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COMPUTER MODELLING OF THE SEA GAS-PIPELINE GLACIATION
AND OF THE FLOW CHARACTERISTICS BEHAVIOR
IN UNSTEADY REGIMES

St. Petersburg State University, 7-9, Universitetskaya nab.,
St. Petersburg, 199034, Russian Federation

The mathematical model of non-stationary gas mixture transmission by the sea gas pipeline
is suggested taking into consideration the possibility of pipeline glaciation. The algorithm of
the numerical solution of a nonlinear model equation system is presented. The algorithm has
been implemented in C++ in the form of program complex, which enables to calculate time
changes of the temperature, density, pressure and speed of gas mixture in every section of the
gas pipeline and time changes of an ice layer thickness on outer surface of the gas pipeline. As
an example, the calculation of one of variant gas transmission is illustrated by the chart, which
shows variations of the ice layer thickness for different sections. Refs 6. Figs 5.

Keywords: sea gas-pipelines, gas transmission, dynamic of glaciation, nonstationary flow,
mathematical models, Lax—Wendroff-type scheme.

H. H. Epmonaesa

KOMITBIOTEPHOE MOJZIEJINMPOBAHUE
OJIEAEHEHN I MOPCKOTI'O TA30OITPOBOJA
N ITOBEAEHN A XAPAKTEPUCTUK ITIOTOKA
B HEYCTAHOBUBIIINXCHA PE2KMTMAX

Cankr-IlerepOyprckuii rocyapcTBeHHbIN yHUBepcuTeT, Poccuiickass Peneparust,
199034, Caukr-IlerepOypr, Yuusepcurerckasa uab., 7-9

IIpeniioxkena maremaTuvyecKasi MOJIE/Ib HECTAIIMOHAPHON TPAHCIIOPTUPOBKH CMECH I'a30B 110 MOP-
CKHUM ra30IpOBOJaM, yINTHIBAIOIIAs BO3MOXKHOE OJIe/IeHEHNE Ta3011poBoa. IIpuBesen anmropurm
YUCJIEHHOTO PEINEeHUsl HEJUHEHHON cucreMbl ypaBHeHu# Momenu. OH peain30BaH HA A3BIKE
C++ B Buge komiuiekca nporpamm SGPIT, nossosisirolnero paccyurarb U3MEHEHUsI BO BpeMe-
HU B KaKJIOM CE€YEHUU Ia30IIPOBOJIa TEMIIEPATYPbI, IVIOTHOCTH, JABJIEHUS U CKOPOCTH IIOTOKA
ra30BOil CMeCH, a TaK»Ke TOJIIIMHY CJIOS JibJla Ha BHEIIHEH ITOBEPXHOCTH ra3onpoBoga. IIpumep
pacJera OIHOrO M3 BapUAHTOB TPAHCIIOPTUPOBKY Ia3a MPOUJLIIOCTPUPOBaH rpadpukamMu, JeMOH-
CTPUPYIOMINMYI U3MEHEHUs] TOJIIIMHBI CJIOs JIbJla BO BDEMEHU JJIsi Pa3HbIX cedeHuil. bubsmorp. 6
Ha3s. Wi 5.

Karoueswie ca06a: MOPCKUE Tra30pPOBO/bI, TPAHCIIOPTUPOBKA ra3a, JMHAMUKA OJIEJEHEHUS,
HECTaI[MOHAPHOE TeYeHUe, MaTeMaThudecKue Mojenu, cxema Jlakca—Benapodda.

Introduction. The Arctic seas of Russia contain big natural gas fields. Work has
continued on the development of gas condensate fields in these seas. One of the problems
is transportation of the extracted gas from an offshore platform to the mainland. A
computer model of flow of a real multicomponent gas mixture in a sea hyper-pressure gas-
pipeline and at possible glaciation of the outer surface of pipeline is an effective instrument
to analyze and to compute the sea gas pipeline parameters and the gas transmission
regimes. Computer simulation of these processes plays an important role in the long-term
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forecasting of gas pipeline work in the steady and the unsteady regimes. The mathematical
models of the steady-state regimes for these problems are presented in the book [1]. The
present work continues these studies for unsteady regimes of the gas transportation through
the sea gas pipeline operating under such conditions that glaciation of outer surface of the
pipeline is possible.

