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1 Abstract

In the field of artificial intelligence, the interpretability of models has al-

ways been a focal point for researchers and engineers. With the widespread

application of machine learning models across various domains, under-

standing the decision-making process of models has become an important

topic. This paper utilizes machine learning to establish a medical detec-

tion model and conducts interpretability research on this model. The main

algorithms used are the SHAP algorithm and the τ -algorithm, exploring

the performance of different cooperative game methods in interpretability

research under the same model and data. Furthermore, the medical detec-

tion model is reconstructed using Shapley values and τ -values based on the

XGBoost model, analyzing and comparing the strengths and weaknesses of

the two different methods. Based on this analysis, improvements are made

to the model to enhance the credibility of the prediction results. The τ -

algorithm used in this paper is novel in the fields of machine learning and

detection models.
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2 Introduction

Explainable Artificial Intelligence (XAI) is an AI system built on the prin-

ciples of Artificial Intelligence (AI) that is understandable and trusted by

users. It has vast potential applications in the field of medical diagnostics[5].

Utilizing artificial intelligence technology to perform deep learning on med-

ical data and establish medical detection models assists doctors in clinical

diagnosis and treatment. This demonstrates how AI empowers the med-

ical industry, helping to improve the efficiency of doctors’ work, alleviate

work pressure, and mitigate the current shortage of medical resources. Cur-

rently, numerous scholars are devoted to researching how to utilize artificial

intelligence technology for medical diagnosis. However, due to the ”black

box” nature of most AI systems, their behavior is opaque, and doctors and

patients cannot understand their decision-making mechanisms. This lack

of transparency reduces the credibility of diagnostic results and hinders the

application of AI in clinical practice. Therefore, possessing predictive and

explanatory capabilities is an inevitable direction for the development of

medical detection models.

In machine learning, the interpretability of predictive models, as the

most common kind of models, is crucial, determining the degree of trust

in the model. shapley value in cooperative game is a commonly used

method to explain the contribution degree of model features[1]. However,

in the case of high-dimensional data, shapley huge calculation amount is

time-consuming and labor-intensive, and the conventional dimensionality

reduction method may lead to some deviation from the expected results.

Use the τ -value in the cooperative game to replace the shapley value in the

model. The calculation amount is much smaller than the shapley value, and
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it can perfectly show the influence of different characteristics on the results

of the prediction model. This paper investigates three aspects related to

explanatory medical diagnostic models:

• Firstly, it is necessary to establish a medical detection model, which is

trained on medical data using machine learning algorithms. The core

algorithm used in this model is the One-Class SVM algorithm, and the

medical data utilized is diabetes instance data. This model provides

a basic framework for medical detection and highlights the necessity

for model interpretation. Additionally, it offers essential model and

data support for the establishment of an explanatory model.

• By using the Shapley method to construct the SHAP algorithm, this

study investigates the contributions of features to the model and com-

putes the feature rankings that influence the prediction results.This

process is called feature importance analysis, and the result feature

importance diagram and feature summary diagram can be obtained.

According to the feature importance diagram, we can intuitively ob-

serve each feature in the prediction process and the impact of the

feature on the overall prediction result, and arrange the feature in

descending order, which can be more clear and direct observation.

The feature summary diagram shows the influence and distribution

of the most total prediction results of each feature instance, which

is convenient for us to observe the positive or negative promoting ef-

fect of the feature on the result. Although the SHAP algorithm has

strong interpretability and can be used to explain the results of pre-

diction models, medical data typically involve high-dimensional data

with multiple features. The computational complexity of the SHAP
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algorithm increases exponentially with the increase of features, re-

sulting in significant time and computational resource consumption

during the calculation process. Moreover, it may fail to compute re-

sults when there are too many data features, limiting its application

in medical detection. This paper employs the τ -algorithm to further

explore the interpretability of medical detection models. Based on

cooperative game theory, the τ -value method is used to calculate con-

tributions. Compared to the SHAP method, it performs better on

high-dimensional data. In the prediction model, all features are re-

garded as coalition N, different features form sub-coalition S, S ∈ N ,

and different prediction results can be obtained. The prediction re-

sults of features composed by the sub-coalition and the prediction

results of coalition N can be calculated to obtain the income v(S) of

each coalition. For v(S) we can Compute the upper bound vector and

lower bound vector for each feature, and Calculate these two values

to get the τ value of a feature.

• The research on the interpretability of medical models through the two

aforementioned approaches has been completed. In the final stage, we

evaluate the SHAP algorithm and the τ -algorithm, comparing their

performance in predicting models. Both Shapley values and τ -values

can reflect the contributions of different features to the prediction

results. By re-establishing the prediction model based on the XGBoost

model and incorporating instances for calculation of accuracy, we can

compare the advantages and disadvantages of these two algorithms.

6



3 Diabetes data set

3.1 Description of the dataset

In this article, the data set for predictive model training needs to be pre-

pared in advance. The selected data set is from the open source data set

on the Internet, the diabetes data set. The dataset contains 9 features and

768 samples, among which the features with 0 or 1 label are diagnostic

results. A total of 268 samples with positive diabetes diagnosis (label 1)

and 500 samples with negative diabetes diagnosis (label 0) are included.

Based on these data, the model can be trained and a prediction model can

be established.

Attributes Attribute Description

Pregnancies Number of times pregnant

Glucose
Plasma glucose concentration a 2 hours in

an oral glucose tolerance test

BloodPressure Diastolic blood pressure (mm Hg)

SkinThickness Triceps skin fold thickness (mm)

Insulin 2-Hour serum insulin (mu U/ml)

BMI 2-Hour serum insulin (mu U/ml)

DiabetesPedigreeFunction Body mass index (weight in kg/(height in m)2)

Age Age (years)

Outcome
Class variable (0 or 1)

class value 1 is interpreted as ”tested positive for diabetes”

Table 3.1: The attributes of the dataset

Variables of the study were controlled as much as possible in this

dataset, and all sample instances were from women of Pima Indian descent

at least 21 years of age who were medically diagnosed with diabetes, with

eight medical predictors and one outcome.
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3.2 Data preprocessing

To train a model using the diabetes dataset, we first need to preprocess

the data. We start by detecting outliers in the dataset to observe any

abnormal patterns.

