Санкт-Петербургский государственный университет Факультет математики и компьютерных наук

Храмов Владислав Александрович

Выпускная квалификационная работа Песочная группа бесконечных графов

Уровень образования: бакалавриат
Направление 01.03.01 «Математика»
Основная образовательная программа CB.5000.2020 «Математика»

Научный руководитель: профессор Факультета математики и компьютерных наук, д.ф. - м.н. Петров Фёдор Владимирович

Рецензент:

доцент, Гуандун Технион – Израильский Технологический Институт, Отделение математики и компьютерных наук, к.ф. - м.н. Калинин Никита Сергеевич

Санкт-Петербург 2024 г.

Содержание

Введение		3	
1.	Основі	ные вспомогательные результаты	2
2.	Песочн	ая группа	7
	2.1.	Определение и S^1 -гармонические функции	7
	2.2.	Двойственность по Понтрягину	(
3.	Приме	ры	2
	3.1.	Луч	2
	3.2.	Прямая	3
	3.3.	Пример без кручения	4
	3.4.	Пример с большой песочной группой	6
Список литературы		9	

Введение

Песочная модель была введена в конце 20 века для нужд теоретической физики и представляет интерес по сей день и с чисто математической точки зрения ввиду наличия связанных открытых проблем и пересечения в ней различных дисциплин [1–10]. Песочная группа для конечных графов является естественной характеристикой данной модели [1–3]. Модель для бесконечных графов уже представляла интерес [6], а песочная группа была рассмотрена для конкретных бесконечных графов в последние годы [7, 8]. В нашей работе мы определим песочную модель и песочную группу для большого класса графов, которые расширяют класс конечных графов, изучим её свойства, а также приведём несколько примеров, особенно интересен пример из теоремы 3 с песочной группой с нулевым кручением.

Будем рассматривать неориентированные графы G без петель, в которых вершины разделены на сточные (назовём их множество S) и несточные, множество которых назовём Γ , $\Gamma \sqcup S = V$. Мы также будем считать, что индуцированный на Γ подграф связен, в противном случае песочная модель на графе будет произведением песочных моделей на Γ , поэтому это достаточный случай.

Определение 1. Назовём G графом *ограниченного типа*, если степени всех несточных вершин ограничены, а также расстояния от них до множества сточных вершин ограничены. Стоки могут иметь бесконечную степень.

Мы будем рассматривать только такие графы G, поэтому пусть степени всех вершин Γ ограничены сверху целым числом C, а расстояние до S ограничено сверху целым числом r. Заметим, что в таком случае Γ не более, чем счётно. Все расстояния между вершинами определяем как расстояния внутри Γ (грубо говоря, если мы зашли в сток, то выйти оттуда уже не можем). Также можно ввести определения, аналогичные конечному случаю:

Определение 2. *Состоянием* на графе назовём ограниченную функцию $\varphi : \Gamma \to \mathbb{Z}_{\geq 0}$. О нём стоит думать как о количестве песчинок в каждой вершине из Γ .

Определение 3. Состояние φ называется *стабильным*, если $\forall v \in \Gamma \ \varphi(v) < \deg(v)$.

Определение 4. Если A – любая абелева группа, то можно ввести дискретный лапласиан $\Delta:A^{\Gamma}\to A^{\Gamma}$, определённый по правилу $(\Delta f)(v)=-\deg(v)f(v)+\sum_e f(e_2)$, где сумма берётся по всем e из $E(v,\Gamma)$, а e_2 обозначает вершину ребра e, отличную от v. Заметим, что если сначала доопределить f нулём на стоках, то в сумме можно брать все рёбра из v, тогда слагаемых будет ровно $\deg v$. За $\mathcal{H}_A(\Gamma)$ будем обозначать те f, для которых $\Delta f=0$, и называть их гармоническими функциями со значениями в A (или над A).

Определение 5. $\beta = \Delta(-1)$ – это состояние, называемое *единицей Крёйца* [2]. Из определения лапласиана видно, что $\beta(v) = e(v, S)$.

Определение 6. Если для состояния φ для какой-то вершины $v \in \Gamma$ выполняется $\varphi(v) \ge \deg(v)$, то в ней можно сделать *обвал*: вершина v отдаст по одной песчинке вдоль каждого идущего из неё ребра. Если песчинка попадает в сточную вершину, то она пропадает. Заметим, что если мы сделали несколько обвалов, и функция h показывает сколько обвалов мы сделали в каждой вершине, то получилось состояние $\varphi + \Delta h$.

Определение 7. Конечная или счётная последовательность обвалов в вершинах Γ называется (локально-конечной) *релаксацией* состояния φ , если для любой вершины $v \in \Gamma$ количество песчинок в ней стабилизируется на числе, меньшем $\deg(v)$, которое назовём $\varphi^{\circ}(v)$. Тогда φ° – уже стабильное состояние, которое является результатом релаксации. Для удобства φ° тоже будем называть релаксацией φ , а не только сам процесс.

Мы покажем, что любое состояние можно релаксировать с однозначно определённым результатом, поэтому обозначение φ° корректно, а также можно ввести

Определение 8. Стабильное состояние называется *возвратным*, если оно получается как релаксация какого-то ограниченного состояния, которое поточечно $\geq \deg$.

Наконец, ещё одно техническое определение, которое поможет при характеризации возвратных состояний:

Определение 9. Пусть φ – стабильное состояние. Непустое множество $F \subseteq \Gamma$ называется запрещённой конфигурацией для φ , если $\forall v \in F \ \varphi(v) < e(v, F)$.

1. Основные вспомогательные результаты

Пемма 1. Пусть φ – какое-то состояние и существует целозначная неотрицательная функция f на Γ , что $\varphi + \Delta f < \deg$ в каждой точке (назовём такую f релаксирующей). Тогда если сделать конечное число корректных обвалов, то в каждой вершине их будет сделано не более f.