Mathematical model of gas flow and of gas pipeline glaciation dynamics
(model 1). The model 1 described of the formulas
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the initial conditions for p, T, u, (7)
the boundary conditions for p, T, u; (8)
the unit of calculation q, when no ice layer (unit A)
oT;
a—tl = alﬁ(Tl)ﬂ S (R, Rl)ﬂ (9)
T
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r= Ry 2 275, or (13)
oT,,
W = awE(Tw), re (RQ,RQ + 6*), (14)
r=Ro+0,: T,=T"7 (15)
the initial conditions for T3, Ty, T; (16)

the unit of calculation q, when ice layer exists (unit B)

the equations and the conditions (9)—(12) are as in unit A,
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In presented model equations (1)—(3) are equations of the continuity, of the momentum
and of the energy, (5) is the Redlich—Kwong equation of state, (6) is the caloric equation
[2]; (9), (11), (14), (18), (21) are the heat equations in the pipeline wall layers, in the
thermal boundary layer and in the ice layer, respectively; (20) is the Stefan condition.

In system (1)—(23) we use the following designations: u, p,p,T are the flow velocity,
the density, the pressure, and the temperature of a gas mixture, correspondingly, which
are functions of time ¢ and coordinate z coinciding with the gas pipeline axis; e = e(z, t),
e = e(z,t) are the mass densities of energy and internal energy; A is the hydraulic resistance
coefficient; ¢ is the radial component of flux density of the internal energy (the heat
flux vector) upon the inner surface of pipeline in z-th cross-sections; h, ¢, ¢ are the
dimensional constants in the Redlich—Kwong equation of state determined by a given
chemical composition of a gas mixture [3]; ¢, in equation (6) is the specific heat of an
ideal gas (including ideal gas mixtures); r is the radial coordinate in cylindrical coordinate

system (r, p, z); L = %% (ri) is the Laplace operator in cylindrical coordinate system
9 9

or

(r, 2, ) for 52 = 57 = 0; £(¢) is the ice thickness in z-th cross-sections; ar = A/ (pk ck),
My Py €k 1 Ty, = Ty (r,t) are the thermal diffusivity, the thermal conductivity density,
the specific heat and the temperature distribution in k-th layer, indexes k = 1, 2, w, 4
correspond to the following regions: 1 to the first layer of pipeline wall (steel), 2 to the
second layer of pipeline wall (concrete), ¢ to the ice layer, w to the thermal boundary layer
of water; v is the latent heat (of fusion), R is the inner radius of the gas-pipeline, Ry, Ro
are the outer radiuses of the pipeline wall layers; T* is the ambient temperature, T is the
seawater-ice transition temperature; ., 0.+ are the thicknesses of thermal boundary-layer
when no ice layer and when one exists, respectively.

The thermal boundary-layer thickness depends on the many factors, particularly,
on bottom currents and on ground coupling. And generally, the thickness of the thermal
boundary-layer changes when the outer wall pipeline glaciation occurs. It is difficult enough
to calculate theoretically the values of thicknesses d, d.+. This information can be obtained
from the external flow problem of pipeline.

The estimation of these values in steady-state regimes is presented in book [1]. In
practice following inequalities hold: 0., < d. < Ry. Model 1 can be extended to a larger
number of layers.

In model 1 the processes in gas flow are described in terms the averaged (over the
cross-sectional area) pressure, in the velocity, in the temperature and etc. For model 1
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it is assumed that the heat exchange processes with the surroundings and the ice formation
processes have parametric dependence on coordinate z (through dependence the gas
temperature T'(z,t) on z). This presumption is justified, if the radial component of the
temperature gradient in pipeline wall layers much greater than the axial component.

