САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Направление подготовки Химия

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Аккумуляция радионуклидов Pb-210 и Po-210 лишайниками

Студентки <u>6</u> курса Лобынцевой Натальи Игоревны Уровень/ступень образования: *специалитет* Заведующий кафедрой: *профессор*, д.х.н, Смирнов И.В. Научный руководитель: *старший преподаватель, к.х.н. Еремин В. В.*

Санкт-Петербург 2016 год

Оглавление

ВВЕДЕНИЕ	3
1. ЛИТЕРАТУРНЫЙ ОБЗОР	5
1.1. Источники поступления ²¹⁰ Ро и ²¹⁰ Рв в окружающую среду	5
1.2. Источники поступления ²¹⁰ Рв и ²¹⁰ Ро в лишайники	6
1.3. МЕХАНИЗМЫ АККУМУЛЯЦИИ ²¹⁰ РВ И ²¹⁰ РО ЛИШАЙНИКАМИ	7
1.4. РАСПРЕДЕЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ТАЛЛОМАХ ЛИШАЙНИКОВ	8
1.5. Аккумуляция лишайниками других радиоактивных нуклидов	. 11
1.6. Постановка задачи	23
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	. 24
2.1. Описание исследованных образцов	. 24
2.2. ОБОСНОВАНИЕ МЕТОДА, ВЫБРАННОГО ДЛЯ ЭКСПЕРИМЕНТАЛЬНОГО	
ИССЛЕДОВАНИЯ	. 27
2.3. МЕТОДИКА ЭКСПЕРИМЕНТА	. 27
2.3.1. Химическая обработка образцов	. 27
2.3.2. Приготовление источников α-излучения изотопов Ро	. 30
2.4. Альфа-спектрометрия	. 32
2.5. Вычисления	. 34
2.6. Статистическая обработка результатов измерений	. 36
2.6.1. Вычисление стандартной неопределенности	. 36
2.6.2. Неопределенность прямых и косвенных измерений	. 37
3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ	. 38
3.1. УДЕЛЬНАЯ АКТИВНОСТЬ ²¹⁰ РО В ОБРАЗЦАХ	. 38
3.2. РАСПРЕДЕЛЕНИЕ ²¹⁰ РО В ТАЛЛОМАХ ЛИШАЙНИКОВ	. 38
3.3. РАСПРЕДЕЛЕНИЕ ²¹⁰ РВ И ²¹⁰ РО ВО ФРАКЦИЯХ ИЗ ОБРАЗЦА <i>Evernia prunastri</i>	. 40
3.4. Активное и пассивное поглощение ²¹⁰ Ро лишайниками	. 41
3.5. ИССЛЕДОВАНИЕ НЕРАСТВОРИМЫХ ОСТАТКОВ ЛИШАЙНИКОВ	42
выводы	. 46
БЛАГОДАРНОСТИ	. 47
СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ	. 48

Введение

Общеизвестно, что лишайники обладают способностью аккумулировать токсичные вещества и радионуклиды в значительно большей степени, чем сосудистые растения. Причиной этого является зависимость минерального питания лишайников от атмосферных источников из-за отсутствия у лишайников корневой системы. Вследствие этого, вся поверхность используется для поглощения атмосферных осадков, а при дальнейшем испарении воды происходит концентрация элементов в слоевищах лишайников - талломах.

Основным источником поступления минеральных веществ в талломы лишайников являются атмосферные осадки. Все атмосферные выпадения содержат радионуклиды. Среди долгоживущих естественных радионуклидов в атмосфере наиболее распространены ²¹⁰Pb ($T_{1/2} = 22$ года) и ²¹⁰Po ($T_{1/2} = 138.4$ суток).

Проблеме высокого содержания этих радионуклидов в лишайниках издавна уделяется очень большое внимание. Накоплена огромная база данных об уровнях активности ²¹⁰Pb и ²¹⁰Po в лишайниках из разных регионов планеты. В середине XX в. такой интерес был вызван проблемой повышенного внутреннего облучения северных народов ²¹⁰Po из-за высокого содержания этого радионуклида в местной фауне и рационе населения.

В настоящее время лишайники широко используются в качестве индикаторов промышленного загрязнения окружающей среды тяжелыми металлами, а также искусственными и естественными радионуклидами. База данных о содержании различных загрязнителей в талломах лишайников насчитывает несколько сотен исследований. Следует отметить, что в подавляющем большинстве работ определялось общее содержание тяжелых металлов и радионуклидов в лишайниках. Только небольшая часть исследований посвящена изучению физико-химического состояния и распределения загрязнителей в талломах. Для радиоактивных изотопов сведения такого рода отсутствуют. Кроме того, вопросы о том, насколько быстро химический состав лишайников следует за изменениями состава окружающей среды и каков механизм транспорта катионов металлов и радионуклидов с поверхности таллома внутрь клеток очень актуальны. Эти вопросы являются также предметом непосредственного интереса лихенологов и специалистов в области радиоэкологии.

Поэтому новые оригинальные данные в этой научной области имеют ярко выраженный практический интерес.

Данная работа - первая попытка с помощью методики последовательной экстракции, используя возможности α-спектрометрии, изучить распределение катионных форм ²¹⁰Po на поверхности и внутри клеток лишайников. Другая, более сложная задача заключалась в определении отношения удельных активностей ²¹⁰Pb и ²¹⁰Po (²¹⁰Po/²¹⁰Pb) в экстрактах.

1. Литературный обзор

1.1. Источники поступления ²¹⁰Ро и ²¹⁰Рb в окружающую среду

Различают природные и антропогенные источники поступления радионуклидов 210 Pb ($T_{1/2} = 22$ года) и 210 Po ($T_{1/2} = 138.4$ суток) в биосферу: радиоактивный распад 238 U; выветривание, выщелачивание и эрозия горных пород и почв; отходы ядерного топливного цикла; фосфорные и прочие минеральные удобрения; отходы энергетических установок и ТЭС, которые используют природное органическое топливо. Эти процессы являются основными причинами непрерывной миграции и распространения радионуклидов 210 Pb и 210 Po в окружающей среде.

Наибольший вклад в поступление ²¹⁰Pb и ²¹⁰Po в окружающую среду вносит радиоактивный распад ²³⁸U, входящего в состав поверхностного покрова континентов. Одним из продуктов распада ²³⁸U является инертный газ ²²²Rn ($T_{1/2} = 3.8$ суток), распад которого происходит в атмосфере. Продукты радиоактивного распада ²²²Rn адсорбируются на частицах аэрозолей и вместе с атмосферными осадками возвращаются на поверхность Земли.

Выветривание выщелачивание горных пород также приводит к распространению радионуклидов в биосфере. Под действием осадков, колебаний температуры окружающей среды и прочих природных воздействий происходит разрушение горных пород, приводящее к образованию различных твердых материалов. При этом, радиоактивные включения частично смываются осадками и поверхностными водами в ближайшие реки, озера, а часть распыляется. Эти процессы происходят постоянно, но их интенсивность зависит от состава и растворимости горных пород и прочих свойств. Схематически источники поступления ²¹⁰Pb и ²¹⁰Po в окружающую среду представлены на рис. 1.

Рис. 1. Перераспределение продуктов распада²³⁸U в биосфере [1].

Важным источником поступления ²¹⁰Pb и ²¹⁰Po в окружающую среду являются отходы ядерного топливного цикла, а также отходы энергетических установок и ТЭС, которые используют природное органическое топливо, выбросы промышленных предприятий по добыче, переработке цветных металлов, а так же предприятия стекольной, лакокрасочной, оборонной промышленности, аккумуляторные заводы, предприятия электротехники и нефтехимии.

Одним из возможных путей поступления ²¹⁰Pb и ²¹⁰Po в наземные экосистемы является его осаждение из атмосферного воздуха. Так в начале XX столетия было доказано, что содержание инертного газа ²²²Rn и его дочерних продуктов распада в атмосферном воздухе в 1000 раз меньше, чем в почвенном [2]. Результаты исследований [3, 4, 5] показали, что отношение содержания ²¹⁰Pb и ²¹⁰Po в атмосферном воздухе северного и южного полушарий примерно равно отношению площадей суши этих полушарий [1].

1.2. Источники поступления ²¹⁰Рb и ²¹⁰Ро в лишайники

Как было показано выше, основным источником 210 Pb и 210 Po для лишайников являются атмосферные выпадения. Механизм поступления 210 Pb и 210 Po в талломы лишайников из атмосферы следующий. При радиоактивном распаде 238 U, входящего в состав поверхностного покрова континентов, образуется инертный газ 222 Rn. Средняя продолжительность жизни его ядер составляет 5.5 суток. За этот промежуток времени атомы 222 Rn, как правило, покидают место своего образования и поступают в различные слои атмосферы. Радиоактивный распад 222 Rn приводит к образованию

ядер ²¹⁸Ро, которые адсорбируются на мелкодисперсной (550 нм) фракции аэрозолей [6]. Все последующие продукты радиоактивного распада ²¹⁸Ро, в том числе ²¹⁰Рb и ²¹⁰Рo, также адсорбированы. В связи с этим, их дальнейшее поведение определяется физико-химическими свойствами аэрозолей [7, 8]. Среднее время удерживания указанной фракции аэрозолей в тропосфере достигает 10 дней [9], а в стратосфере - 1 года [10]. Эти промежутки времени достаточны для распространения ²¹⁰Pb и ²¹⁰Po с атмосферными потоками на большие расстояния. При осаждении аэрозолей в виде сухих и влажных выпадений радионуклиды возвращаются на поверхность земли [11]. Таким образом, ²¹⁰Pb и ²¹⁰Po распространены повсеместно, и лишайники вынуждены их накапливать из-за особенностей своего минерального питания.