Figure 3.1: Data outlier detection

Through Figure 3.1, it can be observed that the attributes Insulin,

BloodPressure, BMI, DiabetesPedigreeFunction, and Age in the dataset

have a large number of outliers. However, in medical disease detection,

outliers are often used as diagnostic criteria and do not need to be pro-

cessed. However, it is observed that there are a large number of values in

the data set that appear as outliers and are equal to 0. For all instances,

these attributes should not be 0, so they need to be processed for missing

values. In order to make the experiment more rigorous, we classified the

data according to the prediction result label (0 or 1) of the data, and then

obtained the upper and lower limits of the distribution of the feature data

according to the box diagram. Generate random numbers to fill in missing

values of data for missing value processing.

8



Figure 3.2: The dataset after handling missing values

By observing Figure 3.2, there are still a large number of outliers in

the attributes. However, taking Age as an example, an excessively high

age does not necessarily indicate data error, so we do not need to process

these ”numeric” values. Instead, we performed missing value processing

for all those values that were 0, making the dataset more accurate.
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4 Medical detection model

4.1 One-Class SVM algorithm

There are many commonly used anomaly detection algorithms, such as

Isolation Forest, Z-score, and LOF. However, due to the large number of

anomalies in the diabetes dataset and the difficulty in labeling them, using

these algorithms to train a model makes it hard to ensure accuracy. In the

medical field, the One-Class SVM algorithm has many advantages. One-

Class SVM is an unsupervised learning algorithm that does not require

labeled anomalous data for training. Since anomalous data is often difficult

to obtain or incomplete, unsupervised learning is particularly useful.

One-Class SVM can be applied to various types of data, including

high-dimensional and nonlinear data. In medical detection, the complex-

ity and diversity of medical data make this flexibility especially important.

One-Class SVM is specifically designed for anomaly detection, effectively

identifying anomalies in medical data. This helps medical professionals de-

tect potential health issues or diseases early. Compared to other machine

learning algorithms, the One-Class SVM model is relatively simple, easy to

understand, and interpret. This allows medical professionals to better un-

derstand the model’s decision-making process and make adjustments and

optimizations as needed. Therefore, choosing to use the One-Class SVM

algorithm to establish a medical detection model is a suitable approach.

The working principle of One-Class SVM is as follows:

• Data mapping: Normal data is mapped to the three-dimensional fea-

ture space, so that normal data points can be distributed in the sphere

of three-dimensional space, and the result is obtained by judging

whether the data is in the sphere, which is normal, not abnormal.
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This sphere serves as a distinguishing surface called a hyperplane.

• Finding the Optimal Hyperplane: By maximizing the margin between

the hyperplane and the normal data, find an optimal separating hyper-

plane that keeps the abnormal points as far away from it as possible.

This means the decision boundary should be as far away from the

normal data points as possible.

• Anomaly Detection: For new data points, determine whether they are

anomalies by calculating their distance from the hyperplane. Data

points with larger distances are more likely to be anomalies.

One Class SVM also belongs to the category of Support Vector Ma-

chines (SVM). The main problem in detecting anomalies is finding the

separating hyperplane and identifying the support vectors. We use the

Support Vector Data Description (SVDD) algorithm, which is similar to

the One Class SVM algorithm. It treats all non-anomalous samples as

the positive class and uses a hypersphere instead of a hyperplane for sep-

aration. This algorithm obtains a spherical boundary around the data in

the feature space and aims to minimize the volume of this hypersphere,

thereby minimizing the impact of anomalous data points.

In the ONE-class SVM algorithm, suppose to generate a hypersphere,

the center origin is o, the hypersphere radius is r(r>) 0, The volume V (r)

of the hypersphere is required to be minimized in order to be more accu-

rate in the prediction process, and the origin can be obtained by a linear

combination expressed as a support vector. The ONE-class SVM algo-

rithm is similar to the traditional vector machine, the distance from the

mapped feature data point to the origin needs to be less than the radius.

The introduction of non-negative relaxation variable ζi allows classification
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errors within a certain range and assigns a penalty factor C. Therefore,

the optimization problem for this problem is:

min︸︷︷︸
r,o

V (r) + C
m∑
i=1

ζi

∥xi − o∥2 ≤ r + ξi, i = 1, 2, 3...m

ξi ≥ 0, i = 1, 2, ...m

By solving the Lagrange duality problem, we can identify a new data

point z Whether z is inside the hypersphere. If the distance from z to the

center of the circle is less than or equal to the radius r, then it is not an

outlier. If it is outside the hypersphere, it is considered an outlier.

The kernel functions commonly used in One-Class SVM algorithm are

Linear kernel function, polynomial kernel function, Gaussian radial basis

(RBF) kernel function and Sigmoid kernel function, this paper adopts

Gaussian radial basis kernel function:

K(x, y) = exp{−∥x− y∥2

σ2
}

The parameters of One-Class SVM determine the learning ability

and generalization ability of the algorithm. For One-Class SVM with RBF

kernel function, its parameters include penalty parameter C and kernel pa-

rameter σ. The penalty parameter C is the compromise between structural

risk and sample error, and the larger the value, the smaller the allowable

error; The nuclear parameter σ is related to the range and width of the in-

put space of the learning sample. The larger the input space of the sample,

the larger the value of σ.
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Figure 4.1: Example Diagram: Anomaly Detection Using One-Class SVM

This example demonstrates how to use OneClassSVM for anomaly

detection. First, training samples Xtrain are generated using randomly

created data. Then, a OneClassSVM model clf is created and trained.

