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1 Abstract

This paper focuses on a group pursuit game problem involving a pursuer

P and multiple evaders Ei (i = 1, . . . , 4). In a model highly disadvanta-

geous to evaders, an additional velocity α+ is introduced for pursuer. The

pursuer possesses a velocity α− for capturing evaders moving in prescribed

directions and a velocity α+ for capturing evaders deviating from the pre-

scribed direction. However, α+ can only be utilized once throughout the

entire game.

The game model is described in the form of differential equations,

with strategies and payoff functions defined for both the pursuer and

evaders. We assume the pursuer employs a discriminatory strategy, while

the evaders’ movement directions are highly disadvantageous to them-

selves. In the nonzero-sum game, Nash equilibrium of the game is found,

and conditions for the effectiveness of the pursuers’ punishment strategy

are proved, as presented in the paper. In the matrix game, strategies of

the evaders under rational and irrational behavior are separately studied.

Through simulation, payoff matrices for evaders are obtained under scenar-

ios of both equal and unequal velocity. It is revealed that for the evader

group, even under irrational behavior, better payoffs can be achieved than

under rational behavior. This situation may exist but might not necessarily

materialize, as it also depends on the strategy of the pursuer.
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2 Introduction

Game theory is a research domain in mathematics and economics, repre-

senting a new branch of modern mathematics and an important discipline

in operations research. Key concepts in game theory include strategies,

payoffs, game forms, and Nash equilibrium. It explores competition, co-

operation, and conflict among participants, analyzing their behavior and

potential outcomes. Through game theory, we gain a better understand-

ing of market competition, strategic decision-making, resource allocation,

and the optimal decision-making of decision-makers under mutual influ-

ence, providing a powerful framework for analyzing decisions and strategic

interactions among rational entities.

The origin of game theory can be traced back to the early 20th cen-

tury. John von Neumann, often referred to as ”the father of computer

science,” collaborated with economist Oskar Morgenstern to publish ”The-

ory of Games and Economic Behavior” in 1944. This seminal work laid the

foundation for game theory and marked its true inception. They applied

game theory to the study of economic and social issues, discussing many

important topics including multiplayer games. In 1950, John Nash pro-

posed the theory of Nash equilibrium in his doctoral dissertation, laying

the cornerstone of modern non-cooperative game theory. The Nash equi-

librium theory describes the optimal strategy combination of participants

in the game, where each participant’s strategy is the best response to the

strategies of others. This theory has had profound impacts on game theory

and other fields, earning Nash the Nobel Prize in Economics in 1994.

Over time, game theory has evolved into a multidisciplinary field

spanning economics, biology, computer science, political science and so
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on. It plays a crucial role in addressing diverse decision-making problems,

strategic planning, and behavioral pattern analysis. As such, it has become

a vital tool for understanding human behavior and societal interactions.

At its core, game theory investigates how individuals or entities make

choices in situations where the outcome of each decision depends not only

on their own actions but also on the actions of others. This framework en-

ables researchers to model and analyze various scenarios, from competitive

markets and negotiations to conflicts and cooperation.

Over the years, game theory has branched out into several subfields,

each focusing on different aspects of strategic decision-making. Classi-

cal game theory, as a foundational branch, studies the behavior of ratio-

nal players with complete information in competitive environments. In

contrast, cooperative game theory examines how groups form alliances to

achieve common interests. Non-cooperative game theory analyzes situ-

ations where players act independently to maximize their own interests,

often resulting in strategic outcomes like Nash equilibrium. Evolutionary

game theory extends this framework to dynamic systems, exploring how

strategies evolve over time in interacting populations, revealing the emer-

gence of cooperation and social norms. Computational game theory, as

an amalgamation of game theory and computer science, applies numerical

methods and computational techniques to tackle large-scale and intricate

games, while multi-agent systems explore how agents interact, coordinate,

and make decisions to achieve individual or collective objectives in various

fields, including artificial intelligence, economics, and social sciences.

In modern society, people are often faced with various complex decision-

making problems involving competition and cooperation among multiple

stakeholders. Game theory, as a powerful analytical tool, provides an im-
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portant theoretical framework and methodology for understanding and

solving these decision-making problems. Among the various models in

game theory, pursuit games stand out as a typical scenario that attracts

considerable attention.

Pursuit games refer to a form of game played between pursuers and

evaders, the pursuers are focused on capturing the evaders swiftly, whereas

the evaders are determined to evade capture. This gaming scenario is

commonly observed in various real-life situations, such as law enforcement

operations, security defense, and predator-prey dynamics in natural ecosys-

tems. In pursuit games, the strategic choices and behavioral decisions made

by the participants directly impact the final outcomes and payoff distribu-

tions.

Of particular note, one-versus-many pursuit games represent a spe-

cial scenario within pursuit dynamics, where a single pursuer needs to

simultaneously pursue multiple evaders. In contrast to traditional pursuit

games, one-versus-many pursuit games present greater challenges and com-

plexity, as pursuer must effectively allocate resources and devise strategies

to address the diverse behaviors and dynamic changes of multiple evaders.

In this paper, we will focus on exploring one-versus-many pursuit

games and utilize the methods and theories of game theory to model, an-

alyze, and solve them. Through the study of one-versus-many pursuit

games, we aim to gain a deeper understanding of the competition and co-

operation relationships among the participants, explore optimal decision-

making strategies, and provide theoretical guidance and practical insights

for decision-making problems in real-world applications.

However, unlike in the past, in this paper, the pursuer has two ve-

locities. One is the usual velocity used during the pursuit, denoted as α−,
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and the other is an acceleration of the pursuer, denoted as α+, which is

greater than α−. When using velocity α+, the pursuer can catch the evader

more quickly, but it can only be used once. Therefore, this paper aims to

explore how the strategy selection for the evader changes when the pursuer

has two velocities.

This article is based on the model in paper [1, 2], and explores the

impact of the punishment strategy at a velocity different from that in the

original model. The conditions for effective punishment strategies for the

pursuer were identified under both scenarios where evaders have identical

and differing velocities. When punishment strategies prove ineffective, a

payment matrix is derived through matrix game simulation, revealing the

existence of a strategy that allows evaders to prolong their survival time

even under irrational behavior.

Through research, i hope to contribute new perspectives and method-

ologies to address complex decision-making problems in real-life situations,

thereby making a contribution to social and economic development.
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3 Related works

In this section, the literature on group pursuit game is briefly introduced.

In the early 1960s, Isaacs [3] conducted in-depth research on dy-

namic game theory, including aspects of pursuit games. His research in-

troduced the concept of zero-sum differential pursuit games, emphasizing

optimal strategies and equilibrium concepts in dynamic games. Tarash-

nina [4], through studying nonzero-sum simple pursuit games in group

chasing problems, revealed the phenomenon of the existence of infinitely

many Nash equilibria. Specifically, by threatening to change the pursuit

order, pursuers can compel evaders to adopt highly unfavorable behav-

iors. This has played an indispensable role in understanding the strategic

dynamics and equilibrium states in group pursuit games, providing im-

portant insights for the research in this paper. Pankratova et al. [1] an-

alyzed the dynamic equilibrium between a pursuer and m independently

acting evaders in a nonzero-sum simple pursuit game, particularly focus-

ing on how to find a time-optimal equilibrium state between pursuers and

evaders, especially when evaders are discriminated against and pursuers

have punishment strategy. In subsequent research, Pankratova et al. [2]

focused on group pursuit games on a bounded velocity plane and described

and solved this problem through two different formalized methods: non-

cooperative and cooperative. The concepts of Nash equilibrium and core

were introduced by them, along with the proof that the core is non-empty

in all initial positions.