1.3. Механизмы аккумуляции ²¹⁰Рb и ²¹⁰Ро лишайниками

Известно, что лишайники обладают способностью аккумулировать радионуклиды в значительно большей степени, чем сосудистые растения [11, 12]. Изза отсутствия у лишайников специальных органов водо- и газообмена, они обладают крайне низкой способностью к авторегуляции. Это приводит к высокой степени соответствия химического состава лишайников и окружающей их среды. Одной из причин этого является зависимость питания лишайников от атмосферных источников, так как у них отсутствует корневая система [13]. Это стало одной из причин использования лишайников, аккумулятивных биоиндикаторов как загрязнения окружающей среды.

На сегодняшний день известны три основных механизма аккумуляции металлов в талломах лишайников:

 улавливание твердых частиц пыли и почвы поверхностью талломов, приводящее к концентрированию этих частиц в межклеточных и внутриклеточных пространствах;

• связывание с катионообменными центрами, расположенными на внешней поверхности клеточных стенок лишайников (экстрацеллюлярное связывание);

• внутриклеточное поглощение (интрацелюлярное связывание) [13, 14].

Несмотря на постоянное совершенствование процедур последовательной экстракции металлов [14, 15], данные о пропорциях интра - и экстрацеллюлярно расположенных ионов до сих пор весьма немногочисленны.

Атмосферные источники минеральных веществ относительно бедны по сравнению с почвенными, поэтому лишайники выработали механизмы пассивного получения и концентрирования элементов. Твердые частицы на поверхности лишайников не остаются неизменными: даже относительно нерастворимые могут со временем растворяться осадками и органическими соединениями и вступать в процессы ионного обмена [14]. Вследствие этого, вся поверхность используется для поглощения атмосферных осадков [16], а при дальнейшем испарении воды происходит концентрация элементов в талломах. Экстрацеллюлярное связывание пассивный, обратимый физико-химический процесс, и связанные катионы могут быть замещены другими, имеющими большее сродство к обменным центрам или находящимися в более высоких концентрациях [14, 17].

1.4. Распределение тяжелых металлов в талломах лишайников

Имеется небольшой круг работ, в которых исследовалось распределение тяжелых металлов в талломах лишайников, а именно - в межклеточной, обменной, внутриклеточной и остаточной фракциях. Такие исследования были проведены на талломах эпифитного лишайника Hypogymnia physodes [18]. Была изучена динамика накопления металлов (Cu, Fe, Pb, Zn и Cd) и их локализация в талломах. Результаты анализа показали, что Pb и Cd локализованы преимущественно внешнеклеточно (экстрацеллюлярно), Zn - внутриклеточно (интрацеллюлярно), a Fe - в остаточной фракции. Си распределена практически поровну между экстрацеллюлярной и остаточной фракциями. Для всех металлов отмечено снижение суммарного содержания в период с июня по октябрь. Содержание металлов в экстрацеллюлярной и остаточной фракциях подвержено ярко выраженным сезонным колебаниям. Для металлов, локализованных преимущественно экстрацеллюлярно (Pb И Cd). характерно снижение их суммарного содержания в течение вегетационного сезона (в основном за счет экстрацеллюлярной фракции) и резкий подъем концентраций весной (достоверность различий подтверждает критерий Шеффе (p < 0.05)). Для остальных

металлов (Fe, Cu и Zn) отмечено убывание общего содержания металлов (преимущественно за счет остаточной фракции) с июня в течение всего года. Количество экстрацеллюлярной фракции Cu и Zn практически неизменно; содержание экстрацеллюлярного Fe в октябре достоверно ниже, чем в другие месяцы (p < 0.05).

В табл. 1 представлены результаты исследования концентраций Zn, K, Mg и Ca в различных клеточных расположениях по данным работы [19].

Табл. 1. Концентрации Zn, K, Mg и Ca (ммоль/г) в *Hylocomium splendens* собранных в 4, 8.5 и 25 км от металлообрабатывающего завода, Liepaja, Latvia [19]

Клеточное	Год	Zn	(ммој	іь/г)	К (1	ммолі	Б/г)	Mg	(ммој	њ/г)	Ca (ммол	ь/г)
располо-	исследо	4	8.5	25	4	8.5	25	4	8.5	25	4	8.5	25
жение	вания	КМ	КМ	КМ	КМ	КМ	КМ	КМ	КМ	КМ	КМ	КМ	КМ
	1993	0.21	0.14	0.07	65.5	60.7	56.1	2.9	2.7	3.7	5.5	6.7	5.1
	1992	0.14	0.06	0.04	36.4	66.9	44.5	1.8	2.4	1.5	4.5	4.5	2.7
Межкле-	1991	0.15	0.09	0.05	33.1	56.5	10.9	2.3	2.6	1.8	6.4	5.7	3.4
точный	1990	0.18	0.09	0.05	25.2	43.8	33.6	2.6	2.2	2.3	9.4	6.6	5.7
Внекле-	1993	0.93	0.41	0.53	52.0	74.3	63.2	56.9	35.1	66.7	113.6	80.1	93.5
точный	1992	1.35	0.63	0.58	32.0	57.1	36.0	48.7	41.5	38.1	119.8	114.3	73.2
обменный	1991	1.81	0.76	0.71	27.1	55.5	31.3	57.5	40.8	40.2	154.4	123.7	84.4
	1990	2.73	1.19	0.73	23.0	52.6	23.8	59.6	36.4	37.6	194.6	157.7	104.1
Внутрикле-	1993	1.15	0.66	0.74	223.3	177.8	245.0	66.1	50.6	66.6	49.4	51.5	30.0
точный	1992	0.86	0.52	0.14	80.0	84.5	113.5	26.8	25.7	27.0	27.1	23.2	13.4
	1991	1.10	0.59	0.21	81.2	65.5	105.8	28.5	22.5	20.2	34.9	30.5	18.3
	1990	1.63	0.87	0.30	48.0	58.7	59.5	22.9	21.7	16.9	36.9	40.2	28.1
Остаточный	1993	0.36	0.22	0.46	2.2	1.4	2.2	3.8	2.8	4.0	2.4	2.6	2.7
	1992	0.63	0.41	0.19	2.8	2.8	1.9	9.2	5.6	6.2	6.3	7.3	2.8
	1991	1.11	0.37	0.22	5.8	2.9	2.5	14.6	9.0	9.4	7.8	7.6	5.8
	1990	1.34	0.60	0.29	5.7	3.8	7.6	15.9	10.0	13.9	7.7	6.4	6.3

Так же был изучен осажденный Ni в лишайниках Cladina Stellaris. Ni осаждается в высоких концентрациях, чем вызвано значительное снижение концентрации K, указывающего на повреждение клеточных мембран. Ni, вероятно, может повлиять на целостность мембраны. Таким образом, соотношение общей концентрации катионов в слоевище лишайника довольно нечувствительно к отложению Ni. Несмотря на то, что поглощение катионов и обмен в слоевище лишайника были в центре внимания целого ряда исследований в течение последних десятилетий [20-25], есть только несколько сообщений, где потенциал обмена лишайников катионов в качестве экологического биомаркера был подробно рассмотрен [26].

Значительно более низкие концентрации (например, 0,01 - 1 мг) тяжелых металлов могут вызвать неблагоприятные изменения в физиологии лишайников [20, 27]. Результаты показали, что распределение катионов в слоевище лишайника изменяется при умеренных добавках Ni в виде водного раствора. Обработка солями Ni приводит к повреждению клеточных мембран, а не к катионному обмену. Следовательно, соотношение концентраций внутри- и внеклеточных катионов никеля не может быть использовано для биомониторинга [28].

Лишайники, по-видимому, могут регулировать поглощение некоторых элементов, избыточных в субстрате, поскольку лишайники рода Cladina, растущие на сфагновых болотах, бедных железом, и на почвах, богатых Fe, имели одинаковый уровень Fe в слоевищах [29]. Интересно, что у мхов и лишайников, развивающихся на бедных микроэлементами субстратах, отмечался более высокий коэффициент биологической аккумуляции микроэлементов и естественных радиоактивных элементов, чем у тех, которые росли на богатых ими субстратах [30]. Также наблюдали, что в мертвой базальной части лишайников Cladina содержание Fe, Pb, Cu и золы выше, чем в живых верхушках, причем наибольшие различия (в 2.5 раза) наблюдались для Fe [29]. У Cladina stellaris, таллом которой постепенно переходит в органические остатки субстрата, повышенное содержание Fe, видимо, связано с субстратом. Кроме того, Fe может поступать вниз и из верхушек, поскольку экспериментально установлено относительно быстрое передвижение ⁵⁵Fe от верхушки к основанию, и это движение однонаправленное [31].

Большинство лишайников, особенно встречающихся на почве и камнях, подвержены влиянию переносимой ветром пыли, источником большей части которой являются частицы почвы, иногда содержащие радионуклиды. Эти почвенные частицы могут легко внедриться в межклеточное пространство лишайников и стать причиной относительно высоких концентраций в слоевище Al, Fe, Sc, Ti и других элементов литосферного происхождения, а также радионуклидов. Растворимые соединения их являются потенциальным источником элементов минерального питания, но процесс растворения медленный, и большинство элементов из этих частиц, вероятно, остаются недоступными.