Next, test samples Xtest are generated, and the trained model is used to

predict anomalies in the samples. Finally, by plotting the training samples,

test samples, and anomaly boundaries, the results of the anomaly detection

are illustrated.
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4.2 Prediction Model Results and Analysis

During the model training phase, the dataset is first divided into a training

set and a test set in a ratio of 8:2. The organized data is shown in the

table below.

Diagnostic Results Training Set Testing Set Total
Diseased 214 54 268

Not Diseased 400 100 500

Table 4.1: Distribution of the Data Set for the Prediction Model

4.3 Experimental Results and Analysis of the Prediction Model

4.3.1 Evaluation Metrics

The model trained based on the One-Class SVM algorithm is an anomaly

detection model, which is used as a prediction model in this study. To eval-

uate the performance of the prediction model, this study selected confusion

matrix, accuracy, ROC curve, and AUC as evaluation metrics[4].

The main purpose of the confusion matrix is to prevent misleading

results due to an unbalanced distribution of the sample data set. For ex-

ample, if the samples in the data set 95% are positive and 5% are negative,

then the model that predicts all the samples are positive will achieve 95%

accuracy, but the model’s recognition rate for negative samples will be 0.

In order to avoid the model can only predict the results of the positive

results, the confusion matrix of the model is established to explain the

accuracy of the model. The confusion matrix shows TP(true positive),

FN(false negative), FP(false positive), and TN(true negative). Accuracy

(Acc), precision (P), recall (R), and F1 scores can be calculated using

values from the confusion matrix.
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Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

Table 4.2: Confusion Matrix

Then the accuracy can be expressed as:

Acc =
TP + TN

TP + FP + FN + TN
(4.1)

Precision can be expressed as the formula:

P =
TP

TP + FP
(4.2)

ROC curve and AUC value can avoid the situation where the above

metrics cannot guarantee objectivity due to imbalanced samples. The ROC

curve is plotted with FPR (False Positive Rate/specificity) on the x-axis

and TPR (True Positive Rate/sensitivity) on the y-axis, considering the

model classification results under different classification thresholds. Since

the shape of the ROC curve is not easy to quantify and compare, the

AUC value, which represents the area under the ROC curve, is used as

an indicator that can be intuitively compared. The TPR expression is

consistent with the recall rate, just expressed in a different form. FPR can

be expressed as formula (4.2) and formula (4.3).

FPR =
FP

TN + FP
(4.3)
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FPR represents the model’s false positive rate, while TPR represents

the coverage rate of the predictions. The higher the TPR and the lower the

FPR, the better the model’s performance. This is reflected on the ROC

curve as a steeper curve that is closer to the upper left corner, and a larger

AUC value.

4.3.2 Experimental Results

Figure 4.2 illustrates the confusion matrix of the One-Class SVM model

on the test set.

Figure 4.2: The confusion matrix of the predicted results.

Figure 4.3: The experimental ROC curve graph.
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Analyze the confusion matrix and ROC curve above veals: First

of all, by looking at the confusion matrix, we can see that the diabetes

prediction model can predict the outcome of each instance to be positive

or negative, and the prediction function is perfect. Can be calculated The

prediction model was 82% accurate. For a predictive model, this Accuracy

is predictive, higher than most medical predictive model models, and can be

experimented with as a target model for interpreting models. The validity

of a class of support vector machine algorithm is verified To the prediction

model. In addition, a class of support vector machine algorithm is simple

and easy to understand, convenient for users and doctors Understanding

enhances the interpretability of the model.

Upon analyzing the ROC curve, it is observed that the coupling

degree is high, and the model’s AUC value is close to 1. (AUC is defined as

the area under the ROC curve, with a value not exceeding 1. However, the

closer it is to 1, the better the model’s predictive ability.) This also suggests

that using the One-Class SVM algorithm to train the predictive model is

beneficial, both for predictive accuracy and improving interpretability in

subsequent analyses.
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5 Medical detection model interpretability methods

5.1 SHAP algorithm

5.1.1 Shapley values in cooperative games

The main algorithm of SHAP model is shapley value, which is an algorithm

in the field of cooperative game. It was proposed by shapley in 1953[13].

This is a way to distribute revenue based on player contributions. Different

players form different alliances to get different benefits, and each player’s

contribution can be obtained by calculating the benefits of these alliances.

shapley’s formula is given in 5.1:

φi =
∑

S|i∈S⊆N

(|S| − 1)!(|N | − 1)!

|N |!
[v(S)− v(S \ {i})] (5.1)

Here, φi represents the Shapley value for player i, reflecting the

player’s contribution to the total payoff of the coalition. In a prediction

model, this can be interpreted as the influence of attribute i on the pre-

diction outcome. N is the set of all players, which in the context of a

prediction model can be understood as the set of all attributes. S ∈ N is

a coalition of players, which in a prediction model can be interpreted as

different subsets of attributes. V (S) is the characteristic function of coali-

tion S, reflecting the total payoff when the players form coalition S. In a

prediction model, this can be interpreted as the prediction result obtained

by the prediction model when using the coalition of attributes S.

Before obtaining the Shapley value for each feature, it is necessary

to calculate V (S) for each S ∈ N coalition. This is also a crucial step

in calculating the Shapley value, which we will explain in the following

section.
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In interpretable AI, we use Shapley values to measure the contribu-

tion of each player (feature). By using Shapley values, we can obtain the

contribution of each feature to the prediction results of a specific solution

(local interpretation) as well as the overall system, the global prediction

results (global interpretation).

When interpreting machine learning predictions using Shapley val-

ues, Total expenditure represents what the prediction model predicts for

a single sample. In the data set, the player is the eigenvalue of the corre-

sponding feature of each sample, and the payoff is the difference between

the predicted result of the sub-coalition of the sample feature and the av-

erage predicted result in all cases, and we will get the alliance payoff of the

sub-coalition of the sample feature.

5.1.2 SHAP algorithm in machine learning

SHAP algorithm is a method for interpreting a model based on the Shapley

value in game theory. It is a post-hoc explanation framework that can

compute the importance value (Shapley value) for each feature variable

in each sample, achieving the effect of explanation. Shapley value was

originally used to solve the problem of allocating contributions to total

income among participants in cooperative games. The SHAP algorithm

considers the contribution of each feature value as a ”fair” distribution,

ensuring that each feature value contributes its fair share to the model

output.

