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This paper considers the problem of optimal control of an object, whose motion is described
by a system of ordinary differential equations. The original problem is reduced to the problem
of unconstrained minimization of a nonsmooth functional. For this, the necessary minimum
conditions in terms of subdifferential and hypodifferential are determined. A class of problems,
for which these conditions are also sufficient, is distinguished. On the basis of these conditions,
the subdifferential descent method and the hypodifferential descent method are applied to
the considered problem. The application of the methods is illustrated by numerical examples.
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A. B. Qomunoviz

METO/I T'NIIOI NP PEPEHIIMAJIBHOTO CITYCKA B 3AIJAYE
ITIOCTPOEHU A OIITUMAJIBHOTO YIIPABJIEHUN A

Cankr-Ilerepbyprckuii rocyzapcTBeHHbIN yHUBepcuTeT, Poccuiickas Penepanus,
199034, Caukr-IlerepOypr, YuusBepcurerckast Hab., 7-9

B crarpe paccmarpuBaeTcs 3a7atda ONTHMAJIBLHOIO YIIPABJICHHUS OOBEKTOM, IBHXKEHHE KOTOPO-
IO ONMCHIBAETCS CHCTEMOI OOBIKHOBEHHBIX quddepeHnuaabHblx ypaBHeHuit. Vcxonnas 3amgada
CBOJUTCH K 3aJade 0e3yCJIOBHOW MUHHMMHU3AIMU HEKOTOPOIO HerIaJkKoro dyHkuuoHasa. Jljis
HEro Haii1eHbl HeOOXOJUMBIE YCIOBHS MUHHMyMa B TepMHUHaX Ccybmuddepennuata u runogud-
depennunana. Beiiesnen kiacc 3agad, Jjisi KOTOPBIX 9TH YCJIOBUS OKa3bIBAIOTCH M JIOCTATOY-
vpiMu. Ha ocHOBaHMHM MaHHBIX yCJIOBHH K H3ydaeMON 3ajate IPUMEHSIIOTCS MeTof, cybaud-
depennaabHOro cuycka u meror runonuddepeHnpaabHoro cuycka. IIpusoxkeHune MeTonoB
MJLTIOCTPUPYETCST Ha YHCJIEHHBIX NpuMepax. bubauorp. 16 mass. Tabm. 4.

Karouesvie crosa: Heryiaakuit pyHKIMOHAII; BaPUAIMOHHAS 33/1a4a, OIITUMAJILHOE YIIPaBJIe-
HEe, MeTo, runoauddepeHIuaaIbHOrO CIIyCKa.

Introduction. The technique of exact penalty functions was firstly used in the
optimal control problems in [1, 2]. The general idea of such an approach is reduction of
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the original problem with restrictions to the unconstrained minimization of a nonsmooth
functional. For this problem one should use nonsmooth optimization methods. The
subdifferential descent method and the hypodifferential descent method belong to this
class of methods.

The methods used in the paper may be refered to the direct methods of optimal control
problems, since the optimization problem in functional space is being solved without
necessity for integration of the system, which describes the controlled object. Among
the vast arsenal of optimal control problem solving methods an approach based on the
variations of the minimized functional is similar with the considered in the article method
(see [3-6]).

In this paper the integral restriction on control is considered. Optimal control
problems with such constraints were studied in some works, for example [7-9].

Approach used in the article is especially appropriate when it is important to take
into account precisely the limitation on the final position of the object and the restriction
in the form of differential equalities. It is therefore of interest in the spread of the use of
exact penalties over optimal control problems with state constraints, the exact adherence
of which is principal in many practical problems.

Statement of the problem. Let us consider a system of ordinary differential
equations in normal form

z(t) = f(z,u,t), tel0,T] (1)
It is required to find such a control u* € P,,[0,T], satisfying an integral restriction
T
/(u(t),u(t))dt <1, (2)
0

which brings system (1) from the given initial position

z(0) = o (3)
to the given final state
o(T) = zr (4)
and minimizes the integral functional
T
I(z,u) = /fo(as, &, u, t)dt. (5)
0

Suppose that there exists an optimal control w*. In system (1) 7" > 0 is a given
moment of time, f(z,u,t) is a real n-dimensional vector-function, x(t) is an n-dimensional
vector-function of the phase coordinates, which is supposed to be continuous with partially
continuous in the interval [0,T] derivative, u(t) is an m-dimensional vector-function of
control, which is supposed to be partially continuous in [0,7]. We consider f(x,u,t) to be
continuously differentiable in x and u and continuous in all three of its arguments.

If ty € [0,T) is a discontinuity point of the vector-function u(t), then we put

u(ty) = 1111;13 u(t). (6)
At the point T we assume that
u(T) = ltlTr%l u(t). (7)
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We consider that () is a right-handed derivative of the vector-function x at the
point tg, 2(T) is a left-handed derivative of the vector-function x at the point T'.

