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Abstract

COVID-19 pandemic was caused by SARS-CoV-2, a novel virus from the fam-
ily Coronaviridae, firstly identified in Wuhan, China in 2019. COVID-19 remains 
one of the main challenges of healthcare, given growing numbers of people 
with COVID-19 in anamnesis, and given the long-lasting consequences and 
complications of this disease. Cancer is one of the most common diseases in 
the world, thus a big part of the population is affected by both COVID-19 and 
cancer. In this succinct review we refer to several recent works expressing a 
view that COVID-19 might be oncogenic, and describe molecular mechanisms 
of such phenomena. Next, we describe several tumorigenic changes in the tis-
sue microenvironment as COVID-19 sequelae, which can potentially affect can-
cer pathogenesis and response of a tumor to therapy. 3D cell culture models 
are a “golden standard” of in vitro studies in translational oncology. To the best 
of our knowledge, 3D cell culture systems to study tumor behavior in the tis-
sue microenvironment affected by COVID-19 have not been developed yet. We 
propose several actionable steps which can be taken to modify existing 3D cell 
culture models accordingly, to address the needs of translational oncology in 
the COVID-19 post-pandemic times. 
Keywords: COVID-19, SARS-CoV-2, 3D cell culture models, tumor microenviron-
ment, malignant tumors, translational medicine, personalized medicine, drug 
development, oncology.

Introduction

As of December 2022, COVID-19 caused ~6.6 million cumulative deaths around 
the world (https://covid19.who.int). The number of people who recovered from 
acute SARS-CoV-2 or were asymptomatic is significantly higher. Additionally, 
apart from the initial acute form of SARS-CoV-2, there are reports about reinfec-
tions (Bowe, Xie, and Al-Aly, 2022), prolonged duration of SARS-CoV-2 infec-
tion in immunocompromised individuals (Jacobs, 2021), and persistent infection 
in asymptomatic carriers (Ma et al., 2022). Many survivors of COVID-19 are also 
affected by so-called Long COVID or post-COVID-19 syndrome (PCS), a patho-
logical condition affecting multiple organs and tissues long time after the initial 
infection, and significantly changing molecular and biomechanical characteris-
tics of the affected tissue. Thus, the health toll of COVID-19 does not end after the 
virus is eliminated from the body of the patient. It is estimated that up to 40 % of 
people infected with SARS-CoV-2 suffer from PCS for weeks to months after the 
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acute phase (Bornstein et al., 2022). As cancer is one of 
the most common diseases worldwide, especially in the 
elderly (the group most susceptible to COVID-19), it is 
expected that a substantial part of the population will be 
affected by both COVID-19 and cancer. Compromised 
Tumor Microenvironment (TME) is one of the key fac-
tors affecting cancer pathogenesis in patients with histo-
ry of COVID-19 (Malkani and Rashid, 2021). Therefore, 
it is of significant importance for translational oncology 
to develop human cell culture models closely resembling 
characteristics of the TME affected by COVID-19, as it 
is expected that pathogenesis of many diseases including 
cancer might be different among COVID-19 survivors, 
and only such models will have high level of precision 
in in vitro development of specific therapeutic and diag-
nostic approaches to cancer consequent to SARS-CoV-2 
infection, or cancer as a comorbidity of COVID-19.

Cancer as a potential risk factor for 
COVID-19

It has been demonstrated in multiple studies that cancer 
patients are more susceptible to COVID-19 (Sun, Ched, 
and Viboud, 2020). The key host cell proteins used by 
SARS-CoV-2 to enter the cell are Angiotensin-convert-
ing enzyme 2 (ACE2) and Transmembrane serine prote-
ase 2 (TMPRSS2), although other biomolecules such as 
Cathepsin L, furin, CD26 and others can contribute to 
its entry, and ACE2‑independent mechanisms of entry 
also exist (Shen et al., 2022). As one of ACE2-indepen-
dent mechanisms of infection, it has been demonstrated 
recently that SARS-CoV-2 can bind to Receptor of Ad-
vanced Glycation End Products (RAGE) on monocytes, 
thus interfering with immunity and inflammation sig-
naling cascades (Angioni et al., 2022). 

