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Problem statement 

- To conduct a historical analysis of the origin and development of wavelets.  

- Describe the applications of Haar wavelets, including image processing and 

compression.  

- Consider the application of Haar wavelets to the solution of integral equations.  

- Consider the application of Spline-wavelets of the zero degree to the solution of the 

Fredholm integral equations. 

 

 

Abstract 

In the field of Numerical Calculation, many problems can be transformed into the 

Fredholm integral equation. The recent appearance of wavelets as a new 

computational tool in applied mathematics has given a new direction to the area of the 

numerical solution of Fredholm integral equations. In this paper we will have a good 

understanding of the history of wavelets. 

In chapter 2 we discuss the Compression Algorithm using wavelets  

In chapter 3 and 4 we fully introduce how to construct the Haar wavelet and the 

Daubeshi wavelets. In the 5-th chapter we conduct several methods using different 

wavelets to solve the Fredholm integral equation. We have done some numerical 

experiments and compare the results in the final chapter. 
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Introduction 

Currently, when solving various problems of processing numerical streams, much 

attention is paid to wavelets. There are a large number of textbooks and manuals on 

the application of wavelets to solving various problems [1]-[50]. This is signal 

processing, this is image processing, this is the solution of integral equations. There 

are monographs by famous authors: Chuya, Daubechies. Interesting information about 

wavelets is given in the manual M.N. Yudin Yu.A. Farkov D.M. Filatov "Introduction 

to wavelet analysis"(М.Н. Юдин Ю.А. Фарков Д.М. Филатов «Введение в 

 вейвлет-анализ»). Let's quote a few important and interesting fragments from this 

work. 

The English term “wavelet” (fr. “ondelette”) literally means “a small wave. The author 

of the term “wavelet" is Jean Morlaix. He invented and applied his famous “Morlaix 

wavelet” in connection with the tasks of seismic exploration. 

The term “splash” as an equivalent of the English “wavelet” was proposed to be used 

in 1991 by K. I. Oskolkov (К. И. Осколков). 

The first wavelet were built by Haar in 1909. In 1910 Haar proposed the first wavelet 

canonical orthogonal group in L2(R), the orthogonal Haar group. The process of work 

is as follows. The orthogonal Haar basis is constructed using the transformation and 

decomposition of a binary function as a parent wavelet.  Note that the advantages of 

the Haar wavelet transform include optimal resolution in the domain. There are some 

disadvantages: the Haar wavelet basis is not a continuous function, so the image 

resolution when using the Haar wavelet transform in the frequency domain is quite low. 

Let us mention some achievements in signal theory that came close to the design of 

bursts in the paper by E. I. Sakharova, A. A. Makashov, A. N. Kropotov "Using Haar 

wavelets for image processing and gluing" (Е. И. Сахарова, А. А. Макашов, А. Н. 

Кропотов «Использование вейвлетов Хаара для обработки и склейки 

изображений»). Haar splines were used for image processing.Fig. 1 shows Haar 

wavelets of the first level of decomposition. 
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Fig.1. Haar wavelets of the first level of decomposition 

With the help of the CRA in 1987, I. Daubechies constructed an infinite series of 

wavelets that possess the main property of the Haar system, namely orthogonality and 

a compact carrier. The works of V. L. Rvachev and V. A. Rvachev  

(В. Л. Рвачева и В. А. Рвачева) of 1971-1973 are directly related to the wavelets. 

These scientists have written out a wide class of differential equations with solutions 

with a compact carrier. As a special limiting case, it also included an equation that 

defines the Daubechies wavelets. The first articles by Russian authors on the theory of 

bursts were published in 1992. Several international conferences were held in the CIS 

(Moscow, 1995; Dnepropetrovsk, 1996; Dubna, 1998; St. Petersburg, 1999, 

Yekaterinburg, 2000, etc.), where various aspects of the theory of wavelet analysis 

were discussed among other problems of approximation theory.  

Currently, many theorems about compression and recovery using wavelets are known.  

Restoring functions with a limited width .The Kotelnikov-Shannon theorem (теорема 

Котельникова-Шеннона) gives a Fourier spectrum over the values of the function 

for discrete values of the argument. The wavelet associated with this theory is called 

the Shannon wavelet. In 1946, D. Gabor proposed a generalization of the Fourier 

method, intermediate between the standard Fourier transform and wavelet analysis.  

The mathematical system of axioms hidden behind the construction of wavelet 

analysis is currently called multiple-resolution (or multiple-scale) analysis 

(multiresolution analysis).  
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An explicit multiple-resolution analysis underlying the discrete wavelet transform was 

formulated in the fall of 1986 by S. Malla and I. Meyer. In 1936, Littlewood and 

Paley created the theory of grouping binary frequency components for Fourier series 

(that is, the 𝐿 − 𝑃 theory: the phase of the Fourier transform grouped by binary 

frequency components does not affect the size and shape of the function), which is the 

earliest source of multiscale analysis of the idea. 

From 1952 to 1962, Calderon and others extended 𝐿 − 𝑃 theory to large dimensions 

and created the theory of singular integral operators. 

In 1965, Calderon discovered the famous regeneration formula, which gave the 

atomic decomposition of H1 in parabolic space. In 1974, Koifman carried out the 

atomic decomposition of one-dimensional space and high-dimensional space. In 1976, 

using the theory for a uniform description of the Besov space, Pitre gave a set of bases 

of the Besov space. In 1981 Stromberg introduced the orthogonal basis of the Sobolev 

space, modified the orthogonal Haar basis and proved the existence of the wavelet 

function. 

In 1981, the French geophysicist Morlaix proposed a formal concept of wavelets. 

In 1985, the French mathematician Meyer proposed a condition for the admissibility 

of continuous wavelets and a formula for its recovery. In 1986, when Meyer proved 

that it is impossible to simultaneously have an orthogonal wavelet base having a 

certain regularity (i.e. smoothness) in the time-frequency domain, he accidentally 

discovered a smoothness function with a certain attenuation to construct a canonical 

orthogonal base (R) (i.e. Meyer base), thus proving the existence of an orthogonal 

wavelet- systems. 

From 1984 to 1988, Meyer, Battle and Lemari, respectively, gave wavelet basis 

functions with fast attenuation characteristics: Meyer wavelet, Battle-Lemari spline 

wavelet. 



8 
 

In 1987 Mallat introduced the idea of multiscale analysis in the field of computer 

vision into wavelet analysis, proposed the concept of analysis with multiple 

resolutions, unified the structure of all previous specific orthogonal wavelets, gave a 

general method for constructing orthogonal wavelet bases and proposed a fast wavelet 

transform (that is, Mallat's algorithm).  

In 1988, Daubechies constructed a smooth orthogonal wavelet basis (i.e., the 

Daubechy basis) with a finite set of branches based on the polynomial method. 