Furthermore, Fang et al. [5] conducted a study on the pursuit game in

scenarios involving different maximum velocities among a single evader and

several pursuers. Wang et al. [6] mainly investigated the case where evaders
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with higher velocities have an advantage in pursuit games, as well as the

case where there is individual maximum volecity heterogeneity among a

group of heterogeneous pursuers. Lin et al. [7] mainly studied the linear

quadratic differential games between N pursuers and a single evader, par-

ticularly considering observation restrictions and asymmetric information

structures. Tarashnina [8] focused on a traveling salesman problem in a

dynamic environment, modeled as a nonzero-sum pursuit problem, where

the salesman and customers chase each other. They ultimately found the

solution to this problem, namely the Nash equilibrium, and illustrated their

research results through some examples. Petrov [9] studied the problem of

a group of pursuers chasing a group of evaders in Euclidean space, where

all participants have equal opportunities. Assuming that evaders remain

within a convex set during the game, the goal of the pursuers is to capture

at least q evaders, with each evader being captured by at least r different

pursuers, and capture times do not overlap.
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4 Model of pursuit game

In this paper, we study a pursuit game in which there are five players

including one pursuer P captures 4 evaders E1,E2,E3,E4 - the evaders move

at a constant velocity in the coordinate system, while the pursuers have two

velocities. Denote by N = {P,E1, ..., E4} the set of players. And pursuer

and evaders all have possibility of changing their movement direction at

each time instant. This is a game of perfect information, at each time

instant t > 0, the pursuer and every evader, possess knowledge of the

time t, as well as their own positions and all others. Additionally, we

assume that at each instant t the pursuer P knows the direction that is

also the velocity-vectors chosen by the evaders Ei at that time. This is a

discriminatory strategies used by pursuer against evaders.

At time instant t = 0, both the pursuer and the evaders begin to

move from their initial positions:

z0p =
(
x0p, y

0
p

)
, z0i =

(
x0i , y

0
i

)
, i = 1, . . . , 4 (4.1)

And we denote by P t = z
t
p =

(
xtp, y

t
p

)
and Et

i = zti = (xti, y
t
i) the

current positions of pursuer P and evader Ei at time instant t, respectively.

Let α− and α+ are the velocities of P , but α+ can only be used once,

also let βi is the velocity of Ei (i = 1, . . . , 4). Because it is necessary to

ensure that the pursuer catch all the evaders, we suppose that α+ > α− >

max
i=1,...,4βi

, here α−, α+, βi are constant.

The player’s movement can be characterized by the subsequent set
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of differential equations[10]:

żp = vp, vp ∈ Vp,

żi = vi, vi ∈ Vi, i = 1, . . . , 4
(4.2)

with initial conditions

zp (0) = z0p, zi (0) = z0i , i = 1, . . . , 4 (4.3)

where ztp, zt1, zt2, zt3, zt4 ∈ R2. And the set of control variables has the

following forms [11], as shown in the figure 4.1.

V −
p =

{
v−p =

(
v−

1

p , v−
2

p

)
:
(
v−

1

p

)2

+
(
v−

2

p

)2

≤ (α−)
2
}

V +
p =

{
v+p =

(
v+

1

p , v+
2

p

)
:
(
v+

1

p

)2

+
(
v+

2

p

)2

≤ (α+)
2
}

Vi =
{
vi =

(
v1i , v

2
i

)
:
(
v1i
)2

+
(
v2i
)2 ≤ β2

i

}
, i = 1, . . . , 4

(4.4)

and V −
p , V +

p ∈ Vp.

Figure 4.1: Velocity vector
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As we all know, strategies are typically defined as the set of actions

or choices available to each player when making decisions. Therefore, let’s

now define the behaviors of the pursuer P and evaders Ei throughout the

entire game process, i.e., their strategies.

Definition 4.1. The strategy of evader Ei includes time instant and its

own and pursuer’s position at time instant t which is a function sEi
(t, ztp, z

t
1,

. . . , zt4) in SEi
=

{
sEi(·)

}
. And evaders use open-loop strategies. Denote by

SEi
the set of admissible strategies of player Ei, i = 1, . . . , 4.

Definition 4.2. Let π
(
z0p, z

0
1, . . . , z

0
4, sE1

, . . . , sE4

)
be a pursuit order cho-

sen by the pursuer at the initial instant t = 0 for some fixed strategy

profile of the evaders and π ∈ Π, Π is the set of all possible order. Ob-

viously, depending on the pursuit order, the pursuer P can choose dif-

ferent velocity to catch evader Ei, resulting in the pursuer using differ-

ent strategy sp. Let π = {1, ..., 4} be a pursuit order chosen by pur-

suer P . Then we can denote by vp = vi (π) the velocity of pursuer P ,

vp =
{
vi(π) : vi(π) ∈ {α−, α+} ,

∑4
i=1 vi(π) = 3α− + α+

}
∈ Vp.

Definition 4.3. There are more elements in a pursuer strategy than an

evader strategy, the pursuer’s strategy not only includes the time, its posi-

tion at time instant t, but also the velocity-vector of the pursuer and evader

and pursuit order chosen by the pursuer at the initial instant. A strategy

of pursuer P is a function sp
(
t, ztp, z

t
1, . . . , z

t
4, vi(π), vtE1

, . . . , vtE4

)
.

Since evader Ei may deviate from the direction dictated by the pur-

suer at initial time during the game, there are many ways to solve this prob-

lem, the most common way is to define a punishment strategy to get Nash

equilibrium. So, defining a punishment strategy uπp = ⟨π, sp , p⟩, where

sp
(
t, ztp, z

t
1, . . . , z

t
4, vi(π), vtE1

, . . . , vtE4

)
is a pursuit strategy of P and p =
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(t, sE1
, . . . , sE4

) is an element of punishment which includes the changed

order of the evader deviating from the original direction at any time instant

t. Then we say that the triple uπp =
〈
π, sp , p⟩ is a strategy of pursuer P

and also refer it as the punishment strategy of P , denote by Up =
{
uπp

}
π∈Π

the strategy of pursuer P .

In the game, we assume that the pursuer P aims to capture all evaders

with the minimal payoff, while each evader Ei wants to survive as long

as possible to maximize its own payoff, so they only consider themselves

without caring about others in the nonzero-sum pursuit game. But in

matrix games, we consider the group of evaders as a whole.

The pursuit game in this article is played as follows, and the process

is shown in the figure 4.2: at the beginning of the game, the pursuer P will

assign the evader Ei move with a certain behavior. The pursuer calculates

the minimal payoff to capture the evader who uses the prescribed behavior

as the pursuit order. This means selecting the order with the minimal

payoff from 4! pursuit orders as the initial pursuit order. If there are

no deviations from the evaders, the pursuer P will capture the evaders

in the initial pursuit order. If any evader Ei deviates from the direction

prescribed by the pursuer at initial time, pursuer P will change the pursuit

order and immediately pursuit the evader Ei to punish it, then calculates

the minimum payoff of chasing the remaining evaders to determine the

order of subsequent captures. Repeat this process until all evaders are

captured, then the game ends. We define the coincidence of position of

pursuer P and evaders Ei as evaders Ei being caught.
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Figure 4.2: Game process

During the game process, to simplify the difficulty of the game, we

stipulate that only one evader can deviate from the direction before the

moment when the pursuer pursuit any evader, we do not consider the

scenarios where the group of evaders deviate. The velocity of the pursuer

P is greater than any evader Ei, which means that pursuer P can catch all

evaders Ei within a finite time.

Definition 4.4. Denote the payoff function of evader Ei and pursuer P

by KEi
and Kp, respectively [12].

KEi
(sp, sE1

, . . . , sE4
) =

∑
k≤i T

π
k

(4.5)

where T π
k =

∣∣∣Nk−1E
Tk−1
k

∣∣∣
vi(π)−βi

is the time it takes for the pursuer to capture the

evader Ek (k = 1, . . . , 4) according to the pursuit order π ∈ Π. Here, i
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denotes the sequence number of the evader Ei in the pursuit order π =

{1, ..., 4}, while k represents the number of evaders captured before Ei.∣∣∣Nk−1E
Tk−1

k

∣∣∣ is the Euclidean distance between point Nk−1 and E
Tk−1

k . vi (π)−

βi is the difference between the velocity used by pursuer P to capture

the evaders and the velocity of the evader. And at initial time, we set

N 0 = P 0.

Definition 4.5. In order to maximize its payoff, the pursuer strives to

pursuit all the evaders as soon as possible, we define the payoff function

of pursuer P as the negative value of the payoff function of the last caught

evader Ei [12].