Доказательство. Будем доказывать индукцией по числу сделанных обвалов. В самом начале у нас сделано 0 обвалов в каждой вершине, поэтому их не более f, т.к. f неотрицательная. Переход: пусть функция h показывает, сколько обвалов мы уже сделали в каждой вершине, а теперь мы хотим сделать обвал в вершине v. Тогда на данный момент у нас состояние $\varphi + \Delta h$, а значит ($\varphi + \Delta h$)(v) $\geq \deg(v)$. По предположению индукции $\forall w \in \Gamma h(w) \leq f(w)$. Если h(v) < f(v), то $h(v) + 1 \leq f(v)$, и переход завершён. Если же h(v) = f(v), то по определению лапласиана, пользуясь неравенством между h и f для соседей v, получаем цепочку неравенств

$$\deg(v) \le (\varphi + \Delta h)(v) \le (\varphi + \Delta f)(v) < \deg(v),$$

противоречие.

Лемма 2. Для графов ограниченного типа и любого состояния φ существуют ограниченные релаксирующие функции.

Доказательство. Найдём функцию f, которая будет зависеть только от расстояния до ближайшего стока и $\Delta f < 0$ (а значит и $\Delta f \leq -1$), затем домножим f на M+1, где $M = \max \varphi$, получим релаксирующую функцию. Полагаем f(v) = g(k), если расстояние до стоков равно k, причём g будет возрастающей. В стоках для удобства положим f=0, т.е. g(0)=0. У вершины на расстоянии k>0 есть хотя бы 1 сосед на расстоянии k-1, у остальных расстояние $\leq k+1$. Тогда заведомо $\Delta f < 0$, если

$$g(k-1) + (C-1)g(k+1) < Cg(k) \Leftrightarrow (C-1)(g(k+1) - g(k)) < g(k) - g(k-1),$$

т.е. подойдет

$$g(k) = \sum_{i=1}^{k} C^{r-i},$$

т.к.
$$C(g(k+1) - g(k)) = g(k) - g(k-1)$$
.

Лемма 3. У любого состояния φ существует релаксация, причём её результат φ° определён однозначно.

Доказательство. Упорядочим вершины нашего графа и будем делать обвал в вершине с наименьшим номером, где его можно сделать. В каждой вершине по леммам 1 и 2 мы можем делать только конечное число обвалов, поэтому с какого-то момента кол-во песчинок стабилизируется на количестве меньше \deg , т.е. полученная последовательность обвалов будет релаксацией. Если же h для какой-то релаксации показывает, сколько обвалов мы сделали в каждой вершине, то $\varphi + \Delta h < \deg$, т.е. сама h релаксирующая, а также $h \leq f$ для любой релаксирующей f по лемме 1, т.е. h – поточечный минимум таких функций, а значит результат релаксации однозначен.

Перейдём к характеризации возвратных состояний:

Теорема 1. Следующие утверждения эквивалентны:

- $(i) \varphi$ возвратное.
- $(ii) (\varphi + \beta)^{\circ} = \varphi$
- (iii) $B \varphi$ нет запрещённых конфигураций.

Доказательство. $(i)\Rightarrow (ii)$: пусть φ получалось как релаксация ограниченного $\psi\geq \deg$. Количество обвалов в ψ – это поточечный минимум f, что $\psi+\Delta f<\deg$, а у $\psi+\beta$ – минимум g, что $\psi+\beta+\Delta g=\psi+\Delta(g-1)<\deg$. Если у нас число обвалов в первом случае равно h, то во втором множестве лежит функция h+1. Если во втором случае число обвалов равно \tilde{h} , то $\tilde{h}\geq 1$, а значит первом множестве лежит $\tilde{h}-1$. Итого, $h+1\geq \tilde{h}$ и $\tilde{h}-1\geq h$, т.е. $\tilde{h}=h+1$, а значит $(\varphi+\beta)^\circ=(\psi+\beta)^\circ=(\psi)^\circ=\varphi$.

- $(ii)\Rightarrow (i)$: Берём все вершины на границе графа (т.е. смежные со стоками), затем каждой вершине на расстоянии 2 сопоставляем одну из соседних вершин на границе, затем каждой вершине на расстоянии 3 сопоставляем одну из соседних вершин на расстоянии 2 и т.д. У нас граф разбился на равномерно ограниченные деревья, отходящие от границы графа. При достаточно большом n у состояния $\varphi+n\beta$ при рассмотрении любого такого дерева, пользуясь n песчинками на граничной вершине, можно прорелаксировать так, чтобы в самые дальние вершины дерева дошло $\geq C$ песчинок, затем у остатка дерева прорелаксировать так, чтобы в предпоследнюю вершину изначального пути дошло $\geq C$ песчинок и т.д. Если сделать это на каждом дереве одновременно, то мы получим состояние, которое поточечно $\geq C$, релаксакция которого и есть $(\varphi+n\beta)^\circ = \varphi$.
- $(ii)\Rightarrow (iii)$: От противного, пусть есть какая-то запрещённая конфигурация F. Посмотрим на состояние $\varphi+\beta$. Количество обвалов при его релаксации это поточечный минимум целых неотрицательных функций f, что $\varphi+\Delta(f-1)<\deg$. Подходит f=1, поэтому мы в каждой вершине сделаем не более 1 обвала. Посмотрим на первый обвал внутри F при последовательной релаксации. В вершину v на этот момент пришло максимум $e(v,V\setminus F)$ песчинок (максимум по 1 из каждого ребра наружу), но $\varphi(v)+e(v,V\setminus F)<\deg(v)$ по определению F, противоречие. Значит, обвалов в F не было. Если h показывает число обвалов, то у нас должно быть $\varphi+\beta+\Delta h=\varphi$, но такого не может быть: проложим путь от любой вершины из F до границы, тогда либо на пути встретятся две соседние вершины, где h=0 и h=1, тогда в той вершине, где h=0, лапласиан положительный, противоречие; либо на граничной вершине h=0, тогда там лапласиан неотрицательный, тоже противоречие.
- $(iii)\Rightarrow (ii)$ Прорелаксируем состояние $\varphi+\beta$. Раз $\varphi+\beta+\Delta(1)=\varphi<\deg$, то по лемме 1 мы в каждой вершине сделали не более 1 обвала. Если мы сделали 1 обвал в каждой вершине Γ , то мы получили то, что нужно. Если же не в каждой, то за F обозначим множество тех вершин из Γ , в которых мы не сделали обвал. Заметим, что после прибавления β и обвала в каждой из вершин $\Gamma\setminus F$, для любой $v\in F$ в ней теперь находится $\varphi(v)+e(v,V\setminus F)$ песчинок, что должно быть меньше $\deg(v)$, иначе бы мы сделали ещё один обвал. А значит $\forall v\in F$ $\varphi(v)< e(v,F)$, что означает, что F запрещённая конфигурация, противоречие.

