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We study a method associated with constructing of delayed feedback for local stabilization
of periodic orbits of nonlinear discrete systems. An alternative approach to the construction
of characteristic polynomial for the delay system linearized in the neighborhood of T-cycle is
suggested. It is proven that our new alternative approach is equivalent to the standard one,
however, it allows us to produce directly new forms of polynomials. These forms are convenient
in applications to the problems of chaos control and allow us to apply methods of geometric
complex function theory. This article is an extension of the results, which received D. Dmitrishin,
P. Haglstein, A. Khamitova and A. Stokolos to the vector case. Refs 6. Fig 1.
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A. JI. Xamumosa

XAPAKTEPUCTNYECKUWE ITOJIMHOMBI ITUKJIOB
HEJIMHEVHBIX JTNMCKPETHBIX CUCTEM
C 3AIIA3BJBIBAHVEM

Opecckuit HarmonayibHbI#i MOIUTEXHUYECKNN YHUBEPCUTET, Y KpDAWHa,
65044, Ogecca, np. Illesuenko, 1

N3yuaercss oguH M3 METOAOB JIOKAJIBHOW CTAOM/IM3AINH [IEPUOANYECKUX OPOUT HEJTHMHEHHBIX
IUCKPETHBIX CHCTEM, CBI3AHHBIN C IOCTPOCHHMEM 3ala3fbIBaromeil obparHoi cesasu. [Ipema-
raeTcs aJbTEPHATHBHBIN IIOAXOM K IIOCTPOCHUIO XapPAKTEPHUCTHIECKOrO IIOJIMHOMA IJIsl JINHEA-
PU30BAHHON B OKPECTHOCTH 1 -IIMKJIa CHCTEMBI C 3amasgblBaHueM. JlokasaHO, 4TO ajbTepHa-
TUBHBIN IOAXO[ SKBUBAJIEHTEH CTAHIAPTHBIM, OJHAKO HAIIPAMYIO JAa€T BO3MOXKHOCTD IIOJIyYaThb
HOBBIE (DOPMBI XaPAKTEPUCTUIECKUX ITOJINHOMOB. DTH (DOPMBI OKA3BIBAIOTCS YIOOHBIMH B PeIlle-
HUU IPOOJIEMBI YIIPABJIEHUSI Xa0COM U IO3BOJIAIOT IPUMEHUTb METOIbI T€OMETPUIECKON Teopuu
dYHKIUM KOMILIEKCHOT'O IIEPEMEHHOro0. B craTbe mpuBeneHbI U OOCY2KIEHBI PE3YIIBTATEI, ITOJLY-
gennble 1. JImurpumuneiv, I1. Xarencreitnom, A. XamuroBoit u A. CTOKOIOCOM HA BEKTOPHBIN
ciay4dait. bubsuorp. 6 mass. M. 1.

Kmouesvie caosa: HeIUHEHHBIE CHCTEMBI, aCHMITOTHYECKAsl CTabHUIBHOCTD HUKJIOB, JDK
METOZBL.

1. Introduction. The goal of the current paper is to introduce a modified approach
to the problem of local asymptotic stability of cycles in special non-linear systems and to
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make a comparison. The standard approach to this problem is well outlined in [1, 2] which
is a further development of the method describe by O. Morgil [3].
We will distinguish between the systems with no time delays

Tpt1 = flzk), fER™, k=0,1,..., (1)
and with time delays of the form
Tpr1 = a1 f(ay) +asf(xr—7) + ... +anf(xp—(n-1)r), fER™, k=0,1,..T€Z,. (2)

Note that the systems (2) appear in the problems of localization of unknown periodic
orbits and control of chaos.

In scalar case the standard approach to investigate stability with no delays is to
construct a new map that has points of the cycle as equilibriums and then linearize about
the equilibrims. Our approach is to construct an auxiliary system that has the cycle
elements as coordinates of the equilibrium vector. So, instead of studying cycles of a
scalar system we study the equilibrium of a vector system.

In vector case the standard approach produces a characteristic equation as a result of
applying the chain rule to the new system, while our approach produces the same equation
as a consequence of the non-degenerate property for the auxiliary system linearized around
equilibrium.

At this level the advantages of our approach are not visible, but later on they will be
more transparent.