KP (sp, sE1
, . . . , sE4

) = −T π (4.6)

where T π =
∑4

k=1 T
π
k is the total pursuit time, and π the pursuit order.
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5 Nonzero-sum pursuit game

Definition 5.1. Define the nonzero-sum pursuit game in normal form as

the following [13]:

Γ
(
z0p, z

0
1, . . . , z

0
4

)
= ⟨N , {Si}i∈N , {Ki}i∈N

〉
(5.1)

where N = {P,E1, ..., E4} is the set of players, Si is the set of admissible

strategies of player i and Ki is a payoff function of player i (i ∈ N) defined

by (4.5) and (4.6). The outcome of each game is influenced by the selection

of the players’ initial positions.

In this game, there exists a Nash equilibrium where the pursuer se-

lects one evader for pursuit, while the other evaders move in the prescribed

direction. If anyone deviates from this direction, the pursuer immediately

changes the pursuit order to punish them.

There are two types of behaviors for the evaders:

1. behavior uj
′

i requires moving towards the current capture point N j′

along the line connecting the positions of the pursuer P and the

evader;

2. behavior uji requires moving towards the capture point of the currently

pursued evader Ej′

i , j > j′, namely, towards the current capture point

N j′, where N j′ = P Tj′ , j′ ∈ {1, ..., 4}.

Suppose the pursuit order π = {1, 2, 3, 4} and the pursuit process

without any evader deviating from the prescribed direction is illustrated

in Figure 5.1.

14



Figure 5.1: Capture process

We divide the set of evaders Ei = {E1, ..., E4} into two types, the

first is the evaders that have not been caught, denote as S =
{
Ej

i

}
j>j′

.

Here Ej
i represents the type of the jth evader in the pursuit order, among

those who have not been caught yet. The second is the evaders who have

been caught, denote as M =
{
Ej′

i

}
, and Ej′

i is the evader currently being

pursued.

And suppose that T 0 = 0,N 0 = P 0.

At initial time t = 0, pursuer P will calculate the time it takes

to capture the evader in all possible orders and select the one with the

minimal payoff as the original capture order. We denote this order as the

optimal order π∗ = {E1, ..., E4}, and its corresponding strategy as uπ
∗

p . If

there is evader deviating from the original direction during the game, for

the convenience of calculation, we can renumber the evader according to

15



π∗ = {E1, ..., E4}. Hence, we have

T π∗
= minπ∈Π T π (5.2)

We need to now determine the circumstances in which the pursuer’s

total time to capture the evader in the original pursuit order using α−

exceeds the total time for the pursuer to pursue all evaders once using α+

in the presence of deviations from the prescribed direction.

For the group of evader this is true if the following inequality holds:∣∣∣N 0ET0
1

∣∣∣
vi (π) − β1

+

∣∣∣N 1ET1
2

∣∣∣
vi (π) − β2

+

∣∣∣N 2ET2
3

∣∣∣
vi (π) − β3

+

∣∣∣N 3ET3
4

∣∣∣
vi (π) − β4

>∣∣∣N 0E ′T0
1

∣∣∣
vi (π) − β′

1

+

∣∣∣N 1E ′T1
2

∣∣∣
vi (π) − β′

2

+

∣∣∣N 2E ′T2
3

∣∣∣
vi (π) − β′

3

+

∣∣∣N 3E ′T3
4

∣∣∣
vi (π) − β′

4

(5.3)

where E ′
i refers to the evader Ei in the reordering when any evader deviates

from the prescribed direction, while β′
i refers to the order of the ith evader

in this sequence.

These two formulas (5.2) and (5.3) provide existence of the given

Nash equilibrium.

Therefore, the effectiveness of the pursuer’s punishment strategy for

evaders with the same and different velocities can be determined by the

following two theorems.

Theorem 5.1. For evader with the same velocity, if an evader deviates

from the prescribed direction at any time instant t > 0, use α+ to capture

the ith evader in new pursuit order. The pursuer’s punishment strategy is

effective if

∑4
k=1

∣∣∣Nk−1E
Tk−1
k

∣∣∣−∑
k ̸=i

∣∣∣Nk−1E
′Tk−1
k

∣∣∣∣∣∣Nk−1E
′Tk−1
k

∣∣∣
k=i

> 1−l
m−l , k = 1, 2, 3, 4 (5.4)
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Proof. Let α+ = mα−, where m > 1; βi = lnα
−, where ln < 1, n = 1,· · · ,4,

and m, ln are constant.

Here l1 = l2 = l3 = l4 = l.

For evaders with the same velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the first

evader in new pursuit order:

∣∣∣N 0ET0
1

∣∣∣
α− − lα− +

∣∣∣N 1ET1
2

∣∣∣
α− − lα− +

∣∣∣N 2ET2
3

∣∣∣
α− − lα− +

∣∣∣N 3ET3
4

∣∣∣
α− − lα− >∣∣∣N 0E ′T0

1

∣∣∣
mα− − lα− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − lα− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − lα− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − lα−

∣∣∣N 0ET0
1

∣∣∣ +
∣∣∣N 1ET1

2

∣∣∣ +
∣∣∣N 2ET2

3

∣∣∣ +
∣∣∣N 3ET3

4

∣∣∣− ∣∣∣N 1E ′T 1
2

∣∣∣− ∣∣∣N 2E ′T 2
3

∣∣∣− ∣∣∣N 3E ′T 3
4

∣∣∣∣∣∣N 0E ′T 0
1

∣∣∣
>

1 − l

m− l

For evaders with the same velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the

second evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − lα− +

∣∣∣N 1ET1
2

∣∣∣
α− − lα− +

∣∣∣N 2ET2
3

∣∣∣
α− − lα− +

∣∣∣N 3ET3
4

∣∣∣
α− − lα− >∣∣∣N 0E ′T0

1

∣∣∣
α− − lα− +

∣∣∣N 1E ′T 1
2

∣∣∣
mα− − lα− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − lα− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − lα−

∣∣∣N 0ET0
1

∣∣∣ +
∣∣∣N 1ET1

2

∣∣∣ +
∣∣∣N 2ET2

3

∣∣∣ +
∣∣∣N 3ET3

4

∣∣∣− ∣∣∣N 0E ′T0
1

∣∣∣− ∣∣∣N 2E ′T 2
3

∣∣∣− ∣∣∣N 3E ′T 3
4

∣∣∣∣∣∣N 1E ′T 1
2

∣∣∣
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>
1 − l

m− l

For evaders with the same velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the third

evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − lα− +

∣∣∣N 1ET1
2

∣∣∣
α− − lα− +

∣∣∣N 2ET2
3

∣∣∣
α− − lα− +

∣∣∣N 3ET3
4

∣∣∣
α− − lα− >∣∣∣N 0E ′T0

1

∣∣∣
α− − lα− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − lα− +

∣∣∣N 2E ′T 2
3

∣∣∣
mα− − lα− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − lα−

∣∣∣N 0ET0
1

∣∣∣ +
∣∣∣N 1ET1

2

∣∣∣ +
∣∣∣N 2ET2

3

∣∣∣ +
∣∣∣N 3ET3

4

∣∣∣− ∣∣∣N 0E ′T0
1

∣∣∣− ∣∣∣N 1E ′T 1
2

∣∣∣− ∣∣∣N 3E ′T 3
4

∣∣∣∣∣∣N 2E ′T 2
3

∣∣∣
>

1 − l

m− l

For evaders with the same velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the

fourth evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − lα− +

∣∣∣N 1ET1
2

∣∣∣
α− − lα− +

∣∣∣N 2ET2
3

∣∣∣
α− − lα− +

∣∣∣N 3ET3
4

∣∣∣
α− − lα− >∣∣∣N 0E ′T0

1

∣∣∣
α− − lα− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − lα− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − lα− +

∣∣∣N 3E ′T 3
4

∣∣∣
mα− − lα−

∣∣∣N 0ET0
1

∣∣∣ +
∣∣∣N 1ET1

2

∣∣∣ +
∣∣∣N 2ET2

3

∣∣∣ +
∣∣∣N 3ET3

4

∣∣∣− ∣∣∣N 0E ′T0
1

∣∣∣− ∣∣∣N 1E ′T 1
2

∣∣∣− ∣∣∣N 2E ′T 2
3

∣∣∣∣∣∣N 3E ′T 3
4

∣∣∣
>

1 − l

m− l
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Theorem 5.2. For evader with the different velocity, if an evader deviates

from the prescribed direction at any time instant t > 0, use α+ to capture

the ith evader in new pursuit order. The pursuer’s punishment strategy is

effective if ∑4
k=1 (

∣∣∣Nk−1E
Tk−1
k

∣∣∣∏n ̸=k (1−ln))∏4
n=1 (1−ln)

>

∣∣∣Nk−1E
′Tk−1
k

∣∣∣
k=i

(m−l′n)n=i
+

∑
k ̸=i (

∣∣∣Nk−1E
Tk−1
k

∣∣∣∏n ̸=i,k (1−ln))∏
n̸=k (1−l′n)

, k = 1, 2, 3, 4 (5.5)

Proof. Let α+ = mα−, where m > 1; βi = lnα
−, where ln < 1, n = 1,· · · ,4,

and m, l are constant.

