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Abstract This paper is dedicated to investigating the transmission and
prediction of viruses within human society. In the first phase, we augment
the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model by in-
corporating four novel states: protected status (P ), quarantine status (Q),
self-home status (H), and death status (D). The numerical solution of this
extended model is obtained using the well-established fourth-order Runge-
Kutta algorithm. Subsequently, we employ the next matrix method to cal-
culate the basic reproduction number (R0) of the infectious disease model.
We substantiate the stability of the basic reproductive number through an
analysis grounded in Routh-Hurwitz theory. Lastly, we turn to the appli-
cation and comparison of statistical models, specifically the Autoregressive
Integrated Moving Average (ARIMA) and Bidirectional Long Short-Term
Memory (Bi-LSTM) models, for time series prediction.
Keywords: dynamics model, Runge-Kutta, ARIMA, Bi-LSTM model.

1. Introduction

In the course of human societal development, infectious diseases have consis-
tently posed a significant global challenge. Modern epidemiology truly began when
biochemist Kermack and physician Mckendrick (Kermack and Mckendrick, 1927)
introduced a mathematical model known as the SIR (Susceptible-Infectious-Recove-
red) model. Jia W. P. et al. based on the classic SIR model, analyzed and forecasted
the Italian epidemic using a dynamically extended SIR model, estimating the dura-
tion of the epidemic (Jia et al., 2020). Gubar E. et al. combined the SIR model with
replicative dynamics to describe virus mutations (Gubar et al., 2018). They formu-
lated optimal control problems to investigate the optimal strategies for healthcare
and quarantine decisions.

In addition to the classical SIR model, Sun H. C. et al. combined campus
COVID-19 data with the traditional SEIR model to validate the effectiveness of
digital tracking and prevention strategies (Sun et al., 2021). Gubar E. et al. pro-
posed a hierarchical model for virus transmission, dividing the transmission process
into three levels: city, region, and country (Gubar et al., 2023). They utilized an im-
proved Susceptible-Exposed-Infectious-Recovered-Death (SEIRD) model to define
virus spread at each level and analyzed the balance between the cost of active virus
transmission and the implementation of appropriate quarantine measures. These
models simulate the evaluation of different intervention measures’ effectiveness and
reveal hidden characteristics of disease transmission. Therefore, process-based sim-
ulation models do not solely aim to accurately predict the future scale of infections.
Instead, they serve as critical planning tools for deploying intervention strategies
and regulatory decisions during epidemics.
https://doi.org/10.21638/11701/spbu31.2023.08
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2. Dynamic model of epidemics

The emergence of Coronavirus disease 2019 (COVID-19) in Wuhan has attracted
widespread global interest. In this section, we introduce a modified Susceptible-
Exposed-Infectious-Removed (SEIR) model as the primary tool for epidemic anal-
ysis. To provide a solid foundation for our subsequent derivations, we begin by
elucidating fundamental concepts and background knowledge integral to our proof.
Following this, we present our revised SEIR model, subsequently calculating its ba-
sic reproduction number (R0) and establishing its stability through rigorous proof.
Finally, we investigate the impact of parameter variations on the model, analyzing
diverse strategies for epidemic management.

2.1. Dynamic model
Epidemic models frequently adopt a compartmental approach, wherein the host

population (in the context of this article, human beings) is stratified into a lim-
ited number of compartments, each comprising individuals sharing identical disease
status characteristics. To augment our capacity to characterize the global spread
of COVID-19 comprehensively, we introduce the SEIQHRDP (Susceptible-Exposed-
Infectious-Quarantined-Home-Recovered-Death-Protected) model . The SEIQHRDP
model incorporates eight distinct compartments:

– Susceptible{nS}: Individuals who lack immunity to the infectious agent are
susceptible and may become infected upon exposure.

– Exposed{nE}: Individuals in the incubation period are those who have been
exposed to an infected person while they were susceptible and are now carrying
the virus themselves.

– Infectious{nI}: Individuals who are currently infected represent those who
are actively carrying the infection and have the potential to transmit it to
susceptible individuals they come into contact with.

– Quarantined{nQ}: Individuals with an infected person isolated in a hospital,
in times of medical shortage, are often referred to as seriously ill infected indi-
viduals.

– Home{nH}: Individuals with an infected person isolated at home, also referred
to as asymptomatic infected individuals during times of medical shortage.

– Recovered{nR}: Individuals with immunity (having contracted and recovered
from the disease) do not impact transmission dynamics upon contact with oth-
ers.

– Death{nD}: Individuals who have died from the virus, including those who
passed away in hospitals and at home.

– Protected{nP }: Individuals who are not previously infected with the virus adopt
preventive measures, such as mask-wearing and maintaining a safe distance.

For all t, N = nS + nE + nI + nQ + nH + nR + nD + nP represents the total
population within the enclosed area. We define S(t) = nS

N , E(t) = nE

N , I(t) = nI

N ,
Q(t) =

nQ

N , H(t) = nH

N , R(t) = nR

N , D(t) = nD

N , and P (t) = nP

N as the proportions
of individuals in the categories of Susceptible, Exposed, Infectious,Quarantined,
Home,Recovered,Death, and Protected, respectively. The three assumptions of
the model are as follows:

1. The model considers a constant population size, denoted as "N."
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2. Susceptible individuals transition to an infected state and become contagious
upon contact with an infectious individual. Infected individuals who are hospi-
talized or in home isolation have significantly reduced transmission rates.

