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Abstract: For the first time, data on the emission of climate-active gases from soils of different types
of use of the south taiga sub-zone were obtained. Soils of the boreal belt are key elements of the global
carbon cycle. They determine the sink and emission of climate-active gases. Soils near large cities are
a major carbon sink, in the face of climate change, soils from sinks can become a source of carbon
and contribute significantly to climate change on the planet. Studies of FCO2 and FCH4 fluxes were
carried out on the territory of the monitoring site “Ladoga” located in the southern taiga subzone in
soils of land not used in agriculture, former agriculture lands, and wetlands. During the chamber
measurements, a portable gas analyzer GLA131-GGA (ABB, Canada) was used. The chamber was
placed on the soil, after which the concentration of CO2, CH4 and H2O in the mobile chamber
was recorded. As a result of the study it was found that the lowest emission of carbon dioxide
is characteristic of soils developing on the soils of wetland and is 0.64 gCO2/(m2*year). Which is
associated with a high degree of hydrophobicity of the territory and changes in the redox regime.
The highest emission of carbon dioxide is registered in soils on the land not used in agriculture and is
4.16 gCO2/(m2*year). This is due to the formation of predominantly labile forms of carbon in the soil,
which can be relatively rapidly involved in the carbon cycle and affect the active emission of carbon
from the soil. According to the data obtained on FCH4 emission from soils, it was found that soils
of land not used in agriculture and former agriculture lands were net sinks, while soils of wetlands
were characterized by CH4 source, the emission was from 0.05 to 0.83 gCH4/(m2*year). The results
obtained indicate spatial heterogeneity and changes in the carbon cycle within the monitoring site
“Ladoga”, which are due to the change of plant communities and habitat type. Monitoring the release
of important greenhouse gases in close proximity to major urban areas is an important task in the
face of predicted climate change and increasing rates of urbanization.
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1. Introduction

One of the causes of climate change on Earth is the increasing concentrations of
thermodynamically active gases such as carbon dioxide (CO2) and methane (CH4) in the
atmospheric air [1,2]. Atmospheric CO2 content is controlled by gas exchange processes
between different carbon reservoirs: the atmosphere, continental ecosystem, hydrosphere
and lithosphere—and by some chemical reactions for which CO2 is the end product. Such
processes and reactions form the global biogeochemical carbon cycle, in which a range
of carbon-containing gases, including CH4 and carbon monoxide (CO), are involved in
addition to CO2 [1,3]. CH4 is the second most important greenhouse gas, with a global
warming potential 28 times greater than CO2 [1]. The consequences of climate change have
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a significant and increasing impact on the socio-economic development of the country,
living conditions and health of people, as well as on the state of economic facilities [4]. The
boreal zone includes about 1/3 of the planet’s forests and carbon stocks [5]. Boreal forests
are thought to be a net carbon sink, but recent assessments indicate that this statement is
only partially true [6]. Depending on the type of land use, boreal soils can be carbon neutral
as well as acting as a carbon source [7]. This is due to increased temperature in the boreal
ecosystem [8]. On the territory of Russia, climate warming is approximately 2.5 times
more intense than the average for the globe [9]. According to the Report on Climate
Peculiarities on the Territory of Russia for 2022 [10], it was found that the average annual
air temperature (deviation from the average for 1991–2020) was +0.87 ◦C. Temperatures
above the climatic norm were observed almost throughout the country. At the same time,
the highest rate of increase in the mean annual temperature was observed in the Arctic
zone +0.8 ◦C/10 years. There is a stable tendency for the Arctic ice cover to decrease: since
the 1980s in the area of the Northern Sea Route, the decrease has amounted to 5–7 times.
In the south of the European part of Russia in summer, against the background of rapid
growth of average temperatures, moisture availability is decreasing and the risk of drought
is increasing [10]. Based on modern scientific calculations using three-dimensional models
of atmospheric and oceanic circulation, the main climate-influencing factor affecting trends
in hydrometeorological parameters is the significant increase in thermodynamically active
gases, particularly CO2, in the atmosphere [11]. To accurately predict changes in the Earth’s
climate, it is essential to develop scenarios of variations in gas composition, considering
both human-induced and natural factors. This includes projecting changes in carbon
dioxide, methane, and other greenhouse gases. Therefore, both regular measurements of
the content of these gases in the atmosphere and studies of their natural and anthropogenic
sources and effluents are necessary to build reliable models of their circulation in nature [12].
The available model estimates of carbon emissions and stocks in the boreal zone require
constant refinement, due to forest fires, which result in the loss of a significant amount
of carbon, the construction of models only on a single sample of data, without annual
repetition, the relatively young age of soils formed on glacial deposits, as well as the
heterogeneity of topography [13–15]. Thus, the updating of data on stocks and emissions
of climate-active gases is a necessary tool for improving existing models of carbon balance
in the boreal zone [8].

