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Abstract

With the increase of computer computing power, AI has been widely used in

various fields of life, but at the same time, more and more cases show us the

uninterpretability of AI algorithms. Therefore, the interpretability of AI is par-

ticularly important. In recent years, more scholars have proposed to work on

the interpretability of machine learning models by Shapley values in cooperative

game theory, but when there are more features in the dataset, calculating Shap-

ley values becomes a challenge. Some authors have introduced approximate

Shapley calculation techniques. However, as the number of players increases,

it remains a challenge to strike a balance between sample size and time cost.

The sampling method to calculate shapley values is a method that samples the

features themselves by simulating random permutation disease and then esti-

mates the contribution of each feature to the prediction result based on each

sampling result, but in use, we found that the random permutation process is

still long when the number of participants is large. Therefore, we propose a new

approach by using a coalition of ”high impact” participants. Shapley values are

calculated in less time and a more meaningful way to measure the plausibility

of the interpretation of the results is proposed.
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Introduction

Background and related work

Anomaly detection is a technique used to identify anomalous patterns that do

not conform to expected behavior [16] and is used to identify outliers or anoma-

lous patterns in a data set. These anomalies usually manifest as data points

or behaviors that are significantly different from normal data and may be due

to measurement errors, system failures, malicious activity, or other causes.In

numerous practical applications, such as fraud detection, industrial quality con-

trol, and intrusion detection, anomaly detection is indispensable[3]. In medical

physiological data analysis [27], anomalies this means that if a patient’s phys-

iological metric data deviates from other observations, the probability of him

having a certain disease is significantly increased. The use of machine learning

models in anomaly detection has become quite common[30, 21]. Although ar-

tificial intelligence algorithms are widely used in the medical field, there is still

a trust [4] problem. Therefore, it is necessary to establish interpretable AI for

the sake of trustworthiness of diagnostic results, correctness.

Explainable AI emphasizes the understandability and transparency of models

and aims to help people more easily understand how AI systems make deci-

sions[14]. With the widespread use of machine learning techniques such as deep

learning, AI models have become increasingly complex. However, this complex-

ity can make the decision-making process of models difficult to interpret, even

for researchers in the field of machine learning, who many times are unable to
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give reasonable explanations for the models’ judgments [11]. Some scholars have

even called for using models with interpretability rather than machine learning

black box models in high-stakes decision making scenarios to better understand

the model outputs and decision making process[20].Explainable AI has become

an important research area in order to improve trust and meet regulatory re-

quirements.Ihe goal of interpretability is to describe the internals of a system in

a way that is understandable to humans. The success of this goal is tied to the

cognition, knowledge, and biases of the user: for a system to be interpretable,

it must produce descriptions that are simple enough for a person to understand

using a vocabulary that is meaningful to the user.[6]

Currently, researchers in interpretable AI have proposed various solutions for in-

terpretable AI from different perspectives. Using feature maps of convolutional

neural networks and calculating their gradients on target output categories, Sel-

varaju et al. (2017) proposed the new visualisation method Grad-CAM for the

visual interpretation of images[24].Grad-CAM’s efficacy in tasks such as image

classification and target detection has made it a significant research result in

the field of XAI. Among the most significant research findings in the discipline

of XAI. David Bau et al. proposed in 2018 a method known as GAN Dissec-

tion that can analyse the image characteristics learnt by GAN by visualising

and analysing the hidden layers in generative adversarial networks (GANs)[1].

This method is applicable to image generation, speech synthesis, and other dis-

ciplines, and can help users better comprehend GAN-generated images.

Depending on the approach and application domain, interpretable AI can be
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divided into the following two main categories:

• Intrinsic Interpretability: This class of approaches focuses on the direct

use of models that are inherently more explanatory. These models naturally

produce easily understandable results during training without additional

post-processing. Examples include: logistic regression, decision trees, linear

regression, etc. 2.

• Post-hoc Interpretability Such methods aim to explain complex and

hard-to-explain black-box models. They are usually applied after the model

training is completed to reveal the decision process or feature importance

of the model. For example: SHAP [11], LIME [18], etc.2.