Levels of ACE2 are elevated in some cancers, for 
example in lung cancer (Ahmad et al., 2021; Xiao et al., 
2022) and Glioblastoma Multiforme (Chen et al., 2022), 
but it is also worth recalling that ACE-2 levels are ex-
tremely high in normal lung tissue as well (Hikmet et al., 
2020), so the significance of the role of elevated ACE-2 is 
not entirely clear. Its level of expression can be elevated 
by inflammation, for example via interferon-dependent 
mechanisms (Scagnolari et al., 2021), and inflammation 
is one of the bona fide cancer hallmarks. Interestingly, 
ACE2 is upregulated both in lungs of lung cancer pa-
tients (and also in some other types of cancer), as well as 
in case of COVID-19 infection (Gottschalk, Knox, and 
Roy, 2021). This might be one of the factors contributing 
to higher susceptibility of cancer patients to COVID-19. 
Although, given that several isoforms of ACE2 exist, 
with different functions and abilities to bind SARS-
CoV-2, including truncated isoform dACE2 which is el-
evated in many cancers and capable of inhibiting SARS-
CoV-2 infection (Onabajo, 2021), levels of ACE2 in can-

cer tissues should be investigated more thoroughly. Also, 
changes in ACE2 and TMPRSS2 levels on the surface of 
the cells might be translation-independent and, for ex-
ample, executed through the endosomal trafficking (Yao 
et al., 2022), thus changes in mRNA levels of ACE2 and 
TMPRSS2 (or absence of such changes) do not neces-
sarily correspond to functional alterations of their levels 
on the cell membrane, thus complicating the assessment 
of their role and COVID-19 and cancer comorbidity 
pathogenesis. Moreover, binding to SARS-CoV-2 leads 
to ACE2 endocytosis, thus eventually leading to its re-
duced cell surface expression (Bartolome et al., 2021). 
Nevertheless, altered levels of the biomolecules used by 
SARS-CoV2 to enter the host cell may render cancer pa-
tients more susceptible to COVID-19. 

Additionally, common pathology shared between 
cancer patients and COVID-19 patients is the alteration 
in immune response. Thus, another possible explanation 
of higher susceptibility of cancer patients to infection 
with SARS-CoV-2 is their “weakened immune system”. 
Overall, in many cases and for a variety of reasons pa-
tients with cancers of different types of etiology may be 
more susceptible to COVID-19. It is also suggested that 
COVID-19 may contribute to cancer susceptibility, pro-
gression, tumor recurrence, and resistance to chemo-
therapy (Zalpoor et al., 2022). However, it still remains 
rather an open question whether COVID-19 makes an 
individual more susceptible to cancer, or if the history 
of having recovered from COVID-19 can affect tumor 
growth and response to the therapy. 

COVID-19 as a potential risk factor for 
cancer — molecular mechanisms of 
predisposition

Strong lines of evidence support the point of view that 
SARS-CoV-2 can act as an oncogene (comprehensively 
reviewed in several recent reviews (Gómez-Carballa, 
Martinón-Torres, and Salas, 2022; Goubran et al., 2022; 
Spirina et al., 2022; etc.)), although some works suggest 
it may also act as a tumor suppressor (Li  Y.-S., 2022). 
Nevertheless, it is clear that the interplay between SARS-
CoV-2 infection (including Long COVID and its mo-
lecular sequela) and malignancy exists, and it has been 
hypothesized that SARS-CoV-2 is a lung cancer risk fac-
tor (Khiali, Rezagholizadeh, and Entezari-Maleki, 2022)

There is a multitude of COVID-19-associated 
changes with oncogenic potential, such as metabolic 
changes, immunity changes, altered endocrine func-
tions, and others (Umesh, Pranay, Pandey, and Gupta, 
2022).