For evaders with the different velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the first

evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − l1α− +

∣∣∣N 1ET1
2

∣∣∣
α− − l2α− +

∣∣∣N 2ET2
3

∣∣∣
α− − l3α− +

∣∣∣N 3ET3
4

∣∣∣
α− − l4α− >∣∣∣N 0E ′T0

1

∣∣∣
mα− − l′1α

− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − l′2α

− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − l′3α

− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − l′4α

−

∣∣∣N 0ET0
1

∣∣∣
1 − l1

+

∣∣∣N 1ET1
2

∣∣∣
1 − l2

+

∣∣∣N 2ET2
3

∣∣∣
1 − l3

+

∣∣∣N 3ET3
4

∣∣∣
1 − l4

>

∣∣∣N 0E ′T0
1

∣∣∣
m− l′1

+

∣∣∣N 1E ′T 1
2

∣∣∣ (1 − l′3)(1 − l′4) +
∣∣∣N 2E ′T 2

3

∣∣∣ (1 − l′2)(1 − l′4) +
∣∣∣N 3E ′T 3

4

∣∣∣ (1 − l′2)(1 − l′3)

(1 − l′2)(1 − l′3)(1 − l′4)

For evaders with the different velocity, if an evader deviates from

the prescribed direction at any time instant t > 0, use α+ to capture the
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second evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − l1α− +

∣∣∣N 1ET1
2

∣∣∣
α− − l2α− +

∣∣∣N 2ET2
3

∣∣∣
α− − l3α− +

∣∣∣N 3ET3
4

∣∣∣
α− − l4α− >∣∣∣N 0E ′T0

1

∣∣∣
α− − l′1α

− +

∣∣∣N 1E ′T 1
2

∣∣∣
mα− − l′2α

− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − l′3α

− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − l′4α

−

∣∣∣N 0ET0
1

∣∣∣
1 − l1

+

∣∣∣N 1ET1
2

∣∣∣
1 − l2

+

∣∣∣N 2ET2
3

∣∣∣
1 − l3

+

∣∣∣N 3ET3
4

∣∣∣
1 − l4

>

∣∣∣N 1E ′T1
2

∣∣∣
m− l′2

+∣∣∣N 0E ′T 0
1

∣∣∣ (1 − l′3)(1 − l′4) +
∣∣∣N 2E ′T 2

3

∣∣∣ (1 − l′1)(1 − l′4) +
∣∣∣N 3E ′T 3

4

∣∣∣ (1 − l′1)(1 − l′3)

(1 − l′1)(1 − l′3)(1 − l′4)

For evaders with the different velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the third

evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − l1α− +

∣∣∣N 1ET1
2

∣∣∣
α− − l2α− +

∣∣∣N 2ET2
3

∣∣∣
α− − l3α− +

∣∣∣N 3ET3
4

∣∣∣
α− − l4α− >∣∣∣N 0E ′T0

1

∣∣∣
α− − l′1α

− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − l′2α

− +

∣∣∣N 2E ′T 2
3

∣∣∣
mα− − l′3α

− +

∣∣∣N 3E ′T 3
4

∣∣∣
α− − l′4α

−

∣∣∣N 0ET0
1

∣∣∣
1 − l1

+

∣∣∣N 1ET1
2

∣∣∣
1 − l2

+

∣∣∣N 2ET2
3

∣∣∣
1 − l3

+

∣∣∣N 3ET3
4

∣∣∣
1 − l4

>

∣∣∣N 2E ′T2
3

∣∣∣
m− l′3

+

∣∣∣N 0E ′T 0
1

∣∣∣ (1 − l′2)(1 − l′4) +
∣∣∣N 1E ′T 1

2

∣∣∣ (1 − l′1)(1 − l′4) +
∣∣∣N 3E ′T 3

4

∣∣∣ (1 − l′1)(1 − l′2)

(1 − l′1)(1 − l′2)(1 − l′4)

For evaders with the different velocity, if an evader deviates from the

prescribed direction at any time instant t > 0, use α+ to capture the fourth
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evader in new pursuit order:∣∣∣N 0ET0
1

∣∣∣
α− − l1α− +

∣∣∣N 1ET1
2

∣∣∣
α− − l2α− +

∣∣∣N 2ET2
3

∣∣∣
α− − l3α− +

∣∣∣N 3ET3
4

∣∣∣
α− − l4α− >∣∣∣N 0E ′T0

1

∣∣∣
α− − l′1α

− +

∣∣∣N 1E ′T 1
2

∣∣∣
α− − l′2α

− +

∣∣∣N 2E ′T 2
3

∣∣∣
α− − l′3α

− +

∣∣∣N 3E ′T 3
4

∣∣∣
mα− − l′4α

−

∣∣∣N 0ET0
1

∣∣∣
1 − l1

+

∣∣∣N 1ET1
2

∣∣∣
1 − l2

+

∣∣∣N 2ET2
3

∣∣∣
1 − l3

+

∣∣∣N 3ET3
4

∣∣∣
1 − l4

>

∣∣∣N 3E ′T3
4

∣∣∣
m− l′4

+∣∣∣N 0E ′T 0
1

∣∣∣ (1 − l′2)(1 − l′3) +
∣∣∣N 1E ′T 1

2

∣∣∣ (1 − l′1)(1 − l′3) +
∣∣∣N 2E ′T 2

3

∣∣∣ (1 − l′1)(1 − l′2)

(1 − l′1)(1 − l′2)(1 − l′3)

Now let us consider Figure 5.1: The x-axis extends along the hori-

zontal direction and y-axis is going up. Denote by θi the angle between

x-axis and the straight line N iN i+1. Introduce the following notations:

E0
i =

(
x0i , y

0
i

)
, N i = (xN i, xN i) for all i ∈ 1, . . . , 4, and ETk

i =
(
xTk

i , yTk

i

)
for all i > k, i ∈ 1, . . . , 4, k ∈ 1, . . . , 4, T0 = 0. The coordinate ETk

i is

a position of evader Ei at the moment Tk, where Tk (k = 1, . . . , 4) are the

capture moments of the previously caught evaders.

Because there are four evaders, we have 4 capture points N 1, . . . , N 4

that correspond to the capture moments T1, . . . , T4.

According to Figure 5.1, based on the initial known coordinates of

the pursuer and evaders, the coordinates of capture points N i and the

coordinates of the evaders at time Tk can be determined using geometric

knowledge.

The coordinates of N i are

xN i = xN i−1 − vi(π)Ti cos θi−1, yN i = yN i−1 − vi(π)Tisinθ
i−1
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where

cos θi−1 =
xN i−1 − x

Ti−1

i√
(xN i−1 − x

Ti−1

i )
2

+ (yN i−1 − y
Ti−1

i )
2

sin θi−1 =
yN i−1 − y

Ti−1

i√
(xN i−1 − x

Ti−1

i )
2

+ (yN i−1 − y
Ti−1

i )
2

The coordinates of ETk

i are

xTk

i = x
Tk−1

i − βiTkcosθ
i, yTk

i = x
Tk−1

i − βiTksinθ
i

where

cos θi =
xNk − x

Tk−1

i√
(xNk − x

Tk−1

i )
2

+ (yNk−1 − y
Tk−1

i )
2

sin θi =
yNk − y

Tk−1

i√
(xNk − x

Tk−1

i )
2

+ (yNk−1 − y
Tk−1

i )
2

Now, we obtain the conditions that geometrically prove the existence

of Nash equilibrium.
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6 Matrix game

In modern society, people often face various complex decision-making prob-

lems involving competition and cooperation among multiple stakeholders.