Chinese scientist Wang Jianzhong and Chui constructed a single orthogonal wavelet 

function based on a spline function and proposed a general method for constructing a 

scale function and a wavelet function with optimal localization performance. In 1988, 

Daubechies spoke at a symposium on wavelets organized by NSF/CBMS in the 

United States, which attracted the attention of mathematicians, physicists, engineers 

and entrepreneurs and led the development and practical application of the theory of 

wavelets. 

In 1992, Daubechies summarized and expanded the content of these lectures, 

published a classic work in the field of wavelets - "Ten Lectures on Wavelets". 

In March 1992, the international authoritative journal “IEEE Transactions on 

Information Theory” published a special issue "Wavelet analysis and its 

application", which comprehensively presents the previous theory and application of 

wavelet analysis and its development in various subject areas. Since then, the wavelet 

analysis has entered the stage of comprehensive application. In 1992, Kovacevich and 

Vetterli proposed the concept of biorthogonal wavelets. 

In 1992, Cohen, Daubechies, and Fauve constructed biorthogonal wavelets with 

properties such as symmetry, tight support, vanishing moment, and regularity. 

In 1992, Koifman and Vikerhauser proposed wavelet packet analysis (WP). 
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In 1992, Zou et al. proposed the theory of multiband wavelet (M-band Wavelet), 

which expanded people's research on wavelet transformation from "dual-band" 

situations to "multiband". 

In a multi-resolution analysis based on a "two-band" wavelet transform, the scale 

function corresponds to a low-pass filter, while the wavelet function corresponds to a 

high-pass filter. The "dual-band" wavelet transform decomposes the signal into 

different channels, and the bandwidth of these channels is the same relative to the 

logarithm of the scale function, so high-frequency channels have a wide bandwidth, 

while low-frequency channels have a narrow bandwidth. 

In 1993, Goodman et al. created a theoretical structure with multiple wavelets based 

on multiscale r-order functions and multi-resolution analysis. 

In 1994, Geronimo et al. proposed the multi-wave transform (MWT), which extended 

the single-scale wavelet transform to the multiscale wavelet transform. 

In 1991, Alpert used polynomials to construct the first multi-wavelet. Geronimo et al. 

used the fractal interpolation function to construct an orthogonal, symmetric, rigidly 

supported and approximating multi-wavelet GHM of order 2. 

In 1995, Sveldens (Свельденс) et al. proposed a new algorithm for constructing 

wavelets. This marks the beginning of the second generation of wavelets. 
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2 The compression algorithm using wavelets 

Wavelet decomposition is widely used in image compression. In applications, an 

uncompressed two-dimensional array has a very large size, and it requires high speed 

and a lot of memory to restore. In the process of processing large amounts of data or 

large volumes of images, or obtaining large-sized images, there may be a shortage of 

resources (for example, memory). To speed up the process of building video, 

compression of incoming video information is often used. Therefore, it is necessary to 

choose the appropriate compression and decompression algorithm. 

The purpose of the algorithms is to transform the image so that it is well compressed 

by classical algorithms. It is clear that long sequences of zeros are best compressed. 

To write 1000 zeros to memory, you can simply write the number 1000 (with a note 

that this is the number of zeros). Next, a decoding program works, which recognizes 

that zeros were meant and prints them. However, if there is suddenly one in the 

middle of the sequence of zeros, then it is not enough to set only the number 1000 

(zeros).  If we look at the photo, it is clear that slight fluctuations in brightness are 

invisible. Therefore, when encoding, you can change the image so that the 

compression ratio will immediately increase. At the same time, the errors introduced 

will be insignificant, since photos usually have such a feature: the brightness of 

neighboring pixels differs by a small amount, and contrast differences occupy only a 

small part of the image. 

Consider the first 2000 pairs of neighboring pixels and represent each pair on the 

graph as a point. In almost all real images, the dots line up along one straight line. The 

upper left and lower right corners of the image are almost always empty. 
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Fig.2. The previous scatter chart that has not been compressed (the left figure) and the 

scatter plot after being compressed(the right figure) 

And now let's look at the right part of Fig. 2, the points in which will be half-sums 

and half-differences. The half-differences are in a narrower range of values. 

The drawings from the dots on the two figures are the same. The difference is only in 

turning at an angle of 45 °. That is, the Haar transformation is simply an affine 

transformation — the rotation of points in such a way that they can be conveniently 

and compactly encoded. 

Let us be given the color intensities of the image in the first row of the intensity 

matrix. Take, for example, such, 254, 255, 256, 257, 257, 257, 258, 256. It can be 

seen that the neighboring numbers are quite close. To do this, we divide all the 

numbers into pairs and find half-sums and half-differences of values in each of them: 

(254, 255), (256, 257), (257, 257), (258, 256). 

These arrays can be transformed into the form of a "half-sum" of the average value of 

a and a "half-difference" of the average difference of d, namely： 

(𝒂, 𝒅) = (254.5, 0.5), (256.5, 0.5), (257, 0.0), (257, -1.0). 

Note: the first value in the pair = a - d, the second value in the pair = a + d. 

The resulting numbers can be rearranged by separating half-sums and half-

differences:254.5, 256.5, 257, 257; 0.5, 0.5, 0.0, -1.0.  
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The numbers in the second half of the sequence will usually be small. In real images, 

neighboring pixels rarely differ significantly from each other. If the value of one is 

large, then the other is large, i.e. the pixels are correlated. 

"half—sums" are the average values in pairs of pixels. That is, the values of "half—

sum" are a reduced copy of the original image. Reduced because the "half-sum" is 

two times smaller than the original pixels. Half-sums average brightness values, that 

is, they "filter out" random bursts of values. We can assume that this is some kind of 

frequency filter. Similarly, the differences "distinguish" inter-pixel "bursts" among the 

values and eliminate the constant component. That is, they "filter out" low 

frequencies. 

2.1 Compression Algorithm Decoding 

Let's take a closer look at Compression Algorithm Decoding matrix. 

𝑯 =

(

 
 
√𝟐

𝟐

√𝟐

𝟐

−
√𝟐

𝟐

√𝟐

𝟐 )

 
 
; 

It consists of two vector strings: (√𝟐
𝟐

√𝟐

𝟐
)and(−√𝟐

𝟐

√𝟐

𝟐
), Let's call them 𝒗𝟏 and 

𝒗𝟐. 

These vector strings have the following properties: 

1. Their lengths are equal to 1, that is 𝒗𝟏𝒗𝟏
𝑻 = 𝒗𝟐𝒗𝟐

𝑻 = 𝟏; 

  Note: multiplying a vector string by a transposed vector string is a scalar product. 