Относительный вклад почвенных частиц в общее обеспечение лишайников минеральными элементами может быть оценен сравнением отношений макро- и микроэлементов питания к инертным элементам как S или Ti [24]. Однако при изучении поглощения из субстрата и накопления лишайниками питательных веществ четких физиологических, таксономических или морфологических корреляций не выявлено [32]. Имеются лишь косвенные свидетельства как. например, избирательность некоторых видов по отношению к субстрату [29, 33, 34], толерантность к действию очень высоких концентраций металлов [35, 36, 37], большие различия между видами в способности их к накоплению металлов [16, 36, 38].

1.5. Аккумуляция лишайниками других радиоактивных нуклидов

Эксперименты с радионуклидами показали возможность поступления их из верхнего наиболее загрязненного слоя почвы в эпигейные лишайники рода Cladina [39]. При этом соотношение радионуклидов остается таким же, что и при загрязнении слоевищ из атмосферных источников — через 3 месяца после начала эксперимента в лишайниках содержалось от 2 до 4% внесенного в верхний слой почвы ¹³⁷Cs и только 0.1-0.3% - ⁹⁰Sr (табл.2). Возможно, эти различия обусловлены тем, что трансформация ⁹⁰Sr в почве и талломах иная, нежели у ¹³⁷Cs.

Длительность опыта (сутки)	2	7	30	45	83	105
Количество накопленного ⁹⁰ Sr по отношению к внесенному количеству радионуклида в почву, %	0.0004	0.0017	0.0011	0.114	0.233	0.150
Количество накопленного ¹³⁷ Cs по отношению к внесенному количеству радионуклида в почву, %	0.013	0.024	0.170	4.230	1.430	1.990

Табл. 2. Миграция ⁹⁰ Sr и ¹³⁷Cs из почвы в лишайники рода Cladina [39]

Были выполнены исследования локализации 137 Cs в лишайниках Cetraria Islandica [40]. Изучалась удельная активность 137 Cs в различных водных и органических экстрактах. Было показано, что лишь незначительная часть 137 Cs экстрагируется органическими растворителями. В противоположность этому, водные экстракты показали высокие уровни активности 137 Cs. Полученные результаты позволили авторам работы сделать следующие выводы:

1. ¹³⁷Сѕ присутствовал в качестве органической соли (ей);

2. возможен катионный обмен ¹³⁷Сs в растворах различных неорганических солей (особенно солей аммония);

3. ионы ¹³⁷Cs могут быть оделены от солей обработкой сильными неорганическими кислотами;

4. не весь ¹³⁷Cs может быть извлечен из лишайников методом экстракции.

К настоящему времени накоплена большая база данных о содержании естественных радионуклидов в лишайниках [29, 41, 42]. Выборка из этой базы представлена в табл. 3.

Питойник	Гол	Маотонахожланиа	Истонные донные					Изотог	Ы			
лишанник	ТОД	местонахождение	источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
			Нижников и др.,1973;									
Cladina spp	1966—	Россия,	Ермолаева-Маковская,	289-	289-	10		2				
Ciucina spp.	1974	Мурманская обл.	Литвер, 1978; Троицкая	359	395	10		2				
			и др., 1980									
			Нижников и др.,1973;									
Cladina spp.	1967-	Россия, Респ.	Ермолаева-Маковская,	248	223	13		4				
chualla spp.	1968	Коми	Литвер, 1978; Троицкая			10						
			и др., 1980									
Лишайники,	1988—	Россия,	Любашевский и др.,	156-	165-							
смесь	1991	п-ов Ямал	1993, 1995	344	338	14-82		4-53	4-56			13-95
			Нижников и др.,1973;									
		Россия,	Ермолаева-Маковская,	124-	124-			_				
Cladina spp.	1968	п-ов Чукотка	Литвер, 1978; Троицкая	366	366	14		3				
			и др., 1980									
Cladina												
stellaris +	1900	Россия, Ленингр.	Троицкая и др., 1971	544								
Flavocetraria		оол.										
cucullata												

Табл.3. Содержание естественных радионуклидов (Бк/кг) в лишайниках [16].

Пишайник	Лишайник Год Местонахождение Источник данных											
лишанник	ТОД	местонахождение	Петочник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Cladina stellaris + Flavocetraria - cucullata	1958- 1966	Россия, Ленингр. обл.	Троицкая и др., 1971	311								
Cladina mitis	1991	Украина, ок.140 км от ЧАЭС на юг	Кондратюк и др., 1993				63/ 185					
Cladina mitis	1991	Украина, ок.140 км от ЧАЭС на юг	Кондратюк и др., 1993				126/ 37/32					
Cladina rangiferina	1991	Украина, ок.140 км от ЧАЭС на юг	Кондратюк и др., 1993				307					
Cladina furcata	1991	Украина, ок.70 км от ЧАЭС на юг	Кондратюк и др., 1993				370					
Cetraria islandica	1991	Украина, ок.70 км от ЧАЭС на юг	Кондратюк и др., 1993				703					
Cladina mitis	1991	Украина, ок.100 км от ЧАЭС на ЮЗ	Кондратюк и др., 1993				44					
Cladina crispata	1991	Украина, ок.100 км от ЧАЭС на ЮЗ	Кондратюк и др., 1993			70						

Пишайник	Гол	Местонахожление	Истонник данных					Изото	ТЫ			
Juniaminik	ТОД	Wieeronaxoжgenne	пето-шик данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Cladina arbuscula	1957	Польша, лес Кампинос	Jaworowski, 1966	63								
Cladina arbuscula	1958	Польша, лес Кампинос	Jaworowski, 1966	96								
Cladina stellaris	1958	Польша, лес Кампинос	Jaworowski, 1966	174								
Cladina arbuscula	1960	Польша, лес Кампинос	Jaworowski, 1966	70								
Cladina arbuscula	1960	Польша, лес Кампинос	Jaworowski, 1966	59								
Cladina stellaris	1963	Польша, лес Кампинос	Jaworowski, 1966	248								
Cladina arbuscula	1965	Польша, лес Кампинос	Jaworowski, 1966	63								
Cladina mitis	1965	Польша, лес Кампинос	Jaworowski, 1966	37								
Cladina mitis	1958	Польша, Краковское нагорье	Jaworowski, 1966	52								

Лишайник	Гол	Мастонахожнаниа						Изотог	ТЫ			
лишанник	ТОД	местонахождение	источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Cladina mitia	1958-	Норвегия, арх.	Januaranalti 1066	233-								
	1960	Шпицберген, юг	Jaworowski, 1900	296								
Flavocetraria	2000-	Норвегия, арх.	Downdall at al. 2002			<20			20			-10
nivalis	2002	Шпицберген .	Dowdall et al., 2003			<20			20			<18
Hypogymnia	1988-	Сторогия	Jaron at al. 1005	625-		59-						
physodes	1991	Словения	Jeran et al., 1995	1904		279						
Hypogymnia	1988-	Crosserver	Jaman at al. 1005	712-		12.54						
physodes	1991	Словения	Jeran et al., 1995	1021		15-54						
Hypogymnia	1988-	Слорония	Joron et al. 1005	175-		12.24						
physodes	1991	Словения	Jeran et al., 1995	348		12-24						
Hypogymnia	1988-	Слорония	Joron et al. 1005	474-		14.57						
physodes	1991	Словения	Jerail et al., 1993	1089		14-37						
Hypogymnia	1988-	Слорения	Joron et al. 1005	916-		8						
physodes	1991	Словения	Jeran et al., 1995	1004		0						
Melanelia	1000	Сербия, Косово,	Sansona at al. 2001							0.6	6.4	2.0
exasperatula	1999	Врановац	Sansone et al., 2001							0.0	0.4	(3.6)
Melanelia	1000	Сербия, Косово,	Sansone et al. 2001							63	3.0	39.4
exasperatula	1999	Рзниц	Sansone et al., 2001							0.5	5.9	(27.4)
Melanelia	1000	Сербия, Косово,	Sansone et al. 2001							10.1	58	44.6
exasperatula	1777	Белеборд	Sansone et al., 2001							10.1	50	(37.2)
Melanelia exasperatula	1999	Италия, Рим	Sansone et al., 2001							14.4		

Пишайник	Гол	Местонахожление	Истонник ланных	Изотопы									
лишанник	ТОД	Местонахождение	источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U	
Melanelia exasperatula	1999	Италия, Рим	Sansone et al., 2001							2.5			
Lasallia pustulata	1979	Нижняя Австрия, 720 м	Eckl et al., 1984									592	
Lasallia pustulata	1982	Нижняя Австрия, 720 м	Eckl et al., 1984									1591	
Cetraria ericetorum	1981	Австрия	Eckl et al., 1986	<7		<37						<74	
Cetraria islandica	1981	Австрия	Eckl et al., 1986	<7		<33						<67	
Cetrelia cetrarioides	1982	Австрия	Eckl et al., 1986	<7		<33						<63	
Cladonia furcata	1981	Австрия	Eckl et al., 1986	<7		<33						<63	
Cladonia furcata	1981	Австрия	Eckl et al., 1986	33		<33						<63	
Cladina rangiferina	1981	Австрия	Eckl et al., 1986	<7		<33						<67	
Hypogymnia physodes	1980	Австрия	Eckl et al., 1986	67		<22						<44	
Hypogymnia physodes	1982	Австрия	Eckl et al., 1986	<11		<48						<93	