Coalitional Contribution represents the influence of each feature on

the model prediction. For the SHAP algorithm, the general steps for com-

puting marginal contributions are as follows:

19



• For each sample to be explained, determine the model’s baseline pre-

diction, which is typically the average prediction value of the model

for the entire training set.

• Replace each feature in the sample to be explained with a virtual value,

such as setting it to the mean value, and then predict the model again.

• Calculate the difference between the model prediction values after

replacing each feature and the baseline prediction value, which repre-

sents the marginal contribution of that feature.

In this way, the influence of each feature on the model prediction can

be determined. In the SHAP algorithm, marginal contributions are used to

compute the Shapley values of each feature, thereby obtaining the relative

importance of features.

5.1.3 Feature function of SHAP algorithm

The key to SHAP is understanding how each feature affects predictions.It’s

easy to calculate the contribution of each feature in linear models. Here is

an example of a data instance’s prediction from a linear model:

f̂(x) = β0 + β1x1 + · · ·+ βnxn (5.2)

Where x is the instance for which we want to compute contributions, each

xi(i = 1, · · · , n) is a feature value of the instance, and βi is the weight

corresponding to feature i.

The contribution of the i-th feature to the prediction f̂(x) is defined

as:

ϕi = βixi − E(βiXi) = βixi − βiE(Xi) (5.3)
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Where E(βiXi) is the average causal effect of feature j, the contri-

bution is the difference between the feature effect and the average effect.

Now that we know the contribution of each feature to the prediction, if

we sum up the contributions of all features of an instance, the result is as

follows:

E(βjXj) =
n∑

i=1

βjxijp(xij) (5.4)

∑n
i=1 ϕi(f̂) =

∑n
i=1(βixi − E(βiXi))

= (β0 +
∑n

i=1 βiXi)− (β0 +
∑n

i=1E(βiXi))

= f̂(x)− E(f̂(X))

(5.5)

For equation (5.4), βj is the coefficient (weight) of feature j, xij is

the value of feature j for the i-th sample, p(xij) is the probability (weight)

of the value xij for feature j, and n is the number of samples.

That means the sum of contributions from data point x equals the

prediction minus the average prediction. Since we don’t have similar

weights in other non-linear models (like ensemble models), we need a dif-

ferent solution to obtain the feature contributions of individual predictions

of machine learning models, using Shapley values from cooperative game

theory.

The Shapley value of each feature is the contribution of that feature

to the prediction, obtained by summing the weighted sum of contributions

across all possible combinations of feature values:

ϕi(νal) =
∑

S⊆{x1,...,xn}\{xi}

(|S| − 1)!(|n| − 1)!

|n|!
(νal(S

⋃
{xi})− νal(S))
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Where S is the feature subcoalition of different features in the pre-

diction model (cooperative game colation), and x is The vector represents

the eigenvalue of the sample to be interpreted, where N is the sample size.

Where, valx(S) is the prediction result of the colation on the sub-colation

S. By differentiating the feature x that is not included in the sub-colation,

it can be marginalized, so that the prediction colation features have a more

significant impact on the prediction result.

νalx(S) =

∫
f̂(x1, · · · , xn)dNx/∈S − EX(f̂(X)) (5.6)

In fact, multiple integrations are performed for each feature not

included. For example, if a machine learning model uses four features

x1, x2, x3 and x4 , we estimate the prediction of coalition S composed of

feature values x1 and x3.

νalx(S) = νalx({x1, x3}) =
∫
R

∫
R

f̂(x1, X2, x3, X4)dNX2,X4
− EX(f̂(X))

Feature value is the numerical or categorical value of an instance

feature; Shapley value is the contribution of a feature to the prediction;

value function is the expenditure function of the coalition.

The feature value (feature value) is the numerical value or category

value of the instance feature; Shapley value is the contribution of features

to prediction. The value function is the expenditure function of the feature

values of the coalition.

The Shapley value thus calculated is the only attribution method that

satisfies the four attributes of Efficiency, Symmetry, Dummy, and Additiv-

ity,These four attributes can be collectively referred to as the definition of

the shapley value.
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5.1.4 Compute SHAP values.

To compute SHAP values, we define fx(S) = E[f(x)|xs], where S is the

subset of possible input features (coalitions mentioned in Shapley values),

and E[f(x)|xs] is the conditional expectation value of the subset S of input

features (val function mentioned in Shapley values). The following figure

explains how we get the prediction from E[f(x)].

Through the above figure, it can be seen that SHAP values assign the

attribution value of each feature to the expected change in model prediction

when that feature is adjusted[2], explaining the model f prediction for

sample {x1 = a1, x2 = a2, x3 = a3, x4 = a4} as the sum of the influences of

each feature’s conditional expectation . This figure only displays the case

of single sorting. So, the explanation process of the above figure is:

• When S is an empty set, ϕ0 = fx(∅) = E[f(x)],E[f(x)] is the ex-

pectation of the model prediction, which can be approximated by the

average of the model predictions on the training samples.

• Feature xi is sequentially added to S, ϕ1 = fx({x1})−fx(∅) = E[f(x)|x1]−

E[f(x)] is the difference between the model prediction expectation

when {x1 = a1} is included and the model prediction expectation.

• Then, when feature is sequentially added to S, ϕ2 = fx({x1, x2}) −

fx({x1}) = E[f(x)|x1, x2] − E[f(x)|x1],That is, the model prediction

expectation when {x1 = a1, x2 = a2} is included minus the model

prediction expectation when {x1 = a1} is included.
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• · · · · · ·

• Until the last feature x4 is added sequentially to S,ϕ4 = fx({x1, x2, x3, x4})−

fx({x1, x2, x3}) = E[f(x)|x1, x2, x3, x4] − E[f(x)|x1, x2, x3], That is,

the model prediction expectation when {x1 = a1, x2 = a2, x3 = a3, x4 =

a4} is included minus the model prediction expectation when {x1 =

a1, x2 = a2, x3 = a3} is included,At this point, f is the prediction

value under the single sorting of four features, which is actually the

prediction value of sample x.