2. Песочная группа

2.1. Определение и S^1 -гармонические функции

Из определения возвратного состояния, мы их можем складывать поточечно, релаксировать, и снова получится возвратное состояние. Рассмотрим абелеву группу \mathbb{Z}_B^Γ ограниченных целозначных функций на Γ . Лапласиан каждой такой функции, очевидно, тоже лежит в этом множестве. Лапласиан — эндоморфизм, поэтому по его образу можно профакторизовать.

Лемма 4. В каждом классе эквивалентности при такой факторизации есть ровно одно возвратное состояние.

Доказательство. Пусть в каком-то классе эквивалентности есть два разных возвратных состояния φ и ψ . Тогда $\varphi = \psi + \Delta h$ для какой-то ограниченной целозначной $h \neq 0$. Тогда h имеет положительные или отрицательные значения. Возможно, поменяв φ и ψ местами, можем считать, что h имеет положительные значения. Обозначим за F множество тех $v \in \Gamma$, где h принимает максимальное (положительное) значение. Обозначим этот максимум за M. Тогда для $v \in F$ имеем

$$\varphi(v) \le \psi(v) - M \deg(v) + Me(v, F) + (M - 1)e(v, V \setminus F) = \psi(v) - e(v, V \setminus F) <$$

$$< \deg(v) - e(v, V \setminus F) = e(v, F),$$

а значит F – запрещённая конфигурация для φ , противоречие. Значит, в каждом классе эквивалентности не более одного возвратного состояния.

Докажем, что в каждом классе эквивалентности есть возвратное состояние: берём любую целозначную ограниченную функцию φ , тогда при достаточно большом n для $\varphi+n\beta$ мы можем как при доказательстве $(ii)\Rightarrow(i)$ разбиением на деревья сделать равномерно ограниченное число обвалов так, чтобы в каждой вершине стало положительное и большее C значение, получили эквивалентный элемент, релаксация которого будет эквивалентным возвратным состоянием, поскольку ни прибавление β , ни равномерно ограниченные обвалы не изменяют класс эквивалентности.

Релаксация изменяет наше состояние на лапласиан ограниченной функции, поэтому сложение наших возвратных состояний будет такое же, как в нашей факторгруппе. Значит, все возвратные состояния по сложению образуют группу K(G,S), которая изоморфна нашей построенной факторгруппе.

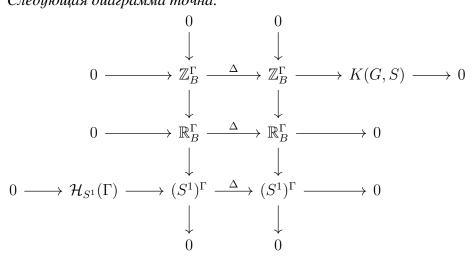
Попробуем охарактеризовать группу по-другому. Обозначим за \mathbb{R}^{Γ}_{B} абелеву группу

ограниченных вещественнозначных функций на Г. Понятно, что последовательность

$$0 \longrightarrow \mathbb{Z}_B^{\Gamma} \longrightarrow \mathbb{R}_B^{\Gamma} \longrightarrow (S^1)^{\Gamma} \longrightarrow 0$$

точна.

Теорема 2. Следующая диаграмма точна:



Доказательство. Заметим, что инъективность первого лапласиана и сюръективность третьего следует из инъективности и сюръективности второго, поэтому это всё, что нужно доказать.

Инъективность: пусть $f\in\mathbb{R}^\Gamma_B$ и $\Delta f=0$, причём f не тождественный 0. Пусть $\sup f=c>0$ (иначе можем поменять знак функции). Возьмём маленькое $\varepsilon>0$. Тогда найдётся вершина $v\in\Gamma$, что $f(v)\geq c-\varepsilon$. Доопределив f нулём на S, для любого соседа w вершины v имеем

$$f(w) = f(w) - \Delta f(v) = f(w) + \sum_{e} (f(v) - f(e_2)) \ge$$

$$> f(w) + f(v) - f(w) + (\deg(v) - 1) \cdot (-\varepsilon) > c - C\varepsilon,$$

здесь сумма уже по всем рёбрам, инцидентным v. Если w не сток, то повторяем аналогичное неравенство для всех соседей w. Таким образом пройдём путём минимальной длины от v до S, получим, что мы нашли какой-то сток s, что $0=f(s)\geq c-C^r\varepsilon$. Тогда, взяв изначально $\varepsilon<\frac{c}{C^r}$, придём к противоречию.

Сюръективность: пусть $g \in \mathbb{R}^{\Gamma}_B$. Мы хотим найти $f \in \mathbb{R}^{\Gamma}_B$, что $\Delta f = g$. Из линейности лапласиана можем считать, что $g \geq 0$. В доказательстве леммы 2 мы нашли такую ограниченную неотрицательную функцию η , что $\Delta \eta \leq -1$. Пусть $\sup g = M$, тогда обозначим $h = -M\eta$. Заметим, что $h \leq 0$ и $\Delta h \geq M \geq g$. Будем строить невозрастающую последовательность функций f_n , что $\Delta f_n \leq g$ и $f_n \geq h$. Понятно, что $f_1 = 0$ подходит. Далее индуктивно: определим $f_{n+1}(v)$ из равенства

$$-\deg(v)f_{n+1}(v) + \sum_{e} f_n(e_2) = g(v), \tag{1}$$

иначе говоря

$$f_{n+1}(v) = \frac{\sum_{e} f_n(e_2) - g(v)}{\deg(v)}.$$
 (2)

Сравнивая $\Delta f_n(v) \leq g(v)$ с равенством (1), получаем $f_{n+1}(v) \leq f_n(v)$ для любого v, т.е. $f_{n+1} \leq f_n$. Пользуясь уже этим неравенством, имеем $\Delta f_{n+1}(v) \leq -\deg(v)f_{n+1}(v) + \sum_e f_n(e_2) = g(v)$ для любого v, т.е. $\Delta f_{n+1} \leq g$. Наконец, пользуясь равенством (2), имеем

$$f_{n+1}(v) \ge \frac{\sum_{e} h(e_2) - g(v)}{\deg(v)} \ge h(v)$$

из того, что $\Delta h \geq g$.