In functional (5) fo(z,&,u,t) is a real scalar function, which is supposed to be
continuously differentiable in x, £ and u and continuous in all four of its arguments.

Reduction to the variational problem. Put z(¢) = @(¢), z € P,[0,T]. Then from
t

(3) we get x(t) = g +/ z(1)dr. With regard to the vector-function z(t) we make a
0
suggestion, analogous to (6), (7). We have

t
fzyu,t) = +/z Ydr,u,t |,
0
t
folx, z,u,t) = Jco—l—/z )T, z,u,t
0
Let us introduce the functional
T
Fx(z,u) =I(z,u) + A | p(z,u) +Zz/11 + max 0,/ Ndt—1,1, (8)
0
where

T
/ :L' u,t),z(t) — f(z,u,t))dt,
0

T

w _-rOz /Zz dt—xTu izlvnv
0

and zg; is an i-th component of the vector zq, xp; is an i-th component of the vector zp,
i =1,n, A > 0 is some constant.
Denote

T
D(z,u) = p(z,u +Z1/)1 + max 0/ ))dt —1 5. 9)
0
It is not difficult to see that functional (9) is nonnegative for all z € P,[0,7] and
for all uw € P,,[0,T] and vanishes at a point [z,u] € P,[0,T] x P[0, T] if and only if the
¢

vector-function w(t) satisfies constraint (2), and the vector-function Z(t) = z¢ + / zZ(r)dr
0

satisfies system (1) at u(t) = u(t) and constraints (3), (4).
Let us introduce the sets

Q = {[z,u] € P,[0,T] x Py[0,T] | ®(z,u) =0},

108 Becmwux CI6I'Y. Cep. 10. Ipukasadnas mamemamuxa. Ungopmamuxa... 2016. Bon. 3



Qs = {[z,u] € P,[0,T] x Py[0,T] | ®(z,u) < 6},

here § > 0 is some number. Then
Q5 \ Q= {[z,u] € P,[0,T] x Pn[0,T] | 0 < ®(z,u) < d}.

Using the same technique as in [1, 10], it can be shown that the following theorem
takes place.

Theorem 1. Suppose there exists such a positive number A\g < oo that Y\ > Xy there
exists a point [z(X),u(N)] € Po[0,T] x P[0, T], for which Fx(z(\),u())) = [inf] Fy(z,u).

Let the functional I(z,u) be Lipschitz on the set Qs \ Q. Then functional (8) will be an
exact penalty function.

Thus, under the assumptions of Theorem 1 there exists such a number 0 < \* < oo
that YA > A, the initial problem of minimization of functional (5) on the set € is equivalent
to the problem of minimization of functional (8) on the whole space. Further we suppose
that the number A in functional (8) is fixed and the condition A > A* holds.

Lemma 1. If system (1) is linear in the phase variables x and in control u, and the
functional I(z,u) is convex, then the functional Fy(z,u) is convex.

Proof. Let us present functional (8) in the form

Fy(z,u) = I(z,u) + dp(z,u) + AF1(2) + AFa(u),

where I(z,u), p(z,u), F1(z), Fo(u) are the corresponding summands from the right-hand
side of (8). The functionals F(z) and F»(u) are convex as maximum of convex functionals.
The functional I(z,u) is convex by the lemma assumption. Let us show the convexity of
the functional ¢(z, ) in the case of the linearity of system (1).

Let system (1) be of the form

&= At)z + B(t)u + c(t),
where A(t) is an n x n-matrix; B(t) is an n x m-matrix; c(¢) is an n-dimensional vector-
function. Suppose A(t), B(t), c(t) be real and continuous in [0,T]. Let 21,22 € P,[0,T],
uy,uz € Pp[0,T], a € (0,1). Denote @(z,u,t) = z(t) — f(z,u,t). We have

o (a(zr,u1) + (1= @)(22,u2)) = |Jazi () + (1 - a)z2(t) —

) [0 + / az1 (1) + (1 — @)ze(7))dr] — B(t) [ous () 4+ (1 — a)uz(t)] — c(t)||2 =

0

T
= ||a®(z1,u1) + (1 — 04)@(227112)“2 = 042/(@(21#1,15) ?(z1,u1,t))dt + (10)

T T
+2a(1 —a) / (21, u1,t),P(22,uz, t))dt + (1 — ) 2/ (22, u2,t), P(22, uz, 1)) dt,
0 0

T
(a@(21,U1)+(1—04)90(22,U2 a2/ (z1,u1,t),@(21, u1, ))dt +
0

Becmnux CII6I'Y. Cep. 10. IIpukaadnas mamemamuxa. Unpopmamuxa... 2016. Bon. 3 109



