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1 Introduction

This thesis studies the competition of firms in one product market with net-

work effect under which costs are dependent upon collaborations between

firms. The idea of research is taken from [14], and concerns the question:

what are the incentives of firms in market competition? The mentioned book

covers many cases of market competitions and provides solution techniques.

It discovers the topics of monopoly market and optimal behavior in quanti-

ties and prices, competition of many firms in one and many products market,

price discrimination, dynamic competitions and so on. We focus on Cournot

competition in quantities, the approaches of the research and development

adoption of new technologies and cooperative game theory. In the book is

proposed different solution concepts and models which concern these issues.

The paper [2] provides an example of applying a model with research and

development collaborations for non-cooperative and cooperative two-person

games. Authors consider a two-stage game where on different stages actions

of players represent the value of technological partnership and find Nash equi-

libria of the game. Another way of looking at the firms competition is to look

precisely at their collaborations. A collaboration link can be interpreted as

a partnership which is costly but lower costs of production of the firms in-

volved. There can be many incentives for collaboration. Indeed technological

partnerships, reduction of transportation and holding costs and others. The

collaborations between firms can be represented by a network with firms set-

tled in the nodes. In [9] M. Jackson describes social and economic networks,

constructs models of behavior and analyses them using game theory and op-

timization methods. He provides allocation rules for cooperative games on

networks as well. Mostly he focuses on the topology structure of equilib-

rium and stable networks. He discovers network formation stage, provides
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the conditions for existence of stable networks. He introduces a one-stage

model of the game we discover, the game on a fixed network, but he does

not inspect the two-stage game and consequently the issues of the two-stage

equilibria and cooperative game. We use definitions, concepts and notations

from this book in our work. In [8] authors discover a coordination game

with the endogenous network structure with and costs of maintaining the

collaborations. They examine stochastic stability issue on fixed networks,

characterize stochastically stable states and inspect how the endogenous net-

works affect stochastic stability. Similar to ours, a non-cooperative model of

network formation with link formation costs is investigated in [3]. There is

considered one-way and two-way flow of benefits. The strict Nash equilibria

are found in both models: for one-way flow model there are empty network

and wheel network and for two-way flow model – empty and star networks.

Also there is considered dynamic process and is proved that it converges

to strict Nash equilibrium. Another close research is done in [6]. There

Cournot oligopoly is considered with addition of opportunity for each firm

to form pair-wise collaborative links with other firms which will lower costs

of production of participants. The result is in the characterization of stable

networks and comparison them with efficient networks. There is found that

the complete network is stable. Authors also show that from a social point

of view the complete network is efficient. The comprehensive overview of

cooperative games and coalitional formations for applications in economics is

provided in [4]. There are discovered general issues of incentives to cooperate,

form a coalition, provided analysis of influence groups of coalitions to other

coalitions, examined the bargaining issue of total payoff of coalition between

players. And there is considered competition of coalitions. In [13] there is an

analysis of cooperative game based on network model with costs for estab-
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lishing links using an extension of the Myerson value to determine the payoffs

in a 3-player symmetric game and the issue of existence coalition proof Nash

equilibria in the 3-player symmetric game. In [7] authors develop a model

of oligopoly market with the network effect on payoff functions and examine

the incentives of firms to form collaborations with other firms. They find

the nature of collaboration structures that are stable under different market

conditions, and characterized stable structures. Unlike stability issue in [7]

here we inspect Nash equilibria. We decide to discover the firms competition

from the two points of view at the same time: quantities competition and

network formation. As the basis of such analysis we use [11]. The paper pro-

vides analysis of links’ influence on strategy choice of a player for a general

payoff function. The issue of dynamic stability of cooperation solutions is

examined.

The dissertation is based on these works. As in [11] we consider a two-

stage game of n firms where at the first stage players form the network of

collaborations and at the second stage the firms chose quantities of production

as in [7]. After these two stages payoffs are computed and the game ends.

This game illustrates the competition of firms in one-product market. Our

first aim is to find equilibria, characterize them by profitability and network

topology structure. We establish preferred equilibria and provide sensitivity

analysis of the player’s behavior and the market performance. The second

goal is to find the cooperative solution of the game and compare it with

non-cooperative solution. We examine a two-stage oligopoly model from [7]

with offering costs as well. It differs from the previous model in the payoff

function in such a way that an incentive to form a collaboration link induces

additional costs. In this model we find sufficient condition for equilibria.

We should notice that in the papers above the issue of equilibria in two-
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stages games is not discussed as like as the cooperative solution of firms

competition in two-stages and our work tries to figure out firms equilibrium

behavior and common laws which helps to better understand how firms should

act in one-product market competition: should they play as singletones or

cooperate, how the collaborations influence on different players and what

concrete actions they should do to benefit.

The paper has the following structure. In section 2 we investigate the

non-cooperative two-stage oligopoly. At first we define the model, strate-

gies and payoff functions. Then we find an equilibrium when the network

is fixed. After this we construct a hypothesis of equilibrium network topol-

ogy structure and test it. Next we answer the question which equilibria are

more profitable for players and how it concerns other players. In sensitiv-

ity analysis we explore how the adding or removing the link affect player’s

equilibrium strategies, payoffs and price function. The special case of regular

network is explored in detail and with an example. At the end of this sec-

tion we adopt the cost function for the weighted networks and say how the

equilibrium action for fixed network will change. Section 3 is a consideration

of cooperative game approach. We investigate both models: with full coop-

eration on two stages and cooperation only on quantities competition stage.

We give an overview of methods of construction characteristic function, and

introduce solution concepts of the bargaining total payoff which we will use.

The characteristic function then is chosen as the value maximin optimization

problem. The Shapley value [12] and the center-of-gravity of the imputation

set (CIS value) [5] are used as imputations. Finally the sensitivity analysis

of cooperative game is provided. Section 4 introduces the model of two-stage

oligopoly with offering costs which we examined. The methods of analysis

the last model coincide with the previous two-stage oligopoly model.
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2 Two-stage oligopoly

2.1 The model

We consider a two-stage game of n players. At first stage players offer collab-

oration links to each other simultaneously. After all players made their offers

pairwise links form a network, one way links are removed. At the end of the

first stage we have a formed undirected network connecting players. At the

second stage there is Cournot competition in quantities. Players choose quan-

tities of production simultaneously. The second stage ends when all players

have made their choices. After second stage the payoffs are calculated. Pay-

off functions are dependent upon quantities and they also dependent upon

network. After this step the game ends. We now develop the required termi-

nology and provide some definitions.

2.1.1 Strategies

Let N = {1, ..., n} be a finite set of players. A pair (N, g), where N is a set

of players and g setting the topology of collaborations between players, we

call a network.

At the first stage, network formation appears. Players simultaneously

choose their actions – n-dimensional vectors gi = (gi1, . . . , gin), i ∈ N with

components defined as:

gij =


1, if player i offers a link to player j ∈M,

0, otherwise.

(1)

If an element (i, j) ∈ g, it means that there exists a link between player

i and player j. To simplify notations, we will identify the network g with the

action profile (g1, . . . , gn) and denote action profile by g. A link (i, j) will be
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denoted by ij. Let g−i = (g1, . . . , gi−1, gi+1, . . . , gn) denotes an action profile

g without player i’s action. Using our notations the equality g = (gi, g−i)

holds. Number of neighbors of player i in the network g is the degree of node

i in the network g and denoted by ηi(g) = |{j ∈ N \ {i} : ij ∈ g}|.

Once the action profile (g1, g2, . . . , gn) has chosen, it defines a network g

in the following way: a link ij is formed and consequently belongs to network

g only if gij = gji = 1, i.e., both players agree to form it. At the end of the

network formation stage, network g is realized.

At the second stage players compete in choosing the quantities, i.e.