2. they are orthogonal, that is𝒗𝟏𝒗𝟐
𝑻 = 𝒗𝟐𝒗𝟏

𝑻 = 𝟎; 

the matrix is a pair of scalars or vectors that need to be connected. Such a 

 transformation is described by the matrices H: 
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𝑯 = (

𝟏

𝟐

𝟏

𝟐

−
𝟏

𝟐

𝟏

𝟐

) =
𝟏

𝟐
∗
𝟏

𝟐
− (−

𝟏

𝟐
) ∗
𝟏

𝟐
=
𝟏

𝟐
; 

2.2 Normalization 

With affine transformations, the area of the figure may change. The area change 

coefficient is equal to the determinant of the matrix. In order for the determinant to 

become equal to one, it is necessary to multiply each element of the matrix by √𝟐.  

𝐻 = 𝑑𝑒𝑡

(

 
 
√2

2

√2

2

−
√2

2

√2

2 )

 
 
= 1; 

On the angle of rotation (and hence on the "compressive capacity" of the 

transformation) it won't affect. In order to apply the transformation to the entire image 

we can describe the transformation with a matrix, but larger in size. The diagonal of 

this matrix will consist of the matrices H: 

𝐻 =

(

 
 
 
 
 
 
 

√2

2

√2

2

−
√2

2

√2

2

√2

2

√2

2

−
√2

2

√2

2
⋱)

 
 
 
 
 
 
 

; 

2.3 Inverse transformation 

As we know, if the determinant of a matrix is not zero, then there is an inverse matrix 

for it that "cancels" its action. If we find the inverse matrix for H, then decoding will 

consist simply in multiplying vectors with half-sums and half-differences by it. 
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𝐻−1 = 𝐻𝑇 =

(

 
 
√2

2

√2

2

−
√2

2

√2

2 )

 
 

𝑇

=

(

 
 
√2

2
−
√2

2

√2

2

√2

2 )

 
 
; 

 

"half—sums" are the average values in pairs of pixels. That is, the values of "half—

sum" are a reduced copy of the original image. Reduced because the "half-sum" is 

two times smaller than the original pixels. Half-sums average brightness values, that 

is, they "filter out" random bursts of values. We can assume that this is some kind of 

frequency filter. Similarly, the differences "distinguish" inter-pixel "bursts" among the 

values and eliminate the constant component. That is, they "filter out" low 

frequencies. 

 

 

 

 

3 Haar Wavelets 

As mentioned earlier, the Haar Wavelet is one of the first constructed and simplest 

wavelets. It is based on the construction of an orthogonal system of functions 

proposed by the Hungarian mathematician Alfred Haar in 1909. Thus, Haar wavelets 

are orthogonal, have a compact carrier, are well localized in space, but are not 

continuous and are not smooth. 

 

3.1 Building a Haar wavelet 

The parent (mother) wavelet function 𝜓(𝑥) with the zero value of the 

integral∫ 𝜓(𝑥)𝑑𝑥 = 0
+∞

−∞
 , which determines the details of the signal, is given as 

follows: 
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𝜓(𝑥) = {

1,   0 ≤ 𝑥 < 1/2
−1,   1/2 ≤ 𝑥 < 1
0, 𝑥 ∉ [0,1)

 

The scaling function 𝜑(𝑥) with a unit integral value∫ 𝜑(𝑥)𝑑𝑥 = 1
+∞

−∞
 that determines 

the rough approximation of the signal is constant: 

𝜑(𝑥) = {
1, 0 ≤ 𝑥 < 1
0, 𝑥 ∉ [0,1)

 

3.2 Haar transformation 

Let the numerical stream in question encode some image displayed on the computer 

screen. Suppose that the screen is a rectangular matrix of a large number of pixels - 

small rectangles applied to a transparent surface (glass) that glow under the influence 

of electrons falling on them, and for such a glow there is a fixed number of brightness 

gradations. For simplicity, we consider only monochrome images (black and white 

screen). 

Usually the pixels are numbered sequentially in rows, which are pre-arranged one 

after the other in a straight line; thus, the pixels acquire numbers 

𝟎, 𝟏, 𝟐, . . . , 𝑵 −  𝟏,𝒘𝒉𝒆𝒓𝒆 𝑵 =  𝑴 ×  𝑲, 

where M is the number of rows of the matrix under consideration, and K is the 

number of its columns. For certainty, we will assume N to be even; let N = 2L, where 

L is a natural number. Each pixel is assigned a certain brightness, expressed by a 

certain number; let's denote this number for the jth pixel by 𝐜𝐣 . Thus, the encoding of 

the image is performed using a numeric stream 

𝐜𝟎, 𝐜𝟏, 𝐜𝟐 𝐜𝟑, 𝐜𝟒, 𝐜𝟐𝐋−𝟏.(3.1) 
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The stream (3.1) can be transmitted over communication lines and, when fed to a 

computer (TV) screen, can be turned into the original image. If the original image is 

transmitted with great accuracy, then N is large, and the transmission of even one 

such image presents significant technical difficulties (in practice, it is required to 

transmit millions of such images at high speed). Therefore, the problem arises of 

reducing the number of transmitted numbers. Assuming that the neighboring numbers 

in (3.1) are close, one could suggest transmitting, for example, only numbers with odd 

numbers in (3.1), i.e. numbers: 

𝐜𝟏, 𝐜𝟑, 𝐜𝟓, 𝐜𝟕, . . . , 𝐜𝟐𝐋−𝟏 (3.2) 

Such a transformation is called thinning of the original numerical stream (the English 

term upsampling is rarefaction or sparse sampling). Instead of the stream (3.1), a 

twice shorter stream (3.2) is transmitted; the receiving device expands the received 

numerical stream (3.2) by duplicating the received values so that, as a result, the same 

numbers are found in places with an even and the next odd number. As a result, an 

image obtained using a numerical stream of the form of a number is reproduced on 

the screen: 

𝐜𝟏,   𝐜𝟏,   𝐜𝟑,   𝐜𝟑, 𝐜𝟓, 𝐜𝟓, 𝐜𝟕 𝐜𝟕, . . . , 𝐜𝟐𝐋−𝟏, 𝐜𝟐𝐋−𝟏 (3.3) 

Thus, the "restoration" (3.3) of the original stream (3.1) is performed with an error, 

and the information is lost irreversibly (i.e., without transmitting additional 

information, the receiving device, generally speaking, is not able to restore the stream 

(3.1)). Such a technique (the English equivalent of downsampling – thickening) is 

justified if the resulting image differs little from the original one. 

The disadvantages of the described approach are as follows: 

1) it is applicable only to a rather slowly changing flow,  

2) there is no consideration of the characteristics of the numerical flow (in some 

 parts, the numerical flow can change very slowly, and it would be possible to 
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 throw out many numbers in a row, and in other parts, with a rapid change in the 

 flow, any number ejections can significantly spoil the transmitted image),  

3) there are no means to clarify the transmitted stream. 