In order to solve the tasks of monitoring of climatically active gases in Russia, an
initiative has been launched to create a network of carbon monitoring site. The main task
of carbon monitoring site [16], is to develop technologies and methods for determining the
fluxes of climatically active gases, the main focus here is on studying the processes of se-
questration and deposition of greenhouse gases by different types of natural environments
and ecosystems [17,18]. Saint-Petersburg state University together with Voeikov Main
Geophysical Observatory, with the support of the Government of the Leningrad Region,
developed a project of the united carbon monitoring site “Ladoga”, aimed at studying the
potential of greenhouse gas uptake by the ecosystem of the southern taiga, characteris-
tic of the North-West of Russia. Globally, wetlands accumulate one-third of soil organic
matter and contribute up to 31% of annual CH4 emissions [12,19]. The cold temperate
humid zone, which is distributed in the east of Europe (Scandinavia, Russia) is the most
active zone in terms of carbon stocks, accumulating up to 208 tC/ha, the largest carbon
store after permafrost-affected soils, which contain up to 1173 tC/ha [20]. The territory of
North-West Russia is characterized by the largest increase in average annual temperature
in Russia, which may lead to transformation of ecosystems and soil organic matter, which
will result in increased emission of climate-active gases [10]. A characteristic feature of
Northwest Russia is a long history of farming, dating back several centuries [21]. The
Ladoga carbon monitoring site contains former agricultural territories that were removed
from agricultural use about 40 years ago and are affected by self-overgrowth [22]. The
area of fallow land requires detailed study, as there is high uncertainty in estimating the
emission of climate-active gases from areas that were used for agriculture. Annually, due
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to human activities in agriculture, around 17 billion tons of CO2-equivalent are released
into the atmosphere, accounting for approximately 31% of all human-induced greenhouse
gas emissions. In addition to this, agriculture contributes significantly to soil and water
pollution as well as impacting the planet’s climate through chemical use. At present in
Russia from 30 to 40 million hectares of arable land, which is converted into fallow land and
transformed under the influence of natural and anthropogenic processes of soil formation,
forest overgrowth, sodding, grass sowing, waterlogging, etc., is taken out of circulation
and not used [22]. The territory of North-West Russia (Leningrad, Pskov and Novgorod
regions) is a region with a direct connection to the history of surface development in glacial
and post-glacial times. As a result, the Russian Plain’s territory has maintained a range of
landforms and glacial sediments that have been minimally altered by weathering. This
factor contributes to the diversity of soil cover and influences agricultural development in
the northern regions of Russia [21,22]. Data on climate-sensitive gas emissions will help
to refine general estimates of the contribution of fallow lands to carbon storage [23]. Soils
formed in relative proximity to large cities are subjected to significant anthropogenic impact
due to the emission of climate-active gases as a result of fossil fuel combustion [24]. With
the increasing rate of urbanization, soils near large cities can become carbon sinks, carbon
sources, and contribute significantly to climate change on the planet, so the study and iden-
tification of soils capable of more efficient and long-term carbon sequestration is an urgent
task aimed at mitigating climate change [25]. To the date, knowledge on climate-active
gas emissions from areas of different types of use near large cities is very limited due to
the high level of heterogeneity of soil formation conditions and their change as a result of
anthropogenic use [26]. St. Petersburg and the Leningrad Region can be considered as a
united ecological and climatic center for interdisciplinary research in the field of carbon
neutrality and sustainable development, including a comprehensive study of sources and
sinks of climate-active gases and analyzing the potential for the development of carbon
farms—a new type of sequestration carbon industry enterprises—in the study area. The
implementation of carbon monitoring site and farms at the scale of the Russian Federation
is expected to support the advancement of carbon farming. This sustainable business model
offers economic advantages through the implementation of enhanced land management
practices, which promote carbon sequestration in biomass, organic matter and soils. These
practices aim to increase carbon sequestration while decreasing carbon emissions into the
atmosphere based on ecological principles that are beneficial for biodiversity and natural
capital as a whole. The aim of the work is to study the fluxes of carbon dioxide and methane
from soils formed in different types of landscapes of the Ladoga monitoring site.