	-		е Источник данных					Изотог	Ш			
Лишайник	Год	Местонахождение	Источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Parmelia saxatilis	1979	Австрия	Eckl et al, 1986	70		<22						<44
Hypogymnia physodes	1981	Австрия	Eckletal., 1986	<7		<41						<81
Parmelia sulcata	1982	Австрия	Eckl et al., 1986	<11		<48						<93
Peltigera canina	1981	Австрия	Eckl et al., 1986	<7		<33						<67
Platismatia glauca	1980	Австрия	Eckl et al., 1986	56		<22						<44
Platismatia glauca	1981	Австрия	Eckl et al., 1986	<7		<41						<78
Pseudevernia furfuracea	1980	Австрия	Eckl et al., 1986	<4		<22						<44
Pseudevernia furfuracea	1982	Австрия	Eckl et al., 1986	<7		<30						<59
Pseudevernia furfuracea	1981	Австрия	Eckl et al., 1986	<7		<30						<56
Pseudevernia furfuracea	1982	Австрия	Eckl et al., 1986	48		<37						<74
Umbilicaria deusta	1981	Австрия	Eckl et al., 1986	<11		<48						<93

								Изотог	ТЫ			
Лишайник	Год	Местонахождение	Источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Pseudevernia furfuracea	2000	Турция, запад, 250 м	Egilli et al., 2003						<7			311
Ramalina farinacea	2000	Турция, запад, 550 м	Egilli et al., 2003						<7			583
Cladina spp. + Cetraria spp.	1964- 1965	США, Аляска	Hanson et al., 1967			0.4		0.3				
Flavocetraria cucullata, Cetraria islandica	1964- 1965	США, Аляска	Hanson et al., 1967			0.6		0.3				
Cladina stellaris	1964- 1965	США, Аляска	Hanson et al., 1967		-	0.5		0.2				
Cladonia cenoiea	1923	США, Аляска	Blanchard, Moore, 1970	229		1						
Cladonia subulata	1923	США, Аляска	Blanchard, Moore, 1970	270		5						
Cladonia uncialis	1923	США, Аляска	Blanchard, Moore, 1970	126		1						
Cetraria islandica	1948	США, Аляска	Blanchard, Moore, 1970	640		2						

Пишайник	Гол	Мастонахожнаниа	естонахождение Источник данных					Изотоі	ТЫ			
Лишанник	ТОД	местонахождение	Источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Bryoria nitidula + Cladonia sp.	1949	США, Аляска	Blanchard, Moore, 1970	1295		2						
Sphaerophoru s globosus	1949	США, Аляска	Blanchard, Moore, 1970	358		5						
Cetrariella delisei	1949	США, Аляска	Blanchard, Moore, 1970	451		1						
Кустистые лишайники		США, Огайо	Blanchard, 1967	260	218							
Листоватые лишайники		США, Огайо	Blanchard, 1967	209	191							
Листоватые лишайники		США, Аляска	Blanchard, 1967	127	126							
Кустистые лишайники		США, Аляска	Blanchard, 1967	133	138							
Кустистые лишайники		США, Аляска	Blanchard, 1967	246	207							
Листоватые лишайники		США, Аляска	Blanchard, 1967	149	133							
Лишайники, смесь	1965	США, Аляска	Beasley, Palmer, 1966		174							

Лишайник	Год	Местонахожление	Источник данных					Изотог	ы			
				²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Bryocaulon diver-gens + Alectoria nigricans + A. ochroleuca	1961	США, Аляска	Holtzman, 1966	2575		15						
Cladina spp.	1965	США, Аляска	Holtzman, 1966	282	271							
Cladina spp.	1965	США, Аляска	Holtzman, 1966	257	278							
Cladina mitis	1990	Канада, СЗТ, оз. Baker, тундра	Thomas et al., 1994	361	338							
Cladina mitis	1990	Канада, СЗТ, оз. Kasha, лесотундра	Thomas et al., 1994	253	215							
Flavocetraria nivalis	1990	Канада, СЗТ, оз. Kasha, лесотундра	Thomas et al., 1994	527	594							
Cladina mitis	1990	Канада, C3T, Snowdrift, лесотундра	Thomas et al., 1994	319	248							
Flavocetraria nivalis	1990	Канада, C3T, Snowdrift, лесотундра	Thomas et al., 1994	451	392							

ΠΥ	Г	N	н	Изотопы								
Лишаиник	ТОД	местонахождение	источник данных	²¹⁰ Pb	²¹⁰ Po	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³² Th	²³⁴ U	²³⁵ U	²³⁸ U
Cladina	1083	Канада,	Sheard 1086a	330-	180-	2.37-						
rangiferina	1905	Саскачеван, север	Sheard, 1900a	370	250	4.01						
Cladina mitia	1092	Канада,	Shoord 10960	330-	233-	5.63-						
	1985	Саскачеван, север	Snearu, 1986a	430	300	9.55						

1.6. Постановка задачи

Проблеме высокого содержания ²¹⁰Ро в лишайниках издавна уделяется очень большое внимание. В середине XX в. такой интерес был вызван проблемой повышенного внутреннего облучения северных народов ²¹⁰Ро из-за высокого содержания этого радионуклида в рационе населения [11]. В настоящее время лишайники широко используются в качестве индикаторов промышленного загрязнения окружающей среды искусственными и естественными радионуклидами [16], в том числе и ²¹⁰Ро [43]. Следует отметить, что почти во всех исследованиях определяется общее содержание ²¹⁰Ро в лишайниках. Сведения о физико-химическом состоянии и клеточном распределении нуклида в талломах до сих пор отсутствуют. Также ничего не известно о механизме поглощения полония лишайниками.

Целью настоящей работы являются исследование распределения катионных форм ²¹⁰Pb и ²¹⁰Po в талломах напочвенных и эпифитных (древесных) лишайников.

2. Экспериментальная часть

2.1. Описание исследованных образцов

Исследования проводились на свежесобранных талломах дикорастущих лишайников. Сведения об исследованных образцах и их местонахождении представлены в табл. 4 и на рис. 2.

N⁰	Название	Тип	Место сбора	Дата сбора
	образца	лишайника		
1.	Evernia	Эпифитный	Республика Крым,	30.04.2015.
	prunastri		Бахчисарайский район, гора	
	(L.) Ach.		Мангуп-Кале, окрестности	
			мужского монастыря, 44 ⁰ 35'	
			с.ш.; 33 ⁰ 48' в.д.	
			Материал собран на кустах	
			терновника Пучковой Е. В.	
2.	Pseudevern	Эпифитный	Ленинградская область,	17.05.2015
	ia furfuracea		Лужский район, планируемый	
	(L.) Zopf		заказник «Ящера-Лемовжа», к	
			югу от деревни Ящера,	
			58°53'20" с. ш., 29°49'41" в. д.,	
			молодой сосняк мохово-	
			вересково-лишайниковый.	
			Материал собран на коре	
			сосен Гимельбрантом Д. Е. и	
			Степанчиковой И. С.	

Табл. 4. Сведения об исследованных образцах и местах их сбора

No	Название	Тип	Место сбора	Дата сбора
	образца	лишайника		
3.	Cladonia	Напочвенный	Санкт-Петербург,	01.05.2015
	arbuscula		Курортный район,	
	(Wallr.) Flot.		окрестности города	
	subsp.		Сестрорецк, центральная	
	arbuscula		часть заказника	
4.	Cetraria	Напочвенный	«Сестрорецкое болото»,	01.05.2015
	islandica (L.)		дюнный остров, 60°06'52" с.	
	Ach. subsp.		ш., 30°01'01" в. д., сосняк	
	islandica		лишайниково-вересковый.	
			Материал собран на песчаной	
			почве Гимельбрантом Д. Е.,	
			Дёминой А. В. и Розанцевой	
			Е. И.	
5.	Cladonia	Напочвенный	Ленинградская область,	17.05.2015
	stellaris		Лужский район, планируемый	
	(Opiz)		заказник «Ящера-Лемовжа», к	
	Pouzar et		югу от деревни Ящера,	
	Vězda		58°53'20" с. ш., 29°49'41" в. д.,	
			молодой сосняк мохово-	
			вересково-лишайниковый.	
			Материал собран на песчаной	
			почве (Cladonia stellaris)	
			Гимельбрантом Д. Е. и	
			Степанчиковой И. С.	

Рис. 2. Карты с указанием мест сбора образцов лишайников.

- 1 место сбора образцов № 3 и № 4;
- 2 место сбора образцов № 2 и № 5;
- 3 место сбора образца № 1.

2.2. Обоснование метода, выбранного для экспериментального исследования

Исследования проводили по методу [44] в варианте [27]. Эти методики разработаны для элементов класса В по классификации Е. Nieboer & D. Richardson [17]. В рамках этой классификации химически и биологически значимые ионы металлов делятся на 3 группы в зависимости от их сродства к O-, N-, и S-содержащим лигандам. Элементы класса A (например, Al, Ba, Cs, Sr, Y) при образовании химических соединений предпочитают кислородсодержащие лиганды (O > N > S). Элементы класса B (Cu, Hg, Pb и др.) обладают повышенным сродством к серосодержащим лигандам (S > N > O). Для промежуточных элементов (например, Cd, Co, Fe, Mn, Ni) не наблюдается специфического сродства к конкретным лигандам.

В работе [17] принадлежность к определенному классу указана не для всех элементов. В частности, ничего не говорится о полонии (точнее, изотопе ²¹⁰Po), который широко распространен в окружающей среде и присутствует практически во всех биологических объектах [11; 45]. Наиболее устойчивая степень окисления полония равна +4. В этом состоянии проявляется его сходство с теллуром. По химическим свойствам оба элемента являются халькогенами, поэтому их следует отнести к классу В. Например, полоний способен замещать серу в белках, где её содержание весьма велико. [45]. Полоний образует комплексные соединения с Na_2 ЭДТА [46], используемой в методике [27] в качестве экстрагента. Таким образом, по нашему мнению, эта методика применима для такого элемента, как полоний.

