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The article considers the Navier —Stokes evolutionary differential system used in the
mathematical description of the evolutionary processes of transportation of various types
of liquids through network or main pipelines. The Navier — Stokes system is considered in
Sobolev spaces, the elements of which are functions with carriers on n-dimensional network-
like domains. These domains are a totality of a finite number of mutually non-intersecting
subdomains connected to each other by parts of the surfaces of their boundaries like a
graph (in applications these are the places of branching of pipelines). Two main questions
of analysis are discussed: the weak solvability of the initial boundary value problem of
the Navier —Stokes system and the optimal control of this system. The main method of
research of weak solutions is the semidigitization of the input system by a time variable,
that is the reduction of a differential system to a differential-difference system, and using
a priori estimates for weak solutions of boundary value problems to prove the theorem of
the existence of a solution of the input differential system. For the optimal control problem
a minimizing functional (the penalty function) and a family of the approximate functional
with parameters that characterize the “penalty” for failure to fulfill the equations of state of
the system are introduced. At the same time, a special Hilbert space is created, the elements
of which are pairs of functions that describe the state of the system and controlling actions.
The convergence of the sequence of such functions to the optimal state of the system and
its corresponding optimal control is proved. The latter essentially widen the possibilities
of analysis of stationary and nonstationary network-like processes of hydrodynamics and
optimal control of these processesd.

Keywords: evolutionary Navier — Stokes system, network-like domain, solvability, optimal
control, penalty functions.

1. Introduction. The method of penalty functions is considered, which is enough
effectively used in solving the problems of optimization of stationary problems of an applied
character [1, 2]. For the analysis of nonstationary problems, this method takes into account
information about the equation of state [3, and bibliography there], the basis for the use
of which was the need for computing problems. The method of the penalty functions is
set out on the example of the problems of optimal starting and distributed control of the
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Navier — Stokes system, which are meet in practice, but it is a general method and is
used with minor changes in other optimal control problems [4-8]. In the first case, control
determines the initial condition of the system, in the second case, control determines the
density of external forces of actions on the system; in both cases, the physical problem is
to obtain a given vector velocity field at a given final point in time.

2. Designations and concepts. In Euclidean space R™ n > 2, consider the bounded
domaln 3, consisting of subdomains $; (I € Iy = {1,2, ..., N}), pairwise connected by M,

M < N - 1 the nodal places w; (j € Iy = {1,27 MY S = SUd, where

UJ “= ijanddlmdlz (£1),wjNwy =0 (G #7), SiNw; = 0.

Such a domaln w111 be called network-like [9, 10]. The subdomains &, in the nodal places
have common boundaries in the form of adjoining surfaces. For fixed j € Ip; the nodal
place w; is determined by a set of the adjoining subdomains. Namely, each fixed the nodal
place w; (j € Ip) is adjoined by m; the domains Sy, I, € In(j) = {l1,127...,lmj} C Iy,
t = 1,m;, its parts of the boundaries 09, Which are de&gnated through S;, C 9y,

(meas S;, > 0), ¢t = 1,m;, in addition S; = S;; = U S; .. Thus, the nodal place wj is the

branch locus of the domain <& and is characterlzed by the surface S;. The boundary 0 of

the domain  is defined by the ratio 03 = U INTAN U S;. Everywhere below we consider
=1

the adjoining surfaces S; s smooth, subdomains 3; — star shaped relative to some ball, its
own for each 3.

Note that the domain & is structured by analogy with the geometric graph-tree [9].
Each subdomain &) at a particular nodal place may be adjoin to one or rather other
subdomains, while having one or more adjoining surfaces (for a graph, analogues of nodal
places are nodes of conjugation with other edges). Note also that any subdomain of domain
S can have a network-like structure with its own number of nodal places.

Further, the issues of formation and analysis of a mathematical model of transporta-
tion of viscous liquids through complexly structured carriers, which in the applications are
different types of pipeline networks, are considered.

For functions Y (z,t) = {y1(z,t),y2(x, 1), ..., yn(z, 1)}, z,t € S = S x (0,T) (x =
{z1, 2, ...,2n}, T < 00) consider the system

—VAY + z Vg = f — gradp, (1)

divy =0 ( g}j:o). (2)

Determine the conditions for adjoining the subdomains of the domain <& by the ratios
Y(Ia t)|I€Sj LC@SLI = Y(I, t)|I€Sj LCO, L= 27 mj, (3)
8Ymtd+zf8Y(mt)d =0, (4)

i
on the surfaces S, Sj, (t = 1,m;) of all nodal place w;, j =1,M, and at t € (0,T"). Here
vectors n; and n;, are external normals to S; and S;,, respectively, c = 1,m;, j = 1, M.
Initial and boundary conditions are determined by the relations

Y(z,t)i=0 = Yo(z), z €S, (5)
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Y (z,t)|zeas = 0. (6)

The relations (1)—(6) define the initial boundary value problem relative to the func-
tions Y (z,t), p(z,t) (hereinafter the differential system (1)-(6)) in a closed network-like
domain 37 (S = (SJII) x [0,7T)).