For a system with time delays the standard approach leads to a system with dimension
that increases with delays. The characteristic polynomials of such systems appear in
a standard form that makes impossible analysis on Schur stability, thus useless. Our
approach leads to a very well structured system where the characteristic polynomial
appears factorized with each factor in a special form that enables stability analysis. Mo-
reover, this new form (see (22) on p. 113) is very compact and is convenient in applications.

2. Main results. A. Standard approach. Let us consider the scalar case of the system
(1). Based on a cycle {n1,...,nr} let us construct a new dynamical system

wppr = [ (a), (3)

which iterates T times the initial map. Therefore

FO (@) = (T D(@), s fO (@) = f(2).

Now, let F(z) = f()(x) (see the figure below) and denote xo = yo, 7 = Y1, ..., Tpr =
Yk, - .. . Then the system (3) has changed to
Yr+1 = F(yr). (4)

In fact for any j =0,...,7 — 1 we can write

l‘j = Yo, .Z'j+T = Y1, '-'7$j+kT = Yk, ---

and obtain the same dynamical system (4).

Note that the system (4) has T equilibriums 7y, ..., pr. Then the cycle {n1,...,nr} of
the system (1) is asymptotically locally stable if and only if all equilibriums 1, ...,n7 of
the system (4) are asymptotically locally stable.
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Definition of F' map

The multiplier of every equilibrium 7; of the system (4) is F'(n;), j =1, ...,T. By the
chain rule

F'im) = f'(f(fof ) - f/(fo f(m)) -+ f1(m) = pr -+ a

where p; = f'(n;). It is clear that F'(n;) = pr - - p1, j = 1,..,T. The quantity pp - - - pq is
called a multiplier for the cycle {n1, ..., n7}. The condition of the local asymptotic stability
is |[LT~",LL1| < 1.

B. Alternative approach. We suggest considering a system

LTrp+1 = f(:rk)ﬂ
Try2 = f(Trs1), (5)
Ty = [f(@pyr—1)
Let
Z1 TT41 T(k—1)T+1 TET+1
T2 ITT+2 L(k—2)T+2 TET+2
21 = . y zZ9 = . I e . ,Zk+1: . geee o
xT ZorT TrT L(k+1)T

A very simple but a very important observation is that (5) can be written in the following
form:

f(zrr)

=] T (6)
f(wkT+T—1)

Let us note that (6) is a dynamical system zj; = F(z;,) where

O (xgr)

@) (24
Few = | 7 (:” . (7)

fo (.ka)

Our novelty is that the asymptotically local stability of the cycle {n1,...,nr} of the system
(1) corresponds the asymptotically local stability of the equilibrium
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: (8)
nr
of the system (5).

In the standard approach the cycle corresponds to T equilibriums of the scalar
dynamical systems. In our approach this cycle corresponds to one equilibrium of the vector
system. So far these two approaches seems absolutely equivalent. The difference will be
visible when we start to consider the systems with time delays, especially when the number
of the used delays is much larger compared to the size of the cycle.

To compute multipliers we have to linearize the system (5) in the neighborhood of
the equilibrium (8)

5,(61) m
: =2k~
6,(€T) nr

and extract the linear part. One can linearize either system (6) or system (7). It turns
out that it is more convenient to linearize system (6) because in that case we can avoid
dealing with a superposition of the maps. The linearized system has the form

51%;1 = f/(UT)CS(I(ClT))v
o1 = fl(n1)6k+1’
5}(531 _ f'(77T—1)5;(£11)

As1 = ursT, As1 = 718,
A = A by — .

52 H1AS1, N 52 M1 H252,
AST = UT_1AST_1 AST = pr_1--UTST.

Thus, we come up with the same representation for the multipliers A = pp - - - 1.
C. Vector case. It is amazing that there is no major changes in the vector case.
Namely, in standard approach the Jacobi matrices M; = f’(n;) came up and the
multipliers are the roots of the characteristic polynomial

NI — Mg --- M| =0,

while in our case

A5y = Myp--- M5y,
Asy = M- M5y,
Asp = Myp_y---Mr3r,

where 5; are non-zero vectors. Since the eigenvalues of the product of square matrices AB
and BA are the same (c. f. [4, Ex. 9, p. 55]) we come out with the characteristic equation

AT — My M| =0.
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In this case the eigenvalues of the matrix My --- M; are called multipliers of the cycle. If
all multipliers in absolute values are less then one then the cycle is asymptotically stable.