Matrix games provide a clear framework for describing decision-makers’

choices and payoff situations. By simplifying decision problems into a ma-

trix form, we can intuitively observe the impact of different participants’

choices on each other and the potential competition or cooperation among

them. Additionally, matrix games serve as an effective decision support

tool, helping us formulate optimal decision strategies. By analyzing the

solutions of matrix games, we can identify the optimal strategy choices

for participants, thus gaining an advantage in competition or achieving

win-win outcomes in cooperation.

In the described pursuit game problem, this chapter focuses on the

overall survival time of the evaders, which involves complex competition

and cooperation between them and the pursuer. The pursuer can employ

different velocity strategy combinations to chase the evaders, while the

evaders attempt to prolong their escape time through various strategies.

By representing the choices and payoffs of both pursuer and evaders as

a payoff matrix, we utilize the theory and methods of matrix games to

analyze the optimal solutions under different strategies, thereby identifying

the best behavior choices for both pursuer and evaders.

Definition 6.1. The system

ΓM
(
z0p, z

0
1, . . . , z

0
4

)
= ⟨X ,Y ,K⟩ (6.1)

where X and Y are called the strategies of evader and pursuer, respectively,

and the function K is the payoff of evader defined by (4.5), is called a two-
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person zero-sum game in normal form [13].

Definition 6.2. Two-person zero-sum game in which both players have

finite sets of strategies are called matrix game [13].

Definition 6.3. The strategy of the evader is defined as the combination

of whether to deviate from the prescribed direction, i.e.

X = {(oooo), (dooo), (odoo), (oodo), (oood)}

where o represents movement in the prescribed direction, d represents de-

viation from the prescribed direction.

The pursuer’s strategy is defined as a combination of different veloc-

ities for the four evaders, i.e.

Y = {(α−, α−, α−, α−), (α+, α−, α−, α−), (α−, α+, α−, α−),

(α−, α−, α+, α−), (α−, α−, α−, α+)}

Now, we know that the evaders have a total of five strategies, but

since the evader can choose to escape at different time instants T0, T1, T2,

T3, it means before E1,E2,E3,E4 are captured respectively. At T0, all five

strategies can be chosen. At T1, E1 is caught, so only E2, E3, and E4 can

choose to change direction, resulting in four strategies, and so on. Then

total number of strategies for the evaders is 14. Let us order the strategy

set X of the evader, i.e. set up a direct correspondence between the sets

I = {1, 2, ..., 14} and X. Similarly, pursuer has 5 strategies, it is possible

to set up a direct correspondence between the sets G = {1, 2, ..., 5} and

Y . The game ΓM is then fully defined by specifying the matrix A = {aij},

where aij = K(xi, yi), (i, j) ∈ I×G, (xi, yi) ∈ X×Y , i ∈ I, j ∈ G (whence
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comes the name of the game - the matrix game).

aij = K(xi, yi) =


min
π∈Π

∑4
i=1

∣∣∣N i−1(π)E
Ti−1
i (π)

∣∣∣
vi(π)−βi(π)

, no evader deviates

min
π∈Π

∑4
i=1

∣∣∣N i−1(πi
T)E

Ti−1
i (πi

T)
∣∣∣

vi(πi
T)−βi(πi

T)
, any evader deviates

where π is represents the pursuit order chosen by the pursuer when there

are no deviations from the prescribed direction by the evaders. πi
T rep-

resents the pursuer recalculating the pursuit order when Ei deviates from

the prescribed direction at time instant T .

Pursuer P has two velocities during the pursuit. Our aim is to find

out in which case pursuer P will use strategy sp with α+ to capture the

evader better and how the evader’s optimal strategy changes when the

pursuer changes his strategy. When an evader deviates from the original

direction, pursuer P will recalculate the payoff at this time, different evader

changes its direction at different times will eventually lead to a change in

payoff, but pursuer P can choose to use α+ to capture the evader who

changes direction to maximize its total payoff because it is the negative

of the payoff for the group of evaders. So the payoff function of group of

evaders is as follows:

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
πi
T

)
E

Ti−1

i

(
πi
T

)∣∣∣
vi (πi

T ) − βi (πi
T )

Suppose the original pursuit order is π = {E1, E2, E3, E4}.

If the E2 changes direction at T = 0, we will have a new order π2
0 and

π2
0 (1) = E2, π

2
0 (2) = E1, E3, E4, π

2
0 (3) = π2

0 (2) − Ei, i ∈ 1, 3, 4, π2
0 (4) =

π2
0 (3) − Ei, i ∈ 1, 3, 4. We suppose the new pursuit order π2

0 = {2, 1, 4, 3}
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and the capture process is illustrated in Figure 6.1.

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π2
0

)
E

Ti−1

i

(
π2
0

)∣∣∣
vi (π2

0) − βi (π2
0)

Figure 6.1: Capture process of E2 deviates from the prescribed direction at T = 0

If the E3 changes direction at T = 0, we will have a new order π3
0 and

π3
0 (1) = E3, π

3
0 (2) = E1, E2, E4, π

3
0 (3) = π3

0 (2) − Ei, i ∈ 1, 2, 4, π3
0 (4) =

π3
0 (3) − Ei, i ∈ 1, 2, 4. We suppose the new pursuit order π3

0 = {3, 4, 1, 2}

and the capture process is illustrated in Figure 6.2.

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π3
0

)
E

Ti−1

i

(
π3
0

)∣∣∣
vi (π3

0) − βi (π3
0)
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Figure 6.2: Capture process of E3 deviates from the prescribed direction at T = 0

If the E4 changes direction at T = 0, we will have a new order π4
0 and

π4
0 (1) = E4, π

4
0 (2) = E1, E2, E3, π

4
0 (3) = π4

0 (2) − Ei, i ∈ 1, 2, 3, π4
0 (4) =

π4
0 (3) − Ei, i ∈ 1, 2, 3. We suppose the new pursuit order π4

0 = {4, 1, 2, 3}

and the capture process is illustrated in Figure 6.3.

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π4
0

)
E

Ti−1

i

(
π4
0

)∣∣∣
vi (π4

0) − βi (π4
0)
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Figure 6.3: Capture process of E4 deviates from the prescribed direction at T = 0

If the E3 changes direction at T = 1, we will have a new order π3
1 and

π3
1 (1) = E1, π

3
1 (2) = E3, π

3
1 (3) = E2, E4, π

3
1 (4) = π3

1 (3)−Ei, i ∈ 2, 4. We

suppose the new pursuit order π3
1 = {1, 3, 2, 4} and the capture process is

illustrated in Figure 6.4.

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π3
1

)
E

Ti−1

i

(
π3
1

)∣∣∣
vi (π3

1) − βi (π3
1)
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Figure 6.4: Capture process of E3 deviates from the prescribed direction at T = 1

If the E4 changes direction at T = 1, we will have a new order π4
1 and

π4
1 (1) = E1, π

4
1 (2) = E4, π

4
1 (3) = E2, E3, π

4
1 (4) = π4

1 (3)−Ei, i ∈ 2, 3. We

suppose the new pursuit order π4
1 = {1, 4, 3, 2} and the capture process is

illustrated in Figure 6.5.

4∑
i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π4
1

)
E

Ti−1

i

(
π4
1

)∣∣∣
vi (π4

1) − βi (π4
1)
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Figure 6.5: Capture process of E4 deviates from the prescribed direction at T = 1

If the E4 changes direction at T = 2, we will have a new order π4
2

and π4
2 (1) = E1, π

4
2 (2) = E2, π

4
2 (3) = E4, π

4
2 (4) = E3. We suppose the

new pursuit order π4
2 = {1, 2, 4, 3} and the capture process is illustrated in

Figure 6.6.
4∑

i=1

KEi
=

min

π ∈ Π

4∑
i=1

∣∣∣N i−1
(
π4
2

)
E

Ti−1

i

(
π4
2

)∣∣∣
vi (π4

2) − βi (π4
2)
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Figure 6.6: Capture process of E4 deviates from the prescribed direction at T = 2

6.1 Rational behavior for evaders

It is supposed that the behavior of both evaders and pursuer are rational,

i.e. in order to achieve the highest possible payoff, assuming that the

opponent is acting in the best (for himself) possible way. Let’s say the

evader selects strategy xi. In the worst-case scenario, the evader will secure

a payoff of minyiK(xi, yi). Consequently, the evader can consistently ensure

a payoff of maxxi
minyiK(xi, yi).