The idea of the wavelet approach is illustrated as follows. Two numerical streams are 

formed from the numerical stream (3.1) 

𝒂𝒋 = (𝒄𝟐𝒋 + 𝒄𝟐𝒋+𝟏) 𝟐⁄ ; 𝒃𝒋 = (𝒄𝟐𝒋 − 𝒄𝟐𝒋+𝟏) 𝟐⁄ ;𝒘𝒉𝒆𝒓𝒆 𝒋 = 𝟎, 𝟏, 𝟐, . . . , 𝑳 −  𝟏. (𝟑. 𝟒) 

It is not difficult to see that 

𝒄𝟐𝒋 = 𝒂𝒋 + 𝒃𝒋; 𝒄𝟐𝒋+𝟏 = 𝒂𝒋 − 𝒃𝒋;  𝒋 = 𝟎, 𝟏, 𝟐, . . . , 𝑳 −  𝟏. (𝟑. 𝟓) 

Thus, if the stream (3.1) is replaced by two streams (3.4), then after their 

transmission, it is possible to restore the original stream (3.1) using formulas (3.5) 

 The question arises, what is the benefit of replacing the stream (3.1) with two 

streams (3.4), if the total number of numbers in the streams (3.4) coincides with the 

number of numbers in (3.1). To answer this question, note that if the neighboring 

numbers in (3.1) are close, then the second of the streams in (2.4) consists of numbers 

close to zero, so it may turn out that the second stream is not needed at all and can be 

discarded. However, if some fragments of the first stream from (3.4) do not give 

sufficient accuracy, then we can use the corresponding fragments (with the same 

index ranges) of the second stream, and make calculations using the formulas (3.5); 

this will lead to an accurate restoration of the original stream (3.1) in the relevant 

sections (a similar transmission technology is used, in particular, when transmitting 

images on the Internet: first, the main contours of the image appear, allowing us to 

evaluate its content and interrupt the transmission if it is not necessary, and only then 

there is a clarification and final completion image transmission). 

We set a stream of numbers 

𝒂𝟎, 𝒂𝟏, 𝒂𝟐,𝒂𝟑, 𝒂𝟒, 𝒂𝟐𝑳−𝟏.                 (3.6) 
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Which is called “the main wave” and another stream of numbers 

𝒃𝟎, 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒, 𝒃𝟐𝑳−𝟏.             (3.7) 

As a wavelet (burst) flow. 

The resulting main stream (3.6) can be considered as compression of the original 

stream (3.1), and the stream (3.7) as an amendment to the main stream, allowing to 

restore the original stream. 

Thus, the Haar transform is a pair of filters that divide the signal into low—frequency 

and high-frequency components. To get the original signal, you just need to combine 

these components again. 

The theory of the algorithm for wavelet-compressed Haar images looks like this：The 

low-frequency component carries information about the general shape of the face, 

about smooth changes in brightness. High—frequency is noise and small details. 

When compressing, some of the high-frequency data can be discarded. Moreover, as 

we found out, it usually has smaller values, which means it is encoded more 

compactly. The compression ratio can be increased by applying the Haar transform 

repeatedly. After repeated application, high-frequency information will occupy 75%. 

The black areas correspond to low brightness, that is, values close to zero: 

1.They can be encoded with greater efficiency. 

2. They can be reset to zero. 

The JPEG compression algorithm implements a similar approach, only instead of the 

Haar transform, a discrete cosine transform is used.By changing the number of 

zeroing coefficients, you can adjust the compression ratio. 

Obviously, when the image contains long segments with the same brightness value, 

the Haar transform will give the best results. Thus, the Haar transformation eliminates 

the constant component. 
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4 The Daubeshi Wavelet 

In view of the situation when there are not so many areas of the same brightness in a 

real photo and linear variables need to be zeroed, the Belgian physicist and 

mathematician Ingrid Daubeshi proposed a wavelet function with hierarchical 

properties and named the wavelet after her name.  Daubeshi is also one of the 

creators of the wavelet theory. Daubeshi wavelets are mainly used in discrete wavelet 

transformation. They are the most commonly used wavelet transform. They are 

commonly used in digital signal analysis, signal compression, and noise removal. 

In general, discrete wavelet transformations are usually based on orthogonal wavelets, 

and Daubeshi wavelets are also orthogonal wavelets. Because it is easy to implement 

using fast wavelet transform (FWT).For finite-length wavelets, when applied to the 

fast wavelet transform (FWT), there will be two rows of real numbers: one is the 

coefficient of a high-pass filter called a wavelet filter (a wavelet filter, also known as 

a mother wavelet); the second is the low-pass filter coefficient.a transmission filter 

called a scaling filter (also known as father wavelet). 

4.1  Classification of Daubeshi wavelets 

The classification of Daubeshi wavelets is based on the value A of the vanishing 

moment (also the vanishing momentum number) (A is called tap). The smoothness of 

the scaling function and the wavelet function will increase as the value of the 

vanishing pulse (tap) increases: for example, when A=1, the Daubeshi wavelet is a 

Haar wavelet, and the correction function and the wavelet function are discontinuous. 

When A = 2, the correction function and the Daubeshi wavelet function are 

continuous functions that cannot be smoothly differentiated; when A = 3, the 

correction function and the wavelet function are already continuous and differentiable 

functions. 

We use the length N of the filter to describe the filter as DN. For example, a Dobezi 

wavelet with N = 2 is written as D2, a Daubeshi wavelet with N = 4 is written as D4, 
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and so on (N is an even number).In fact, the commonly used Daubeshi wavelets have 

sizes from D2 to D20.Another relevant way to describe it is db N, where N refers to 

the number of moments of disappearance. Thus, D4 and db2 are the same Daubeshi 

wavelet. 

Due to the complexity of Haar wavelets, when zeroing linear variables, the Daubeshi 

transform of the improved transformation will have more than two points. Hence, four 

values will be used for each value, and two will be moved each time. 

That is, if the original sequence — 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, … ,𝑵 − 𝟏,𝑵, then we will take a 

four-seater(𝟏, 𝟐, 𝟑, 𝟒), (𝟑, 𝟒, 𝟓, 𝟔) etc. The last four "bites the sequence by the tail": 

(𝑵 − 𝟏,𝑵, 𝟏, 𝟐).  

In the same way, try to create two filters: high-frequency and low-frequency. Replace 

each four with two digits. Since the values of the quadratures overlap, the number of 

values will not change after the transformation. 