T
+ 2a(1 — @) /(@(217Uht)a@(zhuht))dt (P(22, uz, 1), P(22, up, t))dt +
0

Ot

T
(1-« 2/ (22, u2,t (ZQ,UQ,t))dt. (11)
0

Using Hélder’s inequality, for all z1, 29, u1, us one gets

T
/ Zlaula 7@(227u2ﬂt))dt<
0

T T
/ Zl,Ul, 7 (Zlaula / 227u27 ,@(ZQ,’UQ,t))dt,
0 0

hence from (10) and (11) we obtain

©?(alzr,ur) + (1 — a)(22,u2)) < (ap(z1,u1) + (1 — a)@(zzvuz))Q- (12)

Since go(a(zl,ul) + (1 - a)(ZQ,uQ)) > 0, ap(z1,u1) + (1 — a)p(z2,uz) > 0, then from
inequality (12) V z1, 22, u1, uz and a € (0,1) follows:

p(a(z,ur) + (1 — @) (22,u2)) < ap(zr,u1) + (1 — @)p(z2, uz),

that proves the convexity of the functional ¢(z,u) in the case of the original system
linearity.

Now note that the functional F)(z,u) is convex (in the case of the initial system
linearity) as a sum of convex functionals.
Lemma 1 is proved.

Necessary minimum conditions. Let us introduce the sets

T
Q1 =S z€ P,[0,T] | xo—i-/z(t)dt:xT ,
0

0y ={uePl0.7] | /(u(t),u(t))dt <1y,

Qs = {[z,u] € P,[0,T] x Pn[0,T] | ¢(z,u) =0}

and the following index sets:

Iy={i=T,n|v;(z) =0},
I ={i=Tn|¢;(z) <0},
L ={i=Tn|¢;(z) > 0}
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Let us also introduce the control sets

Up={ u€ Ppl0,T] | u(t))dt—1=0,,

—
ﬁ
~
=

U_-={u€Pu[0,T] | [ (u®),u)dt—-1<0,,

Upr =S uePyl0,T]| [ (ut),u)dt—1>0

Ot —— g T

Using the same technique as in [1, 10], it is easy to see, that the following two theorems
take place.

Theorem 2. If [z,u] ¢ Q3, then the functional Fx(z,u) is subdifferentiable, and its
subdifferential at the point [z, u] is expressed by the formula

T

T
fo dfo of
OF\(z,u) = /8—d —|———|—)\[ (t) — /(8) dT—l—ZezI:wZez—l—Z,u]e]
dfo afy’ . ,
Bu +A[— (%) w(t) +21/u(t)]} ‘ w; € [-1,1], i € I,
Mj:()a J € I, Mj:L j€I+, ,ujzfla Jel, (13)
velol],uely, v=1, ueU;, v=0, uelU_,
_Z(t)—f(l‘,u,t)
W= )

Theorem 3. If [z,u] € Q3, then the functional Fx(z,u) is subdifferentiable, and its
subdifferential at the point [z,u] is expressed by the formula

8FA(z,u):{[/aaf0d +%+)\[ (t) — /(3f) d7—+szez+ZM]€]

t t i€lp

gf(’ +A[ - (%)/U(t)—i—Zuu(t)H ’vePn[O,T], 1ol <1}. (14)

In (14) w; € [-1,1], i € Io, pj, j=1,n, v are defined by (13).
Corollary 1. If [z,u] € Q3, z € Q1, u € Qa, then the functional F)\(z,u) is
subdifferentiable, and its subdifferential at the point [z,u] is expressed by the formula

aFA(Z,w:{[/g{;M%H[() /(W) (ryir + 3 wied],

t + i€ly
% +A[ - (%)/v(t) +2VU(t)H ‘ w; € [-1,1], i =T1,n, (15)

vel0,1], ueUy, v=0, ueU_, ve P,J0,T], ||v]| <1

—
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It is known [11] that necessary and in the case of the convexity also sufficient condition
for the minimum of functional (8) at the point [z*,4*] in terms of subdifferential is the
condition

Opntm € OF\(2",u"),

where Op4m is a zero element of the space P,[0,7] x P,[0,T]. Hereof and in view of
Lemma 1 we conclude that the following theorem takes place.

Theorem 4. For the control u* € y to bring system (1) from initial position (3)
to final state (4) and to minimize functional (5), it is necessary, and in the case of the
linearity of system (1) and the convexity of functional (5) also sufficient that

Opntm € OF\(2",u"), (16)

where the expression for the subdifferential OF\(z,u) is given by (15).
The subdifferential descent method. Let us find the smallest by norm subgradient
h = h(t, z,u) € OF\(z,u) at the point [z, u], i. e. solve the problem . 611111(1 ) [|h]]2.
€O0F\(z,u
Fix a point [z, u] and consider two cases.