Итого, мы получили желанную последовательность f_n , причём для любой v последовательность $f_n(v)$ не возрастает и ограничена снизу h(v), а значит f_n имеет поточечный предел f, что $h \leq f \leq 0$, т.е. f тоже ограничена, а переходя в равенстве 1 к пределу при любом v, получаем $\Delta f = g$, что мы и хотели.

Следствие 1. $K(G,S) \cong \mathcal{H}_{S^1}(\Gamma)$, что задаёт на песочной группе структуру компактной метризуемой абелевой группы.

Доказательство. Изоморфность следует из теоремы 2 и леммы о змее. На $(S^1)^\Gamma$ задаём стандартную топологию произведения копий S^1 , это будет метризуемый компакт, поскольку S^1 метризуемый компакт и Γ не более, чем счётное. Топология на этом произведении – топология покоординатной сходимости, а значит, раз гармоничность функции задаётся системой линейных уравнений, $\mathcal{H}_{S^1}(\Gamma)$ будет замкнутой подгруппой, а значит тоже метризуемым компактом.

В частности, n-кручение в песочной группе – это гармонические функции со значениями в S^1 , которые по совместительству живут в $(\mathbb{Z}/n)^\Gamma\subset (S^1)^\Gamma$, т.е. гармонические функции со значением в \mathbb{Z}/n .

Лемма 5. Пусть Γ бесконечно, тогда если v – вершина, смежная c S, то δ_v не лежит в образе лапласиана на \mathbb{Z}_B^{Γ} .

Доказательство. Здесь нам будет удобнее считать, что сток один: склеим все стоки в один сток s, сохранив Γ и все рёбра между Γ и S с нужными кратностями. От этого песочная модель на Γ не поменяется, граф останется ограниченным.

Доказываем от противного, пусть v смежно с s и $\Delta f = \delta_v, f \in \mathbb{Z}_B^\Gamma$. Из доказательства теоремы 2 следует, что $f \leq 0$. Как обычно положим f(s) = 0. Понятно, что $f \neq 0$, тогда пусть $\min f = m < 0$ и u – вершина, в которой этот минимум достигается. Рассмотрим простой

путь из u в s. Если он не содержит v, то в каждой точке этого пути, не считая s, функция гармоническая, поэтому по порядку пути получаем, что во всех вершинах этого пути тоже достигается минимум, но f(s)=0>m, противоречие. Значит, на пути лежит вершина v, и, аналогично дойдя до неё, видим, что в ней тоже достигается минимум. Теперь распишем

$$1 = (\Delta f)(v) = \sum_{e \in e(v,G)} (f(e_2) - f(v))$$

Справа стоит сумма целых неотрицательных чисел, причём там есть слагаемое $f(s)-f(v)=-m\geq 1$, поэтому это слагаемое равно 1 (т.е. m=-1), а все остальные равны 0. Значит, во всех соседах v, кроме s, тоже достигается минимум. Теперь пусть $u\in \Gamma, u\neq v$. Пользуясь связностью Γ , возьмём простой путь между v и u внутри Γ . В соседе v в этом пути достигается минимум f, далее, пользуясь гармоничностью во всех вершинах пути (не считая v), получаем по порядку, что во всех остальных вершинах пути тоже достигается минимум, и в u тоже. Значит, f=-1, а значит $\delta_v=\beta$. Но тогда v — единственная вершина, связная с s, тогда в графе G конечны степени всех вершин, но раз он бесконечный, не может быть такого, что расстояния до s ограничены, противоречие.

Следствие 2. *Если* Γ *бесконечно, то песочная группа ненулевая.*

Доказательство. Возьмём любую вершину $v\in \Gamma$, соседнюю со стоками. По доказанной лемме δ_v не будет нулевым элементом в факторе \mathbb{Z}^Γ_B по образу лапласиана, что и есть песочная группа.

Отметим, что для конечных графов ответ о тривиальности песочной группы уже известен: порядок песочной группы — это количество остовных деревьев в графе G после склейки всех стоков [1]. Значит, она тривиальна тогда и только тогда, когда после склейки стоков получится дерево.

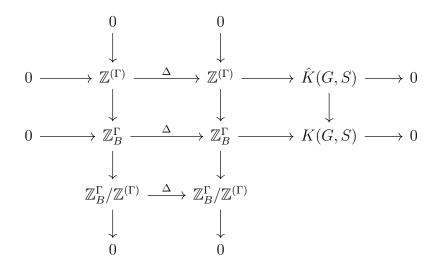
2.2. Двойственность по Понтрягину

Рассмотрим свободную абелеву группу $\mathbb{Z}^{(\Gamma)}$ с базисом Γ и дискретной топологией. На ней по той же формуле действует лапласиан, базисный элемент δ_v переходит в $-\deg(v)\delta_v+\sum_e\delta_{e_2}$. Двойственной по Понтрягину группой будет $(S^1)^\Gamma$, причём элемент $(a_v)_{v\in\Gamma}, a_v\in S^1$ соответствует гомоморфизму, где δ_v переходит в a_v . Тогда образ $(a_v)_{v\in\Gamma}$ под двойственным к Δ отображением отправляет δ_v сначала в $-\deg(v)\delta_v+\sum_e\delta_{e_2}$, а затем в $-\deg(v)a_v+\sum_e a_{e_2}$, т.е. двойственное отображение – это лапласиан на $(S^1)^\Gamma$.

Вспомним про нижнюю горизонтальную последовательность из теоремы 2. Применяя двойственность по Понтрягину к ней, получаем точную последовательность

$$0 \longrightarrow \mathbb{Z}^{(\Gamma)} \stackrel{\Delta}{\longrightarrow} \mathbb{Z}^{(\Gamma)} \longrightarrow \hat{K}(G, S) \longrightarrow 0$$

В частности, двойственная по Понтрягину к песочной группа счётная. Кроме того, естественное вложение $\mathbb{Z}^{(\Gamma)} o \mathbb{Z}^{\Gamma}_B$ определяет следующую диаграмму:



Т.е. у нас есть естественная стрелка из $\hat{K}(G,S)$ в K(G,S).

