,t

inequality (18) by 2 to get
2(0) + 2 Vo) |2, 0y < Vi ) acoye2(8) + 20112, )2 (0)
as long as ||Yi, (-, )HLQ(J)H z(t). Then
2) < I, NVim)allZ, g < 57 (1),

with J(t) = [|Yin (-, 0)l £y (s)n 2(t) + 2[1 f117, , s,)n 2(t). The last two inequalities lead to the

estimate
1Ylla.o0 = 2(8) + | (Vane lzagon < (1+—)J1/2(>
1/2
< (14 25) (Y€ 0oy + 20 F I anon) 1Y l135,

or, for any t € [0,T],
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2
200 < (14 55) (W 0oy + 21 s 00)- (19)

Taking into consideration formula (19), the expansion Yy,.(z) = 3 ¢%,,Ui(z), as the

i=1
convergence Yy, (7) — Yo(z) in the norm H(S), we have ||Yy, (-, 0)|| 2,3y < €l Yol £, (s)n
(where ¢ > 0 is a constant independent of m) and, using (19), the estimate

2
Wanllois, < (14 745) " (@l¥olla@yr + 20 fllancon) <

< C* (IWollzayn + 201 zansn) » (20)

where C* > 0 is a constant independent of m. The resulting estimate (20) pursues two
goals, namely,
1) for any index m, the norms of the approximate solutions Y,,(z,t) and their
. . . Yo (z,t)
generalized derivatives —5-==
is independent of m, i. e.

in the space H(S) are bounded by a constant C' that

1Yol ooy < Cs
15
|l < C

2) for any index m, the norms of the approximate solutions Y;,(x,t) are estimated
by the norms of the initial data Yy(z) and f(z,t) of the initial boundary value problem
(1)-(6).

With this in mind, employ the following well-known result for a sequence {Y, }m>1
with the collectively bounded norms (21) of elements [7, p. 31]. In a sequence {Y;,}m>1,
it is possible to separate a subsequence {Yy,, }, -, that weakly converges in norm (12) to

(21)

a certain element Y & V})’O(%T) (in fact, {Ymk}k>1 weakly converges to Y in the norm

L2 (S7)
(1)~(6).

Multiply expression (15) by an absolutely continuous on [0, 77| function d;(t), perform
summation over ¢ = 1, m and integrate the result over ¢t between 0 and t¢:

8;? ). Show that the element Y (x,t) is a solution of problem

(Yoo (2, t), @y (2, 1)) f Yo (2 T)aq)’” z.7) dmdr—l—ufp Yo, @, )dT+

St

+OfQ(Ym,Ym,(bm)dT = (Yo(x), P (2,0)) + [ f(z, )P (x, 7)dzdr, (22)

St

where @y, (z,1) = Zd() i(7).

Denote by & the set of all functions ®,,(x,t) with arbitrary d;(t) possessing the above
properties and with arbitrary natural indexes m. The set % is dense in W}(S7). This
follows from the density of the set {U;(z)};>1 in V(S), the continuity of ®,,(z,t) € X in

€ [0,77], the belonging ®,,(x,t) € V§(J) for each fixed t € [0,7], and the definition of
the space W§(St).

In (22), fix the function ®@,,(x,t) = % .(z,t) € X, 1. e.

m*
O (2,1) = 3. df())Ui(2),
i=1
and, starting from index my > m*, pass to the limit in the above subsequence {Yin, },~ ;.
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First of all, note that the integrals
t t
fp(Ymkv(I);kn* )d7—7 f Q(YmmYmk?(I);kn*)dT
0 0

contain the terms mentioned in Lemma 3. According to the latter (also, see Remark 2),
these integrals converge to

o &

t
p(Y, @5 )dr, [ o(Y,Y,®%,.)dr,
0

respectively. Passage to the limit yields formula (22) for the limiting function Y (x,t), and
hence for n(x,t) = ®F,.(z,t) the function Y (x, ) is a weak solution of the initial boundary
value problem (1)-(6) from V§°(37) due to the density of the set X in W§(Sr).

To complete the proof, it remains to argue the existence of a function p(z,t) €
D'(J7)"™. Here the line of reasoning is as follows. The obtained function Y (z,t) as a
weak solution of problem (1)—(6) satisfies identity (14) for ¢ = T'; therefore, by choosing

formally %—VAY+ Z YZ‘gTY—f = F, we have (F,n) = 0 for any element n € ©(37)" due

i=1
o0 (13) and (14) (recall that D(J7)" is dense in W §(J7), which means the belonging of F’
to the space ©'(J7)™). Moreover, this element has the representation F' = —gradp, where

the function p(x,t) is a certain element of the space ®'(S7)™. The proof of Theorem 1 is
finished.