2.3. Методика эксперимента

2.3.1. Химическая обработка образцов

Образцы лишайников, очищенные от посторонних включений, помещали в эксикатор с дистиллированной водой в атмосферу повышенной влажности на 24 часа для восстановления целостности межклеточных мембран. Методом квартования отбирали навески массой 9 г. Для каждого образца брали 2 параллельные пробы.

Образцы последовательно обрабатывали реагентами в соответствии с методикой [44] (см. рис.3).

Рис. 3. Методика эксперимента

Из каждой навески выделяли 4 фракции, содержащие ²¹⁰Pb и ²¹⁰Po в следующих формах:

1) *межклеточная (интерцеллюлярная) и поверхностная фракция*. Данная фракция содержит слабосвязанные частицы пыли и/или почвы, находящиеся на поверхности лишайника и в межклеточных пространствах. Катионы ²¹⁰Pb и ²¹⁰Po адсорбированы на этих частицах;

2) *катионообменная (экстрацеллюлярная) фракция* содержит катионы ²¹⁰Pb и ²¹⁰Po, десорбированные с наружной поверхности клеточных стенок;

3) *интрацеллюлярная фракция* содержит катионы ²¹⁰Pb и ²¹⁰Po, присутствующие в цитоплазме (внутриклеточном содержимом) клеток;

 нерастворимый остаток содержит частицы пыли и/или почвы, механически инкорпорированные в талломы лишайников. Катионы ²¹⁰Pbu ²¹⁰Po адсорбированы на этих частицах.

Извлечение фракций осуществлялось при комнатной температуре по следующей схеме.

Фракция № 1:

1) обработка дистиллированной водой (V = 1 л) 3 минуты при встряхивании;

2) повторная обработка;

3) повторная обработка.

Водную фазу отделяли от остатка фильтрованием через пористую ткань (флизелин), фильтраты объединяли.

Фракция № 2:

1) обработка раствором Na₂ЭДТА (20 ммоль/л, V = 3 л, pH = 4,5) 40 минут при перемешивании с помощью магнитной мешалки;

2) повторная обработка в течение 30 минут.

Экстракты отделяли от остатка фильтрованием через флизелин и объединяли.

Остаток высушивали при температуре 80° C в сушильном шкафу в течение 12 часов (с целью разрушения межклеточных мембран) и взвешивали. Полученную величину принимали за *массу исходного сухого образца* (m_1).

Фракция № 3:

1) обработка раствором Na₂ЭДТА (20 ммоль/л, V = 3 л, pH = 4,5) 2 часа при перемешивании с помощью магнитной мешалки. Экстракт отделяли от остатка фильтрованием через флизелин.

Остаток, представляющий собой **фракцию №** 4, высушивали при температуре 80⁰С до постоянной массы и взвешивали. Полученная величина (*m*₂) является *массой клеточных стенок*.

К фракциям добавляли определенное количество изотопа ²⁰⁹Ро для контроля химического выхода. Фракции № 1 – 3 подкисляли концентрированной HNO₃(30 – 40 мл) и упаривали до объема ~ 100 – 150 мл. Полученные концентраты, а также фракцию № 4 обрабатывали смесью HNO₃ (конц.)и H₂O₂ (35%) при нагревании до полного разложения органических соединений. Растворы упаривали до влажных солей, которые переводили в форму хлоридов трехкратной обработкой концентрированной HCl.

2.3.2. Приготовление источников α-излучения изотопов Ро

При обработке образцов раствором концентрированной HNO₃ полоний окисляется до Po(IV). Потенциал пары Po(IV)/Po равен +0,765 В. Следовательно в ряду напряжений металлов Po располагается между Te и Hg[47] и поэтому может без внешней ЭДС выделяться на различных металлах [48]. В настоящей работе для выделения изотопов полония использовались диски из никеля и нержавеющей стали. Перед началом осаждения диски полировали и обезжиривали. Методика осаждения полония заимствована из работы [49]. Схема установки для выделения полония представлена на рис. 4.

Рис. 4. Установка для электрохимического выделения Ро

- 1. Металлическая подложка в форме диска
- 2. Тефлоновый кожух для закрепления подложки
- 3. Раствор радиоактивного вещества в стеклянном стаканчике
- 4. Водяная баня
- 5. Термометр
- 6. Тефлоновая мешалка
- 7. Электромотор
- 8. Электроплитка

Соли, полученные после разложения фракций № 1 - 4, растворяли в HCl (0,5 моль/л). К полученному раствору добавляли ~ 200 мг кристаллической аскорбиновой кислоты с целью восстановления катионов Fe³⁺, препятствующих выделению полония. Подготовленные металлические диски помещали в специальные кассеты из тефлона и погружали в исследуемый раствор. Стакан с раствором нагревали на водяной бане, в которой автоматически поддерживалась температура ~80^oC. Осаждение проводилось в течение 3 часов при постоянном перемешивании раствора. Процедуру осаждения выполняли 2 раза с целью полного извлечения изотопов полония из раствора. Химические выходы при этих условиях достигали 80 - 95%.

В раствор, оставшийся после удаления полония, вносили определенное количество изотопа ²⁰⁹Ро и H_2O_2 (35%) для разложения аскорбиновой кислоты. Затем раствор упаривали досуха и хранили в течение 4 – 6 месяцев для накопления ²¹⁰Ро из ²¹⁰Рb. По истечении указанного срока осаждение повторяли при тех же условиях.

2.4. Альфа-спектрометрия

Регистрация α-частиц, излучаемых изотопами ²⁰⁹Ро и ²¹⁰Ро, осуществлялась с помощью полупроводникового кремниевого поверхностно-барьерного детектора, входящего в состав спектрометра α-излучения. Блок-схема спектрометра представлена на рис. 5.

Рис. 5. Блок-схема альфа - спектрометра

- 1. Источник;
- 2. Подставка для источника;
- 3. Полупроводниковый детектор;
- 4. Блок высокого напряжения;
- 5. Анализатор импульсных амплитуд;
- 6. Компьютер;
- 7. Вакуумный насос;
- 8. Вакуумная камера

Характеристики детектора: площадь - 3 см², эффективность регистрации αизлучения - 34%, собственная разрешающая способность – 25 кэВ, фон в рабочей области спектра не выше 0,0004 Бк. Измерения проводились в геометрии "*face to face*". Энергетический диапазон спектрометра составлял 3,5 – 9,5 МэВ, растяжка спектра 8 – 10 кэВ/канал, собственная разрешающая способность – 35 кэВ. Длительность измерения источников определялась интенсивностью α-излучения и варьировала от 1 до 3 суток. Идентификация изотопов ²⁰⁹Ро и ²¹⁰Ро осуществлялась по линиям с энергиями 4,8 МэВ и 5,3 МэВ, соответственно.

Вид спектра α-частиц изотопов полония представлен на рис. 6.

Рис. 6. Амплитудный спектр α -частиц изотопов ²⁰⁹Ро и ²¹⁰Ро.

2.5. Вычисления

Активность ²¹⁰Ро во фракциях (А_{210ро}, Бк) вычисляли по формуле:

$$A_{210p_o} = \frac{N_{210p_o} \cdot e^{\lambda_{210p_o} \cdot t_1}}{t_{_{\text{H3M.}} \cdot k \cdot \omega}} , \qquad (1)$$

где N_{210Po} - площадь пика ²¹⁰Ро с учетом фона, *импульсы*; λ_{210Po} – постоянная скорости радиоактивного распада ²¹⁰Ро, *сут*⁻¹; t_1 - промежуток времени между датой осаждения ²¹⁰Ро и датой измерения образца, *сутки*; $t_{u_{3M}}$ – длительность измерения источника, *с*; k – эффективность регистрации α -частиц; ω - химический выход.

Активность ²¹⁰Pb во фракциях (А_{210р}, Бк) вычисляли по формуле:

$$A_{210_{Pb}} = \frac{N_{210_{Po}} \cdot e^{\lambda_{210_{Po}} \cdot t_1}}{t_{\text{H3M.}} \cdot k \cdot \omega \cdot (1 - e^{-\lambda_{210_{Po}} \cdot t_2})},$$
(2)

где N_{210Po} - площадь пика ²¹⁰Ро с учетом фона, *импульсы*; λ_{210Po} – постоянная скорости радиоактивного распада ²¹⁰Ро, *сут*⁻¹; t_1 - промежуток времени между датой осаждения ²¹⁰Ро и датой измерения образца, *сутки*; $t_{изм}$ – длительность измерения источника, *c*; k – эффективность регистрации α -частиц; ω - химический выход; t_2 -продолжительность накопления ²¹⁰Ро из ²¹⁰Рb, *сутки*.

Химические выходы определяли по формуле (3):

$$\omega = \frac{N_{209Po}}{t_{\text{H3M.}} \cdot k \cdot V_{\text{T}} \cdot A_{\text{T}}},\tag{3}$$

где N_{209Po} - площадь пика ²⁰⁹Ро с учетом фона, *импульсы*; $t_{изм.}$ – длительность измерения источника, c; k – эффективность регистрации α -частиц; $V_{\rm T}$ – объем введенного раствора ²⁰⁹Ро, *мкл*; $A_{\rm T}$ – объемная активность раствора ²⁰⁹Ро, *Бк/мкл*.