Cournot competition is played. The action of player i at the second stage is

quantity qi ∈ [0, q], where q is sufficiently large. Players choose their actions

at the same time. At the end of this stage the action profile q = (q1, . . . , qn)

is formed.

After two stages player i has two actions – action gi from the first stage

and action qi from the second stage. These actions form the strategy (gi, qi)

player i in the two-stage game. All strategies of all players form the strategy

profile ((g1, q1), . . . , (gn, qn)) in the game.

2.1.2 Payoff function

We come out from the assumption that collaborations lower marginal costs

of production. A network g, therefore, induces a marginal costs for the firms

which is given by c1(g), c2(g), . . . , cn(g). We assume that firm i’s marginal

cost in the network g is a function of the number of collaboration links it has

with other firms and is strictly decreasing in the number of these links:

ci(g) = c(ηi(g)), c(ηi(g) + 1) < c(ηi(g)), i ∈ N. (2)

To rule out uninteresting cases, we will assume that ci(g) > 0, ∀i ∈
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N, ∀g. We assume that marginal costs are linearly declining in the number

of links, i.e.

ci(g) = γ0 − γηi(g), i ∈ N, (3)

where γ0 > 0, represents a firm’s marginal cost when it has no links, while

γ > 0 is the cost reduction induced by each link formed by a firm. The

assumption of non-negativeness of the marginal costs leads us to the following

constraint:

γ0 > γ(n− 1). (4)

Suggest the following linear inverse market demand function:

p(q) = α−
∑
i∈N

qi, α > 0. (5)

We suppose that α is sufficiently large.

And finally define the payoff function on a network g for player i ∈ N

as follows:

πi(g, q) = (p− ci(g))qi. (6)

2.2 Equilibrium at fixed network

At the second stage we have fixed undirected network g. At this stage player’s

action is its quantity qi. In other words we have Cournot competition in

quantities.

The necessary first-order condition for action profile q∗ = (q∗1, q
∗
2, . . . , q

∗
n)

to be a Nash equilibrium is that for each firm i ∈ N

∂πi(g, q)

∂qi

∣∣∣∣
q∗

= 0. (7)

The sufficient second-order condition for action profile q∗ = (q∗1, . . . , q
∗
n)

to be a Nash equilibrium is that q∗i yields a maximum of πi(g, q), put differ-
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ently, strict concavity of payoff function πi(g), i.e.

∂2πi(g, q)

∂q2i

∣∣∣∣
q∗
< 0, ∀i ∈ N. (8)

Let us first check the sufficient second-order condition.

∂2πi(g, q)

∂q2i
=
∂
(
qi
∂p
∂qi

+ (p− ci(g))
)

∂qi
= qi

∂2p

∂q2i
+ 2

∂p

∂qi
= −2 < 0 (9)

We have demonstrated that each firm’s profit is strictly concave for

any given action profile (q1, q2, . . . , qn) and any network g. Therefore the

second-order condition is satisfied and, furthermore, the first-order condition

is sufficient for action profile (q∗1, q
∗
2, . . . , q

∗
n) to be a Nash equilibrium.

Let us find the Nash equilibrium from the necessary first-order condition

for a Nash equilibrium. We have the system of payoff functions for all players:

π1(g, q) = (p(q)− c1(g))q1,

π2(g, q) = (p(q)− c2(g))q2,

. . .

πn(g, q) = (p(g)− cn(g))qn.

(10)

Below the process of finding the equilibrium output is shown.



∂π1(g,q)
∂q1

= q1
∂p
∂q1

+ p− c1(g) = 0,

∂π2(g,q)
∂q2

= q2
∂p
∂q2

+ p− c2(g) = 0,

. . .

∂πn(g,q)
∂qn

= qn
∂p
∂qn

+ p− cn(g) = 0.

(11)

When we substitute p(q) from (5) and ci(g) from (3) into i-th equation

we obtain:
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

q1(−1) + α−
∑

i∈N qi − γ0 + γη1(g) = 0,

q2(−1) + α−
∑

i∈N qi − γ0 + γη2(g) = 0,

. . .

qn(−1) + α−
∑

i∈N qi − γ0 + γηn(g) = 0.

(12)

Sum up all equations:

−
∑
i∈N

qi + n(α− γ0)− n
∑
i∈N

qi + γ
∑
i∈N

ηi(g) = 0

n(α− γ0) + γ
∑
i∈N

ηi(g) = (n+ 1)
∑
i∈N

qi

∑
i∈N

qi =
n(α− γ0) + γ

∑
i∈N ηi(g)

n+ 1
(13)

Look at the i-th equation of system (11):

qi +
∑
i∈N

qi = α− γ0 + γηi(g) (14)

After substitution (13) into (14), we get the following

qi +
n(α− γ0) + γ

∑
i∈N ηi(g)

n+ 1
= α− γ0 + γηi(g) (15)

qi = α− γ0 + γηi(g)−
n(α− γ0) + γ

∑
i∈N ηi(g)

n+ 1
(16)

Finally Cournot equilibrium quantities can be written as follows

q∗i (g) =
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
, i ∈ N. (17)

At this point we found the optimal quantity of production for every
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player. The equilibrium profit (6) for player i is

πi(g, q
∗) = (p(q∗)− ci(g))q∗i (g) =

(
α−

∑
i∈N

q∗i (g)− γ0 + γηi(g)
)
q∗i (g). (18)

Comparing the expression in brackets α −
∑

i∈N q
∗
i − γ0 + γηi(g) with

the formula (14) we come to the final result. For a given network g, Cournot

profit for firm i ∈ N has the following form

πi(g) = q∗2i (g). (19)

Proposition 1. For a fixed network there is a unique equilibrium in compe-

tition in quantities. The optimal quantity for firm i is

q∗i (g) =
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
. (20)

The payoff function for i-th firm has the form of

πi(g) = q∗2i (g). (21)

In order to ensure that each firm produces a strictly positive quantity

in equilibrium, consider the worst case for i-th firm – when firm i has no any

links in formed network, and all the remaining firms N \ {i} form a complete

network. The quantity of firm i has to be positive

q∗i (g) =
α− γ0 − (n− 1)(n− 2)γ

n+ 1
> 0. (22)

Finally by simplifying the last inequality we obtain

(α− γ0)− (n− 1)(n− 2)γ > 0. (23)

The inequality (23) actually gives a lower bound for α.
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2.3 Equilibrium in the two-stage game

In the two-stage game the strategy of player i is a pair (gi, qi), where gi is his

pure action at the network formation stage which represents his desirable col-

laborations with other players and qi is his pure action at the quantity compe-

tition stage when collaborations of all players are already fixed after network

formation stage. Consequently we have strategy profile ((g1, q1), . . . , (gn, qn)),

where g is a network which is obtained after all players chose desirable links

gi, and quantities qi, i ∈ N . In a simple form strategy profile can be written

as pair (g, q).

The goal of this section is to find Nash equilibria in the two-stage

game. Of course the problem of finding all Nash equilibria in the infinite set

of strategy profiles is very complex so we will make a hypothesis of structure

Nash equilibria in specific networks and check it.

Assume that network g is a pairwise network, i.e. for any offered link

complementary link is offered as well. In network notations it means gij = gji.

An illustration of such networks with 3 players is shown on Figure 1.

Check whether such network is a Nash equilibrium and which constraints we

should apply to say that such network g is a Nash equilibrium.

When in a pairwise network player i deviates from his action g∗i with

fixed actions g∗j , j 6= i, he cannot increase the number of his collaborations.