2. Materials and Methods
2.1. The Study Area

The territory of the Ladoga carbon monitoring site is located in the southern part of the
Vsevolozhsky District of the Leningrad Region (Figure 1). According to soil-geographical
zoning [27], the study area belongs to the southern part of the Vyborgsky-Priozersky district
of entic podzol soils.

The relief of the upland is eskers. In the central part of the upland the eskers form a hilly
esker plateau. In the border part, the upland is often replaced by a stepped abrasion ledge.
Further the relief is changed by waterlogged sandy terraces and plains. The majority of the
area consists of flat, marshy terrains. There is a substantial variation in altitude, ranging
from 32.5 to 77.5 m above sea level. Soil-forming rocks are presented by medium-grained
loamy sands and sands, with thin interlayers of loamy material and fluvioglacial sands and
loamy sands. Eskers landscapes are well drained (except for closed lakes of thermokarst
origin), on well-warmed slopes there is a moisture deficit in summer. Plain landscapes are
waterlogged by eutrophic type. The study site is located in the southern taiga zone. The
flat rocky slopes and flat relief areas in the inter-kame depressions were previously used
for agriculture. The forests here are secondary, post-agricultural, post-felling, lightened-
deciduous with a significant admixture of non-moral and synanthropic species. The study
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area has the following climatic characteristics: temperate-cool climate with frequent change
of marine and continental features, average annual temperature is +4.5 ◦C, average annual
precipitation is 550–800 mm, more than half of days with precipitation, snow cover thickness
exceeds 50 cm. The excess of precipitation over evaporation causes leaching type of water
regime and development of podzol formation process on sandy materials and waterlogging
conditions in relief depressions.
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Figure 1. The “Ladoga” carbon monitoring site. The soil ID correspond to Table 1.

Table 1. Description of monitoring sites.

№ The Description of Monitoring Plot Plant Communities Soil Name *

1
Former agricultural land. Flat relief. Densely

covered with forest litter. Vegetation is
represented by shrubs, young trees.

Cereal birch Plaggic Stagnic Podzol (arenic) on
water-glacial sediments

2 Former agricultural land. Flat relief.
Herbaceous cover, single trees present. Fallow fern-ruderal-grass meadow Plaggic Stagnic Podzol (arenic) on

water-glacial sediments

3 Former agricultural land. Flat relief. Densely
covered with forest litter. Fallow fern-ruderal-grass meadow Plaggic Gleyic Podzol (arenic) on

water-glacial sediments

4 Land which are not used for agriculture. Esker
slope. Represented by young trees, shrubs. Birch-pine forest Post-pyrogenic Umbrisol (arenic)