In order to make it convenient to count the inverse matrix, we also require 

orthogonality of the transformation. Then the search for the inverse matrix is reduced 

to transposition. Let the brightness values in the four be equal . Then we will write the 

first filter in the form: 

𝒂 = 𝒄𝟏𝒙 + 𝒄𝟐𝒚 + 𝒄𝟑𝒛 + 𝒄𝟒𝒕; 

The four coefficients forming the vector-row of the transformation matrix are still 

unknown to us.In order for the vector-string of coefficients of the second filter to be 

orthogonal to the first one, we take the same coefficients but rearrange them and 

change the signs: 

𝒅 = 𝒄𝟒𝒙 − 𝒄𝟑𝒚 + 𝒄𝟐𝒛 − 𝒄𝟏𝒕; 

The transformation matrix will have the form:  
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(

 
 

𝒄𝟏     𝒄𝟐 𝒄𝟑     𝒄𝟒
𝒄𝟒 −𝒄𝟑 𝒄𝟐 −𝒄𝟏

𝒄𝟏     𝒄𝟐 𝒄𝟑     𝒄𝟒
𝒄𝟒 −𝒄𝟑 𝒄𝟐 −𝒄𝟏

⋱)

 
 

 

The orthogonality requirement is met for the first and second rows automatically. We 

will require that lines 1 and 3 are also orthogonal: 

𝒄𝟑𝒄𝟏 + 𝒄𝟒𝒄𝟐 = 𝟎; 

• Vectors must have unit length (otherwise the determinant will not be single):  

𝒄𝟏
𝟐 + 𝒄𝟐

𝟐+𝒄𝟑
𝟐+𝒄𝟒

𝟐 = 𝟏; 

• The transformation should reset the chain of identical values (for example, (1, 1, 1, 

1)):  

𝟏𝒄𝟒 − 𝟏𝒄𝟑 + 𝟏𝒄𝟐 − 𝟏𝒄𝟏 = 𝟎; 

• The transformation should reset the chain of linearly growing values (for example, 

(1, 2, 3, 4)): 

𝟏𝒄𝟒 − 𝟐𝒄𝟑 + 𝟑𝒄𝟐 − 𝟒𝒄𝟏 = 𝟎; 

We obtained 4 equations connecting the coefficients. Solving them, we get: 

𝒄𝟏 =
𝟏 + √𝟑

𝟒√𝟐
, 𝒄𝟐 =

𝟑 + √𝟑

𝟒√𝟐
, 𝒄𝟑 =

𝟑 − √𝟑

𝟒√𝟐
, 𝒄𝟒 =

𝟏 − √𝟑

𝟒√𝟐
. 

Substituting them into the matrix, we get the desired 

transformation. After applying it to photos, we will get more zeros and small 

coefficients, which will allow us to compress the image more. This transformation is 

called a Daubeshi wavelet D4. 
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5 Integral equation 

There are many applications of wavelet decomposition, and wavelet decomposition 

has broad prospects for application in numerical calculations. 

5.1  The solution of the Fredholm integral equation of the 2nd kind on the use of 

Haar wavelets 

.We will construct a calculation scheme, conduct numerical experiments on the use of 

wavelets (Haar wavelets) as a basic function, and solve the Fredholm integral 

equation of the second type using collocation. 

𝒙(𝒕) − 𝝀∫𝑲(𝒕, 𝝉)𝒙(𝝉) 𝒅𝝉 = 𝒇(𝒕), 𝒕

𝑩

𝑨

∈ (𝑨,𝑩). 

Basic concepts and definitions of the wavelet transform All Haar wavelets are a 

family of these basic function:  

𝝍𝒂𝒃 =
𝟏

√𝒂
𝝍(
𝒕 − 𝒂

𝒃
) 

it is obtained from a single function 𝝍(t), called the mother wavelet, by means of its 

time shifts (b) and extensions (scaling) along the time axis (a). The multiplier𝟏 √𝒂⁄  

guarantees the independence of the norm of these functions from the scaling 

parameter a. 

The wavelet transform of a signal is its representation in the form of a generalized 

series or Fourier integral over a system of basis functions. In this paper, the solution 

of the integral equation is carried out numerically, i.e. some discretization is carried 

out, so we will be interested only in the discrete wavelet transform. In addition, it 

requires less computing costs. The discretization is more convenient to perform 

through powers of two, namely: 𝒂 = 𝟐𝒎, 𝒃 = 𝒌 ∗ 𝟐𝒎,𝒎, 𝒌 ∈ 𝒁; 

With this in mind, the ratio  will take the form 
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𝝍𝒎𝒌 =
𝟏

√𝟐𝒎
𝝍(
𝒕 − 𝟐𝒎

𝒌 ∗ 𝟐𝒎
) =

𝟏

√𝟐𝒎
𝝍(𝟐−𝒎 ∗ 𝒕 − 𝒌). 

where m is called the scale parameter; k is the magnitude of the shift.  

Thus, the forward and inverse dyadic wavelet transformations of the continuous 

function 𝑓(𝑡) will take the form, respectively 

𝒄𝒎𝒌 = 〈𝒇(𝒕),𝝍𝒎𝒌(𝒕)〉 = ∫ 𝒇(𝒕)𝝍𝒎𝒌(𝒕)𝒅𝒕

∞

−∞

 

𝒇(𝒕) =∑𝒄𝒎𝒌𝝍𝒎𝒌(𝒕)

𝒎.𝒌

 

 〈∎,∎〉, is the sign of the scalar product in space 𝑳𝟐(R). 

Remark. It should be noted that this is not yet a discrete transformation, since the 

function f(t) is continuous. In addition, the formulas for the wavelet transform of 

discrete signals cannot be obtained by simply sampling the formulas of the dyadic 

wavelet transform for a continuous signal.  

To overcome these difficulties, as a rule, they switch to large-scale analysis, the 

essence of which is that when studying functions f (t), it is convenient to represent 

them as a sum approximating (rough)  and the detailing (refined) component  

𝒇 (𝒕)=𝑨𝒎(𝒕) + ∑ 𝑫𝒋(𝒕)
𝒎
𝒋=𝟏 . 

with their further detailing by the iterative method. 

Let there be a continuous function (signal)𝒇 (𝒕) ∈ 𝑽𝟎. We interpret the discrete signal 

as a sequence of coefficients ak obtained with scaling functions𝛗𝐨𝐤(𝐭) (also called 

paternal wavelets):  
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𝒇 (𝒕) = 𝑨𝟎(𝒕) =∑𝒂𝒐𝒌𝝋𝒐𝒌(𝒕)

𝒌

, 

where 𝒂𝒐𝒌 = 𝒂𝒌(𝒕) = 〈𝒇 (𝒕),𝝋𝒐𝒌〉; 

𝒂𝒐𝒌----approximation coefficients at the level m = 0 . According to the theory of 

large-scale analysis, the function f(t) is decomposed into two components belonging 

to subspaces 𝑽𝟏  and 𝑾𝟏, and 𝑽𝟎 = 𝑽𝟏 ⊕𝑾𝟏 : 

𝒇 (𝒕) = 𝑨𝟏(𝒕) + 𝑫𝟏(𝒕) =∑𝒂𝟏𝒌𝝋𝟏𝒌(𝒕) +∑𝒅𝟏𝒌𝝍𝟏𝒌(𝒕)

𝒌𝒌

. 

where the new sequences𝐚𝐨𝐤 and 𝐝𝟏𝐤  have half the length compared to 𝐚𝐨𝐤 . 