The number of neighbors of the player may stay the same or may be less than

in pairwise network, because other players do not deviate and consequently

do not propose new links. An example of the deviation is shown on Figure

2. There picture a) demonstrates pairwise network g∗ and pictures b) and c)

show deviations of player 1. Formally saying, given a pairwise network g∗,

deviation of player i from the action g∗i to the action gi can be expressed in
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Figure 1: Pairwise and not pairwise networks.

the following form:

ηi(g
∗)− ηi(g∗||gi) = l, l = 0, 1, . . . , ηi(g

∗). (24)

Figure 2: Example of deviations from g∗ at network formation stage.
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By definition, the strategy profile (g∗, q∗) is a Nash equilibrium if player

i does not get a surplus from his deviation with fixed strategies of other

players. Formally, (g∗, q∗) is a Nash equilibrium if

πi(g
∗, q∗) > πi(g

∗, q∗||gi, qi), ∀gi,∀qi,∀i ∈ N (25)

Fix such qi which maximizes πi(g
∗, q∗||gi, qi). It will be sufficient for

holding the inequality above. Indeed if the inequality above holds for all qi

then it holds for such specific qi which maximizes the right-hand side of (25),

i.e.,

max
qi

πi(g
∗, q∗||gi, qi) > πi(g

∗, q∗||gi, qi), ∀gi,∀qi,∀i ∈ N. (26)

By the same logic we can fix such gi that maximizes maxqi πi(g
∗, q∗||gi, qi)

and consequently get rid off variability in strategies in network formation

stage.

max
gi

max
qi

πi(g
∗, q∗||gi, qi) > max

qi
πi(g

∗, q∗||gi, qi), ∀gi,∀i ∈ N (27)

After combining inequalities (26), (27) and having the reasoning above

the inequality (25) proceeds to the following inequality:

πi(g
∗, q∗) > max

gi
max
qi

πi(g
∗, q∗||gi, qi), ∀i ∈ N (28)

At first we need to solve the maximization problem over quantity from

the right-hand side of (25):

maxqi πi(g
∗, q∗||gi, qi) = (29)

= maxqi

(
α−

∑
j 6=i q

∗
j (g
∗)− qi − γ0 + γηi(g

∗||gi)
)
qi (30)

Actually it is a common maximization problem of one variable and to
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find the solution it is needed to take the derivative of πi(g
∗, q∗||gi, qi) with

respect to qi:

∂

∂qi
πi(g

∗, q∗||gi, qi) = 0 (31)

∂

∂qi

α−∑
j 6=i

q∗j (g
∗)− qi − γ0 + γηi(g

∗||gi)

 qi

 = 0 (32)

α−
∑
j 6=i

q∗j (g
∗)− 2qi − γ0 + γηi(g

∗||gi) = 0 (33)

Finally we obtain such qi that maximizes πi(g
∗, q∗||gi, qi):

qi =
1

2

α−∑
j 6=i

q∗j (g
∗)− γ0 + γηi(g

∗||gi)

 (34)

Substitute qi from the formula above into the πi(g
∗, q∗||gi, qi) to obtain

maxqi πi(g
∗, q∗||gi, qi):

max
qi

πi(g
∗, q∗||gi, qi) =

=

α−∑
j 6=i

q∗j (g
∗)− qi − γ0 + γηi(g

∗||gi)

 qi =

=

α−∑
j 6=i

q∗j (g
∗)−

α−
∑

j 6=i q
∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

− γ0 + γηi(g
∗||gi)

×
×
α−

∑
j 6=i q

∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

=
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=

(
α−

∑
j 6=i q

∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

)2

=

=
1

4

α−∑
j 6=i

q∗j (g
∗)− γ0 + γηi(g

∗||gi)

2

=

=
1

4

α−∑
j∈N

q∗j (g
∗) + q∗i (g

∗)− γ0 + γηi(g
∗||gi)

2

=

Substitute formula (13) instead of sum
∑

j∈N q
∗
j (g
∗) and formula (20)

instead of q∗i (g
∗) into the last expression above:

=
1

4

(
α−

n(α− γ0) + γ
∑

i∈N ηi(g
∗)

n+ 1
+

+
α− γ0 + nγηi(g

∗)− γ
∑

j 6=i ηj(g
∗)

n+ 1
− γ0 + γηi(g

∗||gi)
)2

=

=

(
α− γ0 − γ

∑
i∈N ηi(g

∗)

n+ 1
+
γ

2

(
ηi(g

∗) + ηi(g
∗||gi)

))2

=

=
(
q∗i (g

∗) +
γ

2

(
ηi(g

∗||gi)− ηi(g∗)
))2

We obtain the maximum over quantity (when player i is deviating in

quantity) of the right-hand side of the (25):

max
qi

πi(g
∗, q∗||gi, qi) =

(
q∗i (g

∗) +
γ

2

(
ηi(g

∗||gi)− ηi(g∗)
))2

(35)

Now we need to solve the maximization over gi problem:

maxgi maxqi πi(g
∗, q∗||gi, qi) = maxgi

(
q∗i (g

∗) + γ
2

(
ηi(g

∗||gi)− ηi(g∗)
))2

(36)

The last expression can be transformed to the following:

max
gi

(
q∗i (g

∗) +
γ

2

(
ηi(g

∗||gi)− ηi(g∗)
))2

= (37)

=

(
q∗i (g

∗) +
γ

2
max
gi

(
ηi(g

∗||gi)− ηi(g∗)
))2

(38)
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According to the (24) we can conclude that:

max
gi

(
ηi(g

∗||gi)− ηi(g∗)
)

= 0 (39)

Finally we obtain the right-hand side (when player i is deviating at

both stages) of Nash equilibrium definition (25):

max
gi

max
qi

πi(g
∗, q∗||gi, qi) = (q∗i (g

∗))2 (40)

Since

πi(g
∗, q∗) = (q∗i (g

∗))2 , i ∈ N, (41)

now we can be sure that the condition for Nash equilibrium (25) is always

satisfied. Consequently we proved the following result.

Proposition 2. All pairwise networks are the Nash equilibrium in the two-

stage game.

2.4 Preferred equilibria

From the form of the payoff function in equilibrium (19) and the sufficient

condition for Nash equilibrium (Proposition 2) we can conclude that some

equilibria may be more profitable for some players than others.

For example, the regular network is more profitable equilibrium than

the empty network. Moreover the greater degree of node in regular network

the greater payoff players get relatively to the payoff in regular network with

less degree. Figure 3 illustrates that for 6 players 0-regular network is less

profitable than 1-regular network, and that 1-regular network is less profitable

than a complete network for any player.

Indeed, payoffs for the empty network and regular network are in the
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Figure 3: The greater degree of node in regular network the greater benefit players get.

following relation:

πi(empty) =
(
α−γ0
n+1

)2
<

6 πi(k-regular network) =
(
α−γ0
n+1 + γ k

n+1

)2
(42)

6 πi(complete) =
(
α−γ0
n+1 + γ

(
1− 1

n+1

))2 ∀i ∈ N (43)

Another interesting situation – star network. We call a player in the star

network the central player if he has the highest degree in the star network.

We observed that the star network central player benefits, others do not.

Figure 4 shows that the star network is more profitable for central player.

Figure 4: Only player 1 benefits, others lose.

In this case the following inequality for players’ payoffs hold: for the

player, located in the central node, we have:

πcentral(empty) =
(
α−γ0
n+1

)2
<

< πcentral(star network) =
(
α−γ0
n+1 + γ k

n+1

)2
, (44)

20



and for any other player k holds:

πk(empty) =
(
α−γ0
n+1

)2
<

< πk(star network) =
(
α−γ0
n+1 − γ

n−3
n+1

)2 ∀n > 3 (45)

Hence we come up to the following propositions:

Proposition 3. A k-regular network is more profitable than an l-regular

network for any player i ∈ N if l < k.

Proposition 4. A star network is more profitable than empty network only

for the player located in the central node.

2.5 Sensitivity analysis

We will use equilibrium quantities (17) for given network g which are de-

pendent on a network structure so for the simplification we will discard the

parameter q in the payoff function (6).