In applied questions of mathematical modeling of the processes of transportation of
viscous liquids, the network-like domain & at n = 3 belongs to Euclidean space R? and
models a pipeline network of complex structure or a main line hydraulic system, being
a carrier of hydraulic flow (multiphase medium). The function Y (x,t) characterizes the
vector of flow speed in $p, equations (1), (2) define the Navier —Stokes evolutionary
system, which simulates the flow of a liquid with viscosity v > 0 on the carrier &, the
ratios (3), (4) determine the law of flow of fluid flows at the places of branching of the
carrier S, p(z,t) is pressure.

Remark 1. It should be noted that one could use other adjoining conditions, for
example,

Y]e- =Y W (z) 5 T =0
|S;— ‘s;rv Z:z ‘s* Z \s )

’I’L

Sy SJr and 57, SJr are one-sided surfaces for Sj, Sj,, and nj,, n;rL are their corresponding
normals [11]. The ch01ce of representation of the condltlons of adjoining is at the disposal of
the researcher and is determined depending on the pursuit purposes. A natural requirement
that must be satisfied is the requirement of solvability of the obtained problem, as well
as the preservation of the theorem of uniqueness, if the latter corresponds to the spirit of
applied research.

3. Solvability of the Navier — Stokes system. The analysis of the solvability of
the differential system (1)—(6) is based on the study of the differential-difference system
of the form

LY (k) - Y(k—1)] - vAY (k) +
+ Vi) = £, (k) — gradp(k), ™)
=1
divY (k) =0, k=1,2,.... K, y(0) = Yo(x), (8)
Y (E)|seos =0, k=1,2,... K, (9)

where the following notations are used: 7 = T/ K is the step of dividing the segment [0,T)
with the dots /w (k=1,2,..., K—1);Y(k) :== Y (z; k:) Y(k) = LY (k) =Y (k=1)], f, (k) :=

T

fr(x;k) = f f(x,t)dt and p, (k) := pr(z; k) = f p(x, t)dt (k=1,2,...,K).
(/C 1) (k: 1)
Let denote through L2 ()™ the space of the real Lebesgue measurable vector-function
u(z) = {ur(z, t),ua(z, t), ..., un(x,t)}, x = (asl,xg,.. n) e R” The scalar product and
the norm in Lo ()™ are deﬁned by the equations (u,v) = [w(z)v(z)dz and ||Ju|| = v/(u, u),

respectively (here [ ¢(z)dx = Z f é(x)dx). Next, let D(S)™ is the space of infinitely
differentiable functions with compact carrier in & and D(3)" = {¢: ¢ € D( ), dive =
0}. Space H(S) is defined by the closure D(3)" in L2(3)", and space H'(J) consists of

functions ¢(z) € H(S) having generalized derivatives @ € L2(Y)™. The scalar product
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and the norm in H'(3J) are defined by the equations (u,p); = (u,p) + (3—57 %) and

lloll, = (||¢|| + \|g¢\| ) , respectively. To describe the state space of the differential-

difference system (7)—(9) we introduce space V3 (3J) as a closure in space H!(3) of a set

of elements ¢ € D(I)" satisfying the conditions f 8‘1’(73 ds + Z f 5 z)d =0.

1=25
The analysis of the differential- dlfference systern (7) (9) is preceded by consideration
of two differential forms p(u,v) = Z f 9u; 99 due, plu, v, w) = Z J g g”l w;dz, linear

(9171' al‘i
2,j=1 k=13

for each of their fixed elements u, v and w. The entered forms are defined on the functions

o " du; 0
u, v and w, for which integrals [ 52* 522 dx and f up 3’“ widz converge.
S

Further discussion will require the followmg statements (see also [3, p. 88]).

Lemma 1. The differential form p(u,v) is continuous by u, v on V3 (3I) x V(S), the
differential form p(u,v,w) is continuous by u, v, w on L4(I)" x VE(I) x La(I)™.

Lemma 2. For arbitrary u, w of space Vi () there are equalities:

1) ﬁ(uau7w) = _ﬁ(uvwvu)a

2) ﬁ(u’w’w) =0,

3) p(w,w,w) =0.

Lemma 3. If the sequences {tm tm>1, {Um}m>1 weakly converge in L2(3)™ to u and
v, then the sequence {ty, vy }m>1 weakly converges in Lo(S)™ to uv.