3. Susceptible individuals share the same effective exposure rate. And after the
infected person recovers, they will not be infected again within a short period
of time.

The flowchart depicting the SEIQHRDP model is presented below:

Fig. 1. Flow chart for the SEIQHRDP model

The differential equation governing the dynamics of the SEIQHRDP epidemic
model is expressed as follows:

dS(t)
dt = −βS(t)I(t)− αS(t),

dE(t)
dt = βS(t)I(t)− γE(t),

dI(t)
dt = γE(t)− (δ1 + δ2) I(t),

dQ(t)
dt = δ1I(t)− λ1Q(t)− κ1Q(t),

dH(t)
dt = δ2I(t)− λ2H(t)− κ2H(t),

dR(t)
dt = λ1Q(t) + λ2H(t),

dD(t)
dt = κ1Q(t) + κ2H(t),

dP (t)
dt = αS(t).

(1)

Where α ≥ 0 represents the average protection rate and β ≥ 0 is explicitly split
in two terms as β0 ·k. Where β0 stands for the rate of infection per effective contact,
and k represents the number of contacts with other individuals (Pastor et al., 2015).
Parameter γ ≥ 0 is the reciprocal of the average latency time. Rates δ1 ≥ 0, δ2 ≥ 0
denote the average isolation rate of infected people in the hospital and at home,
respectively. Parameters λ1 ≥ 0, λ2 ≥ 0 stand for the recovery rate in hospital and
at home, respectively. Rates κ1 ≥ 0, κ2 ≥ 0 represent the death rate in hospital and
at home, respectively.

Theorem 1. The system (1) gives only positive solutions for positive initial con-
ditions.
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Remark 1. Theorem1 implies that if the initial conditions satisfy S(0) > 0, E(0) ≥
0, I(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0, P (0) ≥ 0, then the solutions
of the system (1), denoted as S(t), E(t), I(t), Q(t), H(t), R(t), D(t), P (t), remain
positive for all t ≥ 0.

Proof. Starting from the differential equation dS(t)
dt = −βS(t)I(t)−αS(t), we obtain

the following expression:

dS(t)

dt
+ (βI(t) + α)S(t) = 0.

By separating variables, we obtain:

dS(t)

S(t)
= − (βI(t) + α) dt.

Solving the above equation we get:

S(t) = Ce−
∫ t
0
βI(t)+α dt.

Where C is an arbitrary constant. At time t = 0, we have C = S(0) > 0, thus
leading to:

S(t) = S(0)e−
∫ t
0
βI(t)+α dt.

This implies S(t) > 0 for all t. Similarly, we can demonstrate that E(t) ≥ 0, I(t) ≥ 0,
Q(t) ≥ 0, H(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0, and P (t) ≥ 0, ensuring the non-negativity
of these variables throughout the analysis.

The initial conditions for the population distribution within each compartment
are defined as follows: nS > 0, nE ≥ 0, nI > 0, nQ ≥ 0, nH ≥ 0, nR ≥ 0, nD ≥ 0, and
nP ≥ 0. Additionally, we assume a stable total population size, where the natural
birth rate equals the natural death rate, expressed as dN/dt = 0. The interplay
of these factors is crucially influenced by the basic reproduction number. As the
epidemic unfolds, heightened awareness of self-protection among the population,
in conjunction with government-imposed epidemic prevention policies, results in
a steady decline in the susceptible population. This decline is characterized by
the introduction of a positive protection rate, denoted as α, within the model.
Specifically, individuals transitioning into the protector compartment P are induced
by susceptibles within compartment S at a rate of αS.

New infections within compartment E result from contact between susceptible
individuals in compartment S and infected individuals in compartment I at a rate
denoted as βSI. The infection process within compartment I is initiated by com-
partment E at a rate of γE during the incubation period. Subsequently, individuals
who become infected make choices regarding isolation, with some opting for home
isolation, represented by a rate of δ2I, while others choose hospital treatment, rep-
resented by a rate of δ1I. Transitions from compartment Q to compartment R occur
at a rate of λ1Q, and from compartment H to compartment R at a rate of λ2H,
contributing to the population of recoverers in compartment R. Similarly, the com-
partment for deceased individuals, D, is replenished from compartment Q at a rate
of κ1Q and from compartment H at a rate of κ2H.
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2.2. Basic reproduction number and stability analysis
The basic reproductive number, denoted as R0, serves as a crucial epidemio-

logical parameter for quantifying the infectivity and transmissibility of infectious
agents. Specifically, it represents the number of secondary cases that a single case
would generate within a population entirely susceptible to the disease. In mathe-
matical terms, R0 acts as a threshold for the stability of the disease-free equilibrium,
and its value correlates with both the peak and final size of an epidemic outbreak.
When R0 < 1, it indicates that, on average, a limited number of infected individ-
uals introduced to a fully susceptible population will fail to propagate the disease
further, resulting in its containment. Conversely, when R0 > 1, each successive gen-
eration will witness an increase in the number of infected individuals, facilitating
the widespread transmission of the disease (Van den and Watmough, 2002).