Remark 5. The proof of this theorem contains a deeper statement regarding a weak
solution Y (x,t): the function Y (z,t) has the derivative % with respect to the variable
t that belongs to the class Lo (0,T"), which follows from the representation of the elements
Yo, (z,t) of the subsequence {Ymk}k>1 for the limiting function Y (x,t).

Unique weak solution of problem (1)—(6). The uniqueness of a weak solution
of the initial boundary value problem (1)—(6) is a complicated issue due to the arbitrary
dimension n of the domain . We manage to prove uniqueness in the special case n = 2,
which is widespread in applications (also see [5, p. 83]). Here a prerequlslte is to shghtly
reduce the class V;*(Sr) of weak solutions by defining a contraction V'*(S7) as the
closure of the set Qy(S7) in norm (12). The elements of the set (S7) have the same
properties as those of the set o(S7) (see items a)—c)), except item c) as follows:

c*) for each t € [0, T, the elements belong to V! (3) and are absolutely continuous
in ¢ in the norm Hl( ) on [0, T]

In this case, Vo %(S7) € VE%(Sr), the functions u(x, t) belong to Vo %($7) and have

the generalized derivative % € L2(0,7;V3(3)). Theorem 1 remains in force for the

weak solutions of the class ‘75 ’O(QT), as its proof is the same as above; and the limiting
function Y (z,t) has the derivative with respect to t in the class L2(0,7;VJ(J)) (see
Remark 5 to Theorem 1).

Prior to presenting the main result, let us prove the following lemma by analogy to
its counterpart in [5, p. 83].

Lemma 4. If n = 2, then there exists a constant ¢() such that

1 2 1/2
o]y < @Il 01 s, (23)
for any v € VA(S) N La(3)2.
Proof. First, show inequality (23) for any v € D(J)2. Extend the vector function
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x

v(z) = (vi(z),v2(x)) to the whole space R?, defining it as 0 beyond the domain 3.

Introduce the notation D;v = {avl—(w) 9va(z)

TN Ty } and majorize v?(z) in the equalities

)=2 f D)z, (i=1,2).

We have
v3(z) < 201(x2),  v3(x) < 2v2(x1),
where

+o0 +oo
vi(xz) = [ |v||[Divldey,  wa(zr) = [ |v||Dav|das,
— 00 — 00

and the symbol | - | denotes the magnitude of a vector in R?. On this basis, the following
chain of inequalities holds:

Hv||‘i4([R2) = f x)dr = ffv Ydaydxo < 4fv1 9 dargfvg x1)dry =
=4/ |v||Dlv|d$ / |U||Dzv|dff 4Hv||L2(R2)HDWHLz(W)||UHL2(022)||D2”||L2(R2) =
R2 R2

= 40113, gy | P10l w1 Davll ey < 20l gy (D101 oy + D203, o))
yielding the estimate

1/4
oy < VIO oy (5 1000000y ) = V20l sl

for any v € D(3)2. And this estimate gives inequality (23) for any v € V}(S) due to the
density of D($)? in V(S) with a fixed constant ¢(S) > 0 that depends on the measure
of the domain & only. The proof of Lemma 4 is finished.

We will establish that the solution of the initial boundary value problem (1)-(6)
is unique using estimate (23) in the following case, which is not very restricting in
applications. Whenever required, the space V() is replaced by the space Vi (3) N Ly(S)?
but with the norm of V}($). In this case, all statements above remain in force obviously.

Theorem 2. If the domain & is of dimension 2, then the initial boundary value
problem (1)—(6) has a unique weak solution in the space V %(37).

Proof. Let (Y1,p1) and (Y2, p2) be two solutions of problem (1)-(6) that belong to
the class Vo ( 7). In addition, denote w = Y7 — Y5 and p = p; — pa. According to the
definition of a weak solution w, we have the identity

t
(w(z, ), n(z,t) — [ wz,7)22ED dadr + v [ p(w,n)dr +
0

¢ ¢ ¢
+ f Q(wv Ylv ﬂ)dT + f Q(Ylv w, 77)dT + f Q(W, w, ﬂ)dT = 0 (24)
0 0
for any ¢t € [0,7] and any 77(33 t) € Vé %(37) (on the strength of ‘N/é’o(ST) c W(ST)).
Since w belongs to the class V0 %(S7), identity (24) takes the form

f —awéw .7) (z, T)dxdT—l—pr w,n)dr +

St

t
+ [ olew, Vi, mdr + [ o(¥i,w,n)dr + f o(w,w, n)dr =0 (25)
0 0 0
for any t € [0,T] and any n(z,t) € V&’O(ST).
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By letting n(z,t) = w(z,t) € ‘N/&’O(%T) in (25), we arrive at the relationship

sllwC D17, +prw w)dr +

¢
+ fg(w,Yl,w)dT—l—fg(Yl,w,w)dT—i—fg(w,w,w)dT =0
0 0 0

(note that 33 lw( OlIF, @2 = (8wé’f’t),w(x,t)>. Taking into account representation (8)