The following approach for analyzing the weak solvability of the system (1)—(6) is
based on the construction of a priori estimates of the solutions of the differential-difference
system (7)—(9) and use of the Galerkin method, which assume look for functions Y (k) €
Va(S), k = 1,2,...,K, in the form of expansions on a special basis of space V() —

system of generalized eigenfunctions of the operator AY = Z 8
i=1
the basis in the spaces V3 (SJ) and L2(S)™ (proof similar to represented in the work [12,

p. 96]).

Remark 2. Can be replaced the boundary condition (6) with a more general 3 aU +
oU|ss = 0, where the constant o is her for each subdomain & C S, ‘g— is the derlvatlve
of normal n to the surface 0. The spectral problem in this case is considered in the space
V1(S), the elements of which differ from the elements Vi (J) by the absence for them of
the condition of equality to zero on the boundary 9, the integral identity takes the form

v ; (g—gi, 88;’@) + a(U,n)as = MU,n) Vn(x) € VE(S), here (-,-)ag is scalar product on

0. The properties of spectral characteristics remain invariable.

Let us turn to the issue of constructing a priori estimates of the weak solution of the
differential-difference system (7)—(9).

Let the initial data of Yy(z), f(z,t) of the differential system (1)—(6) satisfy the

conditions of Yy(z) € V3(S), f(z,t) € La1(S7)" (the space La1(S7)™ consists of all
T
elements u € Ly(Sp)" with a finite norm [|uly, = [([ u(x,t)*dz)*/2dt. The latter means

0 <
that for the differential-difference system (7)—(9) the original data Yy(x), f-(k) are the
elements of V}(S), La(3)™, respectively.
Definition 1. The set of functions {Y (k) € V}(S), k = 1,2, ..., K} for which Y (k)
satisfies the ratio

Y (R)esn) +vp(Y (k),n) + p(Y (k) Y (k) n) = (f=(k),n),  Y(0) = Yo(x), (10)

Becruux CII6I'Y. [Ipuknagnas mareMmaruka. MadbopmaTuka... 2023. T. 19. Beim. 2 165



for fixed k (k = 1,2,..., K — 1) and arbitrary function n(z) € V(3) is called the weak
solution of the differential-difference system (7)—(9).
Taking into account basis property of the set of generalized eigenfunctions {U;(z)}i>1

in space V§(3), to determine the approximations Y,, (k) = Z 95 ,»Ui(z) of the functions

Y(k), k = 1,2,..., K, of the weak solution of the dlfferentlal difference system (7)—(9)
consider the system

(Yo (k)e, Us) +vp(Y (k), Us) + p(Y (k), Y (K), Us) =
= (f-(k),Up), i=1,2,...,m, k=12 .K,

Y. (0) = Yo (2), (12)

where Yom(x) = > ¢ Ui(z) (¢2,, is const), Yom(x) — Yo(x) in norm H(S).
i=1
First, we get a priori estimates of the norms of functions Y (k), k = 1,2, ..., K, through
the norms of the initial data Yy (z), f-(k).
Theorem 1. When Yy(z) € VE(Q), f-(k) € La(9)" (k = 1,2,...,K) for Y, (k),
k=1,2,.., K, of the system (11) occur
DY (R < [[Yom (0)|| + 2||fr( Mz

2) [V (R)* + 270 z 1258012 < © (1%l + (1 (])12,)?)

with a constant C independent of T, || fr(k )||2 1=T Z £, k=1,K.

P r o o f. From the ratio Y(k — 1) = Y (k) — TY(k) follows 27(Y (k),Y (k)¢) =
Y2(k) +72Y (k)7 — Y?(k — 1). Multiply the ratios (11), (12) by 27g},,, and sum by i from
1 to m, we get

Y’I?L(k) - Yri(k - 1) + TzY’r?L(k)t + 2TVP(Ym(k)> Ym(k)) =
= 27(f, (k), Yin(K)), k=1,2,.., K,

taking into account p(Y,(k),Yn(k),Y(k)) = 0 (lemma 2, statement 3), where the
inequalities

2}
Yo ()1 = (1Y (k = D)|* + 72| Vo (k ( )i || 2TV|| Pl )? <

(13)
<27 S (R) IV (), = - K
and their obvious consequences
Yo (B[ = Yo (k = D)|* < 27|l £ (W)Y (R, &= 1,2, K, (14)
come from. .
. . Yo
Let ||V (k)| + |Yim(kE — 1)|| > 0. Taking into account I\Ym(k)HIHH(Y:JI(k—l)H < 1 and
dividing the ratio (14) by [|Y; (k)| + [|Yim(k — 1)||, we come to inequalities
||Ym(k)H - ||Ym(k - 1)” < 27—Hf7'(k)H7 k=12 .. K. (15)