However, in practice, when the model is nonlinear or the input fea-

tures are not independent, SHAP values should calculate the weighted

average of all possible feature orderings. SHAP combines these conditional

expectations with the classic Shapley values from game theory into the

attribution values of each feature ϕi, calculated according to the following

formula.

ϕi =
∑

S⊆{x1,··· ,xn}\{xi}

(
∣∣∣S∣∣∣− 1)!(

∣∣∣n∣∣∣− 1)!∣∣∣n∣∣∣! (fx(S
⋃

{xi})− fx(S))

Where {x1, · · · , xp} is the set of all input features, p is the number

of all input features, {x1, · · · , xp} \ {xj} is the set of all possible subsets of

input features excluding xj, and fx(S) is the prediction of feature subset

S. It can be seen that this formula is the same as the definition introduced

earlier for Shapley values.
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5.2 τ algorithm

5.2.1 τ-values in cooperative games

τ -value is also a method derived from cooperative game theory, introduced

by Tijs in 1981 for imputations. The τ -value is essentially a coordinating

value between the value vector for upper games and the value vector for

lower games.

Let v ∈ G, for each i ∈ Nand each S ∈ 2N , i ∈ S, the marginal

contribution of player i to the coalition S is v(S)− v(S\i). for each i ∈ N ,

bvi = v(N) − v(N\{i}) represents the marginal contribution of player i to

Major League N , which is the utopia payoff that player i can get in Major

league. If player i wants to get more payment from major League, Then

N people in other innings exclude people in innings i from major league

N . So bvi is the players i in the countermeasures that can obtain the upper

bound of the payment in bv = (bv1, · · · , bvn) ∈ RN called countermeasure v

value on the vector (upper vector).

Let i ∈ N ,S ∈ 2N and i ∈ S, when every player in coalition S except

i is paid Utopia, the remainder of player i is defined as follows.

Theorem 5.1. Let S ∈ 2N\∅,i ∈ S,coalition S player i ,The remaining

R(S, i) defined as

R(S, i) = v(s)−
∑
j∈S\i

Mj(v).

It means that for the alliance value v(S), if all players in alliance

S except player i get the maximum payment value they can expect, then

player i can get this residual value.
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For each i ∈ N , the i-th component of the lower vector av, avi be

defined as

avi = max
S:i∈S

R(S, i).

In major League N , an innings player i is justified in demanding

the minimum payment he gets avi , Let’s call it the minimum reasonable

payment of player i. It means that after every player in alliance s except

i receives the maximum payout Utopia payment, player i is guaranteed to

get as much of the remaining avi as possible.

Theorem 5.2. The definition of the τ -value τ(v) is:

τ(v) = αav + (1− α)bv,

Where α ∈ [0, 1] is uniquely determined by
∑

i∈N τi(v) = v(N).

5.2.2 τ-values algorithm

To improve model efficiency and reduce computational complexity, logistic

regression algorithm is utilized to fit the model when computing τ -values.

This approach saves a considerable amount of time and computational re-

sources compared to training the SHAP model using data. For comparison,

we simultaneously calculate coalition contributions using the same method

as the SHAP model and then compute τ -values again, making the results

more direct and convincing.

The general steps for calculating τ -values using logistic regression are

as follows:

• Prepare data: Prepare a dataset containing features and target vari-

ables.
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• Fit the model: Fit the dataset using a logistic regression model.

• Compute baseline value: Compute the average prediction value of the

model for the entire training set as the baseline value.

• Compute marginal contributions: For each sample, replace the value

of each feature with its mean value across the entire training set, and

then re-predict the model. Calculate the difference between the model

prediction value and the baseline value, which represents the marginal

contribution of each feature.

• Compute τ -values: Calculate the τ -value for each feature using marginal

contributions.

• Interpret results: Analyze the τ -values to understand the impact of

each feature on the model predictions.
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6 Diabetes detection model interpretation methods

6.1 SHAP model and result analysis

6.1.1 Visualization of Predictions

First, we use SHAP to explain the prediction of a single sample, where each

feature value contributes to increasing or decreasing the prediction force.

Predictions start from a baseline, which is the average of all predictions,

and each Shapley value is an arrow indicating an increase (positive) or

decrease (negative) in prediction.

Figure 6.1: Visualization of individual samples (force diagram).

The SHAP values interpret the diabetes prediction probability for

this particular instance as follows: the woman’s prediction probability is

0, indicating a negative diabetes test result. BMI is to the left of the

baseline 0 (in red), suggesting that for this woman, BMI increases the risk

of diabetes. Glucose is to the right of the baseline (in blue), indicating

a decreasing effect. Therefore, controlling weight may reduce the risk of

diabetes for this woman.

Figure 6.2: Visualization of individual samples (force diagram).

For the instance depicted in Figure 6.2, the woman’s predicted prob-

ability is 1, indicating a positive prediction for diabetes. BMI and Diabete-
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sPedigreeFunction are on the left side of the baseline of 1 (shown in red),

suggesting that for this woman, BMI and DiabetesPedigreeFunction reduce

the risk of diabetes. Insulin is on the right side of the baseline (shown in

blue), indicating its positive impact, meaning that for this woman, Insulin

is the main contributing factor to diabetes.

Through these two example graphs, it can be observed that SHAP

can predict results based on individual instances and display the magni-

tude of influence of each physiological indicator on the prediction outcome.

When the red portion exceeds the blue portion, the prediction outcome is

negative, and vice versa. By interpreting each instance with SHAP, the

impact of each indicator on the prediction outcome can be thoroughly ex-

plained, thereby facilitating the interpretation of the prediction process of

the model.

6.1.2 SHAP Feature Importance

The value of Shapley reflects the influence of features on prediction results.