Let’s consider some examples. The evaders with the same and differ-

ent velocities are located at a symmetrical position in the coordinate axis

and observe the survival time of the evaders under rational behavior.
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6.2 Simulation

First, suppose the four evaders are symmetrically positioned in the four

quadrants of the coordinate axis, and they all have the same velocity. The

pursuer continues to increase velocity α+ while the pursuers’ velocity α−

remains constant for simulation.

In the strategy of the evaders, * represents the order in which Ei has

been captured.

Example 6.1. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 10, βi = 1.

Table 6.1: Payoff matrix1
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 4.53 3.18 3.64 4.39 3.45
dooo 4.53 3.18 3.64 4.39 3.45
odoo 4.53 3.18 3.64 4.39 3.45
oodo 4.53 3.18 3.64 4.39 3.45
oood 4.53 3.18 3.64 4.39 3.45

T1

*ooo 4.53 3.18 3.64 4.39 3.45
*doo 4.53 3.18 3.64 4.39 3.45
*odo 5.76 5.04 4.05 4.79 5.60
*ood 4.53 3.18 3.64 4.39 3.45

T2

**oo 4.53 3.18 3.64 4.39 3.45
**do 4.53 3.18 3.64 4.39 3.45
**od 5.45 5.95 4.10 4.50 4.37

T3
***o 4.53 3.18 3.64 4.39 3.45
***d 4.53 3.18 3.64 4.39 3.45
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Example 6.2. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 50, βi = 1.

Table 6.2: Payoff matrix2
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 4.53 3.06 3.89 4.38 3.34
dooo 4.53 3.06 3.89 4.38 3.34
odoo 4.53 3.06 3.89 4.38 3.34
oodo 4.53 3.06 3.89 4.38 3.34
oood 4.53 3.06 3.89 4.38 3.34

T1

*ooo 4.53 3.06 3.89 4.38 3.34
*doo 4.53 3.06 3.89 4.38 3.34
*odo 5.76 5.03 4.06 4.75 3.59
*ood 4.53 3.06 3.89 4.38 3.34

T2

**oo 4.53 3.06 3.89 4.38 3.34
**do 4.53 3.06 3.89 4.38 3.34
**od 5.44 6.12 4.08 4.40 4.26

T3
***o 4.53 3.06 3.89 4.38 3.34
***d 4.53 3.06 3.89 4.38 3.34

Example 6.3. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 100, βi = 1.

Table 6.3: Payoff matrix3
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 4.53 3.05 3.92 4.38 3.33
dooo 4.53 3.05 3.92 4.38 3.33
odoo 4.53 3.05 3.92 4.38 3.33
oodo 4.53 3.05 3.92 4.38 3.33
oood 4.53 3.05 3.92 4.38 3.33

T1

*ooo 4.53 3.05 3.92 4.38 3.33
*doo 4.53 3.05 3.92 4.38 3.33
*odo 5.76 5.03 4.07 4.75 5.58
*ood 4.53 3.05 3.92 4.38 3.33

T2

**oo 4.53 3.05 3.92 4.38 3.33
**do 4.53 3.05 3.92 4.38 3.33
**od 5.45 6.15 4.08 4.39 4.25

T3
***o 4.53 3.05 3.92 4.38 3.33
***d 4.53 3.05 3.92 4.38 3.33

In the above three examples, based on the simulation, it is determined

that the initial pursuit order for pursuer is all π = {1, 2, 3, 4}, and from the

matrix, the optimal strategy for the evader is all that evader E4 deviates
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from the prescribed direction at time instant T2 and the new pursuit order

is π4
2 = {1, 2, 4, 3}. This is the strategy that evaders would choose under

rational behavior and the correspond value in the payoff matrix is what

evaders can get with rational behavior. At this time, the pursuers’ strategy

is denoted as (α−α+α−α−).

As the value of the pursuer’s velocity α+ gradually increases in sim-

ulation experiments, it is observed that with the increasing ratio of α+ to

βi, the survival time of the evader remains almost unchanged, and it does

not alter the optimal strategy for the evader.

When other conditions remain unchanged, the velocity of the pursuer

α+ remains unchanged and α− is continuously increased for simulation.

Example 6.4. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 10, α+ = 100, βi = 1.

Table 6.4: Payoff matrix4
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 0.73 0.62 0.57 0.58 0.58
dooo 0.73 0.62 0.57 0.58 0.58
odoo 0.73 0.62 0.57 0.58 0.58
oodo 0.73 0.62 0.57 0.58 0.58
oood 0.73 0.62 0.57 0.58 0.58

T1

*ooo 0.73 0.62 0.57 0.58 0.58
*doo 0.73 0.62 0.57 0.58 0.58
*odo 0.91 0.80 0.68 0.74 0.70
*ood 0.73 0.62 0.57 0.58 0.58

T2

**oo 0.73 0.62 0.57 0.58 0.58
**do 0.73 0.62 0.57 0.58 0.58
**od 0.85 0.74 0.67 0.59 0.68

T3
***o 0.73 0.62 0.57 0.58 0.58
***d 0.73 0.62 0.57 0.58 0.58
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Example 6.5. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 50, α+ = 100, βi = 1.

Table 6.5: Payoff matrix5
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 0.15 0.13 0.13 0.13 0.13
dooo 0.15 0.13 0.13 0.13 0.13
odoo 0.15 0.13 0.13 0.13 0.13
oodo 0.15 0.13 0.13 0.13 0.13
oood 0.15 0.13 0.13 0.13 0.13

T1

*ooo 0.15 0.13 0.13 0.13 0.13
*doo 0.15 0.13 0.13 0.13 0.13
*odo 0.18 0.17 0.15 0.16 0.16
*ood 0.15 0.13 0.13 0.13 0.13

T2

**oo 0.15 0.13 0.13 0.13 0.13
**do 0.15 0.13 0.13 0.13 0.13
**od 0.17 0.15 0.15 0.14 0.15

T3
***o 0.15 0.13 0.13 0.13 0.13
***d 0.15 0.13 0.13 0.13 0.13

In the example 6.4 - 6.5, based on the simulation, it is determined

that the initial pursuit order for pursuer is all π = {1, 2, 3, 4}, and from the

matrix, the optimal strategy for the evader is all that evader E3 deviates

from the prescribed direction at time instant T1 and the new pursuit order

is π3
1 = {1, 3, 2, 4}. This is the strategy that evaders would choose under

rational behavior and the correspond value in the payoff matrix is what

evaders can get with rational behavior. At this time, the pursuers’ strategy

is denoted as (α−α+α−α−).

Through simulation experiments, also compare with example 6.3, it

is found that as the value of pursuer velocity α− gradually increases, the

relative change in the evader’s survival time becomes significant with the

increasing ratio of α− to βi. Differently from the previous experiment, the

optimal strategy for the evaders have changed.

Then, similarly assume that the four evaders are symmetrically po-

sitioned in the four quadrants of the coordinate axis, but their velocities
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are not the same. Simulation proceeds by continually increasing α− while

keeping the pursuer velocity α+ constant.

Example 6.6. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 10, β1 = 0.3, β2 = 0.5, β3 = 0.7, β4 = 0.9.

Table 6.6: Payoff matrix6
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 3.03 2.67 2.90 2.93 2.71
dooo 3.03 2.67 2.90 2.93 2.71
odoo 3.20 2.74 2.86 3.19 2.66
oodo 2.85 2.79 3.43 3.62 3.33
oood 3.89 2.85 3.42 3.67 3.43

T1

*ooo 3.03 2.67 2.90 2.93 2.71
*doo 3.03 2.67 2.90 2.93 2.71
*odo 4.45 4.29 3.96 3.65 3.92
*ood 3.43 3.51 3.00 3.21 2.89

T2

**oo 3.03 2.67 2.90 2.93 2.71
**do 3.03 2.67 2.90 2.93 2.71
**od 4.28 4.46 4.09 2.96 3.50

T3
***o 3.03 2.67 2.90 2.93 2.71
***d 3.03 2.67 2.90 2.93 2.71

Example 6.7. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 50, β1 = 0.3, β2 = 0.5, β3 = 0.7, β4 = 0.9.