on water-glacial sediments

5 Wetland. Depression of relief. Grass cover,
individual trees. Lowland moist-grass swamp Folic Histosol on

water-glacial sediments

6 Former agricultural land. Flat relief. Densely
covered with forest litter. Fallow fern-ruderal-grass meadow Plaggic Stagnic Podzol (arenic) on

water-glacial sediments

7
Land which are not used for agriculture. Top
of the esker upland. Vegetation is represented

by shrubs, young trees.
Birch-pine forest Entic Stagnic Podzol on

water-glacial sediments

8 Wetland. Depression of relief. Grass cover,
individual trees. Lowland moist-grass swamp Folic Histosol on

water-glacial sediments

* WRB FAO [28].
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2.2. Strategy of Measurements

An experiment to estimate methane (CH4) and carbon dioxide (CO2) fluxes from
the soil surface (vegetation was not removed) using a portable camera was conducted at
the proposed Ladoga monitoring site. Measurements were taken on 9 November 2023
between ~9.00 and ~12.00 UTC. This study can be regarded as a so-called “reconnaissance
study”, necessary for optimal planning of a long-term experiment involving installation
of stationary camera systems at the Ladoga carbon monitoring site. For this purpose, we
conducted a one-day campaign to measure CO2 and CH4 fluxes using a portable camera for
a number of the most promising measurement sites. Camera measurements of climatically
active gas emissions were conducted at 8 monitoring sites (Figure 2).
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Figure 2. Monitoring sites used to analyze emissions of climate-active gases.

A description of the sites is provided in Table 1.
For sites № 1, 3, 4, 5, 6 two flux measurements were taken at dispersed, representative

points on the site. One measurement was taken for № 7, 2, and 8. The absence of additional
(second) measurements at sites № 7, 2, and 8 is due to technical problems encountered
during field measurements. Measurements at the site were made during cloudy weather,
with light winds (1 m/s) of southerly directions. No precipitation was observed. The air
temperature and atmospheric pressure during the period of field measurements varied
from 5.7 ◦C (09 UTC) to 5.9 ◦C (12 UTC) and from 1007.7 hPa (09 UTC) to 1008.1 hPa
(12 UTC), respectively.

2.3. Ecosystem Carbon Flux Measurement

Manual chamber method. The chamber was placed on the soil, after which the
concentration of CO2, CH4 and H2O in the mobile chamber was recorded. In the course
of measurements, the air in the chamber and the gas analyzer circulated in a closed
cycle—from the chamber to the gas analyzer, then back from the gas analyzer to the
chamber. The closed loop is an idealized approximation for our case, since it is not possible
to completely avoid air exchange with the atmosphere during mobile measurements with
this design of the portable chamber (without digging into the soil). In order to ensure
more uniform air mixing inside the chamber, the return air outlet from the gas analyzer
was made through a perforated teflon tube running along the perimeter of the chamber.
The total volume of the system, including the internal volumes of the gas analyzers in
this arrangement was V = 7950 mL = 0.00795 m3. The inner diameter of the chamber was
d = 0.28 m. During the chamber measurements we used a portable gas analyzer GLA131-
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GGA (ABB, Brampton, ON, Canada) to record concentrations of CO2, CH4 and H2O in the
air. Random uncertainty of measured values of gas concentrations (1σ), for accumulation
time of 1 s and 10 s is: for CH4: 0.9 ppb and 0.3 ppb; for CO2 0.35 ppm and 0.12 ppm;
for H2O 200 ppm and 60 ppm. Experience with camera-based flux observations shows
that, for example, for CO2, 60–120 s of closed-camera measurements are usually sufficient.
Longer recording times may be required to estimate the flux from soil of other small gas
constituents. The specified duration of chamber measurements prevents a significant
increase in CO2 concentration in the chamber at typical rates of change such as 0.5 ppmv/s.
It has been shown that the dead zone duration (equilibration processes in the chamber, this
period is not used in flux estimation) can vary from about 10 to 60 s [29].