Suppose that player i in given network g deletes the link with player j.

After this transformation network g changes and we denote the new network

by g̃. An example of such situation is illustrated on Figure 5.

Figure 5: Example of removing the link in the network.
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The equilibrium quantity for player i in the new network g̃ has changed

in the following way:

q∗i (g̃) =
α− γ0 + nγ

(
ηi(g)− 1

)
− γ
(∑

j 6=i ηj(g)− 1
)

n+ 1

=
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
− γn− 1

n+ 1

=
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
− γ

(
1− 2

n+ 1

)
= q∗i (g)− γ

(
1− 2

n+ 1

)
(46)

The quantity q∗j (g̃) for player j is changed by the same rule. Now let

us consider how removing of the link (ij) affects the equilibrium quantity of

other player k 6= i, j.

q∗k(g̃) =
α− γ0 + nγηk(g)− γ

(∑
j 6=k ηj(g)− 2

)
n+ 1

=
α− γ0 + nγηk(g)− γ

∑
j 6=k ηj(g)

n+ 1
+ γ

2

n+ 1

= q∗k(g) + γ
2

n+ 1
(47)

Consider influence of the removing link in the network to the price

function (5):

p(g̃) = α−
∑
i∈N

q∗i (g̃) =

= α−
∑
i∈N

q∗i (g) + 2γ

(
1− 2

n+ 1

)
− (n− 2)γ

2

n+ 1
=

= α−
∑
i∈N

q∗i (g) + γ

(
2

(
1− 2

n+ 1

)
− (n− 2)

2

n+ 1

)
=
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= α−
∑
i∈N

q∗i (g) + γ

(
2− 4

n+ 1
+

4− 2n

n+ 1

)
=

= α−
∑
i∈N

q∗i (g) + 2γ

(
1− n

n+ 1

)
=

= α−
∑
i∈N

q∗i (g) + γ
2

n+ 1
=

= p(g) + γ
2

n+ 1
(48)

We observe the positive correlation of price with the removing of link.

Consider now players’ payoffs. At first look at the payoff function of

player i (19) in the new network g̃.

πi(g̃) = (q∗i (g̃))2 =

=

(
q∗i (g)− γ

(
1− 2

n+ 1

))2

=

= (q∗i (g))2 − 2q∗i (g)γ

(
1− 2

n+ 1

)
+

(
γ

(
1− 2

n+ 1

))2

=

= πi(g) + γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
− 2q∗i (g)

)
Let us look under which constraint player i (and player j) benefits from

the removing the link (ij). Due to the form of the payoff function of player

i in the network g̃ and non-negativeness of term γ
(
1− 2

n+1

)
, the payoff of

player i has a positive correlation with the deletion of the collaboration if the

next condition holds:

γ

(
1− 2

n+ 1

)
− 2q∗i (g) > 0, (49)

or

q∗i (g) 6
1

2
γ

(
1− 2

n+ 1

)
. (50)
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The payoff of player k 6= i, j in the network g̃ has the following form:

πk(g̃) = (q∗k(g̃))2 = (51)

=

(
q∗k(g) + γ

2

n+ 1

)2

=

= (q∗k(g))2 + 2q∗k(g)γ
2

n+ 1
+

(
γ

2

n+ 1

)2

=

= πk(g) + γ
4

n+ 1

(
q∗k(g) + γ

1

n+ 1

)
> πk(g).

We can say that payoff for player k 6= i, j does not decrease after players i and

j formed a new connection. In general, if the condition (50) holds, players

i, j profit in the network g̃ in comparison to the network g. In contrast player

k always gains in the network g̃ in comparison to the network g.

Now suppose that player i in given network g suggests a link to some

other player j and the last one accepts it. It means that one new link is

added to the network g. Denote this new network by g̃. An example of such

situation is illustrated on Figure 6.

Figure 6: Example of establishing a new link in the network.

The equilibrium quantity for player i in this new network g̃ has changed
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in the following way:

q∗i (g̃) =
α− γ0 + nγ

(
ηi(g) + 1

)
− γ
(∑

j 6=i ηj(g) + 1
)

n+ 1

=
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
+ γ

n− 1

n+ 1

=
α− γ0 + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
+ γ

(
1− 2

n+ 1

)
= q∗i (g) + γ

(
1− 2

n+ 1

)
. (52)

The quantity q∗j (g̃) for player j, who has accepted the link offered by

player i, is changed by the same rule. We can make an important conclusion

from the last equation: the number of collaborations of the player is positively

correlated to the equilibrium quantity of production of the player while other

players do not deviate.

Now let us consider how the addition of a new link affects equilibrium

quantity of other player k 6= i, j who is not involved in the new collaboration

between players i and j.

q∗k(g̃) =
α− γ0 + nγηk(g)− γ

(∑
j 6=k ηj(g) + 2

)
n+ 1

=
α− γ0 + nγηk(g)− γ

∑
j 6=k ηj(g)

n+ 1
− γ 2

n+ 1

= q∗k(g)− γ 2

n+ 1
. (53)

We can see that for the player k 6= i, j the equilibrium quantity does

not decrease with appearance of the link between players i and j. And the

amount of this reduce has a negative correlation with the number of players

in the game: the more players in the game the less reduction of quantity

player k should do if players to stay in the Nash equilibrium.

Consideration of the price function uncovers a negative correlation be-
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tween the quantity with the number of collaborations:

p(g̃) = α−
∑
i∈N

q∗i (g̃) =

= α−
∑
i∈N

q∗i (g)− 2γ

(
1− 2

n+ 1

)
+ (n− 2)γ

2

n+ 1
=

= α−
∑
i∈N

q∗i (g)− γ
(

2

(
1− 2

n+ 1

)
− (n− 2)

2

n+ 1

)
=

= α−
∑
i∈N

q∗i (g)− γ
(

2− 4

n+ 1
+

4− 2n

n+ 1

)
=

= α−
∑
i∈N

q∗i (g)− 2γ

(
1− n

n+ 1

)
=

= α−
∑
i∈N

q∗i (g)− γ 2

n+ 1
=

= p(g)− γ 2

n+ 1
(54)

Consider now players’ payoffs. At first look at the payoff function of

player i (19) in the new network g̃.

πi(g̃) = (q∗i (g̃))2 =

=

(
q∗i (g) + γ

(
1− 2

n+ 1

))2

=

= (q∗i (g))2 + 2q∗i (g)γ

(
1− 2

n+ 1

)
+

(
γ

(
1− 2

n+ 1

))2

=

= πi(g) + γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
+ 2q∗i (g)

)
> πi(g)

It means that addition of a new link (ij) is always profitable for players i and

j.
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The payoff of player k 6= i, j in the network g̃ has the following form:

πk(g̃) = (q∗k(g̃))2 = (55)

=

(
q∗k(g)− γ 2

n+ 1

)2

=

= (q∗k(g))2 − 2q∗k(g)γ
2

n+ 1
+

(
γ

2

n+ 1

)2

=

= πk(g) + γ
4

n+ 1

(
γ

1

n+ 1
− q∗k(g)

)
.

Hence, we obtain the following inequality:

πk(g̃) > πk(g) (56)

if the following condition holds:

γ
1

n+ 1
− q∗k(g) > 0, (57)

or

q∗k(g) 6 γ
1

n+ 1
. (58)

We can say that payoff for player k 6= i, j does not increase after players

i and j formed a new connection if the condition (58) holds. In general while

players i, j always gain, player k profits in network g̃ in comparison to the

network g if the condition (58) holds.

We may notice one more interesting property of the game: the more

players are in the game the more quantity and payoff of player increase when

the player establishes a new connection in network. And consequently the

common price of product decreases.
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2.5.1 Regular networks

Examine how equilibrium quantity, payoff and price functions change in the

special case of regular network g.