Table 6.7: Payoff matrix7
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 3.03 2.62 2.91 2.93 2.68
dooo 3.03 2.62 2.91 2.93 2.68
odoo 3.20 2.70 2.89 3.19 2.59
oodo 3.85 2.67 3.38 3.59 3.27
oood 3.89 2.76 3.36 3.64 3.37

T1

*ooo 3.03 2.62 2.91 2.93 2.68
*doo 3.03 2.62 2.91 2.93 2.68
*odo 4.45 4.28 3.96 3.59 3.84
*ood 3.43 3.53 3.03 3.19 2.81

T2

**oo 3.03 2.62 2.91 2.93 2.68
**do 3.03 2.62 2.91 2.93 2.68
**od 4.28 4.52 4.08 2.80 3.50

T3
***o 3.03 2.62 2.91 2.93 2.68
***d 3.03 2.62 2.91 2.93 2.68
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Example 6.8. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 2, α+ = 100, β1 = 0.3, β2 = 0.5, β3 = 0.7, β4 = 0.9.

Table 6.8: Payoff matrix8
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 3.03 2.61 2.92 2.93 2.67
dooo 3.03 2.61 2.92 2.93 2.67
odoo 3.20 2.70 2.90 3.19 2.58
oodo 3.85 2.66 3.38 3.58 3.27
oood 3.89 2.75 3.35 3.64 3.37

T1

*ooo 3.03 2.61 2.92 2.93 2.67
*doo 3.03 2.61 2.92 2.93 2.67
*odo 4.45 4.28 3.96 3.58 3.83
*ood 3.43 3.53 3.03 3.19 2.80

T2

**oo 3.03 2.61 2.92 2.93 2.67
**do 3.03 2.61 2.92 2.93 2.67
**od 4.28 4.52 4.08 2.80 3.38

T3
***o 3.03 2.61 2.92 2.93 2.67
***d 3.03 2.61 2.92 2.93 2.67

In the example 6.6 - 6.8, based on the simulation, it is determined

that the initial pursuit order for pursuer is all π = {1, 2, 3, 4}, and from the

matrix, the optimal strategy for the evader is all that evader E3 deviates

from the prescribed direction at time instant T1, and the new pursuit order

is π3
1 = {1, 3, 4, 2}. This is the strategy that evaders would choose under

rational behavior and the correspond value in the payoff matrix is what

evaders can get with rational behavior. At this time, the pursuers’ strategy

is denoted as (α−α−α+α−).

Finally, when the velocity of the evaders is different, keep the velocity

of the pursuer α+ unchanged and continue to increase α− for simulation.
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Example 6.9. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 10, α+ = 100, β1 = 0.3, β2 = 0.5, β3 = 0.7, β4 = 0.9.

Table 6.9: Payoff matrix9
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 0.72 0.61 0.56 0.57 0.56
dooo 0.72 0.61 0.56 0.57 0.56
odoo 0.73 0.61 0.57 0.57 0.56
oodo 0.74 0.61 0.57 0.58 0.58
oood 0.75 0.61 0.57 0.58 0.58

T1

*ooo 0.72 0.61 0.56 0.57 0.56
*doo 0.72 0.61 0.56 0.57 0.56
*odo 0.90 0.79 0.67 0.72 0.67
*ood 0.73 0.62 0.56 0.57 0.56

T2

**oo 0.72 0.61 0.56 0.57 0.56
**do 0.72 0.61 0.56 0.57 0.56
**od 0.83 0.72 0.66 0.57 0.65

T3
***o 0.72 0.61 0.56 0.57 0.56
***d 0.72 0.61 0.56 0.57 0.56

Example 6.10. Let E1 = (1, 1), E2 = (−1, 1), E3 = (−1,−1), E4 =

(1,−1), α− = 50, α+ = 100, β1 = 0.3, β2 = 0.5, β3 = 0.7, β4 = 0.9.

Table 6.10: Payoff matrix10
(α−α−α−α−) (α+α−α−α−) (α−α+α−α−) (α−α−α+α−) (α−α−α−α+)

T0

oooo 0.15 0.13 0.13 0.13 0.13
dooo 0.15 0.13 0.13 0.13 0.13
odoo 0.15 0.13 0.13 0.13 0.13
oodo 0.15 0.13 0.13 0.13 0.13
oood 0.15 0.13 0.13 0.13 0.13

T1

*ooo 0.15 0.13 0.13 0.13 0.13
*doo 0.15 0.13 0.13 0.13 0.13
*odo 0.18 0.17 0.15 0.16 0.16
*ood 0.15 0.13 0.13 0.13 0.13

T2

**oo 0.15 0.13 0.13 0.13 0.13
**do 0.15 0.13 0.13 0.13 0.13
**od 0.16 0.15 0.15 0.14 0.14

T3
***o 0.15 0.13 0.13 0.13 0.13
***d 0.15 0.13 0.13 0.13 0.13

In the example 6.9 - 6.10, based on the simulation, it is determined

that the initial pursuit order for pursuer is all π = {1, 2, 3, 4}, and from the

matrix, the optimal strategy for the evader is all that evader E3 deviates
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from the original direction at time instant T1 and the new pursuit order

π3
1 = {1, 3, 4, 2}. This is the strategy that evaders would choose under

rational behavior and the correspond value in the payoff matrix is what

evaders can get with rational behavior. At this time, the pursuers’ strategy

is denoted as (α−α+α−α−).

In Example 6.6 - 6.10., the conclusions drawn for the evaders are the

same as when their velocities are identical.

6.3 Irrational behavior for evaders

Under rational behavior, according to the maximin principle, the evader

can get their optimal strategy. Based on simulation results, the evader’s

payoff obtained through the optimal strategy may sometimes exceed that

obtained by moving in the prescribed direction, and sometimes it may not.

According to Theorem 1,2, when

∑4
k=1

∣∣∣Nk−1E
Tk−1
k

∣∣∣−∑
k ̸=i

∣∣∣Nk−1E
′Tk−1
k

∣∣∣∣∣∣Nk−1E
′Tk−1
k

∣∣∣
k=i

≤ 1−l
m−l , k = 1, 2, 3, 4

∑4
k=1 (

∣∣∣Nk−1E
Tk−1
k

∣∣∣∏n ̸=k (1−ln))∏4
n=1 (1−ln)

≤
∣∣∣Nk−1E

′Tk−1
k

∣∣∣
k=i

(m−l′n)n=i
+

∑
k ̸=i (

∣∣∣Nk−1E
Tk−1
k

∣∣∣∏n ̸=i,k (1−ln))∏
n ̸=k (1−l′n)

, k = 1, 2, 3, 4

this implies that the pursuer’s punishment strategy is ineffective.

In this case, effective punishment cannot be applied when the evader

deviates from the prescribed direction. Therefore, when the ratios among

the positions of the pursuer, evaders, capture points, and three types of

velocities satisfy the inequalities described above, the evaders can choose

to change direction in search of a greater payoff compared to when moving
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in the prescribed direction. From the payoff matrix, it can be observed

that regardless of the ratio between α− and βi, and between α+ and βi,

how their ratio changes, there will always exist a strategy combination that

allows evaders to achieve a greater payoff. Similarly, there will always exist

a strategy combination that enables the pursuer to effectively punish the

evader deviating from the prescribed direction of movement.

Suppose evaders are irrational, then they can choose whether to devi-

ate from the prescribed direction. In this case, they may or may not receive

a greater payoff because this also relates to the strategy of the pursuer.
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7 Conclusion

In the master’s thesis, we delve into the pursuit game problem between one

pursuer and four evaders in game theory, exploring variations in strategies

within nonzero-sum games and matrix games. Introducing the pursuer

α+, with a velocity that exacerbates the survival conditions for evaders in

a game model significantly unfavorable to them.

In nonzero-sum game, we establish the Nash equilibrium, in which the

pursuer chooses a target to pursue, prompting the other evaders to move in

prescribed directions. If any evader deviates from the prescribed direction,

the pursuer adjusts the pursuit order to capture the deviant evader first

as a form of punishment. We derive geometric formulas for calculating the

coordinates of capture points and evaders at different time instant, and

identify effective punishment strategy conditions for the pursuer.

In matrix game, we analyze the strategy variations under rational

and irrational behavior of evaders. Keeping α+ and α− unchanged respec-

tively while increasing the other velocity for experiments, interestingly, we

observe that despite the higher velocity of the newly introduced velocity

α+, the overall survival time of the evaders remains nearly unchanged, un-

like the scenario when studying the survival time of individual evaders.