Активности ²¹⁰Pb и ²¹⁰Po в исследуемых образцах (А_{210_{Pb₂}}, Бк) и (А_{210_{Po₂}}, Бк), соответственно, вычисляли путем суммирования соответствующих величин, полученных для всех фракций:

$$A_{210_{Pb_{\Sigma}}} = \sum_{i} A_{210_{Pb_{i}}}$$
(4)

И

$$A_{210_{P_{0}}} = \sum_{i} A_{210_{P_{0}}}, \qquad (5)$$

где А_{210_{Pbi}} и А_{210_{Poi}} - активности ²¹⁰Pb и ²¹⁰Po в данной фракции. Процентное содержание ²¹⁰Pb и ²¹⁰Po во фракциях вычисляли по формулам:

$$\omega_{210_{\rm Pb}} = \frac{A_{210_{\rm Pb}}}{A_{210_{\rm Pb}}} \cdot 100\% \tag{6}$$

И

$$\omega_{210_{\text{Po}}} = \frac{A_{210_{Po_i}}}{A_{210_{Po_{\Sigma}}}} \cdot 100\% \tag{7}$$

Удельные активности ²¹⁰Pb и ²¹⁰Po в исследуемых образцах (A^{oбp.}_{уд·210po}, Бк/кг сухой массы) и (A^{oбp.}_{уд·210po}, Бк/кг сухой массы), соответственно, вычисляли по формулам:

$$A_{y_{\mathcal{A},210}_{p_b}}^{\text{obp.}} = \frac{A_{210_{Pb_{\Sigma}}}}{m_1}$$
(8)

И

$$A_{yA_{210P_0}}^{o6p.} = \frac{A_{210P_{0\Sigma}}}{m_1}, \qquad (9)$$

где $A_{210_{Pb_{\Sigma}}}$ и $A_{210_{Po_{\Sigma}}}$ – суммарные активности ²¹⁰Pb и ²¹⁰Po во фракциях 1 – 4, Бк; m_l – масса исходного сухого образца, *кг*.

Удельные активности ²¹⁰Pb и ²¹⁰Po в высушенных клеточных стенках, т.е. во фракции № 4, (А^{кл.}_{уд.210рb}, Бк/кг сухой массы) и (А^{кл.}_{уд.210рo}, Бк/кг сухой массы), соответственно, вычисляли по формулам:

$$A_{y\mathcal{A}\cdot210pb}^{\kappa\pi.} = \frac{A_{210Pbb}(\phi p.4)}{m_2}$$
(10)

И

$$A_{y_{\mathcal{A},210}_{P0}}^{\text{Kn.}} = \frac{A_{210_{PP0}(\text{ϕp.4})}}{m_2}, \qquad (11)$$

где $A_{210_{Pb}_{(pp,4)}}$ и $A_{210_{Po}_{(pp,4)}}$ – активности ²¹⁰Pb и ²¹⁰Po во фракции № 4, *Б* κ , соответственно; m_2 – масса высушенного остатка, $\kappa \epsilon$.

Отношения активностей $\frac{210_{Po(Бк)}}{210_{Pb}(Бк)}$ вычисляли по формуле:

$$\frac{210_{P_0}}{210_{P_b}} = \frac{A_{210_{P_o}}}{A_{210_{P_b}}}.$$
(12)

2.6. Статистическая обработка результатов измерений

2.6.1. Вычисление стандартной неопределенности

В силу статистического характера радиоактивного распада и применимости распределения Пуассона, необходима статистическая обработка результатов измерений, которая выполнялась согласно [50].

Мерой рассеивания значений случайной величины относительно её математического ожидания является стандартной отклонение, которое используется при расчёте стандартной ошибки при измерении линейной взаимосвязи между случайными величинами. Среднее количество измеренных импульсов *N*_{*cp*.} связано с величиной абсолютной неопределенности соотношением:

$$\sigma_{N \text{cp.}} = \sqrt{\frac{N \text{cp.}}{n}}, \qquad (13)$$

где *n* – число повторных измерений.

Достоверное представление результатов измерений требует указания расширенной неопределенности. В данной работе расширенная неопределенность вычислялась согласно [51] при коэффициенте охвата равном 2.

2.6.2. Неопределенность прямых и косвенных измерений

В зависимости от способа обработки экспериментальных данных измерения делятся на прямые и косвенные. Косвенным называется измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. В данной работе с помощью косвенных измерений рассчитывались отношения активностей изотопов. Неопределенности косвенных измерений вычисляли по формулам, согласно [52]:

если измеряемая величина Z представляет собой сумму или разность величин X и Y, т.е. Z = X + Y или Z = X - Y, то абсолютная погрешность измерения величины Z равна:

$$\sigma_z = \sqrt{\sigma_x^2 + \sigma_y^2} \tag{14}$$

если измеряемая величина Z представляет собой произведение величин X и Y, т.е. $Z = X^{\cdot}Y$, то абсолютная погрешность измерения величины Z равна:

$$\sigma_{Z} = \sqrt{\sigma_{x}^{2} \cdot Y^{2} + \sigma_{y}^{2} X^{2}}$$
(15)

если измеряемая величина Z представляет собой частное величин X и Y, т.е. Z = *X/Y*, то абсолютная погрешность измерения величины Z равна:

$$\sigma_Z = \sqrt{\frac{\sigma_x^2}{Y^2} + \frac{\sigma_y^2 X^2}{Y^4}}$$
(16)

3. Результаты исследований и их обсуждение

3.1. Удельная активность ²¹⁰Ро в образцах

В таблице 5 представлены результаты определения удельной активности ²¹⁰Ро в талломах лишайников.

No	Образец	Удельная активность ²¹⁰ Ро,
		Бк/кг сухой массы
1.	Cladonia arbuscula	46±5
2.	Cetraria islandica	58±4
3.	Cladonia stellaris	59±5
4.	Pseudevernia furfuracea	120±20
5.	Evernia prunastri	191±26

$1 u_0 n_0 = 1 0 u_0 u_0 u_0 u_0 u_0 u_0 u_0 u_0 u_0 u$	Габл. 5.	Удельная	активность	²¹⁰ Po 1	в образцах
---	----------	----------	------------	---------------------	------------

Эпифитные лишайники характеризуются повышенным содержанием ²¹⁰Ро по сравнению с напочвенными. Поскольку напочвенный лишайник *Cetraria islandica* относится к тому же семейству *Parmeliaceae* Zenker, что и эпифитные *Evernia prunastri* и *Pseudevernia furfuracea*, и не связан родством с другими исследованными напочвенными видами (виды рода *Cladonia*, семейство *Cladoniaceae* Zenker), нет оснований связывать полученный результат с какими-либо филогенетически обусловленными причинами, например различием в составе клеточных стенок микобионтов из разных таксономических групп. Специфика мест сбора образцов также не влияет на содержание ²¹⁰Ро в талломах (см. табл. 1 и 2 в сравнительном отношении). Причины выявленных различий, вероятнее всего, лежат в области экологии анализируемых видов и могут быть связаны с большей доступностью талломов эпифитных образцов для атмосферных выпадений.

3.2. Распределение ²¹⁰Ро в талломах лишайников

Распределение ²¹⁰Ро во фракциях, выделенных из образцов, представлено в табл. 6 и на рис. 7.

	Содержание ²¹⁰ Ро во фракции, % (Р = 0,95)					
Образец	Интер- Экстра-		Интра-	Ogramov		
	целлюлярная	целлюлярная	целлюлярная	Остаток		
Cladonia arbuscula	$11,6 \pm 1,5$	$34,8 \pm 3,2$	$11,2 \pm 1,5$	$42,5 \pm 4,1$		
Cetraria islandica	$5,2 \pm 1,4$	$35,1 \pm 2,3$	$10,2 \pm 1,2$	$49,5 \pm 6,4$		
Cladonia stellaris	8,9 ± 1,7	$24,7 \pm 2,1$	$11,7 \pm 1,3$	$54,7 \pm 7,1$		
Pseudevernia	3.1 ± 1.5	35.3 ± 3.3	3.4 ± 0.8	58.3 ± 7.8		
furfuracea	-,,-	, 0,0	-,,-	,- = - ,0		
Evernia prunastri	8,4 ± 1,5	$15,4 \pm 2,9$	4,6 ± 1,2	$72,1 \pm 7,6$		

Табл. 6. Содержание ²¹⁰Ро в экстрактах из образцов

Рис. 7. Распределение ²¹⁰Ро по фракциям. Фракции 1, 2, 4 отражают пассивное поглощение ²¹⁰Ро. Фракция 3 соответствует активному поглощению ²¹⁰Ро.

Как иллюстрирует рис. 7, количественное распределение ²¹⁰Ро между выделенными фракциями неравномерно. От 3 до 12 % радионуклида адсорбировано на частицах пыли и/или почвы, связанных с поверхностью лишайников и

находящихся в межклеточных пространствах (фракция 1). Корреляции между субстратно-экологической группой, таксономической принадлежностью образцов и местом их сбора не наблюдаются. Это закономерно, т.к. в данную фракцию переходят частицы, захваченные случайным образом.

В экстрацеллюлярную фракцию перешло от 15 до 35% ²¹⁰Ро. Эта фракция отражает долю катионов, адсорбированных на поверхности клеточных стенок, главным образом, гиф микобионта. Известно, что клеточные стенки связывают радионуклиды и металлы пассивно по механизму катионного обмена. Поверхность клеточной стенки микобионта представляет собой полимерный анион, отрицательные заряды которого создаются функциональными группами карбоновых и оксикарбоновых кислот [16].