If |V (B) ||+ || Yo (k—1)|] = 0, then from the ratio (14) follows 0 < 27| f (k) || || Yo (K)||
and ||V, (K)[]? — ||V (B — D)% < 27|+ (B)|| |V (R)||, k = 1,2, ..., K, we come again to
(15).
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Summing up the inequalities (15) by k' from 1 to k, we finally get the first estimate
in the statements of the theorem:

k) ’
Won Bl < 1 )12 3 7l = »

= IYol + 2l f+(F)llyys k=1,2,.... K,

where ||fT(,"<:)||/21 = S 7O - H/21 is “semi-discrete” analogue norm || - ||2,1 of the
k=1
space Lo 1(S7)™).
Summing up the inequalities (13) by k" from 1 to k and using estimates (16), we come
to the second estimate in the statements of the theorem:

o
\|Y<>||2+2wz | 2B )2 Yy, (k)2 +
k' =1
k
25 Vi (B)e|2 + 270 z [RACNERS (17)
k' =1 kK =

< (17 + QRN k=12

where the constant C depends on v, T' and not depend on 7.

Remark 3. The a priori estimates presented by the statements of theorem 1 (see
(16), (17)) are the basis for obtaining the conditions for the solvability of the differential
system (1)—(6).

Let move on to the analysis of the differential system (1)—(6) and, above all, introduce
the necessary functional spaces. Denote through W19(37) a space whose elements u(x,t)

. . . e du(wyt
together with their generalized derivatives % belong to La(I7)", [[ullyrog,) =

(||u\|2 + ||g—:\|2> 1/2. Let further W1(Q7) is a space whose elements together with their
1/2

derivatives W a“(w Y belong to Ly(S7)", lullwr (gpy = (||u|| 8?4 )2y ) / .
The spaces W10(37) and W1(37) have the following general properties: 1) their elements
are continuous in the norm Ly ()™; 2) traces of their elements on sections S by planes
t = to (here tg is a arbitrary number of intervals (0,7")) are elements of Lo(3)". Next,
we introduce two sets Q1 (S7) € WHO(S7), Qao(St) € WL(S7) so that their elements
under fixed t € (0,7 belong to V}(S). The closure Q1 (S7), Q2(S7) in the corresponding
spaces WL0(S7), WLH(ST) denote by W (S7), Wi(S7). From what has been said follows

u(z,t)|os = 0, if u(z,t) € Wy (Sr) or u(x,t) € Wh(S7). As above, we take that
Yo(l‘) € Vol(%), f(x,t) S L271(\$T) .

Definition 2. A set

{V(z,t),plx,t): Y(z,t) e Wy (Sr), pla,t) € C(S1)}
is called a weak solution of a differential system (1)—(6), if Y (x,t) satisfies the relation
— f Y(x T)an(z‘r)dxdT—FprYn dT—l—prYn)d
—fYo dex+ffxT (x,T)dxdT
S

for an arbitrary function n(x,t) € Wi(Sr), n(z,T) = 0.
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Remark 4. By virtue of definition 2 for a function p(z,t) it is necessary that the
relation (grad p(x, t), n(x, 7)) = 0 at any n(z,t) from W}(Sr). The latter is possible, for
example, when p(x,t) it belongs to the class C'(37). Note also that in many application
problems of continuum transport, the function p(x,t) refers to the input data, therefore
its existence not depend on the existence of the function Y (z,t) € Wé’o(%;p).

Next, the question of the weak solvability of the differential system (1)-(6) is
considered [13] (see also [12, p. 189]).

Theorem 2. The fulfillment of the conditions Yo(z) € VI(S), f(z,t) € La1(ST)"
guarantee a weak solvability of the initial boundary value problem (1)—(6).

P r o o f. Based on the solution {Y (k) € VJ(S), k =1,2,..., K} of the differential-
difference system (7)—(9) , we introduce a function Yk (x,t) of the form Yk (x,t) = Y (k),

€ (k—=1m kr], k =1,2,.... K, Yi(x,0) = Yy(z) (plecewise constant interpolations
by a time variable ¢ for Y (k)). Belonging u (z,t) to space Wy (S7) is obvious. For the
function ug(z,t) the estimates of theorem 1 are valid (inequalities (16) and (17)) and,
consequently, the inequality