A. Let ¢(z,u) > 0. In this case

T T

. 2. . o 2 2

gt WP i | [ (02 S [ o)+ 2|
0 relo 0

(17)

where

El(t)f/aafod +%+>\[ () - /(%)'w(f)dﬂ,

t t

9fo of
=200 )\( ) 1),
52(t) Ju ou w(®)
and numbers w;, ¢ € Iy, p1;, j = 1,n, v and the vector-function w(t) are defined by (13).
Problem (17) is a problem of quadratic programming with linear constraints and can

be solved using one of the known methods [12]. Denote w}, i € Iy, v* its solution. Then
the vector-function

Gt 2,u) = " = [s1(8) + A Y wies, sa(t) + 220 u(t) (18)
i€lp

is the smallest by norm subgradient of the functional F at a point [z, u] in this case (if
©(z,u) > 0). If ||G]| > 0, then the vector-function —G(t, z,u)/||G|| is the subdifferential
descent direction of the functional F) at the point [z, u].

B. Let ¢(z,u) = 0. In this case

T

/ @fo 9 fo

0 t

min ||h||2 = min |[[A][* +[[h2][?] = min
hedF( wi, 1€lp, v, v
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T
/(a—i dT+szez+Zug€g }th+ (19)
t

i€ly
T

+/ 8fo (%)'v(t)+2uu(t)]}2dt ,

0

where hy = hi(t,z,u), ha = ho(t, z,u), and numbers w;, i € Iy, uj, j = 1,n, v and the
vector-function v(t) are defined by (14).
Construct the functional

Hy(v,0,) = |12 + [ max{0, [[o] 2 = 1} + max{0,7 — 1} + > max{0,0? — 1}], (20)
i€lp

here 7 = 2v — 1, and the vector w € R0l consists of the components w;, i € I.

Under some natural assumptions it can be shown, that the functional H,, is an exact
penalty function, then one may use any method (for example, the subdifferential descent
method) for the unconstrained minimization of functional (20) to find v*, w*, v*.

Remark 1. The subdifferential OF)(z,u) is a convex compact set, therefore
necessary minimum condition of the functional H,,(v,w,7) will be also sufficient.

*

Denote v*, w*, v* the solution of problem (19). Then the vector-function

T

. * 6f0 afO
G(t,z,u) :=h"= l pe ——dr —|—8——|—)\ / dT—i—Zw el—l—zlﬁjej}

68{? +A[ (gi) () + 20 u(t )” (21)

is the smallest by norm subgradient of the functional F) at the point [z,u] in this case (if
o(z,u) = 0). If ||G]| > 0, then the vector-function —G(t,z,u)/||G|| is the subdifferential
descent direction of the functional Fy at a point [z, u).

Thus, in items A and B the problem of finding subdifferential descent direction of
the functional F at a point [z,u] has been solved. In case of ¢(z,u) > 0 (item A) this
problem is solved relatively easily, as it is a problem of quadratic programming with linear
constraints. In case of p(z,u) = 0 (item B) besides unknown values w, v one must also
find the vector-function v(t). It is a more complicated problem, which can be solved with
numerical methods, for example, with subdifferential descent method, as it was noted in
item B.

Now we can describe the subdifferential descent method for finding stationary points
of the functional Fy(z,u). Choose an arbitrary point [z1,u1] € P,[0,T] x Pn[0,T] and
assume that the point [z, ug] € P,[0,T] % P[0, T] is already found. If minimum condition
(16) holds, then the point [z, uy] is the stationary point of the functional Fy(z,u) and
the process terminates. Otherwise put

[2h11, ukt1] = (28, uk] — ax G,

where the vector-function Gy = G(t, 2k, ux) is the smallest by norm subgradient of the
functional F) at the point [z, ug]. The value for the functional Gy is given either by
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formula (18) if @(zk,ur) > 0, or by formula (21) if ¢(zx,ur) = 0. The value oy, is the
solution of the following one-dimensional minimization problem
gl}irolF,\([Zk, uk] — Osz) = F,\([Zk, uk] — Oszk).

Then F)\(zk+1, urp+1) < Fi(zk, uk). If the sequence {[z, ug]} is finite, then its last point is
the stationary point of the functional F(z, u) by construction. If the sequence {[zx, ug]} is
infinite, then the described process may not lead to the stationary point of the functional
Fy(z,u), because the subdifferential mapping 9F)(z,u) is not continuous in Hausdorff
metric.

The hypodifferential descent method. Using formulas of codifferential calculus
[11], it can be shown that the following two theorems take place.