The computation of the basic reproduction number (R0) has reached a relatively
mature stage, particularly in the context of COVID-19. In our analysis, we employ
the next-generation method to estimate R0 for COVID-19 across diverse geograph-
ical regions. As per the previously defined parameters, the total population size,
denoted as N , remains a constant throughout the system’s evolution, ensuring its
invariance. This is formally expressed as the sum of individuals in all compartments
equating to 1, i.e., S(t) +E(t) + I(t) +Q(t) +H(t) +R(t) +D(t) + P (t) = 1. The
disease-free equilibrium (DFE) represents the state of equilibrium within the system
in the absence of infected individuals. At the initial time point, the susceptible com-
partment is initialized as S(0) = 1, while the remaining compartments’ ratios are
set to zero. Consequently, we establish the DFE point as x0 = (1, 0, 0, 0, 0, 0, 0, 0)
at the initial time. Subsequently, we derive the matrices F and V .

F =

[
βSI
0

]
, V =

[
γE

−γE + (δ1 + δ2)I

]
.

Differentiate F and V with respect to E and I separately, and then substitute the
results into the disease-free equilibrium point:

F =

[
0 β
0 0

]
, V =

[
γ 0
−γ δ1 + δ2

]
.

The next generation matrix of the system is defined as follows:

F · V −1 =

[
β

δ1+δ2

β
δ1+δ2

0 0

]
.

R0 is determined as the maximum eigenvalue or spectral radius of the next gener-
ation matrix, thus obtaining the expression for R0 as:

R0 =
β

δ1 + δ2
. (2)

Theorem 2. The model around DFE is locally asymptotically stable if R0 < 1.

Proof. Begin by computing the Jacobian matrix corresponding to system (1) as
follows:

J =


−βI (t)− α 0 −βS (t) 0 0

βI (t) −γ βS (t) 0 0
0 γ − (δ1 + δ2) 0 0
0 0 δ1 − (λ1 + κ1) 0
0 0 δ2 − (λ2 + κ2) 0

 .
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The terms dR(t)
dt , dD(t)

dt , and dP (t)
dt are not included because they decouple from the

system (1). In other words, the 8 × 8 matrix that includes dR(t)
dt , dD(t)

dt , and dP (t)
dt

has three entire columns of zeros. Then, by substituting the DFE x0 = (1, 0, 0, 0, 0)
into the Jacobian matrix, we obtain J(x0):

J(x0) =


−α 0 −β 0 0
0 −γ β 0 0
0 γ − (δ1 + δ2) 0 0
0 0 δ1 − (λ1 + κ1) 0
0 0 δ2 − (λ2 + κ2) 0

 .

The charateristic roots for J(x0) are:

ρ1 = 0,
ρ2 = −α,
ρ3 = − (λ1 + κ1) ,

ρ4 =
−(δ1+δ2+γ)−

√
[(δ1+δ2)−γ]2+4βγ

2 ,

ρ5 =
−(δ1+δ2+γ)+

√
[(δ1+δ2)−γ]2+4βγ

2 .

For values of R0 less than 1, specifically when R0 < 1, this implies that β < δ1+ δ2,
with all parameters being greater than zero. Under these conditions, the character-
istic roots, denoted as ρ2, ρ3, ρ4, and ρ5, exhibit negativity. Furthermore, when the
largest eigenvalue of the Jacobian matrix J is zero, this signifies, in biological terms,
a disease growth rate of zero (Wonham and Lewis, 2008). In accordance with the
Routh-Hurwitz criteria(?), we conclude that the Disease-Free Equilibrium (DFE)
is locally asymptotically stable under these circumstances.

2.3. Numerical Simulation
In this section, we validate our findings through a series of numerical simula-

tions. Initially, we curated data from the ten provinces in China where the disease
first emerged to conduct a thorough verification analysis. The challenge in numer-
ically simulating the model primarily revolves around parameter selection. Some
parameters were acquired through pathological research, while the remainder were
determined by fitting real-world data using the Levenberg-Marquardt algorithm
(Gavin, 2019). Subsequently, with the model parameters in hand, we applied the
classical fourth-order Runge-Kutta (RK4) algorithm to solve and analyze the non-
linear ordinary differential equations.

We utilized the COVID-19 database provided by the Center for Systems Sci-
ence and Engineering (CSSE) at Johns Hopkins University (Dong et al., 2020). The
dataset offers a reliable time series for confirmed cases, deaths, and recoveries. In
our model, nine parameters require estimation, all of which are initially set to values
within the [0,1] boundary range. Regarding the initial values for compartments, we
assume a small number of infected individuals at the beginning of the epidemic,
establishing initial conditions as follows: Q0 = 1, I0 = 10, E0 = 10, H0 = 10, and
P0 = 0. This configuration denotes an initial state with 1 quarantined individual,
10 infected individuals, 10 exposed individuals, 10 home-quarantined individuals,
and 0 protected individuals. The initial values for recoverers and fatalities are al-
ready known. The total population size is set to the average provincial population
of China, N = 30, 000, 000. The initial value for compartment S is calculated as the
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difference between the total population and the sum of the remaining seven com-
partments. Additionally, we make the assumption that the number of individuals
in hospital isolation equals the reported cases count minus the number of recoveries
and deaths. Below, we outline the algorithmic steps for parameter fitting and the
application of the RK4 method.

(a) Data Preparation: Begin by acquiring the necessary data. Data can be sourced
online or from local files. Follow this step with necessary data processing.

(b) Initialization: Set the initial values and define the start and end times for the
analysis. Develop the PtoODE function, responsible for computing the solution
of an Ordinary Differential Equation (ODE) using the model parameters. In
this context, the RK4 algorithm, either self-defined or the ode45 function, can
be employed to solve the ODE.

