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Introduction
The performance of software products is one of the key attributes that
determine its success. However, the speed at which processors execute in-
structions is limited by fundamental laws of physics [19]. Multithreading,
a technology that enables the execution of multiple threads of instructions
in parallel (simultaneously), is frequently employed to achieve performance
improvements in software development.

Multithreading and parallelism are active areas of research and develop-
ment. Recent works include lock-free data structures [11], performant weak
memory models [38], dynamic load balancing algorithms [26], and trans-
actional memory [44]. Programming languages are also evolving to em-
phasize multithreaded development, with newer languages such as Go [17],
Kotlin [24], Swift [5], and Rust [14] placing a strong emphasis on this as-
pect. Mature languages like Python [7], Java [33], JavaScript [1], C++ [6],
and C# [2] are improving their support for multithreading as well.

Despite all the advantages, multithreaded development is inherently
complex, requiring developers to manage numerous interactions between si-
multaneously executing tasks. Classic low-level multithreaded development
tools based on threads and locks do not offer reliable protection against pro-
gramming errors. To alleviate this, modern programming languages offer
approaches such as asynchronous functions, MapReduce, actors, coroutines,
and channels to simplify multithreaded development. Similarly to how traf-
fic laws provide safety by constraining our movement on the roads, these
approaches narrow the class of possible programming errors by constraining
the set of options available to the developers.

However, approaches to multithreaded development in modern program-
ming languages do not address one of the principal complexities of multi-
threaded development: non-determinism. A program is said to be non-
deterministic when its result is dependent not just on the input data, but
also on other factors concerning the state of the execution. This unpre-
dictability leads to challenges in identifying inputs (user actions) that cause
errors, complicating testing, debugging, and bug-fixing procedures.
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1 Problem Statement
This study aims to develop an approach to multithreaded programming
that protects deterministic program logic from non-determinism by enforc-
ing additional constraints and identifying violating code fragments.

The objectives of this study are as follows:

1. Review approaches to multithreaded programming in existing pro-
gramming languages and compare their constraints.

2. Propose a modified approach to multithreaded programming.

3. Design and implement the new approach as a library for the Java
language.

4. Test the implementation through representative test cases.
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2 Related Work
To enable the development of multithreaded applications, programming
languages provide specialized tools such as libraries and language con-
structs. Various multithreaded programming languages offer tools that im-
plement similar features and ideas, including threads, coroutines, actors,
async/await, MapReduce, and Synchronous Data Flow (SDF). These are
examples of approaches to multithreaded programming, the next level of ab-
straction after concrete tools in programming languages. Informally, an
approach is an interface with assigned execution semantics.

This chapter compares multithreaded programming approaches based
on three criteria. Beginning with generic approaches, which are designed to
address arbitrary multithreaded programming problems, it then discusses
domain-specific approaches.

The criteria of comparison are as follows:

1. Data-race-freedom (DRF): This refers to approaches that protect
user-defined state from data races.

2. Progress guarantees (Progress): This refers to approaches that
guarantee that each task advances towards completing its job, includ-
ing deadlock freedom.

3. Determinism guarantees (Det): This refers to approaches that
protect the user program from non-determinism that arises from mul-
tithreading and message-passing.

2.1 Generic approaches
An approach is said to be generic if it is capable of addressing any multi-
threaded programming problem. More formally, to be considered generic
an approach must correspond to a Turing-complete formal language.

The problem of deadlock detection is undecidable for Turing-complete
languages that model concurrent programming [4]. Thus, generic approaches
do not provide any progress guarantees.
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Moreover, they introduce complexity to otherwise simple tasks. For
instance, a program written using async/await (a domain-specific approach)
never deadlocks. If we were to reimplement this program using one of the
general approaches, say threads, we could by mistake introduce a deadlock.
And since the latter approach does not provide progress guarantees we
would have no way of deciding whether the code is correct.

2.1.1 Threads and virtual threads

Languages Java [42], C# [41], C++ [48], and Rust [14] provide low-level
tools for managing kernel threads accompanied by atomics and locking
mechanisms such as semaphores or monitors for memory access synchro-
nization.

Virtual threads are the next level of abstraction. They share the same in-
terface with threads but are scheduled by a runtime library or a virtual ma-
chine, instead of the kernel. Virtual threads are supported in Python [43],
Java [33], OCaml [29], and Crystal [47] and are utilized with the same
synchronization mechanisms, atomics and locks.

Data-race-freedom: Not provided. Users are responsible for the syn-
chronization of shared memory access. Moreover, languages C/C++ explic-
itly state that the semantics of programs with data races is undefined [3].