Theorem 5. If [z,u] & Q3, then the functional Fx(z,u) is hypodifferentiable, and its
hypodifferential at a point [z,u] is expressed by the formula

dF\(z,u) = [O,El(t),SQ(t)] +

+ )\ZCO{Wi(Z) B ¢i(2),ei,0m}, [_EZ(Z) —i(2), _ei,om}} n

T
+ Aco{ [ / t))dt — 1 —max{0, ||ul|* — 1}, 0, 2u(t)], [ — max{0, |[u||* = 1},0,, 0] },
0

where
s1(t) = )+ A Z Hj€s5

T

51(t) = %fod +%+A / )dr],

t

sty = 200 3(90) g,

2(t) — fl@,u,t)
o(z,u)
Mj:()a jEI()a ,uj:L j€I+, ,ujzfla jEI*-

w(t) =

)

Theorem 6. If [z,u] € Q3, then the functional Fx(z,u) is hypodifferentiable, and its
hypodifferential at a point [z,u] is expressed by the formula

T
dFy(z,u) / (z,u, 1)) ot )dt—cp(z,u)} fo T+ % +
0

t

bt~ f (2o 22 () ]

t
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+ )‘ZCO{ [Ez(z) - %(Z)a €4, Om}’ [ - EI(Z’) - %(Z)a —€4, Om} } + (22)

+ dcof [ [ (ute). u(0)at =1 = masx{0. | = 1.0, 2u(0)].
0

[ - Inax{(), ||u||2 - 1}7 On, Om}}

v e R0, ], o]l <1}

It is known [11] that necessary and in the case of the convexity also sufficient condition
for the minimum of functional (8) at the point [z*,u*] in terms of hypodifferential is the
condition

Opntm+1 € dF) (Z*, u*),

where 0,,4m+1 is a zero element of the space P,[0,T] x P,,[0,T] X R. Hereof and in view
of Lemma 1 we conclude that the following theorem takes place.

Theorem 7. For the control u* € sy to bring system (1) from initial position (3)
to final state (4) and to minimize functional (5), it is necessary, and in the case of the
linearity of system (1) and the convezity of functional (5) also sufficient that

On+m+1 € dF) (Z*, u*), (23)

where the expression for the hypodifferential dFx(z,u) is given by (22).
Let us find the smallest by norm hypogradient g = g(t, z,u) € dF)\(z,u) at the point

[2,u], i. e. solve the problem  min ||g||?.
gedF\(z,u)

Fix a point [z, u] and consider two cases.
A. Let ¢(z,u) > 0. In this case

: 2 . _
min = min 0.51(1). so(t)] +
9ede(z,u)”g|| Bi€[0,1], i:mm F1(t), 52(1)]

+ AZ {Bi] ¥i(2) = i(2), €5, 0m] + (1 — Bi) [ — ¥;(2) — ¥i(2), =€, 0m] } +

T
+ ABnt1 / u(t))dt — 1 — max{0, [[u||> — 1}, 0,, 2u(t) | + (24)
0

+ )‘(1 - ﬁn-‘rl) [ - max{O, ||u||2 - 1}’ On, Om} H2

Problem (24) is a problem of quadratic programming with linear constraints and can
be solved using one of the known methods [12]. Denote its solution G, i = 1,n + 1. Let
g = [g1, 92], where the vector-function g consists of the last n +m components of g. Then
the vector-function

G(t,Z,U)I:gg [51 +)\Z{6 eza 175)[761;0m]}+

+ )‘ﬂnJrl (05, 2u(t)] + A1 = B 11) [On, O] (25)

consists of the last n+m componets of the smallest by norm hypogradient of the functional
F) at the point [z, u] in this case (if p(z,u) > 0). If ||G|| > 0, then the vector-function
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—G(t,z,u)/||G]| is the hypogradient descent direction of the functional F) at the point
[z, u].

B. Let ¢(z,u) = 0. In this case

T
jednin llgl* = P — 0/ (,u,1) v()dt — (2, u)],
T
| Ry S R L
t t
+ )\Z {B:i[v (2), €5, 0m] + (1= B:) [ = ¥i(2) — ¢i(2), —€i, 0] } +
T
+ ABnt1 / ))dt — 1 — max{0, ||u||> — 1}, 05, 2u(t)] +

0

2
A= )~ ma{O, [l 2 = 13,0,.0,.]| | =

HllIl
Bwe[o 1], i=1,n+1, v

T
/ Fla,u, ) ()t — o(z,u)],
0

%ffd P ap - | (2 ) 2 (Y o]

+ AZ{ﬂz 2"/) 261; m} + [ E( ) "/)z( ) e“()m]} +

T
2
+ Ao / —1,0,,, 2u(t)] +)\[—max{0,||u||2—1},0n,0m}H .
0

This expression can be rewritten as follows:

: 2. i 2 2 27 _
omin gl = min [l -+ gal* + s ]

=_ min
Bi€l-1,1], i=1,n+1, v

=
>
o
—~

2(t)— f(z,u,t)) v(t)dt—p(z,u)] —i—)\ZEi(z)(Bi +1) -

- )\Z 2)+5(2 % (/ (u(t),u(t)) dt—1) (Bs1+ 1) — Amax{0, [Ju||*— 1}}2 +
0

T (T T 2
dfo 0 no_
+ /{/a—J;d +ﬁ+)\ / T)dT—l—E_lﬁiei}} dt +
0 t t =
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T
n / % _ af) v(t) + ABpyqu(t) + )‘u(t)}th] » (26)

0

where g1 = g1(t,2,u), g2 = ga(t, z,u), g3 = g3(t,z,u), 3, =26; — 1,7 =1,n + 1, and the
vector-function v(t) is defined in (22).