(c) Objective Function Creation: Modify the PtoODE function to return only
the ODE output for specific variables, such as Q, R, and D. Create an objective
optimization problem using the output from the modified PtoODE function and
compare it to the observed data. The objective function is typically formulated
as obj =

∑
(
∑

((myfcn − yvals)2)), where myfcn represents the output of
the modified PtoODE function, and yvals denotes the observed data. Solve
this problem based on the limited set of observations, typically employing the
lsqrsolve function to minimize the objective equation.

(d) Termination Criteria: Determine the termination conditions for the opti-
mization process. Two common methods are employed: firstly, termination oc-
curs when the objective function value is less than a predefined tolerance value.
Secondly, termination happens when the number of iterations exceeds a pre-
defined maximum limit. If the first method is used, it indicates that the fitted
parameter values have been obtained. Conversely, if the second method is in-
voked, it signifies a deviation between the initially selected parameter values and
the true values, necessitating a re-adjustment of the parameter initialization for
recalibration.

(e) Final Solution: Use the parameter values obtained in the fourth step to call
the PtoODE function once more to complete the solution of the differential
equations, thereby finalizing the parameter fitting process.

Having established the algorithm and initial conditions, the subsequent step
involves programming implementation. To execute parameter fitting, we employ
the lsqrsolve function. It’s essential to note that our parameter fitting relies on a
restricted set of observations, specifically the values associated with compartments
Q,R, and D. For validation purposes, we have selected ten Chinese provinces with
documented outbreaks. These provinces include Anhui, Beijing, Chongqing, Fujian,
Guangdong, Heilongjiang, Henan, Jiangsu, Jiangxi, and Sichuan. For programming
convenience, and to maintain uniform initial conditions, these ten cities were chosen
due to their respective outbreaks commencing on January 22. Consequently, we set
the start date as January 22, 2020, and designate the end date as April 22, 2020.
The results of the parameter fitting for China are depicted in the figure below.
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Fig. 2. The parameter fitting outcomes for Jiangsu province are displayed in the left im-
age, while the right image illustrates the parameter fitting results for Sichuan province.
Detailed parameter fitting results for the remaining eight Chinese provinces are available
in Appendix A. In this context, the term "simulate" refers to the model-generated results,
while the "real data" is sourced from Johns Hopkins University (Dong et al., 2020). These
visual representations provide a comprehensive overview of the parameter fitting perfor-
mance for various regions.

To evaluate the generalizability of our model beyond the context of COVID-19
outbreaks in China, we conducted an experiment using the United Kingdom (UK) as
an illustrative example (selected arbitrarily). For consistency in programming and to
maintain uniform initial conditions, we chose Bermuda, Gibraltar, Isle of Man, and
Jersey as additional test locations. These four regions were selected because their
respective outbreaks commenced simultaneously on March 18, 2020, and concluded
on June 18, 2020, covering a three-month period. Specifically, we set Q0 = 1, I0 =
10, E0 = 10, H0 = 10, P0 = 0. The average total population for each location in the
UK is N = 100, 000. The results of the parameter fitting for the UK are illustrated
in the Figure 3, highlighting the model’s adaptability to diverse regions.

Fig. 3. The left image depicts the parameter fitting outcomes for Bermuda, while the
right image displays the parameter fitting results for Jersey. In this context, "simulate"
signifies the results generated by the model, while the "real data" is sourced from Johns
Hopkins University (Dong et al., 2020). These visual representations provide a compara-
tive assessment of the model’s performance for different regions, reaffirming its versatility
and applicability beyond the Chinese context.
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Following the execution of the lsqrsolve function, we obtain the parameter values
derived from fitting for the ten Chinese provinces and the four locations within the
UK. The detailed parameter values are available in Appendix C.. As illustrated
in Figure 4, upon substituting the fitted parameters, we generate the results of
the SEIQHRDP model, providing insights into the disease dynamics in Jiangsu
province.

Fig. 4. The outcomes derived from the SEIQHRDP model for Jiangsu province. Each
curve represents the population count within specific compartments over time, with time
units divided into 24 segments per day.

Typically, in the early stages of an outbreak, susceptible individuals constitute
the majority of the province’s population. Despite the relatively low protection
rate, the sheer magnitude of the S compartment leads to a substantial popula-
tion within the P compartment. This explains the significant population within
compartments S and P . Consequently, we exclude compartments S and P from
analysis and focus our attention on the remaining compartments. The figure below
presents the results for Jiangsu province concerning these remaining compartments,
namely (E, I,Q,H,R,D).

Fig. 5. The numerical solution of the model for Jiangsu province. Within this context,
E, I,Q,H,R, and D denote the population counts within their respective compartments
across time intervals. Furthermore, QR, IR, RR, DR correspond to the daily real data per-
taining to compartments Q, I,R,D, respectively. We operate under the assumption that
the actual number of infected individuals is twice the number of confirmed cases.
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Upon comparing the outcomes presented in Appendix A, a consistent pattern
in the dynamics model becomes evident. During the initial phase of the epidemic,
the model underestimates the number of quarantined individuals compared to the
actual count. This discrepancy arises because, at the outset, medical resources are
readily available. However, the fitting parameter utilized in our model remains con-
stant, resulting in an estimate that represents the average number of quarantined
individuals during this period. Similarly, at the commencement of the epidemic, the
model’s estimate for the number of recovered individuals surpasses the actual value.
This discrepancy is attributed to the fixed recovery rate employed in our fitting,
which does not account for the dynamic nature of the actual recovery rate.