The larger the value of shapley, the greater the influence and the more im-

portant the features are. The importance of each feature can be intuitively

observed by sorting the value of shapley. Therefore, the average of the

absolute shapley values of each eigenvalue can be calculated to obtain the

SHAP feature importance graph.

Next, we sort the feature importance in descending order and plot

them. The following figure shows the feature importance obtained through

SHAP for predicting diabetes using a model trained based on the One-Class

SVM algorithm.
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Figure 6.3: The graph showing the feature importance sorted in descending order.

Measured by the average Shapley absolute value, Glucose emerges

as the most important feature, altering the predicted diabetes probability

by an average of 25 percentage points. This indicates that Glucose is the

most influential feature for determining diabetes across all samples and is

a vital physiological indicator we must pay attention to. Additionally, the

feature importance plot elucidates the weight of different features in the

overall prediction process and explains the contribution of each feature to

the prediction outcome.

While the feature importance plot is informative, it lacks additional

details beyond importance. To gain more comprehensive insights, we will

now examine the summary plot.
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6.1.3 SHAP Summary Plot

The summary plot combines feature importance with the shapley distribu-

tion for each instance[3]. Each point on the graph represents a feature and

a sample Shapley value, where the Y-axis position is determined by the

importance of each feature, arranged in descending order. The position on

the X-axis is determined by the shapley of the feature corresponding to

each instance, and the color indicates the influence of the feature value on

the prediction from low to high, with red being the highest.

Figure 6.4: SHAP Summary Plot

The SHAP summary plot illustrates that lower levels of Glucose are

associated with a lower risk of diabetes, while higher levels of Glucose

correspond to a higher risk. For all features except insulin, higher values

are associated with a higher risk of diabetes, whereas lower levels of insulin

indicate an increased likelihood of diabetes. However, it’s important to

note that these effects only describe the model’s behavior and may not

imply causation in the real world.
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In the summary plot, we first observe the relationship between fea-

ture values and their predictive impact, followed by the distribution of all

instances in prediction. Through the summary plot, we can provide further

explanations for the model, enhancing its credibility. The intuitive data

and plots demonstrate that the model’s predictions are scientifically rig-

orous, and the entire prediction process involves continuous learning and

training. When the model’s accuracy is further improved through training

or new algorithms, it becomes more applicable in practical scenarios.
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6.2 τ-values model and result analysis

The key to the τ -value algorithm also lies in the feature contributions V (S),

and the feature contribution algorithm of the τ -value algorithm is the same

as that of the Shapley value. We can directly model it in the same way

and train a τ -value model.

6.2.1 τ-values Feature Importance

To more intuitively compare the differences in explaining the direction of

predictive models between SHAP and t-models, feature importance plots

are generated by measuring the average absolute t-value.

Figure 6.5: τ -values Feature Importance Plot

By observing the t-value feature importance plot, it can be noted that

Glucose is the most important feature, with an average absolute change

of 40 percentage points in the predicted probability of diabetes. For all

samples, Glucose is the feature that has the greatest impact on whether

or not diabetes is present. BMI and other features also have significant

effects on the prediction results, with changes ranging from 30% to 35%,

but only Glucose shows a significant numerical effect. Additionally, the
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feature importance plot explains the weights of different features in the

overall prediction process and elucidates the contribution of each feature

to the prediction results.

6.3 Model Comparison

In this paper, we employed two model interpretation methods, namely

SHAP and t-values. Compared to t-values, SHAP has been widely used

in the field of interpretable AI, offering diverse and more reliable interpre-

tation techniques. However, t-values, also being cooperative game-based

methods, have their own advantages in model interpretation. Let’s com-

pare the feature importance plots of both methods.

SHAP Feature Importance τ -values Feature Importance

Glucose Glucose

BMI BMI

Pregnancies DiabetesPedigreeFunction

DiabetesPedigreeFunction Insulin

Insulin Pregnancies

BloodPressure Age

Age BloodPressure

SkinThickness SkinThickness

Table 6.1: Feature Importance Comparison Table in Descending Order

Through the sorting of feature importance, it can be observed that

both methods yield similar results. The two features that have the greatest

impact on the prediction results are Glucose and BMI, and their impor-

tance rankings are also the same. Similarly, the middle three features in the

rankings are Pregnancies, DiabetesPedigreeFunction, and Insulin, and the

last three features are similar as well. Therefore, both of these explanatory
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methods can be used, each with its own advantages.

The results from SHAP are more significant, showing a significant dif-

ference in the impact of different features on the prediction results, provid-

ing intuitive understanding of feature importance information. Moreover,

it can generate instance-level plots to make explanations more convincing.

However, SHAP’s disadvantages are also quite apparent, with high com-

putational complexity and exponential increase in calculation time and

resources with the addition of features, which may not perform well in

high-dimensional data.

On the other hand, t-values also provide a clear understanding of the

importance ranking of each feature in predicting the results. Apart from

the most obvious feature Glucose, the remaining features are not signifi-

cant. However, its feature importance ranking still provides interpretabil-

ity and reliability. The biggest advantage of t-values is the reduction in

computational time, saving computational resources.

Each method has its own strengths and weaknesses. To further com-

pare the interpretability of these two methods, a new model can be built

to predict and compare instances again.

35



7 Predictive model based on XGBoost

7.1 XGBoost

Although both the SHAP and τ -value models perform well, for a more intu-

itive comparison of the two models, we can achieve it through re-modeling.

By interpreting the models, we can obtain Shapley values based on the

SHAP algorithm and τ -values based on the τ -algorithm. Since both of

these values can reflect the impact of features on the overall predictive

model, they can be used as feature weights to reconstruct the medical

detection model. The superiority of the two models can be analyzed to

draw conclusions about the interpretability and credibility of the two algo-

rithms. In the case of known feature weights, the simplest approach is to

build a linear prediction model. However, due to the dataset’s nonlinear

distribution, we choose to train the prediction model based on XGBoost.