Следует отметить наличие корреляции между местом сбора образцов и количеством 210 Po, извлекаемого в экстрацеллюлярную фракцию. Из образцов, собранных в Северо-Западном регионе (образцы $N \ge 1 - 4$), во фракцию 2 экстрагировалось, в среднем, в 2 раза больше радионуклида, чем из образца $N \ge 5$ крымского происхождения. Принято считать, что количество ионов, адсорбированных экстрацеллюлярно, зависит от недавних атмосферных выпадений [18]. Поэтому причиной наблюдаемого эффекта может быть различная интенсивность атмосферных выпадений в Крыму и в Северо-Западном регионе в период, предшествовавший сборам.

В нерастворимых остатках талломов содержится наибольшая доля ²¹⁰Po - от 42 до 72%.

3.3. Распределение ²¹⁰Рb и ²¹⁰Ро во фракциях из образца *Evernia prunastri*

Распределение ²¹⁰Pb и ²¹⁰Po между фракциями удалось надежно получить лишь для образца *Evernia prunastri*. Согласно данным, представленным на рис. 8, поведение ²¹⁰Pb мало отличается от поведения ²¹⁰Po. Фракция 1 обогащена ²¹⁰Pb. Отношение активностей изотопов ²¹⁰Po/²¹⁰Pb в данной фракции равно 0,67. Этот результат закономерен, т. к. в атмосферных выпадениях отношение ²¹⁰Po/²¹⁰Pb < 1. Фракция 2 в меньшей степени обогащена ²¹⁰Pb (²¹⁰Pb (²¹⁰Po/²¹⁰Pb = 0,88), что указывает на менее прочную связь этого элемента (по сравнению с полонием) с функциональными группами клеточных стенок. Во фракции 3 оба радионуклида присутствуют

практически в равных количествах. Это означает, что избирательное поглощение какого-либо элемента клетками лишайника отсутствует. Фракция № 4 обеднена свинцом из-за повышенного его извлечения во фракции № 1 и № 2.

Рис. 8. Распределение ²¹⁰Рb и ²¹⁰Ро во фракциях из образца лишайника *Evernia prunastri*

3.4. Активное и пассивное поглощение ²¹⁰Ро лишайниками

Фракции № 1, 2 и 4 отражают пассивное поглощение ²¹⁰Ро талломами лишайников, а интрацеллюлярная фракция (№ 3) – активное поглощение (рис. 7, 8). Суммарное количество пассивно поглощенного ²¹⁰Ро колеблется от 88 до 97%, что указывает на преобладание этого способа аккумуляции. Лидерами по уровню пассивного поглощения ²¹⁰Ро являются эпифитные лишайники *Evernia prunastri* и *Pseudevernia furfuracea*, содержащие, соответственно, 95 и 97% нуклида во фракциях № 1, 2, 4.

Интрацеллюлярно, т.е. активно, поглощается от 3 до 12% ²¹⁰Ро. Для напочвенных лишайников этот показатель, в среднем, в 2.75 раза выше, чем для эпифитных. Наблюдаемый эффект не зависит от формы таллома и площади его

поверхности, поскольку корреляции между содержанием ²¹⁰Ро во фракциях 2 и 3 не наблюдается. Взаимосвязь между таксономической принадлежностью лишайников и долей активного поглощения также не выявлена. Наиболее вероятной причиной может быть различие химических соединений, в виде которых полоний поступает в эпифитные и наземные лишайники. Для эпифитных лишайников основным источником ²¹⁰Ро являются атмосферные аэрозоли, состоящие из неорганических соединений [53]. Гипотетическое поглощение лишайниками ²¹⁰Ро из субстрата маловероятно из-за высокой склонности полония к адсорбции.

Напочвенные лишайники, по-видимому, поглощают ²¹⁰Ро как из атмосферы, так и из верхнего слоя почвы, обогащенного этим радионуклидом [45]. По данным [54], до 45% ²¹⁰Ро, имеющего атмосферное происхождение, связано с поверхностным органическими слоем почв. Следовательно, почвы могут быть источником органических соединений ²¹⁰Ро. Эти соединения, видимо, в большей степени биологически доступны для интрацеллюлярного поглощения лишайниками по сравнению с неорганическими соединениями, поступающими из атмосферы.

3.5. Исследование нерастворимых остатков лишайников

Используемая методика не позволяет интерпретировать физико-химическое состояние в нерастворимых остатках лишайников (фракция № 4). В связи с этим, идентификация возможных источников ²¹⁰Pb и ²¹⁰Po в остатках осуществлялась с помощью методов электронной микроскопии и качественного микрозондового анализа. Полученные нами результаты представлены на рис. 9 - 12.

Рис. 9. Фотография включений полевого шпата (Psp) и слюды (Phl) в образце Evernia prunastri

Рис. 10. Спектр включений полевого шпата (Psp) и слюды (Phl) в образце Evernia prunastri.

Рис. 11. Фотография включения пирохлора в образце *Cetraria islandica*

Рис. 12. Спектр включения пирохлора в образце Cetraria islandica

В талломах лишайников обнаружены минеральные частицы размерами от 10 до 30 мкм. Эти частицы образованы минералами кварца (SiO₂), халькопирита (CuFeS₂), кальцита (CaCO₃), гипса (CaSO₄), флогопита (KMg₃(Si₃Al)O₁₀(OH)₂) и полевыми шпатами рядов микроклин-альбит ((K,Na)AlSi₃O₈) и альбит-анортит (NaAlSi₃O₈ - CaAl₂Si₂O₈). Помимо минералов, обнаружены частицы техногенного происхождения, содержащие вольфрам, титан, медь, железо.

С целью доказательства взаимосвязи повышенного содержания ²¹⁰Ро в остатках с наличием в них минеральных включений, мы частично удалили из фракций № 4, полученных из образцов *Cetraria islandica* и *Evernia prunastri*, органическую составляющую. Для этого образцы были измельчены и несколько раз подвергнуты седиментации в воде. В полученной тяжелой фракции определили удельную активность ²¹⁰Ро и сравнили с удельной активностью исходных образцов. Результаты представлены в табл. 7.

Табл. 7. Удельная активность ²¹⁰Ро в исходных образцах лишайников и в выделенных из них минеральных фракциях

Образец	Удельная активность ²¹⁰ Ро, Бк/кг сухой массы			
	Исходный образец	Минеральная фракция из		
		образца		
Cetraria islandica	58±4	302±20		
Evernia prunastri	191±26	5900±200		

Согласно полученным данным, минеральные фракции из образцов *Cetraria islandica* и *Evernia prunastri* обогащены полонием в 5 и 31 раз, соответственно, по сравнению с удельными активностями исходных образцов. Следует отметить, что используемый нами метод отделения минеральной фракции не позволил полностью избавиться от органической составляющей, т. к. минеральные включения очень сильно срастаются с плектенхимами микобионта. В связи с этим удельная активность 210 Ро в неорганической фракции может оказаться еще выше. Для получения более подробной информации о физико-химическом состоянии радионуклидов во фракции $N \ge 4$, по нашему мнению, необходима дополнительная процедура последовательной обработки клеточных стенок лишайников.

Выводы

1. Впервые исследовано распределение 210 Pb и 210 Po в талломе лишайника *Evernia prunastri*, а также распределение 210 Po в талломах лишайников *Cetraria islandica*, *Cladonia arbuscula*, *C. stellaris*, и *Pseudevernia furfuracea*.

2. Показано, что напочвенные лишайники *Cetraria islandica, Cladonia arbuscula* и *C. stellaris* поглощают ²¹⁰Ро более активно, по сравнению с эпифитными лишайниками *Evernia prunastri* и *Pseudevernia furfuracea*.

3. Сделан вывод о том, что ²¹⁰Ро поступает в напочвенные и эпифитные лишайники в составе различных химических соединений и поэтому имеет разную биологическую доступность. В эпифитные лишайники радионуклид поступает преимущественно из атмосферы в виде неорганических соединений. В напочвенные лишайники ²¹⁰Ро поступает как из атмосферы, так и из верхнего слоя почвенного субстрата, содержащего органические соединения полония.

Благодарности

Выражаю глубокую признательность старшему преподавателю кафедры радиохимии, к. х. н. Пучковой Елене Витальевне за содействие в проведении эксперимента.

Заместителю директора РЦММ Янсон Светлане Юрьевне, и всему Ресурсному центру микроскопии и микроанализа за помощь в проведении электронной микроскопии и микроанализа, предоставленные фото и спектры образцов

Ст. преподавателям кафедры ботаники СПбГУ: к.б.н. Гимельбранту Дмитрию Евгеньевичу и к.б.н. Степанчиковой Ирине Сергеевне за сбор материала и консультации.

Список цитируемой литературы

1. Клементьева Е.А. На сайте института радиобиологии НАН Беларуси, Источники поступления ²¹⁰Pb и ²¹⁰Po в окружающую среду. Природные и антропогенные источники поступления ²¹⁰Pb и ²¹⁰Po в окружающую среду. 2016.

2. UNSCEAR (2000). United Nations Scientific Committee on the Effects of Atomic Radiation, Ionizing (2000). Sources and effects of ionizing radiation, New York: Report to the General Assembly with Annex

3. Ugur A., Ozden B., Filizok I. Determination of ²¹⁰Pb and ²¹⁰Po concentrations in atmospheric deposition in Izmir (Aegean sea-Turkey) // Atmospheric Environment, 2011, 45, 4809 - 4813.