Definition 1. A regular network is a network where each node has the same

number of neighbors. A regular network with nodes of degree k is called a

k-regular network or regular network of degree k.

Figure 7: Examples of regular networks.
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Write down the optimum quantity (17) for k-regular network g:

q∗i (g) =
α− γ0 + nγk − γ(n− 1)k

n+ 1
=

=
α− γ0 + γk

n+ 1
. (59)

We can notice that in the case of k-regular network the equilibrium

quantity has simple form. Notice that the equilibrium quantity is linearly

dependent upon regularity of the network k. And hence the payoff function

πi(g) has quadratic dependency upon k:

πi(g) = q∗2i (g) =

(
α− γ0
n+ 1

+ γ
k

n+ 1

)2

. (60)

The form of price function for k-regular network can be obtained from

(5) in the following way:

p(g) = α−
∑
i∈N

q∗i (g) =

= α− nα− γ0 + γk

n+ 1
=

=
(n+ 1)α− n(α− γ0 + γk)

n+ 1
=

=
α + nγ0 − nγk

n+ 1
. (61)

2.5.2 Example

Let us consider the following example. For three cases of network with 11,

12 and 20 players select the parameters according to (23):

α = 574, γ0 = 21, γ = 1. (62)

Compare equilibrium prices, quantities and profits for different k-regular net-

works with n players. From the Figure 8 below we can observe a positive
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correlation between degree of node of regular network and the value of the

payoff function πi(g). And also we see how fast payoff fails with the increas-

ing number of players n while game parameters do not change. The next

Figure 9 demonstrates that the same relations hold for equilibrium quan-

tities. But here we observe that quantity decreases slower than the payoff

with the increasing number of players n. Figure 10 shows us the connection

between price, regularity and the number of players n. We can notice that

price decreases with the degree of the node in a regular network. And having

parameters α, γ0, γ fixed price fails with the increasing number of players n.

Figure 8: Payoffs for different regular networks.

Figure 9: Quantities for different regular networks.
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Figure 10: Prices for different regular networks.

2.6 Weighted network

The model under consideration ignores distances between firms since it is far

from the real life. In this section we cover this issue.

Let us assume that there is given a complete weighted network g. Firms

are settled in nodes. We may suppose that our network is complete: every

firm can reach collaboration with any other firm, but it does not always have

a surplus from the collaboration. In order to show this magnitude of profit,

each link has a weight which can mean a cost of one supply of resources

between nodes which are incident to the link. This cost is the aggregation of

length of the link and costs of establishing the link. We do not go further in

describing this aggregation because assume that it can be defined differently

for each industry.

The first approach is based upon the idea that if two firms are located

one close to another they can achieve bigger profit from collaboration with

each other neither they are far from each other. We can write this idea in

terms of the cost function:

ci(g) = γ0 − max
j∈ηi(g)

dij, (63)
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where dij is the length of the shortest path from firm i to j. Here the word

”shortest” should be understood as the way of collaboration of firms i and j

which is the most benefit. This ”shortest” collaboration can be better than

others not only because of the distances of roads on travel map but also

because of new conditions in collaboration agreement.

If we repeat the steps which we have done when searched equilibrium

at fixed network we will obtain that the equilibrium quantity of firm i for a

such cost is the following

q∗i (g) =
α− γ0 + nmaxj∈ηi(g) dij −

∑
k 6=i maxj∈ηk(g) dkj

n+ 1
.

We can see that the structure of equilibrium quantity does not change

after replacing ηj(g) with dij. And the player i’s payoff stays the same:

πi(g) = q∗2i (g).
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3 Cooperative game

When it comes to cooperation the most natural question of players which

decided to cooperate in coalition S ⊆ N is how to maximize they common

payoff:

πS(g, q) =
∑
i∈S

(p(q)− ci(g))qi. (64)

Due to the network structure of our game there are two possible ways

to cooperate. Firms can cooperate from the first stage – and play as the

one union at network formation step and quantity competition step. We call

this type of cooperation a full cooperation. Another way of cooperation is

to play individually at the network formation stage and start to cooperate

only at quantities competition. We call it quantity cooperation. We consider

both types of cooperation. In case of quantity cooperation network is already

formed so we need to construct the characteristic function for the game on the

fixed network – v(g, S), where g is fixed. In case of full cooperation players

are able to choose how to form the network, therefore we need to construct

the characteristic function v(S) that depends only upon coalition S ⊆ N .

Start from the detail consideration of the quantity cooperation. Coop-

erative game theory provides a rule of how the total payoff (64) of all players

should be split among themselves. It takes into account the relative payoffs

that every possible subset of players could get. A cooperative game is defined

by the set of players N and the characteristic function v, which denotes the

power of each coalition S ⊆ N . The characteristic function v is a mapping

from 2N to real numbers and normalized such that v(∅) = 0. To make co-

operation interesting for players characteristic function v has to satisfy the
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superadditivity condition:

v(g, S ∪ T ) > v(g, S) + v(g, T ), ∀S, T ⊂ N,S ∩ T = ∅ (65)

In this section we examine whether the players would want to cooperate

and we find allocations of expected sum of players’ payoffs (64) using the

cooperative game theory tools adapted for network settings.

There are several ways to define a characteristic value of a coalition

when we want to consider a cooperative version of a normal-form game.

They are:

• The value of the maximin optimization problem, when coalition S at-

tempts to maximize its payoff and complement coalition N \ S tries to

minimize it.

• The value of the maximization problem, when coalition S maximizes its

payoff while players which do not belong to it play fixed strategies, for

example Nash equilibrium strategies.

• The equilibrium payoff of coalition S in game in normal form of |N | −

|S|+1 players where one player is coalition S and others - are individuals.

We will illustrate the first option in detail. The other two options are

discussed further. Since we defined powers of coalitions via characteristic

function the next most straightforward question of how payoffs should be

divided is that the division should be fair. Such fair allocation is called an

imputation.

Definition 2. Vector φ = (φ1, φ2, . . . , φn) such that
∑

i∈N φi = v(g,N) is

called an imputation if φi > v(g, i),∀i ∈ N – each player surplus at least

what he can get playing individually.
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Figure 11: Imputation set for a two-person game.

Figure 12: Imputation set for a three-person game.

We will consider two imputations for our game: the Shapley value and

the CIS value. Shapley value ensures that players which contribute more to

the coalitions than others gain more from cooperation.

Definition 3. Given a cooperative game (N, v), the component of the Shap-
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ley value of player i is given by

φi(g, v) =
1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)! [v(g, S ∪ {i})− v(g, S)] . (66)

Definition 4. CIS (center of gravity of the imputation set) for the game

(N, v) is defined as

CISi(g, v) = v(g, {i}) +
1

n

v(g,N)−
∑
j∈N

v(g, {j})

 , i ∈ N. (67)

We suppose that when firms cooperate with each other, cost of pro-

duction of one unit for every firm is the minimal cost in the coalition. Put

differently, all firms in the coalition use some resources or technology of the

firm with minimal production cost. We can determine a cost function of

coalition S:

cS(g) = min
i∈S

ci(g) = γ − γ0 max
i∈S

ηi(g). (68)

By analogy we determine characteristic function v(S), Shapley and CIS

value φi(v).

3.1 Maximin

Consider the game of quantities of only two players: coalition S and its

complement N \ S. They play a zero-sum game. It means that the first

player S wishes to maximize his payoff and the second player N \S attempts

to minimize S’s payoff. Since maximin value of a player S is the largest

payoff that the player S can be sure to get regardless of the action of the

other player N \ S. Since players in the coalition play as one big firm they

need to maximize the sum of their payoffs over the sum of their quantities.
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3.1.1 Characteristic function

We start from quantity cooperation. Suppose that network g is fixed. Let

us formulate the characteristic function for a fixed network g and coalition

S ⊆ N :

v(g, S) = max
qi, i∈S

min
qj , j∈N\S

∑
i∈S

πi (g, q1, . . . , qn) . (69)

Denote the sum of quantities of players in coalition S as QS, i.e.,

∑
i∈S

qi = QS, (70)

and by analogy ∑
i∈N\S

qi = QN\S.