Notably, it is expected that some of the changes 
might be very long-lasting, similarly to the changes 
caused by SARS-CoV-1 (Wu Q. et al., 2017). Here, we 
will describe some of them in more detail, but concise-
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ly, as a number of comprehensive reviews on this topic 
(referenced above) have been published recently. Firstly, 
COVID-19 causes elevation of pro-inflammatory cyto-
kines (IL-6, TNF-α, IFN- γ, and others), hence creat-
ing “pro-inflammatory cytokine milieu”, inflamed niche 
critical for tumorigenesis (Coussens and Werb, 2002; 
Mojic, Takeda, and Hayakawa, 2017). It should be noted 
that a cytokine storm is observed only in some cases of 
COVID-19 disease and is not mandatory in the progres-
sion of the disease. However, modifications of the three-
dimensional cell model of solid tumors should take into 
account both the presence and absence of this symptom. 
Moreover, COVID-19 leads to a functional exhaustion 
of CD8+ T cell sub-population (such exhaustion is one 
of the characteristics of a chronic viral infection), thus 
compromising immune defense, including anticancer 
immune response. Secondly, SARS-CoV-2 causes DNA 
damage (Victor et al., 2021, 2022), affects chromatin 
organization (Iourov and Vorsanova, 2022), and com-
promises genome stability maintenance in the host cell 
(Pánico, Ostrovsky-Wegman, and Salazar, 2022; Victor 
et al., 2022), which may contribute to cancerogenesis, 
as genome instability is one of the hallmarks of cancer. 
Apart from DNA damage, COVID-19 leads to changes 
in DNA methylation, including altered DNA methyla-
tion profile of the several loci involved in oncogenesis, 
for example oncogenic gene AHNAK2 (upregulated in 
lung cancer), and many gamma-delta T-lymphocyte 
genes involved in cancer immunity response (Wang et 
al., 2022). Although pathogenesis of the PCS remains 
unclear, it has been hypothesized that at least partially 
it might be caused by the presence of persisting SARS-
CoV-2 virus (Jacobs, 2021), or by molecular changes 
similar to those caused by prolonged and persistent viral 
infections. It is estimated that malignant tumors induced 
by viral infection account for at least 10 % of all cases of 
cancer in humans (Gaglia and Munger, 2018). Hitherto, 
the list of tumor-associated viruses comprises Epstein-
Barr Virus (EBV), Human Herpesvirus type 8 (HHV-8), 
Merkel Cell Polyomavirus (MCPV), Hepatitis B Virus 
(HBV), Hepatitis C Virus (HCV), T-lymphotropic Virus 
type 1 (HTLV1), and others, as well as several poten-
tially oncogenic viruses, and this list is expected to grow 
(Di Paolo, 2014; Morales-Sánchez and Fuentes-Panana, 
2014). Their oncogenic potential is at least partially as-
sociated with their persistent nature (Di Paolo, 2014). 
There is an interplay between SARS-CoV-2 and several 
oncogenic viruses. SARS-CoV-2 proteins can trigger lyt-
ic reactivation of oncogenic viruses (Chen et al., 2021). 
For example, reactivation of Epstein — Barr virus (EBV), 
cytomegalovirus (CMV), or herpes simplex virus (HSV) 
has been reported in case of severe COVID-19 (Balc’h 
et al., 2020; Lehner et al., 2020; Naendrup et al., 2022). 
Notably, reactivation of such viruses can lead to im-
mune dysregulation and elevated expression of IL-6 (as 

demonstrated for EBV, in particular), thus reinforcing  
COVID-19-induced “cytokine storm” and, at the same 
time, contributing to pro-inflammatory tumorigenic 
niche. Likewise, viruses known to be oncogenic can facil-
itate SARS-CoV-2 infection. For example, human CMV 
infection is associated with increased SARS-CoV-2 su-
perinfection via upregulating levels of ACE2 (Perera 
et al., 2022). Moreover, some endogenous retroviruses 
(ERVs) are associated with cancer and can be induced 
by SARS-CoV-2, for example ERV type W (Charvet et 
al., 2022; Sahu, Singh, and Rai, 2022; Simula et al., 2022). 
Similarly to some oncogenic viruses, SARS-CoV-2 de-
creases antioxidant gene expression and induces aber-
rant oxidative stress in the host cell (Zhang et al., 2022). 
It has also been suggested that SARS-CoV-2 acts as a 
“molecular sponge” binding several microRNAs (miR-
NAs) in the host cell and thus disrupting their interac-
tion with targets (Li  C., 2022). Among these miRNAs 
two, hsa-miR-302c-5p and hsa-miR-16–5p, are involved 
in ACE2-regulating networks and also in cancerogen-
esis (Lin et al., 2008; Yang et al., 2022). SARS-CoV-2 can 
also affect cancer cell phenotype plasticity and stemness. 
Cancer cells can change their phenotype and obtain 
stem cell-like characteristics via the epithelial to mes-
enchymal transition (EMT), which in turn facilitates 
metastasis. It has been shown recently that M protein of 
SARS-CoV-2 triggers elevation of the genes regulating 
EMT in breast cancer cells (Nguyen, 2022).

Recently, several publications, as well as reviews 
summarizing these publications, have suggested, sup-
ported by medical histories, that COVID-19 can cause 
hematologic malignancies in predisposed individuals. 
This is an important observation that requires close at-
tention in the COVID-19 outbreak study (Costa et al., 
2022), especially by practicing oncologists, but it is be-
yond the scope of this review, which focuses exclusively 
on three-dimensional cellular models of solid tumors.