Additionally, Under irrational behavior, there exists at least one strategy

whereby the evaders’ survival time surpasses that achieved by adhering to

the prescribed direction of movement.

Through the lens of game theory, we aim to gain deeper insights into

strategic behaviors and the dynamics of complex systems. Through theo-

retical modeling and empirical analysis, i hope to contribute to a broader

understanding of strategic interactions and their impacts on reality.
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Appendix

import math

import numpy as np

import i t e r t o o l s

def i n p u t c o o r d i n a t e s ( obj ) :

while ( True ) :

try :

a=[ f loat ( i ) for i in input ( ’ p l e a s e  ente r ’

+obj+’ coord inate ’ ) . s p l i t ( ’ , ’ ) ]

i f ( len ( a)==2):

return a

except :

pass

def meet time ( a1 , a2 , v1 , v2 ) :

return math . d i s t ( a1 , a2 )/ ( v1−v2 )

def meet time1 ( a1 , a2 , v gap ) :

return math . d i s t ( a1 , a2 )/ ( np . abs ( v gap ) )

def c a l s i n c o s ( n1 , n2 ) :

long=math . d i s t ( n2 , n1 )

s inx =(n2 [1] −n1 [ 1 ] ) / long

cosx=(n2 [0] −n1 [ 0 ] ) / long

return [ cosx , s inx ]

def runPos ( a , z , catch t ime , v ) :

return [ a [ index ]+ item ∗v∗ catch t ime

for index , item in enumerate ( c a l s i n c o s ( a , z ) ) ]
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def t ime one catch ( coordinate P , coord inate s , v , v E ) :

t imes =[ meet time1 ( coordinate P , item , v−v E [ index ] )

for index , item in enumerate ( c oo rd ina t e s ) ]

catch t ime=min( t imes )

ca tch index=times . index ( catch t ime )

ca t ch po in t=runPos ( coordinate P ,

coo rd ina t e s [ ca tch index ] , catch t ime , v )

c a t c h c o o r d i n a t e s =[ ca t ch po in t

i f ( index==catch index )

else runPos ( coo rd ina t e s [ index ] ,

catch po int , catch t ime , v E [ index ] )

for index , item in enumerate ( c oo rd ina t e s ) ]

return catch t ime , catch index , c a t c h c o o r d i n a t e s

def t ime one catch add index ( coordinate P , coord inate s ,

v , v E , ca tch index =−1):

t imes =[ meet time1 ( coordinate P , item , v−v E [ index ] )

for index , item in enumerate ( c oo rd ina t e s ) ]

i f ( ca tch index ==−1):

catch t ime=min( t imes )

ca tch index=times . index ( catch t ime )

else :

ca tch t ime=times [ ca tch index ]

ca t ch po in t=runPos ( coordinate P ,

coo rd ina t e s [ ca tch index ] , catch t ime , v )

c a t c h c o o r d i n a t e s =[ ca t ch po in t

i f ( index==catch index )
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else runPos ( coo rd ina t e s [ index ] , ca tch po int ,

catch t ime , v E [ index ] )

for index , item in enumerate ( c oo rd ina t e s ) ]

return catch t ime , catch index , c a t c h c o o r d i n a t e s

def ca l one ca t ch t ime ( catch seq , v l i s t ,

coordinate P , coord inate s , v E ) :

ca t ch idx =[ item−1 for item in ca t ch s eq ]

t=0

for index , idx in enumerate ( ca t ch idx ) :

re=t ime one catch add index ( coordinate P ,

coord inate s , v l i s t [ index ] , v E , idx )

t=t+re [ 0 ]

coord inate P=re [ 2 ] [ idx ]

c oo rd ina t e s=re [ 2 ]

return t

def u p d a t e l i s t ( f l i s t , u p l i s t ) :

a=l i s t ( f l i s t )

b=l i s t ( u p l i s t )

[ b . remove ( item ) for item in a ]

return a+b

def u p da t e l i s t f r om i n de x ( f l i s t , u p l i s t ) :

a=l i s t ( f l i s t )

b=l i s t ( u p l i s t )

c=[b [ index ] for index in a ]

[ b . remove ( item ) for item in c ]

return c+b
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def l i s t 1 0 (L ) :

re =[L]+[ u p d a t e l i s t ( [ item ] , L)

for item in [ 1 , 2 , 3 , 4 ] ] + [ u p d a t e l i s t ( item , L)

for item in [ [ 1 , 2 ] , [ 1 , 3 ] , [ 1 , 4 ] ] ] + [ u p d a t e l i s t ( item , L)

for item in [ [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] ] ]

return re

def l i s t 9 (L , vs , coordinate P , coord inate s , v E ) :

re =[L ] + [ [ L [ 0 ] ] ] + [ [ L [ 1 ] ] ] + [ [ L [ 2 ] ] ]

+[ [L [ 3 ] ] ] + [ [ L [ 0 ] , L [ 1 ] ] ] + [ [ L [ 0 ] ,

L [ 2 ] ] ] + [ [ L [ 0 ] , L [ 3 ] ] ] + [ [ L [ 0 ] , L [ 1 ] , L [ 3 ] , L [ 2 ] ] ]

p o s i b l e s =[ [ r e i t em+l i s t ( item )

for item in i t e r t o o l s . permutat ions ( [ i t emi

for i t emi in range ( 1 , 5 )

i f ( i t emi not in r e i t em ) ] ) ]

for r e i t em in re ]

t i m e p o s i b l e s =[ [ c a l one ca t ch t ime ( item , vs ,

coordinate P , coord inate s , v E )

for item in p o s i b l e ] for p o s i b l e in p o s i b l e s ]

m i n t i m e p o s i b l e s i d x e s =[ item . index (min( item ) )

for item in t i m e p o s i b l e s ]

return [ item2 [ m i n t i m e p o s i b l e s i d x e s [ index2 ] ]

for index2 , item2 in enumerate ( p o s i b l e s ) ]

def c a l n a s h i (A) :

return max( [min( item ) for item in A] )

def c a l n a s h i 2 (A) :

A2=[ [ item [ i ] for index , item in enumerate (As [ 0 ] ) ]
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for i in range ( len (A [ 0 ] ) ) ]

return max( [min( item ) for item in A2 ] )

v s t a t e s = [ [ 0 , 0 , 0 , 0 ] , [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] ,

[ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] ]

c a t c h s e q s =[ l i s t ( item )

for item in i t e r t o o l s . permutat ions ( [ 1 , 2 , 3 , 4 ] ) ]

coord inate P =[0 ,0 ]

coord inate E1 =[1 ,1 ]

coord inate E2 =[ −1 ,1]

coord inate E3 =[−1,−1]

coord inate E4 =[1 , −1]

vs =[2 ,50 ]

v E = [ 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 ]

v s s t a t e s =[ [ vs [ item2 ] for item2 in item ]

for item in v s t a t e s ]

[ coordinate E1 , coordinate E2 , coordinate E3 ,

coordinate E4 , coord inate E5 ]

coo rd ina t e s =[ coordinate E1 , coordinate E2 ,

coordinate E3 , coord inate E4 ]

c a t c h s e q s 9 =[ l i s t 9 ( item , v s s t a t e s [ 0 ] ,

coordinate P , coord inate s , v E )

for item in c a t c h s e q s ]

A=[ [ c a l one ca t ch t ime ( item2 , v s s t a t e s i t e m ,
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coordinate P , coord inate s , v E )

for item2 in [ l i s t ( item ) for item in c a t c h s e q s ] ]

for v s s t a t e s i t e m in v s s t a t e s ]

tv=A[ 0 ]

print ( ’The  24  minimum  t imes  are ’ ,min( tv ) )

print ( ’ s h o r t e s t  time  path  i s ’ , c a t c h s e q s

[ tv . index (min( tv ) ) ] )

As = [ [ [ c a l one ca t ch t ime ( item2 , v s s t a t e s i t e m ,

coordinate P , coord inate s , v E )

for item2 in [ l i s t ( item ) for item in c a t c h s e q s i t e m ] ]

for v s s t a t e s i t e m in v s s t a t e s ]

for c a t c h s e q s i t e m in c a t c h s e q s 9 ]

As
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