Further, the decomposition process can be continued by𝐀𝟏(𝐭) (subspaces 𝐕𝟐 and 

𝐖𝟐, where 𝐕𝟏 = 𝐕𝟐 ⊕𝐖𝟐 ). At the decomposition level m of the function 𝑓 (𝑡) we 

obtain, respectively  

𝒇 (𝒕) = 𝑨𝒎(𝒕) + 𝑫𝒎(𝒕) + ⋯+ 𝑫𝟏(𝒕). 

at the same time: 

𝒇(𝒕) = ∑ 𝒂𝒎𝒌𝝋𝒎𝒌(𝒕) + ∑ ∑ 𝒅𝒋𝒌𝝍𝒋𝒌(𝒕)𝒌
𝒎
𝒋=𝟏𝒌 ; 

Thus, at the minimum value of the scale m=0, the discrete sequence of its values fi 

(i=0, 1,...,N-1 ) of the function f (t) is taken as approximating coefficients, i.e. =f i 

(i=0, 1,...,N-1). The maximum value of the scale m is equal to and is determined by 

the number of samples of the signal (the number of samples is equal to 𝟐𝐧𝟎 ). The 

value of k for the current m varies in the range from zero to 𝟐𝐧𝟎−𝐦 − 𝟏. 

5.1.1 Computational scheme 

Consider the Fredholm integral equation of the second kind and fix some natural 

value 𝐧𝟎 . For the segment [A,B], we perform the partition 

𝐀 = 𝐭𝐨 < 𝐭𝐨 < ⋯ < 𝐭𝐨 = 𝐁 
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For the segment [A,B], we perform the partition in a constant step. 

As the parent wavelet, we choose the Haar wavelet and the corresponding scaling 

function:𝒉 = (𝑩 − 𝑨 𝑵⁄ ),𝒘𝒉𝒆𝒓𝒆 𝑵 = 𝟐𝒏𝟎; 

As the parent wavelet, we choose the Haar wavelet 𝝋(𝒕) and the corresponding 

scaling function 𝝍(𝒕) : 

𝝍(𝒙) = {

𝟏,   𝟎 ≤ 𝒙 < 𝟏/𝟐
−𝟏,   𝟏/𝟐 ≤ 𝒙 < 𝟏
𝟎, 𝒙 ∉ [𝟎, 𝟏)

 

𝝋(𝒙) = {
𝟏, 𝟎 ≤ 𝒙 < 𝟏
𝟎, 𝒙 ∉ [𝟎, 𝟏)

 

The family of basic wavelets 𝝋𝒎𝒌(𝒕)and the corresponding scaling functions𝝍𝒎𝒌(𝒕)  

is defined in such a way that the wavelets at the minimum value of the scale m = 0 

along the length of the carrier occupy a segment : ∆𝒌= [𝒕𝒌, 𝒕𝒌+𝟏], 𝒌 = 𝟎, 𝟏,⋯ ,𝑵 −

𝟏: 

𝝍𝒎𝒌 =
𝟏

√𝟐𝒎
𝝍(𝟐−𝒎 ∗

(𝒕 − 𝒂)

𝒉
− 𝒌), 

𝝋𝒎𝒌 =
𝟏

√𝟐𝒎
𝝋(𝟐−𝒎 ∗

(𝒕 − 𝒂)

𝒉
− 𝒌) ; 

Where m= 0,1,...,, and the value of the parameter k for the current m varies in the 

range from zero to 𝟐𝒏𝟎−𝒎 − 𝟏. 

After the system of orthogonal functions 𝝍𝒎𝒌(𝒕) and 𝝋𝒎𝒌(𝒕) are constructed, we 

determine the current value of the scale m equal to some fixed value M (0 <M <=𝒏𝟎) 

and we will look for a solution to the equation in the form 

𝒙∗(𝒕) = ∑ 𝒂𝒎𝒌𝝋𝒎𝒌(𝒕)

𝟐𝒏𝟎−𝒎−𝟏

𝒌=𝟎

+∑ ∑ 𝒅𝒋𝒌𝝍𝒋𝒌(𝒕)

𝟐𝒏𝟎−𝒋−𝟏

𝒌=𝟎

𝑴

𝒋=𝟏

 

Substituting the ratio into the equation , we have: 
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𝑨 = ∑ 𝒂𝒎𝒌 [𝝋𝒎𝒌(𝒕) − 𝝀∫𝑲(𝒕, 𝝉)𝝋𝑴𝒌(𝝉)𝒅𝝉

𝑩

𝑨

]

𝟐𝒏𝟎−𝒎−𝟏

𝒌=𝟎

 

𝑩 =∑ ∑ 𝒅𝒋𝒌 [𝝍𝒋𝒌(𝒕) − 𝝀∫𝑲(𝒕, 𝝉)𝝍𝒋𝒌(𝝉)𝒅𝝉

𝑩

𝑨

]

𝟐𝒏𝟎−𝒋−𝟏

𝒌=𝟎

𝑴

𝒋=𝟏

 

𝑨 + 𝑩 = 𝒇 (𝒕); 

The basic wavelet𝝍𝒋𝒌(𝒕) constructed according to the relation (and similarly the 

scaling function𝝋𝒎𝒌(𝒕)), for fixed m, k is nonzero on the segment [𝑨 + 𝒉 ∗ 𝟐𝒎 ∗

𝒌, 𝑨 + 𝒉 ∗ 𝟐𝒎 ∗ (𝒌 + 𝟏)],𝒎 = 𝟏, 𝟐. . . 𝒏𝟎,𝒌 = 𝟎, 𝟏,⋯ , 𝟐𝒏𝟎−𝒎 − 𝟏; 

 which also simplifies the relationship Further define the collocation points 𝐭 �̅� as the 

midpoints of the segments∆𝒊= [𝒕𝒊, 𝒕𝒊+𝟏] ,i=0, 1,..., n-1; 

and we get the final approximating SLA:  

𝑨 = ∑ 𝒂𝒎𝒌 [𝝋𝒎𝒌(𝒕�̅�) − 𝝀 ∫ 𝑲(𝒕�̅�, 𝝉)𝝋𝑴𝒌(𝝉)𝒅𝝉

𝑨+𝒉∗𝟐𝒎∗(𝒌+𝟏)