Y|l + | G| < ¢ (19)

is correct for it, a constant C* > 0 independent of 7. A similar representation through
flz; k), k = 1,2,..., K, has the function fx(x,t): frx(x,t) = f(x;k), t € ((k — )T, k7],
kE=1,2,..,K. Let K — oo (1 — 0), then it follows from inequality (19) that from the
sequence {Yx (z,t)} can be distinguish a subsequence {Yx (z,t)} that weak converge to the
element Y (z,t) € W{'°(37). Let us show that Y (z, t) is the weak solution of the differential
system (1)—(6). To do this, we will establish that Y(x,¢) satisfies the identity (18) of
definition 2 for any n(z,t) € C'(S7,,)", which satisfies the conditions for adjoining (3),
(4) under any ¢ € (0,7) and for which the conditions are met n|os, = 0, 9lie[r, 74+ = 0.
Functions 7(k) are defined by n(z, t) using the equals n(k) = n(z, k1), k = 1,2, ..., K, while
n(k)y = Lin(k+1)—n(k)] (difference relations n(k)s, (k) = L[n(k)—n(k—1)] are the right
and left approximations %;l t = k7, respectively). As for Yi (z,t), by functions n(k) are

formed piecewise continuous by the time variable ¢ the approximations 7y (z, t), 87”(‘97(:”&) of

the functions n(z, t), a"é(,i 1) Bn(w ) Note that 0 (z,t), a"’gigf’t), M evenly converge

on St to n(x,t), m’éf; t 2 é 0’ at K — oo, respectively; ng (z,t) = O te [T, T+
In the integral identity (14) the functlon n(x) substitute for 7n(z) = 7n(x; k) and sum

it on k from 1 to N, we get

-7 Z JY (k)n(k)dedt — fYon Ydx + v g: (Y (k),n(k)) +
=13 N 3 k=1 (20)
+ kngﬁ( ( ) (k)777 = 2:: TffT

taking into account the ratios

Téle(k)m(k’) = —Té’:lY(k)n(k)t —Y(0)n(k), n(N) =n(N +1) = 0.

From the relations (20) it follows directly

T
- f Yi (z, t)nk (x, t)dadt — fYo(x,t)n(x,T)dx —|—1/fp(YK,77K)d+
+ fp (Yi, Y, ni )dt = f Tr(z,)nk (z, t)dxdt.

ST
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Passing in (21) to limit by the subsequence {Yx(z,t)} and taking into account the
statement of lemma 3, we get the identity (18) of the definition 2 of the weak solution of
the differential system (1)—(6). The theorem is proven.

For the vector-function Y (z,t) = {y1(x,t), y2(x,t), ..., yn(x, )}, ,t € S7, can consi-
der a linearized Navier — Stokes system, where equation (1) is

— vAY +gradp = f. (22)

The systems (22), (2)—(4) and its corresponding initial boundary value problem (22),
(2)-(6) in the hydrodynamic theory of transfer processes determines the mathematical
model of the laminar flow of a viscous fluid over a network carrier that is described by the
domain Sp.

All the above concepts, definitions and statements are completely preserved, it is

necessary only in the ratios (7), (10) and (18) to remove the expression Z 1% and the

form p(Y,Y,n) (statements of lemmas 1-3 for the form p(Y,Y,n) are not used)

4. The method of penalty functions in the analysis of optimal control
problems. Let’s denote through U the Hilbert space of control v, then W%(S7) is the
space of state Y (v) of the Navier — Stokes system. In addition U = Ly(S)" or U = Lo(Sp)™
and therefore v := v(z) € L2(¥)" or v := v(z,t) € La(S7)™ for the problem of optimal
starting or distributed control, respectively.

Observation of the state Y (v) of the system is carried out at the final point in time
(other types of observations are possible). On a closed convex subset Uy C U the requiring
minimization functional

Jw)= [ (v)(z,T) - z0(2))? dz + (Nv, v)y, (23)
S}
where zp(x) is given function of space Ly(S)™, N : U — U is a linear continuous Hermite
operator, (Nv,v)y > §||’U||% (¢ > 0 is fixed constant).

The problem of optimal starting (distributed) control of the Navier — Stokes system

in space Wg5°(Sr) is to find ientg J(v), the element u € Uy is the optimal control of the
v e]

Navier — Stokes system, which is considered knowingly (a priori) to exist: ientg Jw) =
vels
J(u).
Let’s denote through Y the set of elements Y (z,¢) € W §°(S7) such that
—fYo dex—fY ( )dxdt+l/pr17dt+prY77)d:
= f F(z,t)n(x, t)dxdt—|— f (x,t)dxdt, w(x,t) €L271(\$T)7
ST

St

for any n(z,t) € WH(Sr), n(z, T) = 0. For the elements Y we introduce the norm

2 2 2 1/2
1Yl = (1Y 10 + 1903, som + IV 0 ,0))

thus
\y:{y LY e WEAST), we Lo (S7), Y(@t)|,_, € L2(%)}.