Let the vector 3 € R"™! consist of the components B i = 1,n+ 1. Write the
functional

n+1
— —2
Hy (v, B) = |lg||* + [ max{0, |[v||* — 1} + > max{0, 3, — 1}]. (27)
i=1
Denote
n+1
_ 2 —2
\I/(’U,ﬂ) = u[max{(), ||’U|| - 1} + Zmax{oﬂﬁi - 1}]
i=1
Introduce the sets
={[v, T x R™ | W(v,3) =0},
Qs = {[v, ePOT]xR"H]\I/vﬁ<6}

Then
5\ Q= {[v,8] € P,[0,T) x R"™' | 0 < ¥(v, ) <6}

Also introduce the following sets
Bo={B, e R| B —1=0},
B, ={B,eR| B —1<0},
Biw ={B, € R| B, -1>0},

where i = 1,n + 1.

Lemma 2. Suppose there exists such a positive number po < 0o that Vi > o there
exists a point [v(p), B(1)] € Pn[0,T] x R, for which H, (v(w),B(r)) = inf H,(v,B).
[U7B]

Let the functional g(v, B) be Lipschitz on the set Qs \ Q. Then functional (27) will be an
exact penalty function.

Thus, under the assumptions of Lemma 2 there exists such a number 0 < p* < oo
that Vi > p. problem (26) is equivalent to the problem of minimization of functional (27)
on the whole space. Further we suppose that the number 4 in functional (27) is fixed and
the condition ¢ > p* holds.

Lemma 3. Functional (27) is hypodifferentiable, and its hypodifferential at a point
[v, B] is expressed by the formula

dH#(”aB): [Oagvagﬁla"'agﬁ =+

n+1]
+ efeof [lell? — 1 = max{0, [[ol* — 1,20(), 0na], [ — ma{0, o] = 13,0, 0051]} +

+ CO{ W? —-1- maX{O,B? - 1}7 Ona QBU On]a [* maX{O;Bf - ]‘}ﬂ Ona 0n+1]} +oeeet (28)
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+ co{ By = 1= max{0, 5, = 13,00, 00, 28,,,.], [ - max{0, 5,4, = 13,0, 0011} |.

Calculate the following vector-functions in formula (28):

Jv = G1v + G2v + G3v,

0
t T
/%d£+% de)\tﬂiB-e-
Ox 0z Ox “ (o

where

915, = 2N { [ G0 = 7o) o0t~ ol + 3BT + 3B +
0 i=1 =1

FI (T - () + 3 [ [ (. ute)de - 1] (B + 1) = max{0, Jul* - 1}} Tz,
0

!’

v(t)—/(%)lv(T)dT JF)‘iBiei} e;dt,

t

/

B, =2 [ (AL (2) o) + Frau®) +u(0)]) .
0
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Remark 2. The hypodifferential dF\(z,u) is a convex compact set, therefore
necessary minimum condition of the functional H, (v, B) will be also sufficient.

Lemma 4. For the point [v*, 8| € P,[0,T] x R""! to minimize functional (27), it
1s mecessary and sufficient that

0n+n+2 S dH,u(U*a 6*)5 (29)

where the expression for the hypodifferential dH, (v, 3) is given by (28).
_ Let us find the smallest by norm hypogradient g = g(t, v, 3) € dH,(v, #) at the point
[v, 8], i. e. solve the problem

+

n+l]

min (g2 = min___||[0,90.95,. .05
gedH, (v,3) vi€[0,1], i=1,n+2

+ M[M[IIUIIQ—l—maX{O, 1] =1}, 20(t), O] + (1 =71) [~ max{0, [[v[|* = 1}, 0n, O] +
—2 —2 — —2
+ 72 [617171113“}({0; 6171}7 Ona 251a On] +(1772) [7ma’X{075171}ﬂ Ona 0n+1} +ee (30)
—92 —92 —
+ ’Yn+2 [Bn-{-l -1- ma'X{Oaﬂn-}-l - 1}507150715 Qﬂn-fl} +

— 2
+ (1 - 7n+2)[7 maX{O;ﬂfH-l - 1}a0n70n+1]:| H .