Лемма 6. Определённое таким способом отображение инъективно.

Доказательство. По лемме о змее достаточно доказать, что Δ , действующий на $\mathbb{Z}_B^\Gamma/\mathbb{Z}^{(\Gamma)}$, инъективен. Пусть $f \in \mathbb{Z}_B^\Gamma$ такова, что Δf с конечным носителем. Мы хотим доказать, что сама f с конечным носителем. Как обычно доопределим f на стоках значением 0. Выберем любую вершину $u \in \Gamma$. Рассмотрим последовательность $a_n = \sup\{f(v): d(v,u) > n\}$. Понятно, что эта последовательность не возрастает и с какого-то момента стабилизируется. Пусть она стабилизируется на значении m>0 при $n\geq N$. Кроме того, мы можем выбрать N достаточно большим, чтобы $(\Delta f)(v)=0$ при d(v,u)>N. Тогда возьмём любую вершину v с d(u,v)>N+r и f(v)=m. Проложим путь из v до ближайшего стока. Тогда поскольку весь путь будет на расстоянии более N от u, на нем f гармоническая u не больше m, а значит на всём пути значение m, включая сток, противоречие. Значит, достаточно далеко от u f неположительна. Аналогично, достаточно далеко от u она неотрицательна. Значит, ненулевые значения встречаются только внутри какого-то шара с центром в u, то есть их конечно.

В частности, если K(G,S) не имеет p-кручения, то $\hat{K}(G,S)$ тоже, а значит K(G,S) по двойственности будет p-делимой. Если же K(G,S) имеет нулевое кручение, то получаем, что наша группа так же делимая, а значит и $\hat{K}(G,S)$ по двойственности тоже без кручения и делимая. Значит, это \mathbb{Q} -векторное пространство $\mathbb{Q}^{(I)}$, топология дискретная, т.к. K(G,S) компактна. Из счётности $\hat{K}(G,S)$ получаем, что I тоже не более, чем счётное. Значит, $K(G,S)\cong \mathcal{S}^I$, где $\mathcal{S}=\lim_{\longrightarrow} \mathbb{R}/n\mathbb{Z}$ – универсальный соленоид, т.к. $\mathbb{Q}=\lim_{\longrightarrow} \frac{1}{n}\mathbb{Z}$.

3. Примеры

Теперь мы в качестве примера рассмотрим конкретные графы, посмотрим на их песочные группы и на кручение в них. Наибольший интерес представляют песочные модели на решётке \mathbb{Z}^2 , все наши примеры у нас будут тоже на ней, т.е. $G=\mathbb{Z}^2$. Вершины графа будем называть клетками.

3.1. Луч

Возьмём $\Gamma=\{(x,0)\in\mathbb{Z}^2:x\geq 0\}$. Если мы обозначим значения гармонической функции со значениями в S^1 за a_n в точке (n,0), то гармоничность в 0-й точке означает $a_1=4a_0$, а в n-ой точке при n>0 означает $a_{n+1}=4a_n-a_{n-1}$. Значит, такая функция однозначно и непрерывно восстанавливается по a_0 , т.е. $K(\mathbb{Z}^2,S)=S^1$. Видим, что даже в таком несложном примере ситуация значительно отличается от конечного случая, т.к. для конечных графов песочная группа конечна (а конечные абелевы группы имеют простую классификацию), в нашей группе есть элементы бесконечного порядка. Давайте заодно найдём единицу нашей группы в терминах возвратных состояний. Единица Крёйца этого графа — это состояние

Если её сложить с собой, получится

При релаксации мы должны в каждой вершине сделать обвал, после этого получится снова единица Крёйца. Значит, единица Крёйца в нашем случае сама является возвратным состоянием, а поскольку она всегда лежит в одном классе эквивалентности с единицей группы, она и есть искомая единица. В группе есть ровно один элемент порядка 2, его тоже несложно найти: в терминах гармонических функций в S^1 это последовательность

Чтобы отобразиться в целозначные функции, мы должны рассмотреть это как последовательность вещественных чисел и взять лапласиан, получаем

Далее, чтобы получить эквивалентное возвратное состояние, мы должны добавить единицу Крёйца достаточное число раз и прорелаксировать. Если её добавить 3 раза, то мы получим

Так в каждой клетке песчинок хотя бы её степень. Сделав везде по обвалу, получим

Сделав обвал в 0 и во всех нечётных клетках, получаем

Сделав обвал в каждой чётной вершине (не считая 0), получаем

Это и есть искомое состояние.

3.2. Прямая

Возьмём $\Gamma=\{(x,0)\in\mathbb{Z}^2\}$. Здесь гармоничность снова означает $4a_n=a_{n+1}+a_{n-1}$, что при n>0 мы перепишем как $a_{n+1}=4a_n-a_{n-1}$, а при $n\le 0$ как $a_{n-1}=4a_n-a_{n+1}$. Так видно, что функция однозначно восстанавливается по a_0 и a_1 , т.е. $K(G,S)=S^1\times S^1$. Единица Крёйца — это состояние с двумя песчинками в каждой вершине, при сложении с собой получаем состояние с 4 песчинками в каждой вершине, а после обвала в каждой вершине получаем снова единицу Крёйца, т.е. она и есть единица нашей группы:

Заметим, что если периодическая последовательность φ является возвратным состоянием, то ограниченная вещественнозначная функция, лапласиан которой равен φ , тоже периодична, т.к. она единственна, а лапласиан сохраняется при сдвиге. Значит, соответствующая гармоническая функция со значениями в S^1 периодическая, назовём её элементы a_n . С помощью a_0, a_1 выразим все остальные a_i -ые, а именно $a_n = c_n a_0 + d_n a_1$, где c_n и d_n уже целозначные последовательности, удовлетворяющие тому же рекурретному соотношению с начальными данными $c_0 = d_1 = 1$; $c_1 = d_0 = 0$. Тогда T-периодичность в нашем случае будет означать, что $(c_T - 1)a_0 + d_T a_1$ и $c_{T+1}a_0 + (d_{T+1} - 1)a_1$ целые. Заметим, что $d_{n-1} = -c_n$, $\gcd(d_{T-1} + 1, d_T) = \gcd(d_T, d_{T+1} - 1)$, а также $d_{T+1} > d_T + 1$ при $T \ge 1$, поэтому

$$\frac{c_T - 1}{c_{T+1}} = \frac{d_{T-1} + 1}{d_T} \neq \frac{d_T}{d_{T+1} - 1},$$