In this notations we may write down the problem (69) in shorter form:

v(g, S) = max
QS

min
QN\S

∑
i∈S

πi (g, q1, . . . , qn) = max
QS

min
QN\S

QS (p− cS(g)) . (71)

Eventually, the characteristic function takes the following form.

v(g, S) = max
QS

min
QN\S

QS

(
α−QS −QN\S − cS(g)

)
. (72)

Compute the characteristic function for different coalitions. Let us start

from grand coalition S = N .

v(g,N) = max
QN

QN (α−QN − cN(g)) (73)

In this case we have maximization problem of the variable QN . To find QN

such that v(g,N) is the maximum, compute the derivative and equal it to
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zero according to the necessary condition for an extremum:

∂

∂QN
(QN (α−QN − cN(g))) = 0. (74)

We obtain the following:

α− cN(g)− 2QN = 0. (75)

And hence, the optimum quantity for grand coalition N is

Q∗N =
α− cN(g)

2
. (76)

Due to the economic approach of our game we should hold the con-

straint of non-negatively of quantity:

Q∗N > 0⇒ α > cN(g). (77)

Finally, the characteristic function for the grand coalition is the follow-

ing.

v(g,N) = Q∗
2

N =
(α− cN(g))2

4
(78)

Let us now compute characteristic function for another coalition S ⊂

N,S 6= N . Consider the expression
(
α−QS −QN\S − cN(g)

)
. Notice that

while in the game there is only one constraint – non-negativeness of price

function, complement coalition N \ S is always able to zero maximin value

by taking its strategy QN\S as follows

QN\S = α− cS(g). (79)
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Indeed, after substitution the above replacement into (72) we have:

v(g, S) = max
QS

QS (−QS) = 0 (80)

We obtain that v(g, S) = 0,∀S ⊂ N,S 6= N .

Now compute characteristic function for full cooperation in the two-

stage game. In this case we need to find the value of the following maximin

optimization problem:

v(S) = max
gi, qi, i∈S

min
gj , qj , j∈N\S

∑
i∈S

πi (g, q1, . . . , qn) . (81)

Suppose that actions gS = {gi, i ∈ S} and QS is already chosen. Then the

best option for coalition N \ S to choose gN\S is such that nobody from

N \S has links with players in coalition S. And the action QN\S for coalition

N \ S is (79). Consequently we obtain that the characteristic function in

the full cooperation coincides with the characteristic function in quantities

cooperation.

One more advantage of maximin construction of characteristic function

is that we do not need to prove superadditivity of our game (N, v) – it is well

known fact. The next aim in cooperative analysis of the game is the Shapley

value.
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3.1.2 Cooperative solution

Let us substitute the value of the characteristic function into (66) to calculate

the component of the Shapley value of player i ∈ N :

φi(g,N, v) =

= 1
|N |!
∑

S⊆N\{i} |S|!(|N | − |S| − 1)! [v(g, S ∪ {i})− v(g, S)] =

= 1
|N |!|N \ {i}|!(|N | − |N \ {i}| − 1)! [v(g,N)− v(g,N \ {i})] =

= 1
|N |!(|N | − 1)!(|N | − |N |+ 1− 1)! [v(g,N)− 0] =

= v(g,N)
|N | =

Q∗
2

N

|N | = (α−cN (g))
2

4|N | =

= (α−γ0+γmaxi∈N ηi(g))
2

4|N | . (82)

Compute another solution – component of the CIS vector (67) of player i ∈ N :

CISi(g,N, v) = v(g, {i}) + 1
n

[
v(g,N)−

∑
j∈N v(g, {j})

]
= v(g,N)

|N | =

= (α−γ0+γmaxi∈N ηi(g))
2

4|N | . (83)

Notice that the CIS value coincides with the Shapley value. It happens

because the value of the characteristic function is not equal to zero only in

the case of grand coalition N . We may conclude that all players get the same

payoff after distribution – no matter whether cost of production is minimal

for some player.

3.2 Sensitivity analysis

From the expression of the Shapley value (82) we can conclude that all players

get equal payoffs. Moreover, these payoffs do not depend on the network

topology. On the Figure 13 we can observe two networks – star and complete

networks of 10 players. The degree of central player in star network coincides
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with the degree of every player in complete network. Other players in the star

network have less degree but still get the same payoff as the central player.

Figure 13: Star and complete networks.

3.2.1 Regular networks

In case of the k-regular network the maximum node degree maxi∈N ηi(g)

coincides with every node degree ηi(g), ∀i ∈ N and equals to k right from

the definition of the regular network. Hence obtain the following:

φi(g,N, v) =

(
α− γ0
n+ 1

+ γ
k

n+ 1

)2

∀i ∈ N.

It coincides with the payoff (60) without cooperation at all. Hence, defining

the characteristic value as the value minimax optimization problem and by

applying the Shapley value (and CIS value) as imputation we obtain that

cooperation is not profitable for players relatively to non-coopearation be-

havior.
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4 Two-stage oligopoly with offering costs

In previous sections we examined the model of firms competition in one-

product market on a network in which link offers were cost-free. Costs were

taken only from formed links – when two players offered the collaboration to

each other and consequently start of cooperating. But in real life there are

situations when the offer of the link could cost something for the firm which

proposed it. Even a simple phone call to the potential client may be estimated

as an amount of money and represents the offer cost. Another example of

the offer cost could arise in situation when firm is trying to figure out how

the cooperation could increase its payoff – firms do research of production

techniques, legal documents audit and lawyers consultations and so on. It

may cost significant and firms should think one more time before deciding to

make an offer of collaboration to some other firm.

These thoughts come us to a new cost function of link offer:

li(g) = µηouti (g), µ > 0. (84)

Here we use new notation ηouti (g) – it is the out-degree of player i in network

g, the number of collaboration offered by player i indeed. The parameter µ

represents the cost of one offer.

And it leads us to the following payoff function:

πi(g, q) = (p(q)− ci(g))qi − li(g). (85)

4.1 Equilibrium at fixed network

Here we will make a similar analysis of the non-cooperative game to the

analysis provided in the first section but with the new payoff function (85).

Our aim here is to study how the new offer’s costs will influence payoffs,
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equilibria and optimal strategies.

We start from finding the optimal quantity on fixed network. To find

such optimal quantity, i.e. Nash equilibrium, we should satisfy two condi-

tions: the first order (7) and the second order (8) conditions. But we may

notice that if we take the derivative over q of the new payoff function we will

obtain exactly the same system of equations as (11). It means that this step

has already done and optimal quantity for fixed network in the case of new

model coincides with the same one in the old model (20).

4.2 Equilibrium in the two-stage game

Repeat the same steps as in the first section. We assume that g is a pairwise

network and we will find what conditions on quantity should hold in order

to action profile (g, q) be a Nash equilibrium.

Suppose that given a pairwise network g∗, deviation of player i from

the strategy g∗i to the strategy gi expresses in the form (24). Having the same

reasoning involving expressions (25), (26), (27), (28). We proceed till the we

moment we need to maximize over gi.