To explore the impact of crucial parameters on virus transmission, we conducted
separate analyses to assess the disparities between the number of infected individuals
and real-world data under varying parameter configurations.

Fig. 6. We conducted a comparison of the number of infected individuals in Jiangsu
province. Here, I signifies the count of infected individuals simulated by the model, while
IR denotes the actual number of reported infected individuals.

In Figure 6, the term IR can be denoted as ’ascertainment,’ which refers to the
process of discerning the characteristics, status, or events within a population or
study group. Associated with this concept is the noun ’ascertainment bias,’ signify-
ing a systematic deficiency in equally representing all categories of cases or individ-
uals that should ideally be included in a sample. This bias can stem from various
factors such as the medical environment or economic considerations (Porta, 2014).

Next, we proceed to analyze the influence of critical parameters within the model
on the number of infected individuals. The parameter values acquired through fitting
for Jiangsu province are as follows: α = 0.0869, β = 1, γ = 1, δ1 = 0.3418, δ2 =
0.000101, λ1 = 0.064392, λ2 = 0.0001, κ1 = 0.00057, κ2 = 0.0001.

The protection rate α = 0.0869 indicates that at the onset of the epidemic, the
population had a relatively low rate of protection, suggesting a lack of awareness
and preventive measures. The value of β = 1 implies that the product of the av-
erage number of contacts per person and the probability of disease transmission
between a susceptible and an infectious individual is equal to one. This signifies
a high transmission potential in Jiangsu province. The rate γ = 1 signifies that
the reciprocal of the virus’s incubation period is one, indicating a short incubation
period of one day at the outbreak’s initiation. Parameter values δ1 = 0.3418 and
δ2 = 0.000101 represent the isolation rates for infected individuals in hospital and
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at home, respectively. Notably, the isolation rate in hospitals is notably higher, sug-
gesting that people’s inclination towards home isolation is relatively limited. Values
λ1 = 0.064392 and λ2 = 0.0001 respectively signify the recovery rates for infected
individuals in hospital isolation and home isolation. Evidently, the recovery rate in
hospital isolation is higher due to the availability of better medical resources. Fi-
nally, rates κ1 = 0.00057 and κ2 = 0.0001 represent the mortality rates in hospital
and home isolation, respectively, with the mortality rate in hospitals being slightly
higher. This discrepancy arises because individuals isolated in hospitals typically
include severely ill patients, resulting in a location with both a high recovery rate
and mortality rate under normal circumstances.

We initiated our analysis by examining the influence of the protection rate on
the number of infections. Specifically, we varied the value of α (protection rate)
while maintaining the other parameter values constant. We considered parameter
α with values of 0.0569, 0.0869, and 0.1169, with α = 0.0869 serving as the initial
value. The resulting changes in the number of infected individuals are as follows:

Fig. 7. We observed changes in the number of infected individuals in Jiangsu province
across various protection rates. The remaining parameters were kept constant: β = 1, γ =
1, δ1 = 0.3418, δ2 = 0.000101, λ1 = 0.064392, λ2 = 0.0001, κ1 = 0.00057, κ2 = 0.0001.

Figure 7 illustrates that higher protection rates among the population lead to a
decrease in the peak number of infections and an earlier time to reach that peak.
This suggests that a higher protection rate can lead to an earlier end to the epidemic.
Initially, the estimated protection rate for susceptible individuals in the system was
0.0869. If strict government control measures are implemented at the outset, and
protection rates are increased to 0.1169, the peak number of infected individuals in
Jiangsu province would decrease from 116 to 68. Conversely, if protection measures
are neglected and the protection rate drops to 0.0569, the peak number of infections
in Jiangsu province would rise from 116 to 352, and the time to reach the peak would
be extended, prolonging the infectious disease process. These findings underscore the
importance of increasing protection rates, which can be achieved through measures
such as mask-wearing, maintaining safe distances in crowded places, government-
imposed controls.

We next investigate the impact of the parameter β on the number of infected
individuals. In this context, β represents the product of the average number of con-
tacts per person per hour, denoted as k, and the probability of disease transmission
in a contact between a susceptible and an infectious compartment, represented as
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β0. The value range of β0 lies within the interval [0, 1]. Assuming a consistent av-
erage number of contacts per person per unit of time, the probability of infection
is directly proportional to β. Consequently, we vary the value of β while keeping
other parameter values constant. Specifically, we consider β values of 0.97, 1, and
1.03, with the initial value being β = 1. The changes in the number of infected
individuals are as follows:

Fig. 8. The alterations in the count of infected individuals in Jiangsu province are displayed
in Figure 8. In this analysis, all parameters remain constant except for β, which is varied.
The parameter values held constant are as follows: α = 0.0869, γ = 1, δ1 = 0.3418, δ2 =
0.000101, λ1 = 0.064392, λ2 = 0.0001, κ1 = 0.00057, κ2 = 0.0001.