The state of the system (1)—(4) is determined by the initial boundary value problem
(1)-(6), moreover in the case of starting control, the control effect v(x) determines the
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initial condition (5), i. e. Yp(z) := v(x), and in the case of distributed control, the control
effect v(x,t) determines the right side of equation (1): F(x,t) := v(z, t).
The optimal starting control. The initial condition (5) of the system (1)—(6) is
replaced by
Y(z,t)|,_g=v(z), z€S, (24)

thus, the state Y (v) of the Navier — Stokes system is characterized by the initial boundary
value problem (1)-(4), (24), (6) and U = Lo(3)™.
Let € = (e1,€2,64) > 0, ¢ = 1,2, and granting (23) define on Y x U the functional

Je(Y, v) :C[(Y(év,T) — 20(x))” da + (N, v)y +

; (25)
+ 5w =Fli, o + 5 [ (V(@,0) = v(@)” da,

T

named in the literature penalty function [3, p. 395|. Multipliers 1/e1, 1/e5 characterize
fines if the ratios (1) and (5) are not satisfied.

Consider an auxiliary problem with a parameter e = (g1, e2) (family of problems)
of finding  inf  J.(Y, v) on Y x U, approximating the search problem inf J(v) and
YeY, vely velUp

assume that there exists a pair {Yz, v.} for which Yeyinfem J (Y, v) = J?2.

y U o
Theorem 3. Under the assumption that the solution {Y., u.} to the problem of
finding y inf  J.(Y, v) does exist, takes place

€Y, vely
JS = J(u), (26)
ve — u in the norm space U, (27)
Y. = Y(u) in the norm |- |y (28)

at € = (e1, €2) — 0.
P r o o f. As mentioned above, the element u € Uy is the optimal control of the
Navier — Stokes system, that means iné J(v) = J(u) = J° and for the state Y (u) (solving
velUs

the initial boundary value problem (1)—(4), (24) and (6) at v(z) = u(z)) the relations (1),
(24) and (6) are satisfied. From the latter and the representation (25) of the functional
Je (Y, v) follows inequality

Je(Yz, ue) < J(Y(u), u) = J(u) =J°. (29)

From the estimate (29) follows the boundedness J.(Yz, uc) for the arbitrary ¢ = (g1, £2)
and, using the expression (25), we come to inequalities

J(Ye, u) > slluclf

Jo(Ye, 1) 2 L lwe = FIZ, L ap + 2 fy (Ve(@,0) — ue(@))* de,

of which follows

l[telly < C, (30)
[[we — F”LQ,](Q}T) < O/e, (31)
IYz(-,0) — Us”LQ(g) < C\/57 (32)
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where the constant C' depends on the value J°. From the ratios (30)—(32) it follows
that with ¢ — 0 a set of functions u.(z) bounded in U = Ly(J)", a set of functions
we(z,t) — F(x,t) is bounded in Lg 1(S7)", a set of functions Y:(z,0) is bounded in
Lo(S)™, it means a set of functions Y (x, ¢) is bounded in W §°(S7) and Y. It follows that
from a sequence {Y.(z,t), u-(z)} can be extracted a subsequence (let’s leave the same
notation {Yz(x,t), u-(x)} for it) for which Yz(z,t) — Y weakly converges in W §°(S7)
and u.(x) — @ weakly converges in U = Ly(3)" (@ € Up). Thus, passage to the limit
by subsequence leads to the relations &(z,t) — F(z,t) = 0, Y(-,0) = @, which means
Y (z,t) = Y(x,t; @).
From the ratio (25) follows

}/EaUE

@ %

— 20(2))* dz + (Nve, ve)u, (33)

moreover Y. (z,T) weakly converges in Lo(S)” to Y (z,T), and then from inequality (33)
- 2
follows inequality lim J.(Yz,v.) > [ (Y(a:7 T)— zo(x)) dx + (N, )y or lim J.(Yz,ve) >

J(@). The latter, together with the relation (29) means that @ = u and the correctness of
the statement (26) of the theorem, hence the statements (27), (28), is valid in the sense
of weak convergence.

Let us show the validity of the statements (27), (28) in the relevant norms, that is, in
the sense of strong convergence. Let’s present the functional J.(Yz,v.) in the form

Je(Ye,ve) =049 — 2 [Yo(2,T) z0(z)dx + [ 23(x)dx

Ry

here 0. = [ Y2(x,T) dz+ (Nue, uc)u, 9 = % llwe — F||iz,1(f&T)+é IYe(-, 0) — ug||iQ(3)
By virtue of

Ry

Je(Ye,ve) = J°=J(u) =0 =2 [Y(2,T) zo(z)dx —i—lzg(x)dx

where § = [ Y?(z,T;u)dx+ (Nu,u)y, it should be 0. + 9. — 6. Hence, given lim 6. > 0,
we get Y. — 0, what means v. — wu in the norm of space U, and 6. — 6, which means
Y. — Y (u) in the norm || - ||y: the validity of the statements (27), (28) is established, the
theorem is proved.