<p(w,w) = Zlf g‘;z g‘;z dr = |wm(.,t)||2L2(%)2) and the relationships of Lemma 2
1j=13

(o(Y1,w,w) =0 and p(w,w,w) = 0), we obtain
¢

sllw(DIZ, )2 +Vf||wm ST, ()edT = —gg(w,Yl,W)dT- (26)

Now, estimate the absolute value of the integral in the right-hand side of formula (26)
using (9) and (11):

Oélwa 72 Y10 Dllva @) dr

t
fQ(W,Yl, dr
0

(here a1 > 0 is a fixed constant). The last inequality, in combination with [|v|z,g) <

WHUHlL/f(%) Hvx”lL/f(%) (see the proof of Lemma 4), yields the estimate

S @ f w2 lwe (5 T Lo )2 1Y (Tl v g)dr

t
J o(w, Y1, w)
0

(ce > 0 is a fixed constant). This inequality can be transformed into

t
fg(wvylv dr
0

Vwam, |\L2<J>d7+043f|\Y1 s lwC L, @)2d7

(a5 = ao/(v), anllwel D) la@e Vi Do)l la@e < Viwel )20 +
s |3 () [2 gy | 712, ay2)- Using (26), it appears that

t
w817 4oz < 20436f|\Y1('»T)H%/5(g)IIW( T, q)dr

And the desired result w(x,t) = 0 follows immediately, as |lw(-, )||2 j2 = 0. The proof
of Theorem 2 is finished.
Continuity in initial data. While proving Theorem 1, we have obtained the a priori
estimates (20)
[Vinll2,3, < C* (1Yol o)z + 20 f 220 (30)

for any t € [0,77] and all elements of the sequence {Y;,, }>1, where C* is a constant that
depends on the measure of & only. Hence, these estimates hold for all elements of the
subsequence {Y;,, }x>1 converging to a weak solution Y'(z,t). Passage to the limit over
the weakly convergent subsequence {Y;,, }x>1 as k — oo yields the estimate (at t =T)

| < C* (IWollLyoy2 + 20 flLoa(se)) - (27)
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Estimate (27) for the norm of a weak solution Y (z,¢) from the space V§'*(S7) (which is
also valid for a weak solution from the space \N/é 0(S7)) brings to the following result.
Theorem 3. A weak solution of the initial boundary value problem (1)—(6) in the
space Vo' (S7) (V&’O(%T)) continuously depends on the initial data f(x,t) and Yo(x).
Conclusion. Note that all results derived here remain in force for n =1 (e. g. see [10,
11]). In this case, the netlike domain S is a geometrical graph I', and relationships (3) and
(4) at each internal node £ of this graph are transformed into the Kirchoff-type boundary

conditions

> ay P = T a(0), PG (28)

YER() vET(£)

Here Y : T'r = T' x (0,7) — V&(T'r) (Vi(I'r) is an analog of the space V}(St) for
the graph I'); Y, denotes the restriction of the function Y to the edge v; a(x) means
a fixed measurable bounded on I' function that satisfies condition (28); R(£) and 7(§)
are the sets of edges directed to the node £ and from the node &, respectively. (All
edges of the graph are parameterized by the interval [0,1].) The described situation
underlies the analysis of optimal control problems on networks [4, 8, 12, 13]. The current
paper further develops the ideas presented in [1, 3] for n = 1 towards increasing the
dimension n, as well as constructs the well-posedness conditions of the initial boundary
value problem (1)—(6) in the sense of Hadamard. The general scheme is classical [5, 6], as it
includes the following steps: forming a special basis for the spaces of admissible solutions;
designing approximate solutions of the problem by the Faedo—Galerkin method; obtaining
a priori estimates for the approximate solutions in terms of energy balance inequalities;
finally, proving the compactness of the resulting family of solutions using the obtained
estimates. The smoothness of the solution in the spatial variable is established by imposing
additional requirements. The results yielded by this approach are of certain interest for
applications in hydromechanics and allied branches of continuum mechanics, namely, for
the analysis of optimal control problems for multiphase media dynamics. Interestingly,
other researchers [14-18] considered alternative approaches to the analysis of control
problems, yet with the same treatment of the admissible control existence conditions. Also
note that the problem under study may have a stochastic component in the representation
of equation (1), and in this case it is necessary to use the results established in [19, 20].
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