Substitute the optimal qi into the πi(g
∗, q∗||gi, qi) to obtain

maxqi πi(g
∗, q∗||gi, qi):

max
qi

πi(g
∗, q∗||gi, qi) =

=

α−∑
j 6=i

q∗j (g
∗)− qi − γ0 + γηi(g

∗||gi)

 qi − li(g∗||gi) =

(86)
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=

α−∑
j 6=i

q∗j (g
∗)−

α−
∑

j 6=i q
∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

− γ0 + γηi(g
∗||gi)

×
×
α−

∑
j 6=i q

∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

− µηouti (g∗||gi) =

=

(
α−

∑
j 6=i q

∗
j (g
∗)− γ0 + γηi(g

∗||gi)
2

)2

− µηouti (g∗||gi) =

=
1

4

α−∑
j 6=i

q∗j (g
∗)− γ0 + γηi(g

∗||gi)

2

− µηouti (g∗||gi) =

=
1

4

α−∑
j∈N

q∗j (g
∗) + q∗i (g

∗)− γ0 + γηi(g
∗||gi)

2

− µηouti (g∗||gi) =

Substitute formula (13) instead of sum
∑

j∈N q
∗
j (g
∗) and formula (20)

instead of q∗i (g
∗) into the last expression above:

=
1

4

(
α−

n(α− γ0) + γ
∑

i∈N ηi(g
∗)

n+ 1
+

+
α− γ0 + nγηi(g

∗)− γ
∑

j 6=i ηj(g
∗)

n+ 1
− γ0 + γηi(g

∗||gi)
)2
− µηouti (g∗||gi) =

=

(
α− γ0 − γ

∑
i∈N ηi(g

∗)

n+ 1
+
γ

2

(
ηi(g

∗) + ηi(g
∗||gi)

))2

− µηouti (g∗||gi) =

=
(
q∗i (g

∗) +
γ

2

(
ηi(g

∗||gi)− ηi(g∗)
))2
− µηouti (g∗||gi)

We obtain the maximum over quantity (when player i is deviating in

quantity) of the right-hand side of the (28):

max
qi

πi(g
∗, q∗||gi, qi) =

(
q∗i (g

∗) +
γ

2

(
ηi(g

∗||gi)− ηi(g∗)
))2
− µηouti (g∗||gi)

(87)

Now we need to solve the maximization over gi problem:

maxgi maxqi πi(g
∗, q∗||gi, qi) = (88)

= maxgi

[(
q∗i (g

∗) + γ
2

(
ηi(g

∗||gi)− ηi(g∗)
))2
− µηouti (g∗||gi)

]
(89)

44



Since the inequality below holds

ηouti (g∗||gi) > ηi(g
∗||gi)∀i ∈ N ∀gi (90)

We have the following:

maxgi

[(
q∗i (g

∗) + γ
2

(
ηi(g

∗||gi)− ηi(g∗)
))2
− µηouti (g∗||gi)

]
6

6 maxgi

[(
q∗i (g

∗) + γ
2

(
ηi(g

∗||gi)− ηi(g∗)
))2
− µηi(g∗||gi)

]
=

= maxgi

[
(ηi(g

∗||gi))2 + ηi(g
∗||gi)

(
γq∗i (g

∗)− µ− γ2

2 ηi(g
∗)
)

+

+
(

(q∗i (g
∗))2 − γq∗i (g∗)ηi(g∗)−

γ2

4 (ηi(g
∗))2
)]

According to the (24) the last expression maximizes when ηi(g
∗||gi) =

ηi(g
∗). Finally we obtain the following:

max
gi

max
qi

πi(g
∗, q∗||gi, qi) = (q∗i (g

∗))2 − µηi(g∗) (91)

Since

πi(g
∗, q∗) = (q∗i (g

∗))2 − µηouti (g∗), i ∈ N (92)

the Nash equilibrium inequality (25) holds if

(q∗i (g
∗))2 − µηouti (g∗) > (q∗i (g

∗))2 − µηi(g∗), i ∈ N,

or

ηouti (g∗) 6 ηi(g
∗) i ∈ N. (93)

But from the definition of ηouti (g)

ηouti (g∗) > ηi(g
∗) i ∈ N.

Consequently, (25) holds only when ηouti (g∗) = ηi(g
∗).
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Proposition 5. Pairwise network g∗ is the Nash equilibrium if the following

condition holds

ηouti (g∗) = ηi(g
∗) ∀i ∈ N. (94)

Hence we proved that Nash equilibrium inequality (25) holds for new

payoff function. It means that in this new model pairwise networks are the

Nash equilibria, i.e. costs of offering the links do not break this equilibria.

4.3 Sensitivity analysis

We provide the sensitivity analysis of this new model by analogy with the

sensitivity analysis of the previous model in order to compare how the equiv-

alent actions influence quantities, payoffs of different players. As before we

will use equilibrium quantities (17) for given network g which are dependent

on a network structure so for the simplification we will discard the parameter

q in the payoff function (6).

Because the price function in the the model with offering costs depends

only on quantities it does not change from the model without offering costs.

Suppose that player i in given network g deletes the link with player j,

and player j deletes the link with player i as well. After this transformation

network g changes and we denote the new network by g̃. An example of such

situation is illustrated on Figure 5.

Consider players’ payoffs. At first look at the payoff function of player

i (19) in the new network g̃. The payoff of player j is changed by the same
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rule:

πi(g̃) = (q∗i (g̃))2 − µηouti (g̃) =

= (q∗i (g))2 − µηouti (g) + γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
− 2

)
+ µ =

= πi(g) + γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
− 2

)
+ µ

πi(g̃) = (q∗i (g̃))2 − µηouti (g̃) =

=

(
q∗i (g)− γ

(
1− 2

n+ 1

))2

− µ(ηouti (g)− 1) =

= πi(g) + γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
− 2q∗i (g)

)
+ µ

Let us find out under which constraint player i (and player j) bene-

fits from the removing the link (ij). The payoff of player i has a negative

correlation with the deletion of the collaboration if the next condition holds:

γ

(
1− 2

n+ 1

)(
γ

(
1− 2

n+ 1

)
− 2q∗i (g)

)
+ µ < 0. (95)

The analysis of the payoff of player k 6= i, j in the network g̃ does not

change from the analysis provided for the previous model because ηouti (g̃) =

ηouti (g). We obtain that if the condition (95) holds, players i, j lose in the

network g̃ in comparison to the network g. In contrast, player k never loses

in the network g̃ in comparison to the network g.
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5 Alternative characteristic functions of cooperative

game

As we said in the Section 3 there are several options for defining a charac-

teristic function. Here we construct characteristic function for the two left

variants.

5.1 Maximization of S’s payoff with Nash equilibrium strategies

for other individuals

We have a quantity competition game of |N | − |S|+ 1 players, in which one

player is the coalition S and other players choose fixed Nash equilibrium

actions (17) as if they played as singletons. Players which do not belong

to the coalition S suppose that they play with individuals like they are. It

means that they do not know that some players silently formed a coalition

and play as one player. For the simplicity let us say that the first |S| players

in the initial non-cooperative game of |N | players belong to coalition S in the

cooperative game. Then

v(g, S) = max
qi,i∈S

∑
k∈S

πk(g, q1, . . . , q|S|, q
∗
|S|+1, . . . , q

∗
n). (96)

We may rewrite this expression in more convenient form using short

notation (70) as follows

v(g, S) = max
QS

α− cS(g)−QS −
∑
j∈N\S

q∗j

QS. (97)

According to the necessary condition for an extremum of quadratic function
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we found optimal quantity of coalition S:

Q∗S =
α− cS(g)−

∑
j∈N\S q

∗
j

2
. (98)

To express equilibrium quantity Q∗S through initial parameters of the

game, we substitute q∗i from (17):

Q∗S =
1

2

α− cS(g)−
∑
i∈N\S

α− γ0 + nγηi(g)− γ
∑

j 6=i ηj(g)

n+ 1

 .