The observations in Figure 8 illustrate the impact of varying β, which represents
the average number of contacts per person per time multiplied by the probability
of disease transmission in a contact between a susceptible and an infectious com-
partment. Parameter β encompasses both the average contact frequency and infec-
tion probability for each contact. Assuming a constant average contact frequency,
changes in β directly influence the infection probability. Likewise, when keeping the
virus’s infection probability constant, variations in β reflect changes in the average
contact frequency per person per unit of time. Increasing β from 1 to 1.03 results
in an elevation of the peak number of infected individuals in Jiangsu province from
116 to 132. Conversely, decreasing β from 1 to 0.97 reduces the peak number of
infected individuals from 116 to 102. These findings emphasize the importance of
controlling both the average contact frequency and the virus’s inherent infection
probability to manage the epidemic effectively.

We proceeded to investigate the influence of isolation rates on the number of
infections. Specifically, we varied the values of δ1 (hospital isolation rate) and δ2
(home isolation rate), keeping all other parameter values constant. The parame-
ter δ1 was assigned values of 0.3118, 0.3418, and 0.3718, with an initial value of
δ1 = 0.3418. Additionally, the parameter δ2 was set to 0.01, 0.0001, and 0.02, with
an initial value of δ2 = 0.0001. The resulting changes in the number of infected
individuals are outlined below:
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Fig. 9. The image on the left illustrates the effect of δ1 (hospital isolation rate) on the
number of infected individuals in Jiangsu province. Meanwhile, the image on the right
demonstrates the impact of δ2 (home isolation rate) on the number of infected individuals
in Jiangsu province. The remaining parameters are held constant at the following values:
α = 0.0869, β = 1, γ = 1, λ1 = 0.064392, λ2 = 0.0001, κ1 = 0.00057, κ2 = 0.0001.

As illustrated in Figure 9, an increase in either δ1 (hospital isolation rate) or δ2
(home isolation rate) leads to a reduction in the epidemic’s peak. The spread of the
virus is contingent upon the isolation rate, and an elevated isolation rate corresponds
to a diminished viral spread. This substantiates our hypothesis that individuals
under hospital care or home isolation exhibit markedly lower transmission rates.
Thus, enhancing public awareness of isolation measures can effectively curb virus
propagation.

After scrutinizing the impact of crucial parameters on infection numbers in
Jiangsu province, we proceeded to investigate the correlation between these pa-
rameters and the basic reproductive number. By substituting the fitted parameters
(Appendix C) into formula (2), we derived the basic reproductive number for each
province, as presented in the table below:

Table 1. Basic Reproductive Numbers of Different Provinces in China

Province β δ1 δ2 R0

Anhui(CN) 1 0.323654 0.000106 3.088707685
Beijing(CN) 0.999999 0.227907 0.141219 2.709099332

Chongqing(CN) 1 0.357595 0.0001 2.795677882
Fujian(CN) 1 0.311163 0.056692 2.718462438

Guangdong(CN) 0.999997 0.307476 0.0001 3.251219211
Heilongjiang(CN) 1 0.200023 0.130433 3.026121481

Henan(CN) 0.999988 0.312456 0.000101 3.199378033
Jiangsu(CN) 1 0.341768 0.000101 2.92509704
Jiangxi(CN) 1 0.325987 0.0001 3.066666258
Sichuan(CN) 1 0.303308 0.050794 2.824045049
Bermuda(UK) 0.369 0.0912 0.0001 4.04162103
Gibraltar(UK) 1 0.1099 0.2713 2.623294858

Isle of Man(UK) 1 0.0466 0.1889 4.246284501
Jersey(UK) 1 0.1847 0.0092 5.157297576
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In accordance with Table 1, it is evident that the basic reproduction number (R0)
of COVID-19 in various provinces across China falls within the range of [2.7, 3.3].
In contrast, the basic reproduction number for COVID-19 in the United Kingdom
(UK) lies within the range of [2.6, 5.2], with an average R0 surpassing that of China.
This suggests a higher transmission potential of the virus in the UK compared
to China. As an illustration, consider Jiangsu province, with a basic reproductive
number standing at approximately 2.93. This implies that, without any intervention
in epidemic control and assuming no immunity, an infected individual in Jiangsu
province would infect nearly 3 people on average. The figure below illustrates the
relationship between β, δ1, δ2, and R0.

Fig. 10. The relationship between β, δ1, δ2, and R0 is depicted graphically, with a colorbar
on the right side of the figure. The intensity of yellow in the colorbar corresponds to higher
values of R0.

Figure 10 illustrates that the virus exhibits high contagiousness. Without any
isolation measures, the basic reproductive number can attain substantial values,
implying that, theoretically, a single infected individual can initiate the infection of
numerous susceptible individuals. With time, a large portion of the population could
become infected throughout the system. In cases where the virus has a relatively
high fatality rate, this scenario might even pose a threat to human survival.

3. Time series forecasting

The time series forecasting method, a form of quantitative forecasting, essen-
tially operates as a regression forecasting technique. Its fundamental principle in-
volves recognizing the continuity in the evolution of phenomena, utilizing historical
time series data for statistical analysis, and deducing the future trends of these
phenomena.

3.1. Forecasting model
Over time, the daily increase in the number of infected individuals contributes to

the creation of a comprehensive time series dataset. In this study, we opted for two
distinct models, namely the Autoregressive Integrated Moving Average (ARIMA)
and Bidirectional Long-Short Term Memory (Bi-LSTM), for prediction. The epi-
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demic SEIQHRDP dynamics model can predict the number of infections. But at
the same time, we have also observed that the epidemic may have multiple waves.
In order to assess the predictive capabilities of the SEIQHRDP model, we have
established SEIQHRDP1 for single-wave predictions using specified initial values.
Additionally, we have employed the model values at the corresponding time point of
the previous wave’s outbreak as the initial conditions to establish the SEIQHRDP2
model to accommodate the forecasting requirements for multiple waves of the epi-
demic.