The fluxes of FCO2 and FCH4 were defined as the change in concentration ∆q over the
chamber measurement time ∆t:

F = V · ∆q / (∆t · S) (1)

where q—concentration of target gas in dry air in kg/m3; t—time in seconds; V—total
volume of the system in m3; S—inner square of the chamber in m2.

When preparing for chamber measurements at the Ladoga carbon monitoring site
and determining CO2 and CH4 fluxes, we utilized contemporary techniques for chamber
measurements as described in the “Theory of Soil Gas Flux Measurement” section on the
LI-COR website [29].

2.4. Policy Recommendation

The establishment of the “Ladoga” carbon monitoring site in the Leningrad Region
is a long-term project of priority importance for climate and environmental security of
the region, prepared by Saint Petersburg State University and Voeikov Main Geophys-
ical Observatory with the assistance of the Government of the Leningrad Region. This
project aims to research and assess the sequestration carbon potential of Leningrad Region
ecosystems, harmonized with international regulations. This could lead to determining
the carbon emissions produced by businesses, helping them reduce financial strain related
to implementing a cross-border carbon tax. Russia’s boreal forest plays a crucial role in
carbon sequestration because a significant amount of carbon is stored in biomass and soil.
To reduce carbon emissions in Russia’s boreal forest, it is recommended to implement the
following policy measures:

1. Implement strict regulations and monitoring systems to prevent illegal logging and
ensure sustainable forest management practices.

2. Invest in research and technology to improve forest inventory methods, such as
remote sensing of forest inventories, to accurately estimate the amount, distribution,
and uncertainty of carbon sequestration in the boreal forest.

3. Promote afforestation and reforestation projects in degraded areas of the boreal forest
to increase carbon sequestration capacity.

4. Encourage the conservation and restoration of peatlands in the boreal forest, as they
are significant carbon sinks.

3. Results and Discussion

The studied area of the “Ladoga” carbon monitoring site is characterized by a large set
of biotopes, this is due to the variety of different landforms, as well as former agriculture
activities. Most of the studied soil are characterized by carbon dioxide emission and
methane absorption, while both carbon dioxide and methane emission occur in soil of
wetlands (Figure 3, Table 2).
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Figure 3. Results of chamber measurements carried out on 11 September 2023 on the territory of the
Ladoga monitoring site.

Table 2. Results of a field experiment on 11 September 2023 to determine fluxes using a soil chamber.

№
Duration of the Period Used to Calculate FCH4
and FCO2, s (Gas Analyzer Counts: Start and

End of Measurements, s)

FCH4, CH4 g/(m2·Year);
FCH4-C, CH4-C g/(m2·Year)

FCO2, CO2 g/(m2·Year);
FCO2-C, CO2-C g/(m2·Year)

1
170 (70–240 s) −0.61; −0.45 2090; 570

120 (350–470 s) −0.63; −0.47 1540; 420
2 180 (1420–1600 s) −0.33; −0.25 1620; 440

3
180 (2100–2280 s) −1.36; −1.02 2500; 690
160 (2430–2590 s) −1.69; −1.27 2870; 780

4
120 (2880–3000 s) −1.26; −0.95 2160; 590
180 (3220–3400 s) −1.45; −1.08 1810; 490

5
120 (3900–4020 s) 0.53; 0.40 640; 170
150 (4250–4400 s) 0.05; 0.04 860; 230

6
110 (4760–4870 s) −0.89; −0.67 1510; 410
150 (4950–5100 s) −1.01; −0.75 1310; 360

7 140 (5510–5650 s) −1.33; −0.99 4160; 1130
8 150 (6250–6400 s) 0.83; 0.62 680; 180