Progress guarantees: Not provided. In thread-based approaches, the
deadlock problem is well-known [10].

Determinism guarantees: Not provided. As illustrated in Figure 1,
data races imply non-determinism. The program’s result is undefined.

2.1.2 Coroutines and channels

Coroutines are supported in Kotlin [25], in Go [17], and in C++ [6]. They
are lightweight suspendable tasks. Channels allow coroutines to communi-
cate by message-passing.

This approach does not constrain the user. It allows the creation of
arbitrary computational graphs where coroutines are the nodes and channels
are the edges [4].
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int counter = 0;

void increment() {
for (int i = 0; i < 100000; ++i)

++counter;
}

int main() {
std::thread t1(increment);
std::thread t2(increment);

t1.join(); t2.join();

std::cout << ”Counter: ” << counter << std::endl;
}

Figure 1: Non-determinism of multithreading in C++

Data-race-freedom: Provided. As long as coroutines do not share
any user-defined state, it is free of data races. For other scenarios, the said
languages provide atomics and locking mechanisms.

Progress guarantees: Not provided. Figure 2a illustrates a program
that deadlocks.

Determinism guarantees: Non provided. The output of the program
shown in Figure 2b depends on the coroutines execution schedule.

func main() {
ch := make(chan int)
ch <- 100
<-ch

}

(a) Deadlock

func foo(ch chan int, value int) {
ch <- value

}
func main() {

ch := make(chan int)
for i := 1; i < 100; i++ {

go foo(ch, i)
}
for i := 1; i < 100; i++ {

println(<-ch)
}

}

(b) Non-determinism

Figure 2: Coroutines in Go
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2.1.3 Actors, processes, and workers

Swift [5], JavaScript [46], Erlang [13] and Elixir [12] provide approaches to
multithreaded programming based on the Actor model [21]. In the Actor
model, programs are represented as independent agents (actors), that com-
municate with each other by sending messages. In response to a message,
an actor can update its state, send a finite number of messages to other
actors, and create a finite set of actors.

However, in the said programming languages actors are given different
names. In JavaScript they are called workers, in Erlang and Elixir they are
processes and in Swift they are actors.

The Actor model is Turing-complete [20]. Similar to coroutines and
channels, it is possible to define arbitrary computational graphs.

Data-race-freedom: Provided. Assuming actors communicate only
via messages, no data races can occur. Memory isolation is enforced in
Erlang and Elixir.

Progress guarantees: Not provided. Turing completeness implies the
possibility of deadlocks.

Determinism guarantees: Not provided. For the reasons provided
above, the Actor model allows non-deterministic computations.

2.2 Domain-specific approaches
An approach is said to be domain-specific if it is not generic. In other words,
it constrains the user in their abilities and, therefore, cannot be employed
to solve an arbitrary problem of multithreaded programming.

2.2.1 Async/await — asynchronous functions

Programming languages such as JavaScript [1], Python [7], Rust [23], Swift [5],
C# [2], and Java [16] provide specialized language constructs for asyn-
chronous programming. As illustrated in Figure 3a, users can create asyn-
chronous functions with the async keyword and call them with the await
statement.
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The primary constraint of this approach is the structure of the data flow
graphs. Data flow graphs where vertices correspond to asynchronous tasks
are acyclic since directed edges point from tasks to their callers: async func-
tions ‘send’ messages by returning values. In other words, two concurrent
tasks cannot communicate with each other. It is important to note, that
these statements hold only if all Promises [35], Futures [39], or Tasks [40]
are created automatically by asynchronous calls, rather than manually.

Data-race-freedom: Provided. JavaScript, Python, and Rust execute
asynchronous functions in a single thread using an event loop [31, 18]. Ex-
ecution is not preempted and can be suspended only at await statements,
eliminating data races. However, in Swift and C# asynchronous functions
can be executed in parallel, creating a risk of data races when shared mem-
ory is used.

Progress guarantees: Provided. A valid execution schedule can be
obtained by topologically sorting the data flow graph.

Determinism guarantees: Not provided. Functions Promise.any() [35]
and futures::select [28] in JavaScript and Rust respectively allow exe-
cuting multiple asynchronous tasks concurrently and waiting for the task
that finishes first. The result of said operations depends on the task execu-
tion schedule.
async function fetch(url) {

// fetches the resource
}
let resource = await fetch(url)

(a) Simple usage

await Promise.any([
fetch(url1),
fetch(url2)

])

(b) Non-deterministic Promise.any()

Figure 3: Async/await in JavaScript

2.2.2 MapReduce

MapReduce [9] is a computational model used for the parallel processing of
data streams. The data processing is divided into two main phases: map
and reduce. The former phase individually processes each element of the
data stream, and the latter phase aggregates the result. The user is free to
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define the mapping and aggregation functions. Figures 4a and 4b illustrate
the built-in support of MapReduce in Java and C++.