ARIMA model The Autoregressive Integrated Moving Average (ARIMA) model,
also known as the differential integrated moving average autoregressive model, is a
prominent technique for time series prediction and has been applied in forecasting
virus outbreaks. This model operates on the premise of transforming non-stationary
time series into stationary time series by regressing the dependent variable solely on
its lag value, the present value, and the lag value of the random error component.
The ARIMA model is a combination of the AR(p) model and the MA(q) model.
After obtaining stationary data through d-order differencing, predictions can be
made. The ARIMA (p, d, q) model can be expressed as (Ho and Xie, 1998):

y
′

t = α0 +Σp
i=1αiy

′

t−i + εt +Σq
i=1βiεt−i.

In the ARIMA model, we have the expression y
′

t = ∆dyt = (1 − L)dyt (d-order
difference expression, where L is the lag operator). When d = 1, ∆yt = (1−L)yt =
yt−yt−1. Here, yt represents the current value, αi stands for the autocorrelation co-
efficient, βi represents the error coefficient, and ϵt denotes white noise. Constructing
an ARIMA model involves six main steps.

(a) Acquisition of Time Series Data: This step involves obtaining the time
series data, which includes handling missing values and checking for any singular
values.

(b) Preprocessing of Time Series: In this phase, several tasks are performed,
such as conducting stationarity tests and white noise tests. Simultaneously, it
is assessed whether the original data requires differencing.

(c) Model Identification: Identifying an appropriate model from known mod-
els that suits the given time series process is essential. This step also involves
determining if the data exhibits any seasonal trends, etc., and selecting the
corresponding ARIMA model through various data representations.

(d) Determination of Model Order: Once the model type is identified, deter-
mining its order is crucial. The selection of the model order can be guided by
criteria like AIC (Akaike Information Criterion) or BIC (Bayesian Information
Criterion).

(e) Parameter Estimation: In this step, the parameters of the model are esti-
mated using the maximum likelihood estimation method.

(f) Model Verification: The primary goal here is to verify the goodness-of-fit of
the model. If the initially derived model fails certain tests, it may need to be
refitted until it passes self-noise tests.

The Akaike Information Criterion (AIC), introduced by the Japanese statisti-
cian Akaike in 1973, serves as a minimum information criterion used in statistical
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modeling(Bozdogan, 1987). Generally, a larger value of the likelihood function in-
dicates a better fit for the model. The AIC criterion is mathematically expressed
as:

AIC = 2k − 2 ln (L) .

Where, k represents the number of parameters, and L denotes the likelihood func-
tion. The optimal model selection involves choosing the model with the lowest AIC
value. The essence of Akaike’s information criterion is to identify the model that
provides the best data explanation while minimizing the inclusion of free parame-
ters.

Bi-LSTM model The Long Short-Term Memory (LSTM) model is an artificial
neural network model utilized in artificial intelligence and deep learning. Due to its
distinctive architectural design, LSTM is well-suited for processing and forecasting
time series. By incorporating both historical and future data, the model training
process becomes more precise. At each time step, the input is concurrently fed into
two LSTM networks running in opposite directions, and the output is collectively
determined by the outputs of these two unidirectional LSTM networks. The network
architecture of the Bi-LSTM model is illustrated below (Shahid et al., 2020).

Fig. 11. Architecture of Bi-LSTM

As depicted in Figure 11, the Bi-LSTM architecture consists of a two-layer neural
network. The first layer takes the series input from the left, while the second layer
begins with the series input from the right, performing a reverse processing akin to
the first layer. Ultimately, the results from both layers are combined and processed
to produce the output.

3.2. Forecast comparison
In this study, we take Jiangsu province as a representative case. Following the

procedures delineated in Section 3.1, we conducted training for the ARIMA model.
By selecting the model with the lowest AIC value, we obtained the model parame-
ters: p = 2 and q = 1. To enforce stationarity, we applied a first-order difference to
the initial data, setting d = 1 accordingly.

Concerning the hyperparameter configuration for the Bi-LSTM model, we adopted
the following table as our hyperparameter settings:
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Table 2. Bi-LSTM hyperparameter setting table

Hyperparameter Values Parameter Description
batch_size 32 Size of the sample to be processed each time

epochs 500 Number of training times
units 32 Number of hidden neurons

activation relu Model activation function
dropout 0.1 Proportion of hidden layer neurons discarded
optimizer adam Model optimizer selection

loss RMSE Model loss function selection

In this section, we commence by conducting a comparative analysis of various
models on the training dataset. The parameter settings for the SEIQHRDP model
in Jiangsu province remain consistent with our previous values: α = 0.0869, β =
1, γ = 1, δ1 = 0.3418, δ2 = 0.000101, λ1 = 0.064392, λ2 = 0.0001, κ1 = 0.00057, κ2 =
0.0001.

Fig. 12. The SEIQHRDP model employs a single-wave prediction approach. This signifies
that its parameters remain constant throughout the specified timeframe. In the graphical
representation, the purple line illustrates the daily count of infected individuals predicted
by the ARIMA(2,1,1) model. Conversely, the black line corresponds to the daily predictions
of infected individuals generated by the Bi-LSTM model. Finally, the blue line represents
the actual number of infected individuals in Jiangsu province.