Problem (30) is a problem of quadratic programming with linear constraints and can
be solved using one of the known methods [12]. Denote its solution ~;, i = 1,n + 2. Let
g = [g1,72], where the vector-function g, consists of the last n +n + 1 components of g.
Then the vector-function

a(tavaﬂ) :gz = [gvagﬁla-"agﬁ
+ ,U/|:'7T [2U(t)7 0n+1} + (1 - ’7;) [On; On—i-l} + 7; [Ona 2315 On} + (1 - ’75) [On; 0n+1} + -

+ Va2 [0y 0ns 2Ba] + (1= 7is2) [0, O]

consists of the last n + n + 1 components of the smallest by norm hypogradient of the
functional H,, at the point [v, B]. If ||G|| > 0, then the vector-function —G(t,v, 3)/||G]|| is
the hypogradient descent direction of the functional H,, at the point [v, 3].

Let us describe the following hypodifferential descent method for finding minimum
points of the functional H,, (v, 3). Choose an arbitrary point [v1, 3;] € P,[0,T] x R"*! and
assume that the point [vy, 8] € P,[0,T] x R**! is already found. If minimum condition

(29) holds, then the point [vg, )] is the minimum point of the functional H, (v, 5) and
the process terminates. Otherwise put

[’Uk?JrlﬂBkJ,-l] = [’Ukagk] - O‘kaka

where the vector-function G, = G(t, vy, 3;) consists of the last n + n + 1 components of
the smallest by norm hypogradient of the functional H,, at the point [vy, 8] and the value
ay, is the solution of the following one-dimensional minimization problem:

minHu([“kaBk] — a@k) = HM([Uk,Bk] — akék). (31)

a>0
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Then H,, (vk+1,Bys1) < Hyu(v, By). If the sequence {[vg, B;]} is infinite, then it can be
shown that the hypodifferential descent method converges in the following sense:

|[g(vk, Bi)l| — 0 if k — oo.

If the sequence {[v, 3]} is finite, then its last point is the minimum point of the functional
H, (v, ) by construction.

Denote v*, 8* the solution of problem (26). Let g = [g1, go], where the vector-function
go consists of the last n + m components of g. Then the vector-function

G(t,z,u) = 9’2“:[ %d +%+A[ “(t) — /(%)/v*(r)dr],
0 M)

du du +)‘Z{ﬁ €, Om) + (1= B7)[ — i 0m] } + (32)

+ )‘Bn—i-l [Ona 2”( )} + )‘(1 - B:H-l) [On; Om}

consists of the last n+m components of the smallest by norm hypogradient of the functional
F at the point [z, u] in this case (if ¢(z,u) = 0). If ||G|| > 0, then the vector-function
—G(t,z,u)/||G]| is the hypogradient descent direction of the functional F) at the point
[2,u].

Thus, in the points A and B the problem of finding the hypogradient descent direction
of the functional F)\ at the point [z,u] was solved. In the case p(z,u) > 0 (point A)
this problem is sufficiently easy, as it is a problem of quadratic programming with linear
constraints. In the case ¢(z,u) = 0 (point B) besides the unknown values f3;, i = 1,n + 1,
one also has to find the vector-function v(¢). This is a more difficult problem, which may
be solved with numerical methods, for example, with the hypodifferential descent method
as it has been described in the point B.

Remark 3. Note that due to functional H,, structure problem (31) of finding the
descent step can be solved analytically. Moreover, problem (30) of finding the descent
direction can be solved in finite number of iterations using quadratic programming
methods.

Now we can describe the hypodifferential descent method for finding stationary points
of the functional Fj(z,u). Choose an arbitrary point [z1,u1] € P,[0,T] x P,,[0,T] and
assume that the point [z, ug] € P[0, T] X Py,[0,T] is already found. If minimum condition
(23) holds, then the point [z, ug] is the stationary point of the functional Fy(z,u) and
the process terminates. Otherwise put

(241, Ukg1] = [2k; uk] — G,
where the vector-function Gy = G(t, zi, uy) consists of the last n + m components of the
smallest by norm hypogradient of the functional F) at the point [zj,ug]. The value for
the functional Gy, is given either by formula (25) if ¢(zx,ur) > 0, or by formula (32) if
©(zk, ug) = 0. The value ay is the solution of the following one-dimensional minimization
problem

?;%FA([Zkauk] 704Gk) F,\([zk,uk] 704ka).
Then F)(zk+1, uk+1) < Fx(zk, ur). If the sequence {[zx,ux|} is infinite, then it can be
shown that the hypodifferential descent method converges in the sense
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g2k, ug)|| — 0 if & — oo.

If the sequence {[zg, ug]} is finite, then its last point is the stationary point of the functional
F(z,u) by construction.

Numerical examples. Let us consider some examples of the application of the
hypodifferential descent method.

Example 1. Consider the system

1 = T2,
i‘Q = Ui,
ig = T4,

$4 = U — 9.8
with boundary conditions
z(0) = [-1,0,0,0], (1) =]0,0,0,0].