COVID-19-associated changes in tissue 
microenvironment

There are several COVID-19-associated alterations not 
only within the host cell, as discussed above, but also in 
the tissue microenvironment, including tumor microen-
vironment (TME) (Malkani and Rashid, 2021). Briefly, 
TME comprises extracellular matrix (ECM) of particu-
lar architecture, molecular composition and mechanical 
characteristics (such as rigidity, porosity, density, etc.), 
various secreted signaling molecules (extracellular ves-
icles, cytokines, circulating cell-free non-coding RNAs, 
etc.), immune and stromal cells, as well as adjacent non-
tumorous tissue, all contributing to cancer pathogenesis. 

One of the very prominent long-term consequences 
of COVID-19 is pulmonary fibrosis (Amin et al., 2022; 
George, Wells, and Jenkins, 2020), a known risk factor 
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for lung cancer (Li et al., 2014), the pathological con-
dition significantly changing lung tissue as a TME due 
to the excessive extracellular ECM accumulation in the 
lungs and alteration of its characteristics. Molecular and 
mechanical changes of ECM due to lung fibrosis are well 
studied (Burgstaller et al., 2017); speaking somewhat 
simplistically, ECM becomes stiffer, which in turn can 
affect the behavior of cancer cells in such a microenvi-
ronment. 

Aforementioned, not only lungs TME, but also 
TME in other organs is expected to be modified by  
COVID-19, thus contributing to the tumorigenesis 
and metastasis of different nosological entities in vari-
ous tissues and organs. For example, SARS-CoV-2 spike 
S1  subunit induces activation of the brain microglial 
cells (Frank et al., 2022) — tissue-resident non-migrato-
ry macrophages of CNS — the innate immunity cells of 
the brain, involved in the etiology and pathogenesis of 
primary brain tumors (PBTs), including glioma (Wu Q. 
et al., 2017) and accounting to approximately 30 % of 
PBTs mass (Graeber, Scheithauer, and Kreutzberg, 2002; 
Hohmann et al., 2022). 

It should be noted that several key differences exist 
not only between non-cancerous tissue microenviron-
ment and TME, but also between TME and premalig-
nant microenvironment (PME). For example, there 
are significant differences in the immune cell cytokine 
secretome in PME and TME in head and neck cancer 
(Johnson, De Costa, and Young, 2014). Any changes in 
tissue microenvironment shifting it from “normal” to 
“pre-malignant” state, or from “pre-malignant” to “ma-
lignant” are considered tumorigenic here. There are per-
sistent alterations in the profile of immune cells in the 
lung tissue microenvironment affected by SARS-CoV-2 
infection (Cheon et al., 2021). A shift to the pro-inflam-
matory cytokine milieu during COVID-19 is a charac-
teristic of a pre-malignant niche compared to non-can-
cerous tissue. 

Apart from this, as for the impact of COVID-19 on 
the tissue microenvironment, there are several reports 
about the increased formation of advanced glycation 
end products (AGEs) within ECM (thus, altering levels 
of RAGE — receptor recognising AGEs and also capable 
of binding SARS-CoV-2 — and triggering pro-inflam-
matory state) (Allen et al., 2022), microvascular damage 
resulting in local hypoxia (Østergaard, 2021), alterations 
of immune checkpoint molecules axis, such as expres-
sion of Programmed Death-1 (PD-1) and Programmed 
Death-Ligand 1 (PD-L1) (Loretelli et al., 2021; Malkani 
and Rashid, 2021), and ECM remodeling (Breisnes, 
Leeming, Fazleen, and Sand, 2022; Guizani et al., 2021; 
Gutman et al., 2022; Ramírez-Martínez et al., 2022; 
Shirvaliloo, 2021). Another molecular characteristic of 
the tissue affected by COVID-19 is an increased produc-
tion of AGEs. This may potentially lead to an increased 

level of cross-links within the ECM, thus resulting in its 
increased stiffness, similarly to the contribution of AGEs 
to ECM stiffness in diabetes (Sant et al., 2020). 

The cell secretome (extracellular vesicles (EV’s) 
and their molecular cargo, cytokines, and other regu-
latory biomolecules) within the tissue microenviron-
ment changes during and, supposedly, long after the 
acute phase of SARS-CoV-2 infection (Mao et al., 2021). 
Alarmingly, there are reports about the involvement of 
SARS-CoV-2  S protein in amyloidogenesis and prion-
like pathological processes (Nystrom and Hammar-
strom, 2022), while amyloidosis is known to be onco-
genic (Hemminki, Försti, Sundquist, and Sundquist, 
2014).