Data-race-freedom: Provided, under the assumption that mapping
and aggregation functions are pure.

Progress guarantees: Provided. Since data flow graphs do not con-
tain cycles.

Determinism guarantees: Provided. Even though the order in which
elements are processed and aggregated is not defined, the result is deter-
ministic, assuming that the reduction operation is associative. Additionally,
some Java Stream implementations guarantee the fixed order of elements.
var sum = numbers

.parallelStream()

.map(i -> i + 1)

.reduce(Integer::sum);

(a) in Java

auto sum = std::transform_reduce(
std::execution::par,
numbers.begin(), numbers.end(),
0,
std::plus<>(),
[](int x) { return x + 1; }

);

(b) in C++

Figure 4: MapReduce

2.2.3 DAG data processing

In terms of our criteria, directed acyclic graphs (DAG) generalize the async/await
approach and the MapReduce model. Approaches based on DAGs are used
for batch and streaming data processing and are implemented in various
frameworks, including Apache Spark, Hadoop, and Airflow, and in libraries,
including TPL [8] and LTN12 [15]. This approach represents applications
as DAGs which consist of computational nodes and connections between
them.

Data-race-freedom: Provided, unless nodes share state.
Progress guarantees: Provided. Since data flow is acyclic.
Determinism guarantees: Provided, under the assumption that nodes

joining multiple flows of data produce results that are independent of the
execution schedule.
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2.2.4 Synchronous data flow

Synchronous data flow (SDF) [27] is a model used in digital signal processing
applications. It is implemented in Verilog [45] and SIGNAL [34] program-
ming languages. SDF programs are directed graphs where each node rep-
resents a function and each directed edge represents a FIFO buffer. Nodes
read data from input buffers and write results into output buffers. The
data flow principle states that any node can fire whenever its input data is
available. Nodes do not have any shared mutable state: they communicate
only via message-passing.

The programs in SDF must satisfy strict constraints. The number of
values that each node consumes from each of its input buffers as well as
the number of values that it sends must be known ahead of time. These
numbers are fixed for each node, i.e., do not change as execution progresses.

Data-race-freedom: Provided. Since nodes do not share any state.
Progress guarantees: Statically dedicable. Because of the strict con-

straints, an algorithm exists that statically constructs a schedule for a given
SDF program. Thus, this algorithm determines whether a given SDF pro-
gram achieves progress.

Determinism guarantees: Provided, under the assumption that func-
tions computed by nodes are pure.

2.3 Summary
Table 5 summarizes the comparison presented in this chapter.

To conclude, the following contradiction holds for existing approaches
to multithreaded programming:

• Complete approaches lack protection against many types of multi-
threaded programming errors, including non-determinism.

• Domain-specific approaches offer more guarantees but are associated
with different interfaces. Therefore, in the event of changing software
requirements, a switch from one approach to another would require
the refactoring of the program.

11



Approach Constraints DRF Progress Det

Co
m
pl
et
e

Threads,
virtual None – – –
Coroutines,
shared state None – – –
Coroutines,
no shared state No shared memory + – –
Actors, workers,
processes No shared memory + – –

D
om

ai
n-

sp
ec
ifi
c

Async/await∗ Acyclic data flow + + –
MapReduce 2 types of operations,

Acyclic data flow + + +
DAG Acyclic data flow + + +
SDF # of read and written

messages is fixed + Statically
decidable +

Figure 5: Comparison of existing approaches to multithreaded programming
* In JavaScript, Python, and Rust asynchronous tasks are executed sequentially, in Swift, C#, and Java
parallelism is supported

3 Proposal
Our approach is based on the model of coroutines and channels. In other
words, the user creates coroutines and connects them with channels for
communication. Figure 6a illustrates a coroutine that generates squares of
integers from 0 to 5 and sends them to the output channel. This and all
the following examples are oversimplified for clarity. Appendix A presents
a more thorough overview of the library API.

class Squares extends Coroutine {
SendChannel<Integer> channel;
void run() {

for (int i = 0; i < 5; i++)
channel.send(i * i);

}
}

(a) Coroutine definition

// Graph creation:
var graph = createDeterministic();
var channel = graph.channel();
graph.coroutine(new Squares(channel));
graph.build();
// Graph execution:
for (int i = 0; i < 5; i++)

println(channel.receive());
// Prints: 0 1 4 9 16

(b) Building a graph and printing values

Figure 6: Generating squares of integers 0–5
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Next, a coroutine graph must be created. Figure 6b illustrates a simple
graph that consists of a single Squares coroutine and its output channel.
Our approach explicitly distinguishes between graph creation and execution.
A graph is created using the coroutine() and channel() methods which
add coroutines and channels to the graph respectively. Graph creation must
be finalized by the build() call. Then, the graph execution can be started
by sending, or receiving from any of its channels. The graph in Figure 6b
is executed by repeatedly receiving from its channel.