The XGBoost model (eXtreme Gradient Boosting) is a gradient boost-

ing framework developed by Tianqi Chen in 2014 and widely used in the

field of machine learning. The core idea of XGBoost is to iteratively train

multiple weak learners and combine them to achieve powerful predictive

capabilities. It improves and optimizes upon the gradient boosting algo-

rithm, featuring efficiency, flexibility, and scalability.

XGBoost implements parallel computing and distributed computing,

hence excelling in handling large-scale datasets. It enhances training and

prediction speed through optimized algorithms and data structures. Em-

ploying the Gradient Boosting Decision Tree algorithm, it iteratively trains

weak classifiers and combines them into a strong classifier. Such ensemble

learning methods typically exhibit high accuracy.

The basic idea is to construct a regression tree model in each round
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of iteration and update the model based on the residuals, ultimately com-

bining multiple weak classifiers into a strong classifier. Specifically, the

objective function of XGBoost involves adding a regularization term to

the loss function, and the model is trained by optimizing this objective

function. The main formulas include the loss function, model prediction,

and residuals:

Loss Function:

Loss =
n∑

i=1

L(yi, ŷi) +
K∑
k=1

Ω(fk)

L(yi, ŷi) is the loss function, which measures the difference between

the predicted value ŷi and the true value yi , Ω(fk) is the regularization

term, which controls the complexity of the model.

Model Prediction:

ŷ
(t)
i =

K∑
k=1

fk(xi)

ŷ
(t)
i is the predicted value after t rounds of iteration, and fk(xi) is the

predicted value of the k-th regression tree model for the sample xi.

XGBoost trains the model by optimizing this objective function,

gradually approaching the optimal solution, thus achieving efficient pre-

diction and generalization capabilities. The general steps to build an XG-

Boost model are as follows:

Prepare the Dataset:

• Split the dataset into feature set (X) and target variable (y).Ensure

there are no missing values or outliers in the dataset, and perform

necessary data preprocessing (such as feature scaling, encoding cate-

gorical variables, etc.).
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Create DMatrix:

• Use the DMatrix class provided by XGBoost to convert the feature

set and target variable into the internal data structure of XGBoost,

to enhance the efficiency of training and prediction.

Set Parameters:

• Define the parameters of the XGBoost model, including the objective

function, evaluation metrics, tree depth, learning rate, etc. You can

adjust them based on the characteristics of the problem and the scale

of the dataset.

Train the Model:

• Train the XGBoost model using the xgb.train() function. Provide the

DMatrix object, parameters, and the number of training iterations

as inputs. During training, the model will iteratively build multiple

decision tree models based on the specified parameters and objective

function, continuously optimizing the predictive performance.

• Compute τ -values: Calculate the τ -value for each feature using marginal

contributions.

Evaluate the Model:

• Evaluate the performance of the model using a test dataset. You can

use various evaluation metrics such as accuracy, precision, recall, F1

score, etc., to understand the model’s performance.
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7.2 XGBoost prediction model

7.2.1 A prediction model based on Shapley

After establishing the corresponding medical detection model using Shap-

ley values, it is necessary to evaluate the model. If the model accuracy is

too low, it cannot be used as a reference for comparison. Here, we still use

confusion matrices, precision, and ROC curves for analysis.

Figure 7.1: Confusion matrix of the XGBoost medical detection model based on Shapley
values.
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Figure 7.2: ROC curve of the XGBoost medical detection model based on Shapley values.

Through Figure 7.1, it can be inferred that the accuracy of this model

is 82.5%, which is higher than the medical detection model established

based on the ONE-Class SVM algorithm. Therefore, there is no problem in

using the SHAP model for interpretable AI research. Moreover, its higher

predictive accuracy also implies a high level of credibility when explaining

”black box” models using SHAP. By observing the ROC curve, it is also

noted that the AUC is 0.87, close to one. When the AUC value is within

the range of 0.5 to 1, the predictive model has predictive value, indicating

that this predictive model has great research value. Therefore, the medical

detection model established through Shapley can also be explored as a new

prediction method. If the computational complexity of the SHAP method

can be reduced, the SHAP model will have great development and research

space in both the interpretable and predictive fields.
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7.2.2 A prediction model based on τ-values

Plot the confusion matrix and ROC curve of the XGBoost medical detec-

tion model based on τ -values, investigate the interpretability of τ -values,

evaluate the predictive model, and study whether it has predictive value.

Figure 7.3: Confusion matrix of the XGBoost medical detection model based on τ - values.

Figure 7.4: ROC curve of the XGBoost medical detection model based on τ -values.
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Through the analysis of Figures 7.3 and 7.4, it is evident that al-

though the τ -value method does not yield significant numerical results in

feature importance research, the model established based on τ -values still

achieves high accuracy. With an accuracy of 80%, which is close to the

accuracy of detection models established based on ONE-class SVM algo-

rithm and SHAP algorithm. Furthermore, its ROC curve has an AUC of

0.85, demonstrating its authority in both interpretable research and medi-

cal detection research. This also proves the feasibility of using the τ -value

method for interpretable research.

7.2.3 Interpretable Model Comparison

The two predictive models based on XGBoost effectively compare the inter-

pretability and predictive capabilities of the SHAP and τ -value models. In

terms of interpretability, both methods exhibit strong explanatory power

and reliability. The SHAP method is superior to the τ -value method in

interpretability, but this does not necessarily mean that the SHAP method

is inherently better than the τ -value method. The SHAP method has be-

come very mature through years of development and research, capable of

interpreting both single samples and overall models with good data per-

formance.

However, the τ -value method also shows impressive performance in

interpretability. Its conclusions on feature importance are remarkably sim-

ilar to those derived from the SHAP method. Both methods can conduct

interpretability studies, and the τ -value method performs better in terms

of training time and handling high-dimensional data. Using the same pre-

dictive model, the time difference in calculating SHAP values and τ -values

was 30-fold, with SHAP calculations consuming substantial time and com-
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putational resources. In contrast, the τ -value method saves significant time

while ensuring accuracy.