𝑨+𝒉∗𝟐𝒎∗𝒌

]

𝟐𝒏𝟎−𝑴−𝟏

𝒌=𝟎

, 

𝑩 =∑ ∑ 𝒅𝒋𝒌 [𝝍𝒋𝒌(𝒕�̅�) − 𝝀 ∫ 𝑲(𝒕�̅�, 𝝉)𝝍𝒋𝒌(𝝉)𝒅𝝉

𝑨+𝒉∗𝟐𝒎∗(𝒌+𝟏)

𝑨+𝒉∗𝟐𝒎∗𝒌

]

𝟐𝒏𝟎−𝒋−𝟏

𝒌=𝟎

𝑴

𝒋=𝟏

, 

𝑨 + 𝑩 = 𝒇 (𝒕�̅�), 

𝒊 = 𝟎, 𝟏,⋯ ,𝑵 − 𝟏; 

After the coefficients are found from the system of linear algebraic 

equations𝒂𝒎𝒌 ,𝒌 = 𝟎, 𝟏,⋯ , 𝟐𝒏𝟎−𝒎 − 𝟏  and 𝒅𝒋𝒌,𝒋 = 𝟏, 𝟐. . . 𝑴,𝒌 =

𝟎, 𝟏,⋯ , 𝟐𝒏𝟎−𝒋 − 𝟏,, an approximate solution of x*(t ) is constructed.  
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5.2  The solution of the Fredholm integral equation of the 2nd kind  using 

spline approximations of the zero and first degrees 

 

 

While  Haar wavelets have been in use since 1909,  the results on the solution of the 

Volterra integral equations were published earlier than 1909.  

Wavelets have only recently been used to solve integral equations. For example, the 

authors of paper [1] presented the results of using the Haar wavelets to solve the 

Fredholm integral equation of the second kind. 

In this paper, we will consider the construction of spline approximations of the degree 

zero. In addition, we will compare the results of using spline approximations of the zero 

and first degrees for solving the Fredholm integral equation of the second kind. Next, 

we will compare the results of applying spline approximations of the zero and first 

degrees for solving the Fredholm integral equation of the first kind. The results obtained 

using these splines are compared with the results of applying the Haar wavelets. 

 

 

5.2.1 Theories About Splines 

Solomon Grigoryevich Mikhlin, who was a professor at St. Petersburg University 

developed a coherent theory for constructing Hermitian-type local splines in his work 

“Variational grid approximation”. The main idea was that the approximation is 

constructed separately on each grid interval as a sum of products of basis splines of 

non-zero level, and the values of the function (or derivatives of the function up to order 

α ) at grid nodes. In order to construct the basis spline in the very beginning we set the 

support of the basis spline. After that, the basis splines are found by solving a system 

of linear algebraic equations. This system is called the approximation relations. The 

simplest approximations are obtained  only when using the values of the function at 

the grid nodes and basis splines of the zero level. Let the grid nodes {𝑥𝑗} be given on 

the interval [𝑎, 𝑏] . 

When using only the values of the function at the grid nodes, we construct the 
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approximation in the form 

�̃�(𝑥) =∑𝑢𝑗
𝑗

𝜔𝑗(𝑥) ,   𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] 

 

Thus, we find the basis functions by solving the system of equations 

𝑢(𝑥) − �̃�(𝑥) = 0, 𝑢 = 1,… , 𝑥𝑚. 

 

The number 𝑚 + 1  is called the order of approximation.  

 

5.2.2 Splines of the zero degree 

 

Consider the case of using only one basis function. We set the support of the basis spline 

as follows: 𝑠𝑢𝑝𝑝 𝜔𝑗 = [𝑥𝑗 , 𝑥𝑗+1] .  

In this simplest case, we have the following expression for the basis function 

𝜔𝑗(𝑥) = 1, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1) 

𝜔𝑗(𝑥) = 0, 𝑥 ∉ [𝑥𝑗 , 𝑥𝑗+1) 

The graph of this basis function 𝜔𝑗  when [𝑥𝑗 , 𝑥𝑗+1) = [0,1) is shown in Fig.3. 

 

Fig.3. The plot of the basis function 𝜔𝑗 

 

 

Obviously, the approximation using these splines is discontinuous. Let the grid of nodes 

be an equidistant set of nodes, hence it is such that  ℎ = 𝑥𝑗+1 − 𝑥𝑗 . 

In this case, it is easy to obtain an estimate of the approximation error on the 

interval    [𝑥𝑗 , 𝑥𝑗+1):  
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|𝑢(𝑥) − �̃�(𝑥)| ≤ ℎ

sup
[𝑥𝑗,𝑥𝑗+1)

|𝑢′|

1!
 

 

Note that these splines can be used, for example, to approximate the Runge function 

1

1+25 𝑥2
. 

Fig. 4 shows a plot of the Runge function approximation error for 20 interpolation nodes 

on the interval [-1,1]. Fig. 5 shows a plot of the Runge function approximation error for 

64 interpolation nodes on the interval [-1,1]. Fig. 6 shows a plot of the Runge function 

approximation error for 256 interpolation nodes on the interval [-1,1]. 

 

Fig.4. The plot of Runge function approximation error at 20 interpolation nodes 

 

Fig.5. The plot of Runge function approximation error at 64 interpolation nodes 

 

 

Fig.6. The plot of Runge function approximation error at 256 interpolation nodes 

 

5.2.3 Splines of the first degree 

Now we set the support of the basis spline as follows: 𝑠𝑢𝑝𝑝 𝜔𝑗 = [𝑥𝑗−1, 𝑥𝑗+1] . 
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On the interval [𝑥𝑗 , 𝑥𝑗+1]  we approximate the function 𝑢 by the following expression: 

�̃�(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] 

where 

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
          𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑗−1
          𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

and 𝜔𝑗+1  is expressed as: 

𝜔𝑗+1(𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗
      𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] 

The plot of a piecewise linear function 𝜔𝑗 is given in the Fig. 7. 

 

Fig.7. The plot of the basis function 𝜔𝑗 

 

Obviously, the approximation using these splines is continuous. Let the grid nodes {𝑥𝑗} 

be given on the interval [𝑎, 𝑏] , ℎ = 𝑥𝑗+1 − 𝑥𝑗 ,  

In the case of the splines of the first degree, it is easy to obtain an estimate of the 

approximation error on the interval    [𝑥𝑗 , 𝑥𝑗+1]:  

|𝑢(𝑥) − �̃�(𝑥)| ≤ ℎ2
max

[𝑥𝑗,𝑥𝑗+1]
|𝑢′′|

8
 

Thus we call these splines as splines of the second order of approximation. 