Conditions of the glaciation beginning. During solving general non-steady
problem for every z can be calculated the time moment #(z) in which in this section
the ice layer occurs. For this two conditions must be satisfied

Ts(Ry,t) < T, (24)
Ao @ > Aw % . (25)
87" R27£ 67" R27£

Inequality (25) follows from the Stefan condition (20) at & — 0 for such pipeline cross-
sections that was no the ice layer in initial time. For the pipeline cross-sections in which
is no the ice layer the nonsteady regimes are calculated using system (1)—(8) and unit A.
In other cross-sections the system (1)—(8) is added by unit B.

Solution algorithm. Numerical solution algorithm for system (1)—(23) is based on
the below Lax—Wendroff scheme.

At each time step the heat flux ¢ is calculated either by the equations system of unit
A or of unit B. Equations of unit A are solved by an implicit method using elimination
method. To numerically equations solution of unit B is used a method with the explicit
tracking of moving surface [4], which is an iterative finite difference method, with variable
time steps. In this approach the time step size is variable and, it is determined so that the
ice thickness increased on given constant value during this time step.

As demonstrated previously [5] and as confirmed by calculations of test cases using
model 1, in studied problems, when inlet gas temperature is significantly higher than the
ambient temperature, the length of pipeline [, exists, for which in segment z < [, the
intense heat exchange with the ambient occurs.

In this segment the substitution of unit A by the quasi-steady state approximation
can cause errors in the calculations. For z > [, the calculation of unit A can be made using
quasi-steady heat transfer description with sufficient precision.

For an illustration in Fig. 1 have plotted the temperature distribution T'(z) along the
pipeline rote at time ¢ = 10 hour. The temperature is calculated using model 1 for the
unsteady treatment of unit A (the curve 1) and for the quasi-steady model (the curve 2).
From Fig. 1 is obvious that beginning [/, =« 250 km the unit A calculation can replace by
its quasi-steady version.

The pipeline glaciation occurs at the end of the pipeline route, in the region z >> I,
where is possible to use the quasi-steady approximation to calculation the temperature in
the pipeline wall layers. Besides, the glaciation rate of outer pipeline surface, as expected,
is much less than the temperature change rate in wall layers. Both above factors allow to
replace the unit B by its quasi-steady version.

The quasi-steady version of unit B:

Ti(r) = A + Brlnr, k=1,2,4, w, 26)

T(Z,t) = Al + Bl IHR,
MB1 = XBy = N\ By,
Ay +BylnRy = A; + B; In Ro,

(
(27)
(28)
(29)
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Fig. 1. Gas temperature distribution T'(z) along the pipeline rote at time ¢ = 10 hour:

for the unsteady heat transfer model (1) and the quasi-steady model (2)

Aj+ BiIn(Ry + &) = Ay + By In(Ry + &) = T, (30)
X B; — A\wBu d¢

D W =2 1

o 1Pi, (31)

T = Ay + By In(R2 + € + 6. ). (32)

The coefficients Ag(t), Bi(t) satisfying to system (26)—(32) are equal:
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The expression for B, (34) can be simplified by use

po T TR0
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Stefan condition (31) turns into following ODE for £(t):
B, (T* - T.) de

) - )\w = 4
Ro + ¢ 0. Par

The desired expression for heat flux ¢ in pipeline sections, in which ice layer exists, in the

quasi-steady approximation is given by the equation
_MB
==

(35)

(36)

Here B; is calculated from equation (33) and ice thickness £(t), which is a member of By,
is calculated from ODE (35).

As noted above, in most practical cases the inequalities d*x < d%x < Ry hold. For
calculation of the glaciation beginning time f(z) is permissible to use the quasi-steady
versions of units A and of B for sections z > [,. In this case, the conditions (24), (25) can
be represented in the form of one inequality

T(z,t) <T*— (T* — T.) (;* +%f2 (1 %Jrﬁl gj)) (37)

The time #(z) for every cross-section is determined as a moment in which the gas
temperature T'(z,t) satisfies the condition (37) in this cross-section. (In considered
problems, the gas temperature is monotonically decreasing function in every cross-section.)