Blood-gas barrier (BGB, also known as alveolar-
capillary barrier, ACB) in the lungs might be compro-
mised by COVID-19, thus leading to changes in mi-
crocirculation. Importantly for cancer metastasis to the 
brain, SARS-CoV-2 spike protein subunits also affect 
Blood-brain barrier (BBB) function, as has been dem-
onstrated in two-dimensional (2D) static and tri-dimen-
sional (3D) microfluidic in-vitro models (Buzhdygan 
et al., 2020), and it remains to be investigated whether 
these changes remain after virus is eliminated from the 
body. One should not also exclude a possibility that 
SARS-CoV-2 proteins, even partially degraded, may stay 
in the system for a longer period of time, although it is 
still just a speculative assumption, yet to be tested.

Lastly, not only cancer-associated alteration of mi-
crobiome can make cancer patients more susceptible to 
COVID-19, but, vice versa, SARS-CoV-2 can also con-
tribute to oncogenesis via microbiome alteration in the 
tissue microenvironment, as has been demonstrated 
for gut microbiota and colorectal cancer (Mozaffari et 
al., 2022; Odun-Ayo and Reddy, 2022), and pancre-
atic cancer progression (Zhang, Liu, and Yang, 2022).  
COVID-19 also has an impact on the oral microbiome 
(Naqvi et al., 2022), therefore it is plausible to suggest that 
it may subsequently have an impact on malignant neo-
plasms of the oral cavity. For example, COVID‑19-as-
sociated Fusobacterium nucleatum (F. nucleatum) bac-
teremia has been reported (Wolff et al., 2021), while it 
is known that F. nucleatum can be cancer-promoting 
(reviewed in (McIlvanna et al., 2021)). Not surprisingly, 
COVID-19 alters microbiomes of the respiratory tract 
too (Merenstein, Bushman, and Collman, 2022).

3D cell culture models resembling TME 
affected by COVID-19 — an unmet need in 
translational oncology 

Mounting evidence demonstrates that 3D cell culture 
systems more closely mimic conditions in vivo compared 
to conventional adherent 2D systems (Kapałczyńska 
et al., 2018), and therefore they are a more appropriate 
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tool to study cancer cell behavior in the “ecosystem” of 
the TME, especially in case of anti-cancer drug screen-
ing and selection of personalized anti-cancer therapies 
(comprehensively reviewed in (Law et al., 2021)).

There are many 3D cell culture models developed 
and applied as a tool to study SARS-CoV-2 infection, 
described in detail in several recent publications (Basu, 
Pamreddy, Singh, and Sharma, 2022; Chen et al., 2022; de 
Melo et al., 2021; Rosa et al., 2021; Zhang et al., 2021). 
There are also similar systems developed for the needs of 
translational oncology (Law et al., 2021). At the same time, 
there are no such models reflecting COVID-19-caused 
changes in the TME for the study of cancer as COVID-19 
sequelae or COVID-19 comorbidity. Here we emphasize 
that, as highlighted previously, TME of individuals with 
COVID-19 in anamnesis, and especially individuals with 
PCS, is most likely different compared to TME of those 
who were not infected by SARS-CoV-2. These changes 
might affect cancer pathogenesis in individuals affected 
by COVID-19, in particular their response to the therapy, 
or, perhaps, a profile of disease biomarkers. This should 
be taken into consideration when selecting personalized 
anti-cancer therapy for such individuals or re-defining 
guidelines for therapy (chemo-, immuno-, radiotherapy) 
regimen in post-COVID-19 patients. 

Below we briefly outline the COVID-19-induced 
changes in the characteristics of the TME (Figure), 
which might be tumorigenic or affect the response of the 
tumor to the therapy, and propose how these changes 
should be incorporated into 3D cell culture systems for 
the needs of translational oncology. 

One of the most commonly used 3D cell culture 
models is multicellular tumor spheroids (MCTS), in-

cluding those with elements of ECM. MCTS can be ho-
motypic (composed of cells of one type) or heterotypic 
(composed of cells of different types, for example tumor 
and stromal cells), thus if SARS-CoV-2 infection leads 
to changes in immune system sub-populations in post-
COVID-19 individuals, as has been demonstrated at 
least for peripheral immune system (Ryan et al., 2022), 
the corresponding changes should be reflected in the 
composition of heterotypic MCTS including cancer cells 
and immune cells. 