а значит мы имеем невырожденную систему с целыми коэффициентами, а значит a_0, a_1 рациональные. Поскольку рекуррентное соотношение с целыми коэффициентами, у всех a_n есть общий знаменатель, а значит наш элемент в группе имеет конечный порядок. И наоборот, если у нас есть гармоническая над S^1 функция конечного порядка, то значения a_n принимают только конечное число значений, а поскольку они связаны рекуррентным соотношением, последовательность периодическая. Тогда, рассматривая её как последовательность вещественных чисел из [0,1) она тоже периодическая, а значит и её лапласиан периодиче-

ский. Эквивалентное возвратное состояние периодической целозначной функции тоже будет периодично, т.к. единственно, а лапласиан инвариантен относительно сдвига. Итого, мы получили, что элементы кручения в песочной группе такого графа – это в точности периодические возвратные состояния.

3.3. Пример без кручения

Но кручение в песочной группе есть не всегда, примером чего мы сейчас займёмся.

Теорема 3. На целочисленной решётке можно отметить множество стоков так, чтобы получился непустой граф ограниченного типа, причём песочная группа была с нулевым кручением.

Доказательство. Определим последовательность целых чисел начальными условиями $b_1=1, b_2=4$ и рекуррентным соотношением $b_{n+1}=4b_n-b_{n-1}$. Она продолжается и в обратную сторону, причём $b_0=0$, а значит для любого простого p нули по модулю p в ней периодичны, обозначим этот период за d_p (это минимальный индекс, на котором число будет делиться на p). Например, $d_2=2, d_3=3$. Также обозначим за P_n множество тех простых чисел p, для которых $d_p|n$. Это в точности простые, делящие b_n , поэтому их конечно.

Пример выглядит как луч с присоединёнными вертикальными столбиками:

$$\Gamma = \{(x, -1) : x \in \mathbb{Z}_{\geq 0}\} \bigcup_{j=1}^{\infty} R(x_j, y_j),$$

где $R(x_j,y_j)$ — столбик $\{(x_j,y): -y_j \leq y \leq -1\}$, в нём y_j клеток, последовательности x_j и y_j мы определим по индукции, причём $x_1=0,y_1=2,$ а $x_j\geq x_{j-1}+2,$ чтобы столбики не были рядом.

Мы хотим, чтобы для любого простого p не существовало ненулевой гармонической функции на Γ над \mathbb{F}_p . Пусть в нижней клетке столбика $R(x_j,y_j)$ какой-то гармонической над \mathbb{F}_p функции стоит число a, тогда в его верхней клетке стоит $b_{y_j}a$. Тогда, если $p \in P_{y_j}$, то в верхней клетке должен стоять 0, а если $p \notin P_{y_j}$, то значения гармонической функции во всём столбике определяются однозначно по верхнему значению. Во время построения x_j и y_j мы будем проверять предположение индукции, что для всех $p \in P_{y_j}$ гармоническая над \mathbb{F}_p функция на нашем графе обязана принимать значения 0 во всех клетках строго левее $R(x_j,y_j)$, пользуясь гармоничностью в клетках не правее этого столбца. Наложим также условия, что $y_{j+1} = y_j$ или $y_{j+1} = y_j + 1$ для всех j, и $\lim_{j \to \infty} y_j = \infty$. Благодаря этому, для любого p у нас встретится бесконечно много столбиков высоты, делящейся на d_p , тогда, по проверяемому предположению, гармоническая над \mathbb{F}_p функция будет везде нулём, что мы и хотим.

Индуктивно определять x_j и y_j будем по шагам: на n-ом шаге у нас уже поставлен столбик высоты n, и мы, возможно поставив ещё несколько столбиков высоты n, поставим

затем столбик высоты n+1 и завершим шаг. Первый столбец у нас высоты 2, поэтому начинаем мы с шага с номером 2, причём выполнено предположение индукции, т.к. левее первого столбца клеток нет.

Осталось описать, как мы делаем n-ый шаг. Наша цель – успешно поставить столбец высоты n+1. Пусть последний поставленный столбец – это $R(x_i,y_i)$, где $y_i=n$. Возьмём любое p и для него рассмотрим последний поставленный столбец высоты, делящейся на d_p (если такой есть). По предположению индукции в гармонической над \mathbb{F}_p функции слева от него должны быть нули. Но тогда значения в клетках этого столбца определяются однозначно по значению в нижней клетке, после чего она однозначно продолжается вправо до следующего столбца, и, поскольку высота каждого следующего столбца уже не делится на d_p , когда мы восстановили значение гармонической функции в верхней клетке, мы восстанавливаем значения и во всём столбце, что позволяет продолжать двигаться вправо. Аналогично и в случае, когда высот, делящихся на d_p ещё не было: гармоническая функция тогда однозначно восстанавливается по значению в самой левой нижней клетке всего графа. Значит, все гармонические функции над \mathbb{F}_p на построенном на данный момент графе отличаются в константу раз, причём для ненулевой функции после последнего поставленного столбца получается последовательность не полностью состоящая из нулей, заданная той же рекуррентой $a_{n+1} = 4a_n - a_{n-1}$. Давайте зафиксируем одну такую ненулевую функцию f_p . Тогда либо в ней на луче справа вообще не встречается нулей, либо они встречаются с периодом d_p . Если $p \in P_n$, то нули в точности в клетках, сравнимых с x_j по модулю d_p . Мы хотим выбрать $y_{j+1} = n+1$ и x_{j+1} так, что значение f_p в $(x_{j+1}, -1)$ ненулевое для всех $p \in P_{n+1}$, но проблема сделать это сразу может быть в том, что для любого выбора x_{j+1} найдётся $p \in P_{n+1}$, для которого у f_p в $(x_{j+1}, -1)$ стоит 0, поэтому сначала мы "синхронизируем" нули таких pс помощью столбцов высоты n.