The values of FCO2 and FCH4 and FCO2-C and FCH4-C fluxes obtained during the field
experiment are supported by the literature data published in [30,31]. The boreal belt is of the
greatest importance for the global carbon balance, as the greatest amount of carbon in soils
is stored here [32]. It was found that the highest level of carbon dioxide emission is observed
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in the soils of land which is not used for agriculture (4160 gCO2/(m2*year)). According
to the study conducted in subtropics in China [33], it was found that the highest emission
corresponds to soils formed under forests—533 gCO2/(m2*year), while the maximum
was reached in paddy soils—901 gCO2/(m2*year). The results we obtained from natural
soils are much higher than in forest soils of subtropical China, this may be due to the
formation of a thick upper organomineral horizon of soils in humid conditions, in which
active processes of humification and mineralization of organic carbon occur [34]. However,
our values are confirmed by the study of Yi et al. [35], which measured CO2 emission from
undisturbed soils of Dinghushan Biosphere Reserve, subtropical China, and found that
depending on the type of forest ecosystems (evergreen, coniferous and broad-leaved mixed
forest) and humidity, there was a significant increase in FCO2 emission, up to 4129, 3710 and
3761 gCO2/(m2*year), respectively. Relatively low carbon dioxide emission is observed
from the soils of former agriculture land (from 1310 to 2880 gCO2/(m2*year)). This is due to
the qualitative composition of soil organic matter of fallow lands, which has a relatively high
level of stabilization compared to the organic matter of natural soils. With the transition of
soils to fallow state, in the first 30–40 years the formation of aromatic structural fragments
in humic acids is noted, it is connected with the change of plant communities, increase of
biodiversity and changes in the composition and quality of humification precursors. Humic
acids of natural soils is characterized by the predominance of aliphatic structural fragments,
it is less mature and can be subjected to microbial degradation [36]. This is confirmed by a
study by Yuste et al. [37], which found that CO2 emission is influenced by the qualitative
composition of organic matter, soil organic matter content, microbial population, and
seasonal variations in temperature and precipitation. Among the soils of former agriculture
lands, we can note the highest carbon dioxide emission from former soils densely covered
with forest litter (2880 gCO2/(m2*year)), in areas dominated by grass vegetation, the values
of carbon dioxide emission fluxes were relatively low (1310 gCO2/(m2*year)). The obtained
data are confirmed by Lou et al. [38], in the studied arable soils in the subtropics of China,
the emission level varied from 1410 to 2840 gCO2/(m2*year) depending on the composition
of soil-forming rocks, the highest emission was observed on red soils formed on granite
deposits and the lowest on soils on clay. Sushko [39], noted that the forest-steppe zone is
characterized by the lowest CO2 emission for soils of former agricultural soils, the highest
emission was observed in natural soils. The lowest emission level was observed in the soil
of wetland (640 gCO2/(m2*year)), as active methane emission occurs here among all the
studied soils. According to different studies on CO2 emission from agricultural soils, a high
variability of results can be observed, which is related to climatic peculiarities, lithological
composition of soil-forming rocks and to the types of agricultural products, but the level of
CO2 emission from agricultural soils is on average lower than that of natural soils [40–42].

The boreal zone is one of the most vulnerable natural zones to climate change, due to
the relatively high content of soil organic carbon and the annual increase in temperature [10].
According to Hicks Pries et al. [43], it was found that an increase in soil temperature by 4 ◦C,
can lead to an increase in CO2 emission of 34–37%, in the framework of the experiment,
in temperate zone soils, an increase in CO2 emission from 1100 to 1450 gC m−2 year−1

was observed. This is due to the transformation of decadal-aged light fraction of organic
carbon in soil, organic matter that is not enclosed in aggregates or does not have a complex
molecular structure determine the CO2 emission from soil [43]. Soils near major urban
areas are likely to be more vulnerable to climate change due to the impact of urbanization
on forested regions surrounding large cities, resulting in a soil carbon loss [44].