Deterministic and non-deterministic graphs: Our approach dis-
tinguishes between deterministic and non-deterministic graphs. The model
of non-deterministic graphs is unconstrained, allowing for the representation
of arbitrary computational graphs. On the other hand, the deterministic
model enforces additional constraints and does not permit operations that
may introduce non-determinisms. These constraints are verified prior to
the execution of coroutines.

For instance, let’s say we need to process a list of numbers in parallel.
Each number must be multiplied by two and the results aggregated into
a list. Figure 7a illustrates one possible implementation. The coroutine
definitions are omitted. For each element of the data list, we create a new
Twice coroutine, which processes this element and sends the result into the
queue channel. The Aggregator coroutine then reads all values from this
channel and sends the resulting list into the result channel.

The result of the programs depends on the schedule according to which
the Twice coroutines were executed, hence the non-determinism. To illus-
trate this further, assuming that the data list constaints only values [1, 8]
the result can be either [2, 16] or [16, 2].

To obtain a deterministic result, we may switch the type of the graph
by using createDeterministic. As illustrated in Figure 7b, the program
will report the error at the stage of graph creation before the coroutines
are executed. The culprit is the queue channel, as it has multiple racing
sender coroutines, thus, making the order of messages non-deterministic.
The complete list of the deterministic model’s constraints is as follows:

• Channels may have at most one sender and one receiver.
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var data = List.of(1, 8);

void main() {
var graph = createNonDeterministic()
var queue = graph.channel()
var result = graph.channel()
for (var el : data) {

graph.coroutine(
new Twice(el, queue)

)
}
graph.coroutine(

new Aggregator(queue, result)
)
graph.build()

println(result.receive())
// Prints either [2, 16] or [16, 2]

}

(a) Different results in non-deterministic
mode

var data = List.of(1, 8);

void main() {
var graph = createDeterministic()
// ...
// ...
// ...
// ...
// No changes
// ...
// ...
// ...
// ...
// ...
graph.build()
// ^^^^^ Reports an error:
// Channel has multiple senders:
// Twice and Aggregator
println(result.receive())

}

(b) The error that leads to non-determinism
is reported

Figure 7: Parallel processing: multiplying each number of a list by two and
aggregating the result into a list

• Merging multiple channels into a single channel is not permitted.

• Deterministic graphs must not include coroutines marked as non-
deterministic.

Non-determinism can be eliminated by fixing the order of messages.
Figure 8 shows how it can be achieved by creating a separate channel for
each Twice coroutine, and then joining them. The queue channel returned
by the deterministic join() operation contains fixed order pairs of values
from both channels.

Sequential and parallel execution: For some programs single-threaded
performance is satisfactory, and they do not benefit from multithreading
as it introduces additional complexity. To address this issue, our approach
supports both sequential and parallel modes. In the parallel mode, users
must cautiously synchronize all access to user-defined shared coroutine state
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var data = List.of(1, 6);

void main() {
var graph = createDeterministic()
var channels = empty list
var result = graph.channel()
for (var el : data) {

var channel = graph.channel()
channels.add(channel)
graph.coroutine(new Twice(el, channel))

}
var queue = graph.join(channels)
graph.coroutine(new Aggregator(queue, result))
graph.build()
println(result.receive())
// Prints [2, 7]

}

Figure 8: The fixed deterministic program

with message ownership transfer or transactional data structures. On the
other hand, in the sequential mode, coroutines are scheduled cooperatively
on a single thread. As a result, synchronization in the library and user code
is rendered unnecessary, improving the program’s simplicity.
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4 Design
The public API offers the ability to create coroutines, read and send values
into channels and create coroutine graphs. The corresponding functionality
is available via the coroutine classes, channel interfaces, and graph interfaces
respectively. This is shown in Figure 9.

Figure 9: Classes and interfaces in the public API

Non-deterministic (async) coroutines are forbidden in deterministic graphs.
However, deterministic coroutines can be used in deterministic and non-
deterministic (async) graphs. These rules are enforced at compile-time by
the Java typing system: Coroutine is a subtype of AsyncCoroutine and
the inverse is true for Graph and AsyncGraph.