4. Peck G. A., Smith Determination of 210 Pb and 210 Po in rainwater using measurement of 210 Po and 210 Bi // Analytica Chimica Acta.: 2000, 422, 113–120.

Piliposian G. T, Appleby P. G., A simple model of the origin and transport of
 ²²² Rn and ²¹⁰Pb in the atmosphere // Continuum Mechanics and Thermodynamics. 2000, 15,
 503- 518

6. Pham M. K., Povinec P. P., Nies H., Betti M. Environ. J. Radioact Dry and wet deposition of ⁷Be, ²¹⁰Pb and ¹³⁷Cs in Monaco air during 1998-2010: Seasonal variations of deposition fluxes., 2013, 120, 45-57.

7. Vecchi R., Marcazzan G., Valli G. Seasonal variation of ²¹⁰Pb activity concentration in outdoor air of Milan (Italy). // J. Environ. Radioact., 2005, 82,251 – 266.

8. Rastogi N., Sarin M. M. Atmospheric ²¹⁰Pb and ⁷Be in ambient aerosols over low- and high-altitude sites in semiarid region: Temporal variability and transport processes. // J. Geophys. Res.: Atmospheres, 2008, 113, D11103

9. Ahmed A.A., Mohamed A., Ali A.E., Barakat A., Abd El-Hady M., El-Hussein A. Seasonal variations of aerosol residence time in the lower atmospheric boundary layer. // J. Environ. Radioact., 77, 2004, 275–283.

10. Su Ch.-Ch., Huh Ch.-An. Atmospheric ²¹⁰Po anomaly as a precursor of volcano eruptions // Geophysical research letters, 2002, 29(5), 14-1–14-4.

11. Parfenov Y. D. Po-210 in the environment and in the human organism. // Atomic Energy Reviews, 12, 1974, 75 – 143.

12. Persson B.R.R., Environ J. Holm E. Polonium-210 and lead-210 in the terrestrial environment: a historical review. //Radioact., 102, 2011, 420-429

13. Nash T. H. Lichen biology (second edition). Cambridge University Press, 2008. 486 p.

14. Brown D. H. Principles of Language Learning and Teaching. Englewood Cliffs, NJ: Prentice Hall., 1987

15. Branquino C., Catarino F., Brown D.H., Pereira M. J., Soares A. Improving the use of lichens as biomonitors of atmospheric metal pollution // Sci. Total Environ., 1999, V.232, N1-2, 67-77.

16. Бязров Л.Г. Лишайники – индикаторы радиоактивного загрязнения // М., товарищество научных изданий КМК., 2005

17. Nieboer & D. Richardson. The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions. // Environ. Pollution (Series B), 1980, v. 1, 3–26

18. Михайлова И. Н., Шарунова И. П. Динамика аккумуляции тяжелых металлов в талломах эпифитного лишайника Hypogymnia Physodes. // Экология, 2008, № 5, 366-372.

19. Brown D.H., Brumelis G., A biomonitoring method using the cellular distribution of metals in moss // School of Biological Sciences, Kronvalda 4, Latvia. 1996;

20. Beckett R.P., Brown D.H. The control of cadmium uptake in the lichen genus Peltigera HI. Experim. Bot. 1984, 35.N156, 1071-1082.;

21. Richardson D.H.S., KiangS., Ahmadjian V, Nieboer E. Lead and uranium uptake by lichens // Lichen physiology and cell biology . Plenum Press, New York, London. 1985. 227-246;

22. Nieboer E., Tomassini F.D., Puckett K.J., Richardson D.H.S., Grace B. Determination of copper, iron, nickel, and sulphur by X-ray fluorescence in lichens from the Mackenzie valley, Northwest Territories, and the Sudbury district, Ontario // Canad. J. Bot. 1976, 54. N14, 1591-1603,;

23. D.H.Brown, D.L.Hawksworth, R.H.Bailey - eds. Academic Press: London, New York, San Francisco, 1976, 385-406.;

24. Nieboer E., Richardson D.H.S., Tomassini F.D. Mineral uptake and release by lichens: an overview // Bryologist. 1978, 81. N2, 226-246;

25. Puckett K.J., Burton M.A.S. The effect of trace elements on lower plants // Effect of heavy metal pollution on plants. N.W.Lepped. London: Applied Science Publ., 1981, 2, 213-238

26. Hyvarinen M., Crittenden P.D. Growth of the cushion forming lichen, Cladonia portentosa, at nitrogen polluted and unpolluted heathland sites // Environ. Experim. Bot. 1998, 40. N1, 67-76

27. Branquino C., Brown D. H., Catarino F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. // Environmental and Experimental Botany, 1997, 38, 165–179.

28. Hyvarinen M., Roitto M., Ohtonen R., Markkola A., Impact of wet deposited nickel on the cation content of a mat-forming lichen Cladina stellaris //Department of Biology, , 1999;

29. Lounamaa K.J. Studies on the content of iron, manganese and zinc in macrolichens // Ann. Bot. Fennici. 1965, 2,127-137

30. Торбанов Ст., Хаджиатанасов Д. Върху акумуляцията на микоелементи и естествени радиоактивни елементи от някои видове мъхове и лишен, распространени в България // Научн. тр. Висш. сельскост. ин-т "В. Коларов". Пловдив, 1973, 22. №4, 28-37

31. Jaakola I, Aberg, Hungate F.P B. Pergamon, Fe-55 and stable iron in some environmental samples in Finland // Radioecological Concentration Processes. London, 1967. 247-25

32. Вайнштейн Е.А. Некоторые вопросы физиологии лишайников. III. Минеральное питание// Боган, журн. 1982, 67. №5, 561-571

33. Brodo I.M., Ahmadjian V., Hale M.E.Substrate ecology //The Lichens. New York, London: Academic Press, 1973, 401-441.

34. Purvis O. W., Halls C. A review of lichens in metal-enriched environments // Lichenologist. 1996, 28. N6, 571-601

35. Lange O.L., Ziegler H. Der Schwermetallgehalt von Flechten aus dem Acarosporetum sinopicae auf Erzschlackenhalden des Harzes. I. Eisen und Kupfer// Mitteil. der Florist-soziologische Arbeitsgemeinschaft.N.F. 1963, 10, 156-183.

36. Garty J., Markert B., Lichens as biomonitors for heavy metal pollution // Plants as biomonitors // Indicators for heavy metals in the terrestrial environment Weinheim etc.: VCH, 1993, 193-263

37. Garty J., Markert B., Friese K., Environment and elemental content of lichens
// Trace elements - their distribution and effects in the environment. Elsevier Science B.V.
2000, 245-276.

38. Бобрицкая М.А. Поглощение литофильной растительностью минеральных элементов из массивно-кристаллических пород // Тр. Почвенного института. М,, 1950, 34, 5-27.

39. Троицкая М.Н., Рамзаев П.В., Моисеев А.А., Нижников А.И., Бельцев Д.И., Иба- туллин М.С., Литвер Б.Я., Дмитриев ИМ. Радиоэкология ландшафтов Крайнего Севера // Современные проблемы радиоэкологии. М., 1971, 2, 325-353.

40. Nedic O., Stankovic A., Stankovic S., Kraincanic M.. Chemical Localization of ¹³⁷Cs in the Lichen Cetraria islandica. // INEP-Institute for the Application of Nuclear Energy, Yugoslavia 1995

41. Eckl P., Hofmann W., Turk R. Uptake of natural and man-made radionuclides by lichens and mushrooms // Radiat. Environ. Biophys. 1986, 25. N1, 43-54.

42. Tuominen Y. Studies on the strontium uptake of the Cladonia alpestris thallus // Ann. Bot. Fennici. 1967. 4. N1. 1-28.

43. Sert E., Uğur A., Özden B., Saç M. M., Camgöz B. Biomonitoring of ²¹⁰Po and ²¹⁰Pb using lichens and mosses around coal-fired power plants in Western Turkey. // J. Environ. Radioact., 2011, 102, 535 – 542

44. Branquino C., Brown D. H., A method for studying the cellular location of lead in lichen. // Lichenologist, 1994, 26, 83–90.

45. Ермолаева – Маковская А. П., Литвер Б. Я. Свинец-210 и полоний-210 в биосфере. // М., Атомиздат, 1978.

46. Figgins P. E. The radiochemistry of polonium. NAS-NRC Publication NAS-NS 3037, 1961.

47. Ампелогова Н. И. Радиохимия полония. // М., Атом издат, 1976

48. Henricsson F., Ranebo Y., Holm E., Roos P. Aspects on the analysis of ²¹⁰Po.
// J. Environ. Radioact.,v. 102, 2011, 415 – 419

49. Vaaramaa K., Solatie D., AroL.Distribution of ²¹⁰Pb and ²¹⁰Po concentrations in wild berries and mushrooms in boreal forest ecosystems. // Sci. Total Environ.,v. 408, 2009, 84 - 91

50. Коробков В.И., Лукьянов В.Б. Методы приготовления препаратов и обработка результатов измерений радиоактивности. // М., Атомиздат, 1973.

Руководство по выражению неопределенности измерения. // СПб, 1999,
 126

52. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. // Л., Энергоатомиздат, 1985

53. Junge C. E. Air Chemistry and Radioactivity. Academic press, 1963

54. Vaaramaa K., Aro L., Solatie D., Lehto J. Distribution of ²¹⁰Pb and ²¹⁰Po in boreal forest soil. // Sci. Tot. Environ., 2010.