Moreover, the predictive models built on these two algorithms hold

substantial research value. Using feature weights to construct the XG-

Boost model, both achieved an accuracy rate of over 80%, with AUC val-

ues greater than 0.85. These predictive values surpass some mainstream

predictive models in the machine learning field. Overall, both τ -values and

SHAP values can reliably explain medical diagnostic models and can serve

as the foundation for building predictive models with high accuracy.
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8 Conclusion

This paper primarily focuses on the study of diabetes prediction models

based on machine learning from the perspective of cooperative game theory.

The challenge in medical prediction models lies in their interpretability.

Most machine learning-based prediction models are ”black-box” models,

making it difficult to explain their results in a way that convinces doctors

and patients of their reliability. To address this issue, it is essential to

develop a medical prediction model that can diagnose diabetes and analyze

the diagnostic process, providing explanations for the results.

The process begins with the creation of a diabetes prediction model

based on ONE-CLASS SVM. It is crucial to analyze and preprocess the

dataset to avoid any adverse effects on the prediction results. Following

this, the model is trained, prediction results are generated, and the model

is evaluated. After the predictions are made, the results are interpreted to

explain the feasibility of the model, thereby increasing the confidence of

doctors and patients in the model’s predictions.

The explanation process is primarily divided into two steps. Firstly,

Shapley values and τ -values are computed based on the predictive model

from the perspective of cooperative game theory. Both of these values

can reflect the importance of features. After obtaining specific values,

statistical graphs regarding instances and features are plotted to intuitively

observe the influence of different features on the overall prediction results.

The feature importance can then explain where the results of the ”black-

box” predictive model come from.

Shapley values are a commonly used method for studying inter-

pretability, but τ -values are being used for the first time. To investigate
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whether τ -values can serve as a method for interpretability research, it is

necessary to study their feasibility as an explanatory tool. Comparing the

feature importance obtained by τ -values with that obtained by the SHAP

method reveals similar conclusions, indicating that τ -values can be used as

a method for researching interpretable AI. However, their performance in

feature importance values is not significant.

I reconstructed medical detection models using τ -values and SHAP

values based on XGBoost. Both of these detection models exhibit high

accuracy and predictive value, with similar results. Therefore, τ -values

can be fully applied to research on interpretable AI, and they can also be

used to construct medical detection models along with SHAP values.
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9 appendix

#$\tau$ -values model

# Defining the characteristic function v(S)

def feature_function(S, X_train , y_train):

model = LogisticRegression ()

X_train_sub = X_train[list(S)]

model.fit(X_train_sub , y_train)

y_pred = model.predict(X_train_sub)

return accuracy_score(y_train , y_pred)

# Compute b_i^v

def calculate_b(v,N,X_train ,y_train):

b_v = {}

v_N = v(N,X_train ,y_train)

for i in N:

S =N - set([i])

b_v[i] = v_N - v(S,X_train ,y_train)

return b_v

# Compute a_i^v

def calculate_a(v, N, X_train , y_train):

a_v = {}

for i in tqdm(N):

max_r = 0

for size in range(1,len(N)):

for S in combinations(N,size):

if i in S:

S = set(S)

R_S_i = v(S,X_train ,y_train) - sum(v(S - set([j]),

X_train ,y_train)

for j in S if j

!= i)

max_r = max(max_r , R_S_i)

a_v[i] = max_r

return a_v

# Compute $a^v$ , $b^v$ and $tau^v$

N = set(x.columns)
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a_v = calculate_a(feature_function , N, X_train , y_train)

b_v = calculate_b(feature_function , N, X_train , y_train)

alpha = 0.5

tau_v = {i: alpha * a_v[i] + (1 - alpha) * b_v[i] for i in N}

#$\tau$ -values Feature Importance

import matplotlib.pyplot as plt

categories = [’Age’,’Pregnancies ’,’BMI’, ’Insulin ’, ’SkinThickness ’, ’

Glucose ’ ,’DiabetesPedigreeFunction ’

,’BloodPressure ’]

values = [0.3249185667752443 , 0.3265472312703583 ,0.3346905537459283 ,0.

3273615635179153 , 0.

32084690553745926 ,0.

40798045602605865 ,

0.3322475570032573 ,0.32247557003257327]

sorted_indices = sorted(range(len(values)), key=lambda k: values[k],

reverse=True)

sorted_categories = [categories[i] for i in sorted_indices]

sorted_values = [values[i] for i in sorted_indices]

plt.barh(sorted_categories[::-1], sorted_values[::-1], color=’#008BFB ’)

plt.xlabel(’tau_Values ’)

plt.ylabel(’Body index’)

plt.gca().spines[’top’].set_visible(False)

plt.gca().spines[’right’].set_visible(False)

plt.gca().spines[’bottom ’].set_visible(False)

plt.show()

Figure 9.1: The τ -value for each feature.
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#SHAP Model

from IPython.display import display , Javascript

display(Javascript(’initjs ()’))

!pip install shap

import shap

shap.initjs ()

#Calculate the shapley value

df_X=pd.DataFrame(x_train ,columns=x.columns)

import matplotlib

#Visualization of Predictions

shap.force_plot(explainer.expected_value , shap_values[0, :], df_X.iloc[0

, :], matplotlib=matplotlib)

import matplotlib

#Single sample shapley diagram

shap.force_plot(explainer.expected_value , shap_values[1, :], df_X.iloc[1

, :], matplotlib=matplotlib)

#SHAP Feature Importance

shap.summary_plot(shap_values ,df_X)

#SHAP Summary Plot

shap.summary_plot(shap_values ,df_X , plot_type=’bar’)

# Average the SHAP values for each feature

average_shap_values = np.mean(np.abs(shap_values), axis=0)

# Outputs the weights for each feature

for i, shap_value in enumerate(average_shap_values):

print(f"Feature {i+1}: {shap_value}")

Figure 9.2: The shapley value for each feature.
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