As illustrated in Figure 10, each public interface has multiple implemen-
tations which are decided based on one of four user-selected modes. The
library provides optimized implementations that consider the constraints
of each mode. For instance, non-deterministic channel implementations al-
low multiple senders and receivers (multichannels), whereas deterministic
implementations do not. Also, channels used in sequential modes do not
synchronize memory access, eliminating the performance overhead.

Stricter constraints allow more powerful optimizations. Apart from
channels, implementations of algebraic operations (join, select) and sched-
ulers are optimized for each specific mode.

Schedulers are used by channels to run coroutines. The strictest con-
straints of the sequential deterministic mode (top left) allow the scheduler
to use only O(1) memory. The sequential non-deterministic scheduler (top
right) uses an event loop with a dynamic queue of size O(n). It supports
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Figure 10: Four different implementations of Channel, optimized for each
mode

delayed tasks and asynchronous I/O and has no synchronization overhead.
The schedulers used in parallel modes (bottom left and bottom right) run
coroutines on kernel threads and synchronize memory access.

The concrete implementations of the provided interfaces are not instan-
tiated by the end user, instead, the abstract factory pattern is used. The
Graph interfaces, shown in Figure 11, can be used to create channels, corou-
tines, and algebraic channel operations. There are four implementations of
the Graph interface, one for each mode. When the mode is selected the
appropriate Graph instance is returned.

Figure 11: Interfaces for creating graphs, channels, and algebraic operations
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5 Implementation
Two separate implementations of the proposed approach have been devel-
oped. The former implementation is open source1, but the latter cannot
be disclosed due to the NDA in place. The main difference between them
lies in the method of saving the state of coroutines between suspension
points. The former uses stackful coroutines and the latter uses stackless
coroutines [30, 36].

This chapter describes the key aspects of the implementation. It begins
with stackful and stackless coroutine implementations. The chapter then
focuses on the primary implementation details of each mode, starting from
the sequential deterministic (most constrained) and ending with the parallel
non-deterministic (least constrained).

5.1 Stackful coroutines
Stackful coroutines are implemented with lightweight virtual threads [33]
from Java Project Loom. Each coroutine is executed on a separate virtual
thread. They are mapped onto a fixed number of kernel threads.

Coroutines, similarly to regular functions, store state in local variables
on the stack. Internally, suspending operations use LockSupport.park()2

to suspend coroutines’ virtual threads. JVM is responsible for saving and
recovering stacks of these threads.

5.2 Stackless coroutines
Stackless coroutines are implemented as objects that store their state in
instance fields. They have a single method run() that is invoked each time
the coroutine is executed, it returns when the coroutine suspends.

Generally, the run() method contains a single switch statement sur-
rounded by the while (true) loop. When a coroutine performs a sus-
pending channel operation it jumps from one switch branch to another.

1https://github.com/Furetur/Concurrency4D
2https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/LockSupport.html
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The latter switch branch starts with the corresponding suspending opera-
tion.

Each switch branch may be executed multiple times. The underlying
JVM exhibits spurious wakeups. As a result, a coroutine that is waiting for
a suspending operation to complete may be woken up when the operation
is still pending. Additionally, some suspending operations require multiple
attempts, e.g. sending into a full channel. Therefore, it is necessary to keep
track of the state of each suspending operation.

For atomicity methods that perform suspending operations also check
their state. For instance, the method trySend(T, Status) that attempts
to send a message into the channel accepts the current Status of the op-
eration and returns the updated status. The status object is saved by the
coroutine which uses the Status.isSuccessful() method to determine
whether the operation has been completed. Internally, Status is an alge-
braic data type (synonyms: variant type, tagged union) with values IDLE,
SENT, CLOSED, or PENDING(int). When a message is pending this object
contains its unique identifier.

5.3 O(1) memory usage scheduler
The design of the sequential deterministic scheduler allows coroutines to
compete in performance with other constructs like iterators, generators,
and finite state machines. The performance evaluation is presented in Sec-
tion 6.1.2.

The scheduler maintains a single coroutine reference next. It is updated
when coroutines receive or send messages into channels. In essence, the
implementation of the scheduler is: while (next != null) next.run().

The scheduling algorithm can be best understood when a comparison
is drawn with Java iterators. When the client code calls the getNext()
method it transfers control from itself to the iterator. The iterator computes
the resulting value and returns it, transferring the control back to the client
code. The flow of control is illustrated in Figure 12a.