D. Systems with time delay. Let us consider a system with time delay in a general
form

Tr1 = [(Thy Tty ooy Thor ), JER™, T€eZ,. 9)

And let us study a local stability of the cycle {n1,...,nr} where n; € R™. In other words
for all £ > 7+ 1 the following equations are valid:

Nk+1) mod T = f(ﬁk mod T "(k—1) mod T -+ T(k—7) mod T)-

There abusing notation we assume that T mod T'=T.
Standard. An auxiliary system with respect to the vector of size m(r + 1) is

Zl(cl) Tk—r
z,(f) Tk—1+1
2k = . = .
z,(;'H) Tk
Then (1) ©
2
Zpiq Z
e L3
k+1 k
Zk4+1 = . = . )
‘r'+1 T+1 .'r 1
z,(c_H ) f(zl(c ),zl(c ),...,zlg))
1. e.

Zk+1 = F(Zk)

Note, that F € R™(7+1) in the above formula and is different from the one on the page 2.
Further, let zxyr = F(...F(zx)) be the T-times iterated map F. This map can be

written as a system
Yrt1 = P(yr)- (10)

Let us periodically repeat the elements of the cycle: {n1, 92, .., DT, M1, M2y ooy DTy - -
The first 7 + 1 elements of this sequence form a vector

Uit
Y1 = 2
In the same way we define the vectors
2 nr
Yy = 13 , , y,} = Uit

It is clear that the vectors y7, ...,y are equilibriums of the system (10).
Then the cycle {n1,...,nr} of the system (9) is asymptotically locally stable if and
only if all equilibriums yj, ..., ¥} of the system (10) are asymptotically locally stable.
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For the equilibrium of the system yi of the system (10) the Jacobi matrix is defined
by the formula with T factors

' (y7) = F' () - F' (g1, (11)

where the matrix F'(y;) has dimensions m(7 + 1) x m(7 + 1) and is equal to

o I o0 . O
o o 1 . O

Flyp) =1 - (12)
o 0 .. I

ng) Qg]) Q;(J,]) Q‘(r]-i)-l
There the matrices O and I are zero and unit matrices correspondingly and are of the
dimensions m X m. Further,

of

() —
Qr aZ(T) y; Y

r=1,..74+1, j=1,...,T,

1. e. the value of the derivative evaluated at the point y7.
For all other equilibriums y; the Jacobi matrices F'(y;) can be computed in the same
manner and

(I)I(y;) = F,(yg;)_g.j) mod T) T Fl(y§*))a

which can be obtained from (11) by a cyclic permutation of the factors, and therefore the
eigenvalues of ®’(y;) coincide for all j =1,...,T (c. f. [4]).
If all eigenvalues of the matrix ®’(y;) which are roots of the polynomial

pr(A) = AL — @'(y5)| (13)

are less then one in absolute values then the cycle of the system (9) locally assymptotical
stable.

Note that in the scalar case m = 1 the matrices F’(y;) are in the Frobenius form.
Therefore, the matrix (12) is a generalized form of companion matrix. If system is of
special case below, then the product is manageable and the characteristic equation was
found in scalar case by means of induction in [1].

Our approach. The system (9) generates the system

Tr+1 = f(xka -"7=’Ekf‘r)a
Tl+2 = f(karl; -"71'k77+1)7 (14)
Tn+T = f($k+T—1, ---axk—‘r-i-T—l)-

Note that (14) is a dynamical system, which might be seeing by replacing in the right
hand side each of xgy1, ..., zx+7—1 by the functions of zp_,, ..., zk.

If
Z(l)
152) T(k—1)T+1
z L(k—1)T+2
2 = ¥ = ( .) , oz R
Z](vT) TkT
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then

1 Ty (T-1
Z’%z*;l _ f(zlél))’zlgm o)
i1 = f(zkH,zk s o)y (15)
p e PR
Zl(ch)l = f(zl(chl )’zl(chl );---)-
The system (15) can be written in the form
Zer1 = ®(zp, 201, ..), @ e R™T. (16)
The system (16) has an equilibrium
m
. m ER™, j=1,..,T (17)
nr

To study the behavior of the solutions to the system (16) in the neighborhood of the
equilibrium (17) let us make a substitution

6D =29 _p k=0,1,.., j=1,..T

So, instead of linearizing of the system (16) one can linearize the equivalent system (15).
As a result we get

Op+1 = AgOk+1 + A10 + ..., (18)
where
s
O =
s

and A; are square matrices of the dimension mT" x mT. The matrix Ay on the main
diagonal and above have zero entries. That means that matrix F — Ay is non-degenerate,
therefore the system (18) is a dynamical system. Its characteristic equation is

AT — Agh — Ay — .| =0.