Remark 5. From the reasoning it follows that the estimates (30)—(32) are valid for
an arbitrarily small constant C' and for sufficiently small €1, e5.

The optimal distributed control. The method of penalty functions for the analysis
of the problem of optimal distributed control of the Navier — Stokes system (1)—(4) it
remains invariable, the equation (1), the control space U, the space is slightly changed
and functionality J.(Y, v). The equation (1), the control space, and the space are slightly
modified. Namely, equation (1) is replaced by

< —yAY + Z —|— gradp = v(z,t), (34)

U= Ly(S7)™, v(z,t) € U, functional J. (Y, v) take the form

Jo(Y, v) = [ (Y(2,T) — 20(x))* dx + (Nv,v)y +

I é o — UH2LQ,1(%T) + é fg (Y(z,0) — U(l’))2 dx,
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the state Y (v) € W§%(S7) of the Navier — Stokes system is determined by the systems
(5), (34). Further reasoning almost verbatim repeats the above.

5. The method of penalty functions for the linearized Navier — Stokes
system. In the previous case, when the nonlinear Navier — Stokes system was considered,
the analysis of optimal control was limited to obtaining the necessary conditions for a
minimum of functional (the penalty function) under the supposition of the existence of
optimal control. The case of the linearized Navier —Stokes system by favorable to the
obtaining of the necessary and sufficient conditions, since additional properties of the
linearized system are used along this way, it is possible to prove the existence of a unique
optimal control. We show this on the example of starting control.

For a linearized Navier — Stokes system (2)—(4), (22) the state of which is defined as
a weak solution in the space W §°(S7) of the system

%—}; —vAY + gradp = F(z,t) (35)

with the condition (24) (v(z) € U = Lo(S)™ is control effect), the problem of optimal
starting control is considered.
For this case, the statements of Section 3 remain valid, with the only difference that
n
they do not contain the expression Yi% and its form p(Y, Y, n). The introduced above
i=1 ’
functional J(v), auxiliary space Y and functional J.(Y, v) are also preserved, where the
n
expression Y Yi% and its form p(Y, Y, n) are also absent. A essential difference from the
i=1 ‘
previous consideration is the possibility to establish the uniqueness of the solution of the
optimal starting control problem (problem ing J(v)) and the uniqueness of the auxiliary
velyg
problem with the parameter ¢ = (g1, €3) search for inf  J.(Y, v), approximating
YeY, vels
problem inf J(v).
veUs

The uniqueness of the solution of the problem ing J(v) is a consequence of the
velsp

following statements, similar to those proven in the work [14].

Theorem 4. The operator of the transition from control v(z) € U = L2(I)™ to
Y (v) € W(St) continuous.

Theorem 5. The problem of optimal starting control has a unique solution.

The proof of the statement of theorem 4 uses the linearity of the operator of the
problem (35), (24) and the a priori estimates given in theorem 1. The statement of
theorem 2 is based on the property of coercivity of the homogeneous part of the second
degree of the quadratic form of the functional J.(Y, v) and the statement of theorem 4.

The uniqueness of the auxiliary problem . %nf Y Je(Y, v) is established by the
cY,vels

following statement.

Theorem 6. The problem  inf  J.(Y, v) has a unique solution.
YEY,velp

P r o o f. For the functional J.(Y, v) (absent the expression Y;g—;), consider the

i=1
part containing the second degrees:

qE(Y7 U) = fY2(I7T)dx + (NU7U)U + é HUJ - FHQLZI({‘;T) + 1 fYQ(Ia O)dl’

€2

Note that ) )
a-(, 0) = C (1Y} + o)) - (36)
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Indeed, given the inequality (Nv,v)y > §||’U||% (¢ > 0), we come to inequality
@Y, V) > s+ L) [ol} + [ V2o, Tda + L [ Y2(e, 0)do+
+alwl2, o — 2 Wl 1YCL 0z, (o)

from which we get inequality (36) with a constant C, dependent on &1, £2. The proof
complete with the statement of the theorem 1.1 [15, p. 13].