Suppose the same scenario is implemented with two coroutines, namely
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(a) Iterator (b) Coroutines

Figure 12: Control flow

client and iterator. The iterator coroutine sends values into the channel
that connects both coroutines and the client receives them. As shown in
Figure 12b, the flow of control is identical to the previous one. Initially, a
reference to the client coroutine is stored in next. The client requests the
next value by calling the channel’s receive()method. The channel updates
the next reference, transferring the control to the iterator. The coroutine
computes the resulting value and sends it into the channel updating next
and returning the control to the client.

5.4 Event loop
The sequential non-deterministic mode’s scheduling is performed by the
event loop. It supports delayed tasks, microtasks, and asynchronous I/O.
The diagram in Figure 13 shows the phases of the implemented event loop.
The phases are repeated while active tasks exist.

The event loop maintains four queues: a priority queue of delayed tasks,
a task queue, a microtask queue, and a thread-safe I/O queue. Each I/O
operation is run in a separate thread. The results of these operations are
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Figure 13: Event loop implementation

added to the I/O queue.

Phases overview:

• Checks the delayed tasks: iterates through the delayed tasks queue
and adds ready tasks to the task queue.

• Execute tasks: runs tasks from the task queue, ignoring newly
added tasks.

• Microtasks: after each task all microtasks from the microtask queue
are executed until the queue is empty.

• Wait for delay, poll for I/O: if the task queue is empty the loop
waits for new tasks, moving all complete I/O tasks from the I/O queue
to the task queue.

5.5 Scheduling coroutines with park/unpark
In parallel modes, each coroutine is executed on a dedicated virtual thread.
Coroutines are suspended and resumed with LockSupport.park() and Lock-
Support.unpark() methods which suspend and resume virtual threads.

It is crucial, that unpark permits are not lost, otherwise, coroutines
may remain waiting forever. Nonetheless, logging and lock acquisition and
release may consume unpark permits. As a result, it occurred to us as if the
permits were lost, even though they were taken by the underlying libraries.

To prevent this scenario, the library implements a thread wrapper il-
lustrated in Figure 14. Apart from a thread reference, it stores a boolean
value that represents a permit. This wrapper offers custom park() and
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unpark() methods that consume the aforementioned permit. Internally,
these methods still use LockSupport.park() and LockSupport.unpark().

Figure 14: Thread wrapper

5.6 Transactional Join implementations
In deterministic modes, channels are permitted to have at most one receiver
and one sender, avoiding data races. The sequential join implementation
performs all suspending receive() calls one by one. The parallel implemen-
tation schedules all senders before executing receive() calls in a similar
manner. To prevent deadlocks, channels are queried in a consistent order.
This order is based on unique numbers that are assigned to channels upon
creation.

The sequential non-deterministic join is not thread-safe. However, this
implementation must account for multi-receiver scenarios. Firstly, it sched-
ules all senders and uses the peek() method (equivalent to Queue.peek()3)
to look into the channels’ memory. Then, if all channels contain messages
they are received and returned.

In contrast, the parallel non-deterministic join is thread-safe. There-
fore, it does not use peek(), since the composite action of peeking and then
receiving is not atomic. It repeatedly tries to complete a transaction of re-
ceiving from both channels, using non-suspending tryReceive() methods.
The transactions are executed optimistically, with no locking beforehand.
If at least one channel does not contain a message, the transaction is rolled
back by returning all previously read messages to the channels.

3https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html#peek--
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6 Testing

6.1 Correctness
To ensure that the implementation conforms to the semantics of our ap-
proach, extensive end-to-end testing was conducted using representative
applications. The entire suite of tests, including modular and integrational
tests, covers 97% of instructions and 95% of branches in the library. This
chapter highlights four representative applications and describes the method
used for calculating the test coverage.

6.1.1 Test cases

The table in Figure 15 illustrates four highlighted test cases and the modes
they validate. Two test cases (Two servers and Dining philosophers) are
non-deterministic, thus, they are executed only in non-deterministic modes.
The remaining two deterministic test cases are run in all modes.

Deterministic Nondeterministic
Sequential k-means, FSM k-means, FSM

Two servers, Dining philosophers
Parallel k-means, FSM k-means, FSM

Two servers, Dining philosophers

Figure 15: Highlighted representative test cases

k-means: This is a parallel clustering algorithm. It has been adopted
from the Renaissance benchmarking suite [37] for performance evaluation.
The results are presented in Section 6.1.2.

FSM: A coroutine implements a finite state machine by reading inputs
from an input channel, performing state transitions, and sending outputs
into an output channel. In this manner, two state machines are imple-
mented. The output of the first is piped as input into the second. The test
generates inputs for the first state machine and validates the outputs of the
second.