FCH4 fluxes from soils of wetlands ranged from 0.05 to 0.83 gCH4/(m2*year). This
is due to the activity of anaerobic microorganisms under conditions of increased hydro-
morphism of the territory. All soils, except soil of wetlands, are sink of methane from the
atmosphere. Wanyama et al. [45] found that forest soils act as a net sink for methane in
African tropical forests, as well as agricultural soils used to grow tea and eucalyptus. The
main factor affecting the uptake was the change of dry and wet periods, so during dry
periods methane uptake increased and during wet periods methane uptake decreased.
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Anthropogenic impact on soil has a negative effect on methane uptake, it is associated
with overcompaction, disturbance of hydrological regime, as well as tillage. Natural soils
are greater methane sinks compared to anthropogenically transformed soils [46], which
is also confirmed in our study. An important factor influencing carbon dioxide fluxes
is the quality of wood and plant residues, so in a study by Gitarskiy et al. [47], it was
found that soils of old-growth spruce forests have more active CO2 emissions compared to
younger spruce forests. Therefore, studying the fluxes of climatically active gases in soil of
former agricultural land, where successional change of plant communities is actively taking
place, is most relevant for estimating the carbon balance of forest ecosystems. This was
also established by Wang et al. [12], who monitored the emission of climate-active gases
for many years in soils on the Tibetan plateau, where, as a result of the change of plant
communities, as well as the change of vegetation and non-vegetation periods, the periods
of net absorption and net emission were changed. Thus, during the vegetation period, all
studied biotopes (mesophytic meadow, wet meadow, and bog) were CO2 sinks, and during
the non-vegetation period they were CO2 sources. In the works of Kurganova et al. [48,49]
it found that components of the carbon balance and ecosystem runoff potential are deter-
mined by weather conditions (temperature and precipitation) of the current and previous
year of the study, as well as by the type of ecosystem, so that extreme droughts reduced the
emission activity of summer CO2 fluxes by 44–47%.

The Ladoga carbon monitoring site is located in close proximity to one of the largest cities
in Russia, which may also influence the level of climate-active gas emissions. Guo et al. [50],
noted that urbanization and population increase leads to additional carbon dioxide emis-
sions. The area adjacent to large cities is an important element of the global carbon cycle,
which can act as both a source and sink of carbon. Current study confirms the results of
Guo et al. [50], wetlands are less of a source of carbon dioxide, while they can even act as
a sink.

4. Conclusions

As a result of a study of climate-active gas emissions from soils at the Ladoga carbon
monitoring site, it was found that all soils were a source of FCO2 during the study period.
Former agriculture soils showed relatively low level of FCO2 emission compared to soils
which are not used for agriculture, the lowest level of FCO2 emission was observed in soils
of wetlands. The obtained values of FCO2 emission from soils of different types of use show
the importance of continuing measurements of FCO2 fluxes from soils located near a large
urbanized zone for the purpose of further monitoring of climate-active gases under the
conditions of predicted climate change. According to the emission of FCH4 from former
agriculture soils and soils which are not in use for agriculture it was observed that the soils
were net sinks, whereas soils developing in wetlands were a source of FCH4. Agricultural
use of soils has a key impact on soil uptake of methane from the atmosphere, which is
reflected in a decrease in methane uptake, and these spatial changes are associated with soil
transformation as a result of land self-overgrowth. This study provides an initial assessment
of climate-active gas emissions from soils of different types of use, and is necessary for a
better understanding of how soil transformation in close proximity to a large urbanized
area will affect the carbon balance in an urbanized ecosystem. The data obtained make an
important contribution to the monitoring of soils at different stages of successional changes
of plant communities as a result of transition to fallow state and can be used for comparison
and parameterization of carbon balance models to obtain reliable predictions of carbon
emission and sequestration by soils of forest, fallow and wetlands ecosystems in the boreal
belt of the Earth.
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