Let us compute separately the sum in brackets from the last equation:

∑
i∈N\S

α−γ0+nγηi(g)−γ
∑

j 6=i ηj(g)

n+1 =

=
∑

i∈N\S

(
γηi(g) +

α−γ0−γ
∑

j∈N ηj(g)

n+1

)
=

= γ
∑

i∈N\S ηi(g) + 1
n+1

(∑
i∈N\S(α− γ0)− γ

∑
i∈N\S

∑
j∈N ηj(g)

)
=

= γ
∑

i∈N\S ηi(g) + |N |−|S|
n+1

(
(α− γ0)− γ

∑
j∈N ηj(g)

)
=

= n−|S|
n+1

(
(α− γ0)− γ

∑
j∈S ηj(g)

)
+ |S|+1

n+1 γ
∑

i∈N\S ηi(g)

Now we are able to substitute this sum into (98).

Q∗S = 1
2

(
α− cS(g)− n−|S|

n+1

(
(α− γ0)− γ

∑
j∈S ηj(g)

)
− |S|+1

n+1 γ
∑

i∈N\S ηi(g)
)
=

= 1
2

(
α− γ0 + γmaxj∈S ηj(g)− n−|S|

n+1

(
(α− γ0)− γ

∑
j∈S ηj(g)

)
− |S|+1

n+1 γ
∑

i∈N\S ηi(g)
)
=

= 1
2

(
|S|+1
n+1 (α− γ0) + γmaxj∈S ηj(g)− n−|S|

n+1 γ
∑

j∈S ηj(g)−
|S|+1
n+1 γ

∑
i∈N\S ηi(g)

)

For grand coalition N , the sum of q∗i there is no in the formula (97). So

the expression for optimal Q∗N is significantly shorter and coincides with cor-

responding expression for the first case of constructing characteristic function

– (76) and has the following form:

Q∗N =
α− cN(g)

2
. (99)
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5.2 Equilibrium in the game with |N | − |S|+ 1 players

Here to determine characteristic function v(g, S) we consider the game of

(|N | − |S| + 1) players, where one player represents coalition S and other

players are individuals. Unlike from the previous way of defining characteris-

tic function here all players know that one player actually represents a group

of players. Suppose that first |S| players of N are in coalition S. Players

have the following payoff functions:

πS(g, g,QS, q|S|+1, . . . , qn) = (p− cS(g))QS, for player-coalition S

πi(g, g, q|S|+1, . . . , qn) = (p− ci(g)) qi,∀i ∈ N \ S.

Then the characteristic function v(g, S) is the equilibrium payoff of

coalition S when quantities of production are fixed optimal quantities in

Nash equilibrium.

v(g, S) =

α−Q∗S − ∑
j∈N\S

q∗j − cS(g)

Q∗S (100)

Now let us find Nash equilibrium in this game:
∂πS(g
∂QS

= α− 2QS −
∑

j∈N\S qj − cS(g) = 0, for player S

∂πi(g)
∂qi

= α−QS − qi −
∑

j∈N\S qj − ci(g) = 0, ∀i ∈ N \ S


α−QS −

∑
j∈N qj − cS(g) = 0

α− qi −
∑

j∈N qj − ci(g) = 0, ∀i ∈ N \ S
(101)

Here we can notice an interesting connection between individual quan-
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tity qi, ∀i ∈ N \ S and coalition quantity QS from the system (101) above

α− cS(g)−QS =
∑
j∈N

qj = α− ci(g)− qi.

From which we obtain the following:

cS(g) +QS = ci(g) + qi, ∀i ∈ N \ S.

When we sum equations for i ∈ N \ S we obtain the following.

(n− |S|)α−
∑
i∈N\S

qi − (n− |S|)
∑
j∈N

qj −
∑
i∈N\S

ci(g) = 0

After addition first equation to this sum we get this expression.

(n− |S|+ 1)α− (n− |S|+ 2)
∑
j∈N

qj − cS(g)−
∑
i∈N\S

ci(g) = 0

From this equation we express the sum of all quantities.

∑
j∈N

qj =
1

n− |S|+ 2

(n− |S|+ 1)α− cS(g)−
∑
i∈N\S

ci(g)


Finally, let us substitute the last expression into the first equation of the

system.

QS = α−
∑
j∈N

qj − cS(g)

QS = α− cS(g)−
(n− |S|+ 1)α− cS(g)−

∑
i∈N\S ci(g)

n− |S|+ 2

We found optimal Q∗S in Nash equilibrium.

Q∗S =
α− (n− |S|+ 1)cS(g) +

∑
i∈N\S ci(g)

n− |S|+ 2

For the case of grand coalition N we have the following short form, which also
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coincides with corresponding expressions for the other ways of constructing

characteristic function.

Q∗N =
α− cN(g)

2

By substituting the expression of sum of quantities into the remaining equa-

tions of the system.

qi = α−
∑
j∈N

qj − ci(g), ∀i ∈ N \ S

qi = α− ci(g)−
(n− |S|+ 1)α− cS(g)−

∑
j∈N\S cj(g)

n− |S|+ 2
, ∀i ∈ N \ S

Finally we found optimal quantities for remaining individual players i ∈ N\S.

q∗i =
α + cS(g)− (n− |S|+ 1)ci(g) +

∑
j∈N\(S∪{i}) cj(g)

n− |S|+ 2
, ∀i ∈ N \ S

Now we are able to write down characteristic function because we al-

ready know all optimal quantities.

v(g, S) =

α−Q∗S − ∑
j∈N\S

q∗j − cS(g)

Q∗S = Q∗
2

S (102)
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6 Conclusion

In this thesis we investigated the one-product market competition in quan-

tities of n firms. In our model firms are able to establish collaborations

between themselves and chose quantities of production. The set of pairwise

collaborations defines the network. As the payoff function we use profit from

production and selling goods. The network effect appears in payoff function

and more precisely in marginal costs. The marginal cost of firm is negatively

correlated with the number of formed collaboration links of the firm. We

considered both non-cooperative and cooperative games and used Nash equi-

librium as a non-cooperative solution of the two-stage game and the Shapley

value as a cooperative solution. At first we found the equilibrium quantity of

player when the network is fixed. Then we considered the two-stage game and

found the equilibrium strategies: they are pairwise networks and equilibrium

quantities which coincides with the equilibrium quantities for fixed network.

Since there are too many equilibria in the two-stage game we provided an

analysis of some specific networks and compared different configurations. We

characterized and compared firms’ payoffs under different collaboration struc-

tures: the empty network, a regular network, the complete network, and a

star-like network. To uncover how the collaborations influence the price func-

tion and payoffs of players we provided the sensitivity analysis of removing

and adding a collaboration link. There was found the amount of surplus for

players who were involved in the establishing of the new collaboration link.

And it was found how much the common market price decreases with the

degree of the node in a regular network and obtained that price increases

with the number of firms in the market. For the special case of the regu-

lar networks we found explicit formulas of the equilibrium quantity and the

price and provided a sensitivity analysis, in which we showed on the numer-
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ical example how the degree of node and the number of players affect on

the market price, quantities and payoffs of players. We also introduced an

approach of the model to the weighted networks and showed that in this case

the structure of the equilibrium quantity was not changed.

After the non-cooperative game we considered a cooperative game. We

illustrated options of choosing the characteristic function. We defined the

value of the characteristic function as the solution of the maximin optimiza-

tion problem. Then we found the Shapley value and the CIS value as solu-

tions. It did happen that they coincide. It means that in the cooperative

game all players get equal payoffs. Moreover, for the regular network the

payoff of the player in the cooperative game coincides with his payoff in the

non-cooperative game. We also obtained that in the cooperative game for the

maximin characteristic function, players are indifferent to the network struc-

ture whether maximum degree of the node in the network does not change.

Next we additionally examined an extended version of the model: two-

stage oligopoly with offering costs. This model can emerge from numerous

economic applications when the offer of the collaboration leads to extra costs,

without confidence that it will be accepted. We justified that the equilibrium

strategies for the prior model are the equilibrium strategies but with one

condition.
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