If all roots of this equation in absolute values are less then one, then the cycle of the
system (14) is locally asymptotically stable.

The polynomial A™(TFD=1XT — Ao\ — A; — ...| has the same degree, same leading
coefficient and the same roots as polynomial (13) therefore coinside with (13).

E. Ezample. Let us consider a system (9) written in a coordinate form for (z,y)T €

R2, k=0,1,..., where T means transposition
Tryr = [Tk, Y The1, Yh—1, Th—2, Yk—2), (19)
Ukt1 = 9(Ths Yhs Tho1, Yh—1, Th—2, Yr—2)-

Let us assume that the system (19) has a cycle 71, 72 of the length 2
— 1 _ 721
= , = , 20
m ( Mo > 2 < N2z ) (20)
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21 = f(7711, 2,721,722, M11, 7712)7
no2 = g(Mi1, M2, M21, 722, M1, M2),
{ m = f(7721,7722,7711,7712,7721,7722)7
2 = 9(7721,7722,7711777127772177722),

and 771 7é T_]Q.

Thus, for the system (19) we have m = 2,7 = 2 and T = 2. We came up with
the following problem: write the characteristic equation for checking the local asymptotic
stability of the cycle (20).

Standard approach. Define the vector of the size m(7 + 1) =6

where

1 _  Tk-2 2 _ [ Th-1 B _( Tk )
% (ykz)’ % (%1 )’ % (yk)

Then the system (19) is equivalent to the system
()

(1) z

i &)

21(92)1 - “

Z(§S STk Yry Tho1, Yr—1, T2, Yk —2)
k+1 9Tk, Yrs Th1, Y—15 Th—2, Yr—2)

This system define the map

&1 &3
&2 &4
&3 &s
& | &6 ’
55 f(€5a§6363554a€1362)
56 L 9(65366563564361362)
which Jacobi matrix evaluated at the points
mi 721
M2 22
* 21 * M1
- d -
1 22 and Yo Mo
M1 21
M2 722
correspondingly are
0 0 1 0 0 0
0 0 0 1 0 0
1wy 0 0 0 0 1 0 _

¢<71 ¢<72 ¢03 ¢0'4 ¢0'5 ¢<76
Yol Yo2 Yo3 Vo5 Vo6 Vo2
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Above

of
= 71,5, 8_5]

99
a¢;

of

0¢;

dg

—_— :’)/27*, jzl,,6
0¢; /

= ¢2,5,

= ¢1,5,

YT YT Y5 Y5

Then
'(y1) = F'(y1) F' (y3)-
The characteristic polynomial is

p1(A) = [M = F'(y7) F' (y3)],

where [ is a unit matrix of the dimensions 6 x 6.
Alternative approach. The system (14) has a form

Tho1 = (T, Yk Tho1, Yh—1, Th—2, Yk—2),
Yk+1 = g(zkaykaxkflaykflaxkf%yka)a
Tryo = f(Tha1, Ykt1, Ths Yk> The15 Yh—1)5
Ykt2 =  G(Tht1s Ykt 1, Ths Yko Th—1, Yk—1)-

Define a vector
2
25 = ,
k 21(62)

where
(1 _ ( T2(k—1)+1 > (2) _ < T2k >
z, = y 2y = ,
Y2(k—1)+1 Y2k

then

Tok+1 J @2k, Yoks Tak—1, Y2k—1, T2k—2, Y2k—2)

s = | Y2 | 2 9(Tok, Yoks T2k—1, Y2k—1, T2k—2, Y2k—2)
+ —_ prn

Tok42 F(Tort1, Y2r+1, T2k, Y2k, T2k—1, Y2k—1)

Y2k+2 g($2k+1, Y2k+1, L2k, Y2k, L2k—1, y2k—1)

After substituting in the third and the forth equations the values for xox41 and yor41 by
their values from the first two equations we get a system

Zk+1 = (I)(Zk, Zk—l)-

Making a substitution 5,(3) =1 — z,gj), j = 1,2, we linearize the system. Then (18) takes

the form

W 013 P14 5}(61) n d15 P16 5}(62) n b1 P12 5}2231
5k+1 _ Y13 Y14 Y15 Y16 Y11 Y12
51(521 P25 P26 5}(;21_'_ $23 P2 5}(62)4_ P21 P22 5}(61)
Y25 Y26 Y23 Y24 Y21 Y22
From there we get the characteristic polynomial
0 0 0 0
0 0 0 O
A) = N2 — A2 —
p2(3) ¢a5 P26 0 0O
Y5 Y26 0 0
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$13 P14 P15 P16 0 0 ¢11 ¢12
| osoma s e | 00y me