Next, numerous studies, including studies utilizing 
MCTS systems, demonstrated that hypoxia can lead to 
resistance to chemotherapy (Däster et al., 2017). Cell 
culture models mimicking hypoxia and normoxia, in-
cluding perfusion systems allowing to model intermit-
tent hypoxia or tissue-specific O2 levels (physioxia) are 
technically feasible and physiologically relevant (Pav-
lacky and Polak, 2020). There are several 3D culture cell 
models which recapitulate lung fibrosis (comprehen-
sively reviewed in (Kiener et al., 2021)). In particular, 
there are animal models of COVID-19-induced lung 
fibrosis (Dinnon et al., 2022); they might be a valuable 
source of decellularized ECM for 3D cell culture mod-
els in translational oncology, given that such ECM will 
have many key features similar to those of ECM from 
post-COVID-19 human lungs. One of such features is 
the elevated levels of AGEs within ECM, reported for 
individuals recovered from COVID-19. This should not 
be ignored when developing 3D models for anti-cancer 
drug screening, as elevated AGEs may lead to resis-
tance of the cancer cells to particular chemotherapeutic 
agents, as has been demonstrated for conditions other 
than COVID-19. Another approach to recapitulate for-
mation of AGEs within the ECM is its in vitro chemical 
modification by glycating agents. 

As previously stated, cell secretome, in particular 
EVs and their molecular cargo, changes during and after 
COVID-19. One of the possible approaches to exam-
ine their role in tumorigenesis would be addition of the 
EVs isolated from the individuals who recovered from  
COVID-19 to the aforementioned 3D cell culture systems. 

Next, SARS-CoV-2 causes host’s microbiome al-
teration in a variety of cancers, such as colorectal cancer 
(Mozaffari et al., 2022; Odun-Ayo and Reddy, 2022), and 
pancreatic cancer (Zhang, Liu, and Yang, 2022). Not sur-
prisingly, there are also alterations of the lung microbi-
ome caused by COVID-19 (Merenstein, Bushman, and 
Collman, 2022), and their role in cancerogenesis is yet 
to be investigated. Assuming that they may alter the tu-
mor’s response to the therapy, elements of such altered 
microbiomes should be incorporated into the multi-
component 3D cell culture systems too. 

Changes in the BBB and BGB (BBB/BGB dysfunc-
tion), including those induced by COVID-19, are critical 
modulators of the metastasis. There are diverse types of 

Figure. Impact of COVID-19 on tumor microenvironment. SARS-CoV-2 
can lead to the tissue/tumor microenvironmental changes shown in 
the figure. Changes may be experienced by extracellular matrix (ECM) 
(stiffness), tissue fibrosis; AGE/RAGE; blood-brain and blood-gas bar-
riers (BBB/BGB); microbiome; tissue microcirculation/oxygenation; 
secretome (cytokines, extracellular vesicles (EV), etc.); immune cell 
subpopulations; metabolome.
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microfluidic models of BBB (Augustine et al., 2021), used 
as a platform in oncology research. It has been shown that 
S protein of SARS-CoV-2 alters barrier function in 3D 
microfluidic models of the BBB (Buzhdygan et al., 2020). 
Similar approach will allow us to evaluate the role of the 
COVID-19 sequelae in metastasis to the brain, or in the 
anti-cancer drug permeability of the BBB.

Finally, the biomarkers for cancer patients with  
COVID-19 in anamnesis, in particular predictive bio-
markers which help to optimize therapy decisions and 
choose personalized, tailored therapy approaches, are 
yet to be found and validated. Using the 3D cell culture 
models described above might be instrumental for dis-
covery of such biomarkers.

Conclusion

The concept of a bi-directional relationship between 
COVID-19 and cancer suggests that cancer alters sus-
ceptibility of the individual to COVID-19 and vice ver-
sa. Moreover, molecular and mechanical changes of 
the tissue and organs, caused by COVID-19, may cause 
long-lasting alterations in pre-malignant and malig-
nant tissue microenvironment, thus affecting cancer 
cell’s response to the therapy. Thus, creating 3D cell cul-
ture models accurately recapitulating molecular changes 
within the TME which are caused by COVID-19 will lay 
a foundation for the much needed research of cancer as a  
COVID-19 sequela, allowing to develop tailored therapy. 
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