It is required to minimize the functional

I= [ ui(t)+us(t) dt.
/

For this problem the analytical solution is known [13], which is as follows:
uj(t) = —12t + 6,
us(t) = 9.8,

25 (t) = —6t% + 6t,
z5(t) = =12t + 6,

z3(t) =0,

z(t) =0,
I(z*,u*) = 108.04.

Table 1 presents the hypodifferential descent method results. Here we put u = [0, 1],
z(t) = [1,0,0,0] as initial approximation, then x(t) = [-1+¢,0,0,0]. Table 1 shows that
on the 30-th iteration error does not exceed the value 3 x 1073,

Table 1. Example 1

k| I(zr,ur) | P2k uk) | [w” —upll | (127 — 2]l | [1G(zk, us)ll
1 1.06044 | 3.47062 3.21367 | 197.96324
2 0.94422 | 3.20293 3.22259 | 707.22868
10 0.34105 1.15682 1.38112 | 848.13142
20 0.20739 | 0.72749 0.69893 256.2921
30 | 108.0425 0.05774 0.02886 0.425
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Example 2. Let us consider another example. Let the following system be given

1 = xg + U1,

To = ug
with boundary conditions
2(0) = [2,0.5], (1) = [21(1),0]

and the restriction on the control
1
/ u?(t) +ud(t) dt < 1.
0

It is required to minimize the functional

Table 2 presents the hypodifferential descent method results. Here we put u = [0, 0],
z(t) = [0,0] as initial approximation, then z(t) = [2,0.5]. Table 2 shows that on the
7-th iteration error does not exceed the value 5 x 1073,

Table 2. Example 2

k| I(ek,ur) | PCrour) | [lw* —ugll | 112" —2ll | GG, ur)l|
1 1.0 1.00004 0.86826 188.77058
2 0.51873 0.91483 0.90879 76.71471
5 0.00243 0.79148 0.85081 112.2858
6 —0.61768 0.23167 0.23273 0.70711

7 —0.6464 0.08873 0.1132 0.21357

Example 3. Let the following system be given

a'clzu,
i‘QZJC%
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with boundary conditions
x(0) =[0.25,0], (1) =1[0.25,22(1)]

and the restriction on the control

1
/uQ(t) dt < 1.
0

It is required to minimize the functional

I= O/ZQ(t) dt.

This example was considered in the paper [14] with the heavier restriction on the control
|u(t)| < 1, t € [0, 1], where one may also find the optimal value of the functional

1

I(z*,u*):%.

Table 3 presents the hypodifferential descent method results. Here we put u = 10t —5,
2(t) = [10t—5, (0.25+5t2 —5t)?] as initial approximation, then z(¢) = [0.25+ 5% —5¢t, 5t —
12.5t* +9.1(6)t3 — 1.25¢% + 0.0625t]. Table 3 shows that on the 8-th iteration error does
not exceed the value 5 x 1073, however, due to the considered weaker restriction on the
control and the nonlinearity of the system we can not guarantee that the obtained value
is a global minimum in this problem.

Table 3. Example 3

k| I(zrur) | P(zr,ur) | 11G (25, up)l]
1 8.3333 486.44

2 0.43953 102.93801
5 0.10272 130.33683
7 0.00025 99.303

8 0.01579 0.1127

Example 4. Let us consider one more example. There is a system given
&1 = cos(z3),
i‘Q = Sin(xg),
i‘g =Uu
with boundary conditions

2(0) = [0,0,0], (1) = [3.85,2.85, x3(1)]

and the restriction on the control

5.1228
u?(t) dt < 1.2807.
0
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It is required to minimize the functional

5.1228

I= / 23(t) dt.

0

This example with other boundary conditions was considered in the papers [15, 16].

Table 4 presents the hypodifferential descent method results. Here we put v = 0.5,
z(t) = [0.5,0.5,0.5] as initial approximation, then x(t) = [0.5¢,0.5¢,0.5¢]. Analogous to
the previous example due to the nonlinearity of the system we can not guarantee that the
obtained value is a global minimum in this problem.

Table 4. Example 4

k| I(zp,ur) | @(rur) | G Gzrsus)l|
1 328.4571 373.594

2 232.7861 350.5031
10 27.879 81.23427
15 7.18531 48.2351
20 —0.06627 50.3464
25 0.42832 22.2662
30 —0.157194 0.21303
35 —0.19294 0.0573

Conclusion. The considered problem of constructing an optimal control in the
form of Lagrange with integral restriction on control reduces to the variational problem
of minimizing a nonsmooth functional on the whole space. For this functional the
subdifferential and the hypodifferential are obtained, the necessary minimum conditions
are found, which are also sufficient in a partial case. The methods of the subdifferential
descent and the hypodifferential descent are applied to the problem. The results are
illustrated with numerical examples.
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