Repeating the reasoning given in the proof of theorem 3, we come to the conclusion:
1) there is a unique solution to the problem of optimal control; 2) a necessary and
sufficient condition for the existence of optimal control is the presence of a sequence
of pairs {Yz, v.}, for which with each sufficiently small ¢ = (&1, €2) pair {Yz, v.} it
realizes Yeying cu, J-(Y, v). This sequence contains a subsequence that weak converge to

the optimal pair {Y (z,t), u(x)} (the solving of the problem of finding iné J(v)).
vela

6. Conclusion. The approach presented in the paper explain on the example of
the problems of optimal control of the Navier — Stokes evolutionary system with a spatial
variable changing in a network-like domain. The penalty function method used in this case
is a fairly general method. It can also be used (with minor modifications) to analyze the
optimal control problems of stationary Navier — Stokes systems (linear and linearized). The
effectiveness of this method essentially increase in connection with the needs of computing
tasks of applied nature [16-18]. Note at the same time that the method of the penalty
functions can be effectively applied to the numerical solution of the optimization problem
in various areas of natural science (see, for example, work [19]).
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W3yuaerca ssomonmonnas auddepennuanpias cucrema Hasbe — CToOKCa, MCIIOIb3yeMast
IPpYU MATEeMATHUYIECKOM OIMCAHHUH IBOJIIOIMOHHBIX IIPOIECCOB TPAHCIIOPTUPOBKYU PA3HOTO TH-
[1a 2KUJKOCTEH 110 CeTeBbIM Wi MarucrpaibubiM Tpyborposogam. Cucrema Hasbe — Crokca
paccmarpuBaercss B npocrpancTBax CobosieBa, 371€MEeHThl KOTOPHIX — (DYHKIIUK C HOCUTE-
JISIMA HA3 N-MEPHBIX CeTeIoJ00HBIX 00J1acTsX. DTH 00/IACTH eCTh COBOKYIHOCTH KOHETHOI'O
9KC/Ia B3AUMHO HeE II€PECEeKAIONUXCH 110/00/1acTell, COeMHEHHbIX APYT € APYIOM YaCTAMU
MIOBEPXHOCTEH CBOMX TPAHUT IO TUTy Tpada (B TPUIOKEHUAX: MECTaX BETBJICHHs TPYOOIpo-
BOzoB). O6GCYKIAIOTCSA 1Ba OCHOBHBIX BOITPOCA aHAMW3a: C1a0as paspelmmuMOCTh HAIAIBHO-
KpaeBoil 3asauu ajis cucreMbl HaBbe — CTOKCA M OLTUMAJIBHOE YIIPABJIEHUE YTOU CUCTEMOII.
OCHOBHBIME METOIAMHE UCCJIeTOBAHUS CIa00i PA3PEIINMOCTH ABJISIOTCS IOy UCK e TU3AIS
HMCXOIHOM CHCTEeMBI II0 BPEMEHHOI ITepEeMEeHHOH, T. €. peayKuus auddepeHmaabHoil cucre-
Mbl K JuddepeHnuabHO-PA3HOCTHOM, U KCIIOJIb30BAHUE AIPUOPHBIX OLEHOK [jid CjIabbIx
pelleHnii KpaeBbIX 334ad [IPU TOKA3ATeIbCTBE TEOPEMBbI CYIECTBOBAHUS PEIICHUS UCXOTHOM
muddepennuanpHoil cucteMsl. Jag 3a1aun ONTUMAILHOTO YIIPABJIEHUS BBOASATCS MUHUMU-
supytommit Gynxnmonan (Gynxnua mrpada) u annIpoKCUMHUPYIOLIEE ero CeMelCTBO BCIO-
MOTATE/JIbHBIX (DYHKIIMOHAJIOB C IIapaMeTpaMu, KOTOPble XapaKTepu3yioT mTpad 3a HeBbI-
TIOJTHEHVe YPAaBHEHMIl COCTOSIHUS CHCTeMbl. 1Ipm 3ToM BBOAMTCS cHenmajbHOe IuiIb0epTOBO
HPOCTPAHCTBO, 3JIEMEHTAMH KOTOPOI'O SBJSIOTCH 11apbl (DYHKINIA, ONUCHIBAIONIUNX COCTOAHUE
CUCTEMBI U yIIPABJIAIONINE Bo3aeiicTBrs. [l0Ka3bIBAETCS CXOANMOCTD II0C/I€I0BATEIHLHOCTH Ta-
KuX GYHKINN K ONTHMAJIBHOMY COCTOSIHUIO CUCTEMBI ¥ €My COOTBETCTBYIOIIEMY OITUMAJIHHO-
My yupasienuto. [Tocsiennee cyimecrBeHHO pacumpsier BO3MOXKHOCTY aHAIN3a CTAMOHAPHBIX
¥ HECTAIMOHAPHBIX CETEI0JO0HBIX IIPOIIECCOB IUIPOANHAMUKY U ONTUMAJIHHOTO YIIPABICHUS
UMH.

Karwesoe caosa: ssosmonnonaas cucrema Haspe — CTokca, cerenonobuast 06acTh, pa3pe-
IIIMOCTb, ONTUMAJIBHOE yIIpaBjeHue, mrpadmsie GyHKINN.
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