Two servers: Two coroutines concurrently send requests to two sepa-
rate servers. Each coroutine forwards the response to the main coroutine.
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The main coroutine waits for the response that arrives first and then cancels
the second coroutine.

Dining philosophers: This classical problem involves five philoso-
phers who are sitting around a circular table. Each philosopher has a plate
of spaghetti and two forks. However, only five forks in total are available.
This test implements philosophers as coroutines and forks as messages in
channels. The join operation is used to atomically acquire both forks avoid-
ing deadlocks. As a result, the code of philosopher coroutines is declarative.
As illustrated in Figure 16, each philosopher picks up both forks, eats, re-
leases the forks, and then goes to sleep.

while (isHungry()) {
var bothForks = forks.receive();
eat();
forks.send(bothForks);
sleep();

}

Figure 16: Implementation of dining philosophers

6.1.2 Test coverage

Test coverage was calculated using the JaCoCo4 library. Figure 17 shows
the results of 97% instruction and 95% branch coverage.

3% of instructions and 5% of branches were not covered by tests. Un-
reachable conditional branches and never-failing runtime assertions (each
assertion adds two paths) are also included in the JaCoCo report, negatively
affecting the overall metric. Collectively, these two categories account for
the largest share of the code not covered by tests.

6.2 Performance
The approach developed in this study offers additional protection against
non-determinism. This chapter explores the impact of these guarantees on
performance.

4https://www.eclemma.org/jacoco/
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Figure 17: JaCoCo test coverage reports

The user can select between two modes of coroutine execution, sequential
and parallel. To evaluate the performance of both modes, we conducted
two benchmark tests. Each benchmark compares the performance of two
semantically equivalent programs. One program was implemented using
only built-in Java features, while the other program depends on our library.
The output of both programs is validated for equivalence.

The first test involves a level-order (BFS) binary-tree iterator implemen-
tation and an equivalent coroutine, which traverses the tree and sends each
value into its output channel. The second test adopts the k-means bench-
mark from the Renaissance benchmarking suite [37] by reimplementing it
using coroutines. The results are illustrated in Figure 18.

Test environment: The JMH [22] benchmarking framework was used
with the following JVM arguments: -Xms28g -Xmx28g -XX:+UseSerialGC
-XX:+AlwaysPreTouch on a 3.20GHz Intel i7-8700 processor running Ubuntu
20.04. Garbage collection was forced between each run and the performance
was not measured until the methods were C2-optimized [32]. The JIT com-
piler’s assembly was assessed for constant folding and dead code elimination.

Summary:

• The coroutines implementation did not show any performance over-
head in the single-threaded benchmark.
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Benchmark Input
size Impl Score (ms) Sample

size

Sequential
BFS Iterator

214
Java 15.52± 0.9% 7498
Coroutines 15.51± 0.8% (–0.05%) 7502

216
Java 280.03± 0.3% 7411
Coroutines 272.35± 0.6% (–0.7%) 7430

218
Java 5708.24± 0.1% 370
Coroutines 5723.48± 0.1% (+0.2%) 367

Parallel
k-means [37]

25000 Java 0.040± 2.5% 2239
Coroutines 0.045± 2% (+12.5%) 2517

50000 Java 0.090± 1% 1263
Coroutines 0.101± 1% (+12.2%) 1118

75000 Java 0.134± 0.7% 750
Coroutines 0.146± 0.6% (+8.9%) 689

Figure 18: Execution time (in ms) of sequential and parallel benchmarks

• The multithreaded benchmark indicated a 12.5% performance over-
head of the coroutines implementation, but as the input size increases
this relative overhead falls.
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Conclusion
The results of this work are as follows:

• A review of 5 existing approaches to multithreaded programming in
9 programming languages including Go, Kotlin, Rust, and Swift, has
been conducted.

• A modified approach to multithreaded programming has been pro-
posed.

• To enable developers to utilize the new approach, a Java library has
been developed using the Java Project Loom technology.

• Representative test cases were implemented, achieving the test cover-
age of 97% of instructions and 95% of branches.

• These results were presented at the “Modern Technologies in Theory
and Practice of Programming” SPbPU conference.

Two separate implementations of the proposed approach have been de-
veloped. The former implementation is open source5, but the latter cannot
be disclosed due to the NDA in place.

5https://github.com/Furetur/Concurrency4D
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A Library API
This chapter presents a brief overview of the library API. It begins with de-
terministic graphs of coroutines that can be used to represent core program
logic. Then, it describes how non-deterministic coroutines can communicate
with deterministic subgraphs.