@21 P22 P23 P2 00 0 0

Y21 Y22 Y23 V24 0 0 O 0

One can verify that p;()\) and A~2pa(\) are same.
3. Special case. Our approach in contrast to the standard one is allowed for the
systems of the special type (2) which is

Tpy1 = a1 f(xr) +aaf(xp—7) + ... + an f(Tr—(n—1)7),

immediately write the characteristic polynomial. Then

200 = afE) asfG) H e+ an F ),

2 1 1 1

z,igﬁl — alf(zk+1)+a2f(())+ +aNf<z,22>N+2>
D0 = G fED) + asf¢P) 4+ anfP o),
B — B — S — -
Zl(€+)1 = alf(z,g+1 ))+a f(,z,(C ))jL...JraNf(z,(€ N-?—2)

Let us denote Jacobi matrices f’(n;) of the dimension m x m by M;, j = 1,...,T. Let
z,(j) =n; + 5,2]). By linearizing we get

51221 = MT(al(S(T) + a25,(€7_;)1 + ..o+ aN(;k N+1)
51(521 = M (a15(1)1 + ‘125(1)2 +..t a’N(SI(cl)N-'rl)
51(321 = M, (a15 k1 T a25(+2 +. Tt aN(SI(c )N+1)
T ........................................ T1 .................... o
6I(€+)1 = Mg 1(a15k+1 ta 25k+2 '+ +a 51(c N+1)
Letting 5,(3) = A¥3; we obtain (5; # 0)
)\k+1§1 = MT(al)\k + ...+ aN)\kiNJrl)gT,
)\k+1§2 = Ml(al)\kH + ...+ aN)\k_N+2)§1
)\k+1§T = MT_l(al)\k“ + ...+ aN)\k_N+2)§T_1.

Denote p(A) = a1 AN + ... + ay. Then

Mg = My p(N\)sr,
AV=15, = My p(\)s,
)\N_IET = Mp_4 p()\)ET_l.

Since the eigenvalues of the matrix My --- M; are independent on the cyclic reordering of
the product matricies [4], we have

|)\1+(N—1)TI — MyMp_q--- Ml(p()\))T| =0. (21)

Let the eigenvalues of the matrix MpMp_1--- My be p1, ..., - Then changing to the
product to the Jordan canonical form one get from (21)

ﬁ(/\”(N”T —ni(p(\)") = 0. (22)
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In special case and m = 1 the equivalence of the characteristic polynomials obtain by the
standard and by our approach was established in [1].
4. Conclusion. Assume that the system

The1 = foe), f:A—A ACRT, (23)

has an unstable T-cycle (11,...,m7). The cycle multipliers p, ..., s, are zeros of the
characteristic polynomial

T
det [ ul =[] f'(ny) | =0.
j=1

Assume that the multipliers are known only approximately, i. e. located in a region M C C.
Now, let us close the system by a control

N—-1
Un ==Y & (f @n_jryr) = f(Tnj7)), lgjl <1, j=1,...,N - L (24)
j=1

The closed-loop system x,,11 = f(x,) + u, can be written as

N

N
Tpy1 = Z ak f(Tn—kr+T), Zak =1, (25)
k=1

k=1

where ai and € are in bijection

N
gi= Y ak, j=1,.,N—1
k=j+1

Note that the T-cycles of the systems (23) and (25) coincide.
The characteristic equation of the linearized around the cycle system is

T
m N
H )\T(N—l)-i-l — U <Z ak}\N—k) — 07 Hy € M, ] = 1, e, m.
j=1 k=1

It is required to choose the gain ¢; in the control (24) such that

i) T-cycle of the system (25) to be locally stable;

ii) the depth of the prehistory T(N — 1) in the control (24) to be minimal.

Thanks to formula (22) the above problem can be treated by the use of geometric
function theory of complex variables. This theory allows to find necessary metric properties
of the exceptional sets of the polynomial mappings of the unit disc

T

N
F:D—C, F(z)== Zajzj_l
j=1

From there one can find the minimal values of N and the optimal coefficients. The scalar
case of T'= 1,2 was treated in [5, 6].
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