Boundary and initial conditions. We consider non-stationary problem of gas
trans-portation, in which nonstationarity is due to the gas consumption variations and
due to the ice formation processes.

Initial conditions. For model 1 the initial conditions are the distributions of the
density po(z), of the temperature Tp(z) distributions and of the ice thickness &y(z) in
steady state regime:

t=0: y=pu=const= R
p(z) = po(z), T(z)=To(z), &(2)=~E(z)
The functions po(z), To(z), {o(z) are calculated using steady variant of model 1 presented
in the book [1], @ is the mass flow rate, which is constant for the steady regime.

Boundary conditions. The gas flow in the gas pipeline is subsonic. In considered
problem the unchanged over time the inlet pressure and the inlet gas temperature are
given. Using these values the density and the internal energy are determined from the
caloric equation and the equation of state. At outlet the law of variation of the specific
flow rate y.(t) is given. Thus, the boundary conditions are written this way:

z=0: p(0,t)=po, £(0,t)=-eo,

z=1L: y(Lt) =y.(t),

L is the gas pipeline length.

The algorithm of the numerical solution of model 1. Turn from the velocity u
to the flow rate y = pu and cast equations (1)—(6) in non-dimensional form in the variables
P, Y, p, € using for the dimensionless quantities the same notation:

ap L dy
ot 9z
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The dimensionless complexes mi; — mqo are expressed through the physical parameters
and the characteristic values from the formulas

e(T, p) = msT —my

mi = mo — — ma — ——
1 pzug ) 2 AR ) 3 QEI )
my = , M5 =—"733—, Mg= )
Jo pzEaRRry Da
—— cpi — oy,
pz\/Tz , €z

3c 5
m = 7) m = €Ty
9 90e. \/Tz 10 %

lz, t,; are the characteristic length and time, p;, p,, T, are the characteristic density, the
pressure and the temperature of the real gas mixture, €., u, are the characteristic internal

=55 W+ 00a), w = Q) (pem )

the quantities p,, p., T are connected by the equation of state (5).

For the numerical solution of model 1 we use modified Lax—Wendroff scheme [6], which
appeared to be the most preferable for the considered problems by the count rate and the
simplicity of implementation.

The algorithm consists of two steps. At every step the desired values of the density,
of the flow rate and of the internal energy are determined explicitly:

energy and the velocity of gas mixture (¢, = ¢, T,

n+1/2 " " " .
t 1: Uk+1/2 =05 (Uk + Uk+1) Fi'y — Iy _ g
stage I: 05r + A = Y4172
n+1/2 n+1/2
U’n+1 o Un F _ F - n
stage II: k ko ZRHY2 kD12 g2
T A
where
p 2 Y 0
y Y mp §
U= 2 | F= P ! , U= —ma —
3
pe+ms y€+m3ij)—2 +m4%p ms g
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Here n, 7 are the number and the time step size, A, k are the number and the space grid
step size z. The temperature and the pressure are found from the preceding equations (5),

(6)-
In this scheme the calculation qZH/ ? is carried out according to equation (10) or (36).

As follows from formula (36), the calculation xZ‘H/ ? includes the ice thickness zZH/ % at
the (n + 1/2)-th time step. This value is determined using equation (35), which can be

written in form
d¢ s1 (T — T(z,1))

ar (Rat o) (D+1n (%)) —s2 = f(T(,1),8), (38)

2

here £, R, are the dimensionless quantities, but the temperature T,T,,T* was left
dimensional

A1ty todw (T — Ty)
2y T T e
x 7 x 7 Usex
D= ﬁln&+ﬁln&.
MR A Ry
The desired ice layer tickness {ZH/ % is found explisit from the discrete counterparts of
equation (38).

The Lax—Wendroff is a second-order difference method in both time and space.