A.1 Deterministic graphs
The basics of this library can be described using a coroutine that calculates
a sequence of squares. The code is shown in Listing 19.

class Squares extends Coroutine {
SendChannel<Integer> channel;

Squares(SendChannel<Integer> channel) {
super(List.of(), List.of(channel));
this.channel = channel;

}

@Override
protected void run() {

for (int i = 0; i < 5; i++) {
channel.send(i * i);

}
}

}

Figure 19: A coroutine that calculates squares of integers from 0 to 5

Each coroutine must extend from the Coroutine class. A coroutine’s
constructor must register all its input and output channels by calling super()
and passing the lists of the channels respectively. The send() channel op-
eration suspends the calling coroutine and reuses the current thread for
another one.

SendChannel is the channel interface that allows sending. The interface
for receiving is ReceiveChannel.

To use this coroutine, a graph must be created. This is shown in Fig-
ure 20.
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var graph = Graph.create();

var channel = graph.<Integer>channel();
graph.coroutine(new Squares(channel));

graph.build();

for (int i = 0; i < 5; i++) {
System.out.println(channel.receive());

}

// Prints:
// 0 1 4 9 16

Figure 20: Running the Squares coroutine and receiving values

The Graph.create() method creates a graph builder. In this example,
the constructed graph consists of an integer channel that is created by
the channel() call and an instance of the Squares coroutine. The graph
description must be finalized by the build() call.

The receive() call blocks the current thread and schedules the Squares
coroutine. The coroutines are scheduled lazily by receiving and sending
values. A coroutine is initially run only when it is expected to consume or
produce values.

A.2 Receive from two channels with Join
If two threads try to acquire the same two locks, but in different order, the
potential for deadlock arises. The same applies to two coroutines that are
receiving values from the same two channels.

This issue is solved by the Graph.join() method, which is similar to
the zip6 function commonly used with lists. It can be used to receive pairs
of values from two channels without the potential for deadlock.

The code in Figure 21 creates a graph of two coroutines and joins their
output channels. The resulting channel contains pairs of squares and cubes
of integers from 0 to 5.

6https://docs.python.org/3/library/functions.html#zip
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var graph = Graph.create();

var squares = graph.<Integer>channel();
graph.coroutine(new Squares(squares));

var cubes = graph.<Integer>channel();
graph.coroutine(new Cubes(cubes));

var result = graph.join(squares, cubes);

graph.build();

for (int i = 0; i < 5; i++) {
System.out.println(result.receive());

}
// Prints
// (0, 0) (1, 1) (4, 8) (9, 27) (16, 64)

Figure 21: Joining two channels together

A.3 Adding non-determinism
The code in Listing 22 implements a non-deterministic coroutine that reads
the file and sends its contents line-by-line into a channel. Non-deterministic
coroutines extend from AsyncCoroutine. This is the only difference.

class FileReader extends AsyncCoroutine {
// ...
@Override
protected void run() {

// read lines from file
var lines = ...;
for (String line : lines) {

output.send(line);
}

}
}

Figure 22: A non-deterministic coroutine

This library allows separating deterministic core logic from non-deterministic
code into separate subgraphs. The code in Figure 23 demonstrates how
the previously defined deterministic graph can be reused together with the
newly created non-deterministic FileReader coroutine.
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// returns the previously created `squares` channel
var squares = getSquaresChannel();

var graph = AsyncGraph.create();
var lines = graph.<String>channel();
graph.coroutine(new FileReader(”file.txt”, lines));

var result = graph.join(squares, lines);

graph.build();

for (int i = 0; i < 5; i++) {
System.out.println(result.receive());

}
// Prints
// (0, line0) (1, line1) (4, line2) (9, line3) (16, line4)

Figure 23: Separating deterministic core logic from non-deterministic code

A.4 Merging channels with Select
Suppose a resource is stored at two different locations. The objective is to
fetch the resource from both servers simultaneously and return the response
that is received first.

Assuming the coroutine Fetch fetches the resource from the given server
this can be achieved with the code in Figure 24. The select operation is
similar to the select7 statement in Go.

var channel1 = graph.<Response>channel();
graph.coroutine(new Fetch(url1, channel1));

var channel2 = graph.<Response>channel();
graph.coroutine(new Fetch(url2, channel2));

var result = graph.select(channel1, channel2);
// Receives the response that arrives first
System.out.println(result.receive());

Figure 24: Using select to concurrently fetch from two servers

7https://go.dev/ref/spec#Select_statements
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