Делаем мы это следующим образом: выберем отрезок из трёх клеток с абциссами k-1,k,k+1 нашего луча справа, причём если $2\in P_{n+1}$, выберем такое k, что значение f_2 в клетке (k,-1) ненулевое. Пусть в этих трёх клетках для $p\in P_{n+1}$ в f_p значения 4c(p)-a(p),c(p) и a(p) соответственно из гармоничности. Выберем l, что $l\geq x_j+2,\ l\equiv k (mod\ n+1)$ и $l\equiv x_j+1 (mod\ n)$, которое существует по китайской теореме об остатках, и положим $x_{j+1}=l,y_{j+1}=n$. Второе сравнение нам гарантирует, что для нового столбца выполняется предположение индукции, т.к. для всех $p\in P_n$ значение f_p в клетке (l,-1) ненулевое (т.к. $l\not\equiv x_j (mod\ d_p)$). А раз $l\equiv k (mod\ n+1)$, то значение f_p для $p\in P_{n+1}$ в клетках (l-1,-1),(l,-1),(l+1,-1) без нашего нового столбца тоже было бы с точностью до ненулевой мультипликативной константы 4c(p)-a(p),c(p),a(p) (для удобства поделим на эту мультипликативную константу нашу f_p и считаем, что значения ровно такие). С новым столбцом первые два значения не поменялись, а под второй клеткой появилось новое значение вместо 0 в стоке, которое восстанавливается по значению c(p). Раз $n\equiv -1 (mod\ d_p)$, это значение должно быть 4c(p), поэтому в клетке (l+1,-1) новое значение 4c(p)-4c(p)-(4c(p)-a(p))=a(p)-4c(p). Если

мы повторим эту процедуру s раз, то для $p \in P_{n+1}$ значение f_p в правом луче в клетках (m,-1) и (m+1,-1) при $m \equiv k (mod \ n+1)$ будут с точностью до ненулевой мультипликативной константы c(p) и $a(p)-4s\cdot c(p)$ соответственно. Для всех $p\in P_{n+1}\setminus\{2\}$ таких, что c(p) не делится на p, существует s решение системы сравнений $a(p)-4s\cdot c(p)\equiv 0 (mod \ p)$ по китайской теореме об остатках. Повторив процедуру столько раз, мы добьёмся того, что либо в клетке (m,-1), либо в клетке (m+1,-1) у функции f_p будет 0 для $p\in P_{n+1}\setminus\{2\}$ и $m\equiv k (mod \ n+1)$, а если $2\in P_{n+1}$, то ещё знаем, что в (m,-1) у f_2 не 0. Тогда в клетке (m+2,-1) у f_p не 0 для уже всех $p\in P_{n+1}$, т.к. единственное p с $d_p\leq 2$ – это p0, а для него мы проверили отдельно. Значит, мы можем выбрать в качестве новых p1, что мы и хотели.

Мы можем более конкретно найти песочную группу для этого примера. Как мы уже знаем, ввиду отсутствия кручения наша группа изоморфна \mathcal{S}^I для какого-то I. Заметим, что для нашего графа гармоническая функция над S^1 не более, чем однозначно, задаётся значениями внизу столбиков, обозначим эти значения последовательностью $(a_n)_{n\geq 0}$. Все оставшиеся условия выглядят как

$$b_{y_n} a_n = \sum_{i=0}^{n-1} c_{n,i} a_i$$

при n>0 для целых $c_{n,k}$, причём все b_i ненулевые. Значит, при $a_0=0$ мы получаем профинитную подгруппу A. Тогда есть точная последовательность

$$0 \longrightarrow A \longrightarrow \mathcal{S}^I \longrightarrow S^1 \longrightarrow 0,$$

где сюръективная стрелка – проекция на первую координату. Двойственная последовательность получается

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q}^{(I)} \longrightarrow \hat{A} \longrightarrow 0$$

Раз A – профинитная, то \hat{A} – группа кручения. Тогда, домножая тензорно на плоскую абелеву группу \mathbb{Q} , получаем

$$0 \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}^{(I)} \longrightarrow 0,$$

значит |I|=1 и $K(G,S)\cong \mathcal{S}.$

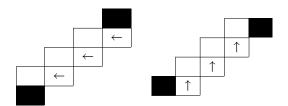
3.4. Пример с большой песочной группой

Теорема 4. Пусть $S \subset \mathbb{Z}^2$ таково, что $\forall c \in \mathbb{Z}$ на "лестнице" из двух диагоналей y = x + c и y = x + c + 1 элементы из S чередуют эти две диагонали. Также пусть в S нет соседних клеток, а ещё решётка со стоками S превращается в ограниченный граф, т.е. расстояние от любой клетки на \mathbb{Z}^2 до S ограничено. Тогда $K(\mathbb{Z}^2, S) \cong (S^1)^{\mathbb{N}}$.

Поставим на все клетки на диагоналях y=x и y=x-1 из Γ произвольные значения из S^1 . Далее мы будем индуктивно продолжать гармоническую функцию над S^1 следующим образом: на шаге с номером $n\geq 1$ мы дополним функцию значениями на всех клетках Γ на диагонали y=x+n, при этом обеспечив гармоничность функции в клетках Γ на диагонали y=x+n-1. Тогда у нас будут заполнены все клетки Γ с $y\geq x-1$ и обеспечена гармоничность при $y\geq x$. Затем аналогичным образом можно заполнять значения на более низких диагоналях: на шаге $n\geq 1$ заполнять y=x-n-1, обеспечивая гармоничность на диагонали y=x-n. Так мы заполним всё Γ , и во всех клетках из Γ функция будет гармонической.

Как мы делаем n-ый шаг: посмотрим на любые две клетки из S на лестнице из диагоналей y=x+n-1 и y=x+n (если такие есть), между которыми на лестнице других нет. По условию они лежат на разных диагоналях. Кроме того, поскольку они не соседние, одна из них выше другой.