This algorithm of model 1 solution has been implemented in C++ in the form of
programm complex SGPIT. It allows to calculate all flow characteristics in any time and
ice layer thickness on the outer surface of the gas pipeline. It allows to calculate all flow
characteristics in any time moment and the ice layer thickness on the outer surface of the
gas pipeline by given parameters of the pipeline construction.

As an illustration we selected the boundary condition variant, for which the inlet
pressure is equal to 17.2 MPa to demonstrate the glaciation dynamics. It should be pointed
out that by the inlet pressure more then 21 MPa, while the other parameters remained
the same, the segment of glaciation and the ice layer thicknesses are small.

The calculation result using program complex SCRIPT for the calculation unsteady
non-isothermal flow of gas mixture under glaciation conditions is presented at the following
values of the parameters:

Q =570 kg/sec; T*=272.15K; T,=271.15K; L =450 km;

S1 =

R=05m, Ry=054m, Ry;=066m, &, =0020m, J, =0.018m;
A =24 W/ (mK), A =17W/ (mK), A,=056W/(mK), \=23W/(mK);
v = 335000 J/kg, ¢ =450 J/kg'K, ¢ =924 J/kg'K, ¢, =4200 J/kg'K;
pi = 928kg/m®,  p1 = 10000kg/m’, py = 2300kg/m’, p, = 1005kg/m’;
T(0,t) = 303.15 K, p(0,t) =17.2 MPa, A =0.0083, ¢, =1712.25 J/kg-K.

In calculations we used following dimensional values of the characteristic parameters: t, =
3600sec, 7, = 0.01m, p, = 138.02 kg/m3, T, = 283.15 K, I, = 10km, them correspond
the characteristic pressure p, = 15.2 MPa and the characteristic velocity u, = 3.69 m/sec.
The values h = 502.9, ¢ = 12 297.58, 6 = 0.0018 were chosen correspond to the gas mixtu-
re with more methane. The calculations were carried out by the dimensionless time step
7 = 0.000035 and by the dimensionless space step /A = 0.01. In Fig. 2 the dependence time
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t from the cross-section coordinate z is shown. # is the time of beginning glaciation in the
part of gas pipeline, in which at the initial time ¢y the ice layer is absent. By the abscissa
axis, z in km is indicated, by the ordinate axis time in hours is indicated. In Fig. 3 the
temperature change of gas T along the pipeline route at ¢ = 5 days is shown.

1, hour T, K
120
100
295
80
60
285
40
20
0 . . , 5 . 275 oy Cy )
300 340 380 420 0 100 200 300 400 500
z, km z, km
Fig. 2. Dependence time £ from Fig. 8. Temperature change of gas T along
the cross-section coordinate z the pipeline route at t = 5 days

In Fig. 4 the change of ice layer thickness £ along the pipeline route at t = 5 days is
shown. In Fig. 5 the change of ice layer thickness in cross-sections [ = 350 km (see a) and
I =450 km (see b) during five days.

¢, cm

35F

0 " " " " " " 1 1 1 J
0 100 200 300 400 500
z, km

Fig. 4. Change of ice layer thickness £ along the pipeline route at t = 5 days
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Fig. 5. Change of ice layer thickness £ in the cross-sections
1 =350 km (a) and | = 450 km (b)
during first five days

By the abscissa axis, time in hours is indicated, by the ordinate axis ice layer thickness
in centimeters is indicated.

Conclusion. The mathematical model of the unsteady non-isothermal turbulent gas
flow on the sea gas pipeline including the conjugate model of glaciation dynamics of outer
surface pipeline was presented.

The effective algorithm of numerical solution of model 1, implemented in the form of
complex program SGPIT, was suggested.

Results analysis of computer simulation of the gas transportation processes on the sea
gas-pipeline and the conjugate processes of its outer surface glaciation was introduced.

The region of flow, in which can use the quasi-steady approximation of the heat
transfer model was determined.

For the considered problems the admissibility of quasi-steady approximation by the
simulation of glaciation dynamics of outer gas-pipeline surface was proved.
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