According to data from Worldometer (https://www.worldometers.info/coronavir
us/), it has come to our attention that numerous regions have experienced multiple
waves of epidemic outbreaks. In this scenario, our approach entails setting the initial
infected count back to zero and identifying the timing of the second wave. Subse-
quently, we employ the previously estimated parameters and initial values to invoke
the algorithm once more, allowing for predictions in a multi-wave context. In this
regard, we initialize each parameter with the values obtained from the prior model
fitting, setting them as follows: Q0 = 0; I0 = 0;E0 = 10;R0 = 632;H0 = 10;D0 = 6.
The time selection begins with the first three days of the second wave, starting on
March 18, 2020. The ensuing comparison highlights the prediction outcomes for the
multi-wave scenario, contrasting the results of Bi-LSTM and ARIMA(2,1,1). It is
worth noting that SEIQHRDP exhibits suboptimal predictive performance in the
context of multiple waves. However, due to its inherent complexity, the Bi-LSTM
model surpasses many alternatives in terms of fitting accuracy.
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Fig. 13. Forecasting the number of infected in Jiangsu province for two waves. In contrast,
the predictions generated by the other models remain unchanged

The obtained parameter results after fitting the second wave are as follows:
α = 0.1729, β = 0.9340, γ = 1, δ1 = 0.0706, δ2 = 0.1900, λ1 = 0.0078, λ2 =
0.0001, κ1 = 0.00032, κ2 = 0.0001. Comparing these parameters to the ones ob-
tained during the fitting of the first wave, a significant improvement is observed in
α. This suggests that as the epidemic progresses, the general public’s self-protection
awareness increases, naturally leading to a decrease in the average contact rate β.
The reduction in δ1 may be attributed to insufficient medical resources, prompting
mildly symptomatic patients to opt for home isolation, consequently increasing the
probability of δ2 for home isolation. As public awareness about the virus grows, the
mortality rate decreases compared to the initial stages of the outbreak. To assess
the quality and fitting effectiveness of the model’s prediction results, we adopted
the root mean square error (RMSE) and coefficient of determination (R2) as mea-
surement standards (Chicco et al., 2021). The table below presents the RMSE and
R2 values for the different models depicted in Figure 13.

Table 3. Here are the RMSE and R2 values for the predictive models. SEIQHRDP1
corresponds to a single-wave prediction, while SEIQHRDP2 denotes a two-wave prediction.

ARIMA(2,1,1) Bi-LSTM SEIQHRDP1 SEIQHRDP2
RMSE 10.94510873 5.254492166 15.43665338 15.65904331

R-squared 0.793147929 0.952326042 0.58854152 0.576600673

As shown in Table 3, the Bi-LSTM model exhibits the highest R2 value and
the lowest RMSE value, indicating its superior predictive capability compared to
other models in Jiangsu province. "SEIQHRDP1" signifies single-wave infectious
disease prediction, while "SEIQHRDP2" represents two waves of infectious disease
predictions. In theory, multi-wave prediction should yield a smaller RMSE value
than single-wave prediction. However, in this case, the second wave of the epidemic
in Jiangsu province has not yet fully developed, with only sporadic cases. If the
second wave intensifies or leads to a significant increase in infected individuals, the
multi-wave prediction results of the SEIQHRDP model are anticipated to improve.
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4. Conclusion

In our study on the spread of COVID-19, we initially developed and examined
the SEIQHRDP infectious disease dynamics model, incorporating various compart-
ments. We calculated the model’s basic reproduction number using the next gen-
eration matrix method and demonstrated its stability. Subsequently, we conducted
an analysis of the fluctuations in COVID-19 infection rates, considering three key
factors: the protection rate, virus infection rate, and isolation rate. Our findings in-
dicate that implementing increased self-protection measures (such as mask-wearing,
maintaining physical distancing, and government-imposed restrictions) at the onset
of the epidemic can effectively curb the spread of COVID-19. Additionally, it is
imperative to reduce contact rates, which entails implementing stricter government
controls.

Regarding infectious disease prediction, our approach commences with the fitting
of actual data to the SEIQHRDP model, thereby obtaining the relevant parameter
estimates. Subsequently, we conduct a comparative assessment of predictive per-
formance between the kinetic model, ARIMA, and Bi-LSTM models. Our findings
reveal that as the dataset for training expands, both the Bi-LSTM and ARIMA
models exhibit superior predictive capabilities when contrasted with the kinetic
model. Particularly, the neural network model, owing to its intricacy, demonstrates
enhanced predictive accuracy in forecasting the number of infected individuals com-
pared to the ARIMA model.

Appendix

1. Appendix A
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Fig. A1. The eight figures presented above illustrate the parameter fitting outcomes
for eight distinct provinces in China. In these figures, "simulate" corresponds to the
model-generated results, while the "real data" is sourced from Johns Hopkins Univer-
sity (Dong et al., 2020). For a comprehensive analysis of these fitting results, please refer
to Section 2.3 (Numerical Simulation).

Fig. A2. The four figures presented above depict the parameter fitting outcomes for
four locations in the UK, with "simulate" representing the model-generated results. The
dataset used is sourced from Johns Hopkins University (Dong et al., 2020). Comparing
these results with the fitting outcomes for the eight provinces in China (Appendix A), it
becomes evident that the SEIQHRDP model performs better in fitting the data from the
UK. This difference could potentially be attributed to variations in quarantine practices
between the two regions.
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