 

j-1 j j+1 
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5.2.4 The solution of the integral equation with the splines of the zero degree 

 

Consider the solution of the Fredholm integral equation of the second kind 

𝑢(𝑥) − ∫K(𝑥, 𝑠)𝑢(𝑠) 𝑑𝑠 = 𝑓(𝑥)

β

α

 

On the interval [𝛼, 𝛽] we construct the set of nodes 𝑥𝑘 = 𝑎 + 𝑘ℎ,ℎ =
β−α

𝑛
, suppose 

𝑛 is an integer. 

We have 

∫K(x, s)u(s) ds

β

α

=∑ ∫ K(x, s)u(s) ds

xk+1

xk

n−1

k=0

 

On each interval [xk, xk+1]  we replace 𝑢 with �̃�, 

�̃� = 𝑢𝑘𝜔𝑘(𝑥) 

where 𝜔𝑘(𝑥) is the local spline of degree zero. 

Now we have 

𝑢(𝑥) −∑ ∫ K(𝑥, 𝑠)𝑢𝑘ωk(s) 𝑑𝑠 = 𝑓(𝑥)

xk+1

xk

n−1

k=0

 

From here we get 

𝑢(𝑥) −∑𝑢𝑘𝐴𝑘(𝑥)

n−1

k=1

= f(x), 

where 

𝐴𝑘(𝑥) = ∫ K(x, s)ωk(s) ds

xk+1

xk

. 

Finally, we take 𝑥𝑖instead of x and solve the system of equations 

𝑢𝑖 −∑𝑢𝑘�̃�𝑘(𝑥𝑖)

𝑛−1

𝑘=0

= 𝑓(𝑥𝑖), 𝑖 = 0,1,2,⋯ , 𝑛 − 1 . 
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6 Numerical experiment and conclusion 

As an example, we choose the model integral equation from (Е.С.Тарасова, 

Д.ВТарасов, Метод вейвлет-коллокаций решения интегрального уравнения 

Фредгольма второго рода, Актуальные вопросы естествознания, Вестник 

Пензенского государственного университета, 3(7) 2014) 

𝑢(𝑥) −
1

10
∫(𝑥2 + 𝑡)

𝜋
2

0

𝑢(𝑡)𝑑𝑡 = sin(𝑥) −
1

10
(𝑥2 + 1), 

𝑥 ∈ [0,
𝜋

2
] 

Using the collocation method and Haar wavelets to solve this equation to obtain the 

numerical results. The results are shown in the last column of the Table 1 ( The program 

was developed in C++). 

 In particular, at 𝑁 = 32 the norm of absolute error in 𝐿2was 0.012. At 𝑁 = 128 

the norm of absolute error in 𝐿2was 0.0031.  

Table 1 also shows the errors in solving the model integral equation obtained using 

polynomial splines of zero and first degree. 

Table 1. Errors in 𝐿2 

N Spl L_1 Spl L_0 Vev haar 

16 0.059 0.020 0.025 

32 0.029 0.010 0.012 

128 0.0073 0.0025 0.0031 

 

Conclusion 1. Minimal polynomial splines of the 0-th and first degree are quite suitable 

for solving the Fredholm integral equation of the second kind. The quality of the 

resulting solution is no worse than when using Haar wavelets. 

To calculate the approximate solution by polynomial splines of zero and first degree, a 

program was developed in MAPLE. The beginning of the program looks like this 

K:=unapply(-(X^2+t)/10,X,t): 

U:=unapply(sin(X),X): 
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F:=unapply(U(X)+int(K(X,t)*U(t),t=0..Pi/2.0),X); 

 

n:=32;h:=Pi/2./(n): 

To solve the system of equations, we use the solve library program. The Gaussian 

method can be used. We build graphs using POINTPLOT. 

The error of the solution when 𝑛 = 16 is given in Fig.6. 

 

 

Fig.8. The error of the solution ( ) 

At 32 nodes, the graph of the solution error has the form shown in Fig 7. Fig.8. shows 

the plot of the error of the solution by splines of zero degree at 128 nodes. 

 

 

Fig.9. The plot of the error of the solution by splines of zero degree at 32 nodes 

( ) 

 := F X  ( )sin X
1

10
X2 0.100000000000000

 := h 0.09817477042468103870195759

 := h 0.04908738521234051935097880
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Fig.10. The plot of the error of the solution by splines of zero degree at 128 nodes 

(h：= ) 

Now Fig.11. shows of the error of the solution by splines of the first degree at 16 nodes 

(h：= )  

 

Fig.11. The plot of the error of the solution by splines of the first degree at 16 nodes 

 

Fig.12. The plot of the solution error with the first-degree splines at 32 nodes .The 

maximum deviation in absolute value is  

Table 2. Errors in the first-degree spline and the zero-degree splines 

N Spl 0 Spl 1 

16 0.09817 0.0003883 

32 0.04909 0.00008665 

128 0.01227 0.00001268 

 

Example 2. As a model example, we choose the model integral equation of the first 

kind  

0.01227184630308512983774470

0.000388254498415

0.000088656955789
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−
1

10
∫(𝑥2 + 𝑡)

𝜋
2

0

𝑢(𝑡)𝑑𝑡 = sin(𝑥) −
1

10
(𝑥2 + 1), 

𝑥 ∈ [0,
𝜋

2
] 

We get the system of equations  

𝑀𝑈 = 𝐹 

after applying splines of the zero degree:

 

The error of the solution given in Fig.11. 

 

 

Fig.11. The plot of the solution error with the first-degree splines at 16 nodes without 

regularization 

 

After Tikhonov’s regularization 

(𝑀∗𝑀 + 𝛼𝐸)𝑈 = 𝑀∗𝐹 

 

 we get the error solution given in Fig.12. 

 

 

Fig.12. The plot of the solution error with the first-degree splines at 16 nodes after 

Tikhonov’s regularization 

 

 

 

S u
0

-40.67219289 u
1

28.44169962 u
2

48.55073318 u
3

14.22325369, , , ,{ := 

u
4

-22.12511724 u
5

-24.85845202 u
6

5.546501340 u
7

-14.41728649, , , ,

u
8

-12.11465808 u
9

1.029858521 u
10

1.008970221 u
11

24.92387115, , , ,

u
12

-2.105225132 u
13

2.347598532 u
14

-0.230258026, , }



36 
 

Conclusion 3.  

Minimal polynomial splines of the first degree is quite suitable for solving the Fredholm 

integral equation of the first kind after Tikhonov’s regularization, the first degree spline 

has a good performance. 

 

 

Conclusion 

This paper provides a historical analysis of the origin and development of wavelets.  

The applications of Haar wavelets, including image processing and compression is 

described. 

The application of Haar wavelets to the solution of integral equations is considered.  

The application of Spline-wavelets of the zero degree to the solution of the Fredholm 

integral equations are considered.  

Spline-wavelets and Haar wavelets can be used for solving the integral equations. 
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