Случай 1: нижняя из этих двух клеток лежит на диагонали y=x+n-1. Пусть её координаты (a,a+n-1), а координаты верхней клетки (b,b+n), причём $b\geq a+1$, иначе они соседние. Посмотрим на клетку (b,b+n-1). Мы уже знаем значение в ней и в её соседах сверху, справа и снизу (в стоках мы считаем значение функции равно 0), поэтому гармоничность однозначно определяет значение функции в клетке (b-1,b+n-1) линейным образом. Теперь уже у клетки (b-1,b+n-2) (если мы ещё не пришли в сток (a,a+n-1)) во всех соседах сверху, справа и снизу мы знаем значение функции, что определит однозначно значение в (b-2,b+n-2) и т.д. В конце гармоничность в (a+1,a+n) задаст значение в (a,a+n). Так мы обеспечим гармоничность во всех клетках на диагонали y=x+n-1 между нашими взятыми стоками и определим значения на диагонали y=x+n между нашими стоками.

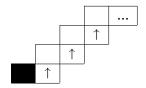


Случай 2: нижняя из этих двух клеток лежит на диагонали y=x+n. Этот случай при симметрии относительно y=-x переходит в случай 1.

Либо мы завершили шаг, либо у нас все достаточно высокие и/или достаточно низкие клетки на нашей лестнице лежат в Γ . Если у нас на лестнице есть хоть какие-то клетки из S, то возьмём самую высокую (если такая есть) и разберёмся с клетками лестницы выше неё, вариант с существованием на лестнице самой низкой клетки из S будет аналогичен. Здесь

тоже есть 2 случая:

Случай 3: самая высокая на лестнице клетка из S лежит на диагонали y=x+n, обозначим её координаты (a,a+n). Тогда мы знаем значение в клетке (a+1,a+n) и её соседях слева, снизу и справа, что по гармоничности в ней однозначно задаёт значение в клетке (a+1,a+n+1). Далее значение в (a+2,a+n+2) однозначно задаётся известными значениями функции и гармоничностью в (a+2,a+n+1) и т.д. Так мы обеспечим гармоничность во всех клетках над самым высоким стоком на лестнице на диагонали y=x+n-1 и определим значения на диагонали y=x+n-1 и определим значения на диагонали y=x+n-1 и определим



Случай 4: самая высокая на лестнице клетка из S лежит на диагонали y=x+n-1, обозначим её координаты (a,a+n-1). Тогда поставим в (a,a+n) произвольное значение из S^1 , а далее действуем как в случае 3.

Если же на лестнице стоков вообще нет, то мы берём любое значение из S^1 в точке (0,n), а далее для нижней и верхней половины лестницы действуем как в случае 3. Таким образом, шаг завершён.

Итого, у нас было некоторое множество $A\subset \Gamma$, в котором мы задавали значения гармонической функции S^1 произвольным образом, а значения в остальных клетках восстанавливаются однозначно линейным образом с помощью выбранных нами. A бесконечно, т.к. изначально мы задавали произвольным образом значения на всей диагонали (даже двух), где бесконечное число элементов Γ . Тогда наша песочная группа как подгруппа $(S^1)^\Gamma$ оказывается изоморфна $(S^1)^A$, что как раз изоморфно $(S^1)^\mathbb{N}$, что мы и хотели.

Стоит отметить, что такие S действительно существуют: например, подойдёт $S=\{(x,y)\in\mathbb{Z}^2:5|x+2y\}$. Действительно, S переходит в себя при сдвиге $(x,y)\mapsto (x+1,y+2)$, при котором каждая лестница переходит в следующую. Поэтому условие на лестницы стоит проверять только для диагоналей y=x и y=x+1. Более того, S переходит в себя при сдвиге $(x,y)\mapsto (x+5,y+5)$, поэтому, раз $(0,0)\in S$, достаточно проверить, что на y=x нет стоков между (0,0) и (5,5), а на y=x+1 есть ровно 1 сток при $0\leq x\leq 4$. Действительно, $5|x+2x\Leftrightarrow 5|x$, а $5|x+2(x+1)\Leftrightarrow x=1 \pmod 5$.

Песочная группа всегда является подгруппой $(S^1)^{\Gamma}$, что вкладывается в $(S^1)^{\mathbb{N}}$, т.к. Γ не более, чем счётно (при бесконечном Γ просто изоморфно). В этом смысле в построенном примере песочная группа наибольшая, которая может быть.

Список литературы

- [1] D. Dhar, Theoretical studies of self-organized criticality, Phys. A, 369(1):29–70, 2006.
- [2] M. Creutz, Abelian sandpiles, Computers in Physics, 5(2):198–203, 1991.
- [3] D. Dhar, P. Ruelle, S. Sen, and D.-N. Verma. *Algebraic aspects of abelian sandpile models*, Journal of physics A: mathematical and general, 28(4):805, 1995.
- [4] W. Pegden and C. K. Smart. *Convergence of the Abelian sandpile*. Duke Math. J., 162(4):627–642, 2013.
- [5] L. Levine, W. Pegden, and C. K. Smart. *Apollonian structure in the Abelian sandpile*. Geom. Funct. Anal., 26(1):306–336, 2016.
- [6] A. Fey, R. Meester, and F. Redig. *Stabilizability and percolation in the infinite volume sandpile model*. The Annals of Probability, pages 654–675, 2009.
- [7] N. Heizmann, R. Kaiser, and E. Sava-Huss. *Sandpiles on the vicsek fractal explode with probability 1/4* arXiv preprint, arXiv:2312.13647, 2023.
- [8] R. Kaiser, E. Sava-Huss, and Y. Wang. *Abelian sandpiles on sierpinski gasket graphs*. arXiv preprint, arXiv:2209.03169, 2022.
- [9] A. A. Járai. Sandpile models. Probability surveys, 15:243–306, 2018.
- [10] A. A. Járai, F. Redig, and E. Saada. *Approaching criticality via the zero dissipation limit in the abelian avalanche model.* J. Stat. Phys., 159(6):1369–1407, 2015.
- [11] N. Kalinin, V. Khramov *Sandpile group of infinite graphs*, arXiv preprint, arXiv:2305.05346, 2023.