Shapley value is a concept from game theory for assigning the contributions

of different participants (also called players) in a cooperative game. It was

first introduced by Lloyd S. Shapley in 1953 to find a fair and consistent way

to measure the contribution of each player to the outcome of a game.Shapley

values have been widely used in fields such as economics, operations research,

and social sciences, and have also been introduced to interpretable artificial

intelligence in recent years. Applying Shapley values to interpretable AI can

effectively quantify the contribution of each feature to the predicted outcome of

a model. In the context of interpretable AI, Shapley values provide a fair and

consistent contribution measure for features that is not limited to a specific type

of model, making it possible to apply it to a wide range of machine learning

tasks so that we can analyze the Shapley values of individual features to explain

the decision process of a model and provide valuable insights to domain experts.
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Cancer detection is a crucial medical task that can detect cancer lesions at an

early stage, enhance treatment efficacy, and lengthen patient survival. As arti-

ficial intelligence technologies continue to advance, a growing body of research

investigates the use of machine learning algorithms to accomplish more precise

and rapid cancer detection[5].Cancer detection based on machine learning typ-

ically involves extracting features from medical images or biomarker data (e.g.,

blood samples or tissue sections) and training machine learning models to au-

tomatically identify and classify tumour types[9]. In recent years, deep learning

algorithms have emerged as an essential research direction in the field of cancer

detection, as they can automatically learn more complex features and achieve

greater classification accuracy.

Early research concentrated on conventional machine learning algorithms[23],

including support vector machines, decision trees, and random forests. These

models necessitate the manual extraction of features from biomarker data or

medical images for use in training classifiers[5]. Due to the intricacy and unpre-

dictability of medical images and biomarker data, these methods have limited

generalizability and interpretability, despite their high diagnostic precision.

In recent years, deep learning algorithms have become the predominant method

for detecting malignancy[7]. Deep learning algorithms have demonstrated su-

perior performance in cancer detection tasks due to the benefits of automatic

learning of high-level features and end-to-end training. This research aims to

enhance the precision, dependability, and interpretability of cancer detection

algorithms in order to provide clinicians with more effective diagnostic tools.
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Aims and objectives of work

When there are a large number of participants, the main challenges of Shapley

value calculation include computational complexity, result stability and reliabil-

ity, and redundant information handling. The amount of computation required

increases exponentially with the number of participants due to the need to

traverse all possible combinations of collaborations, resulting in computation

times that become long and even in some cases results that cannot be obtained

in a limited time. In practical applications, the results of each calculation may

vary slightly due to random factors and incomplete data, etc. Such differences

may be magnified when the number of participants is large, thus affecting the

stability and reliability of the Shapley values. Second, a large number of par-

ticipants is prone to overlapping functional participants, introducing redundant

information among multiple combinations, making the calculation of Shapley

values more complex and susceptible to interference. Based on these problems,

we conducted a study on the application of shapley values to explain artificial

intelligence models when there are many participants.

Tree Explainer [12], Deep Explainer (DeepLIFT + Shapley values) [26], and

Kernel Explainer (Linear LIME + Shapley values) [11] have emerged as meth-

ods for estimating the Shapley value for different algorithms within the field of

explainable AI. These elucidable methods have proven to be effective at esti-

mating the Shapley value. However, the majority of them are only appropriate

for particular categories of algorithms.
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In our previous paper ”High-dimensional explainable AI for cancer detection”[31],

we used the sampling method [2] for the calculation of the shapley value when

there were more participants. The sampling method is a way to approximate

the shapley value by random sampling. By randomly sampling the combination

space, we can effectively reduce the computational complexity and thus obtain

a more accurate estimation result in a limited time.

In the sampling method, we first randomly select a certain number of subsets

from all possible combinations and calculate the contributions of each partic-

ipant in these subsets. Then, based on these sample data, we estimate the

Shapley value of each participant using statistical methods. In order to improve

the accuracy and reliability of the estimation results, the sample size can be

increased appropriately or other optimization strategies can be used. However,

during our experiments, we found that the use of the sampling method still

required a lot of time, and although it was much faster than calculating the

Shapley values directly through the metric, the calculation time of the sampling

method was still long.

Consequently, we propose a novel method to increase efficiency based on conven-

tional sampling techniques that can be applied to all high-dimensional AI prob-

lems and algorithms: Graph Based Sampling Methodology for Shapley value.

In this paper, we will describe our method, which we refer to as the graph-based

sampling method. Utilising a graph of the relationships between all participants,

this method helps to increase computational speed. In Section 2, we will dis-

cuss briefly the context and related work, including the isolated forest algorithm,
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Shapley values, the sampling Shapley method, and our prior work. In Section

3, we describe our most important methods, including the construction of re-

lational graphs, the stochastic search algorithm, and the convergence measure.

Our method is theoretically applicable to all applications of Shapley values.

This study is novel in that we propose to use the graph method to characterise

the relationships between all participants and to use this information to assist

users in gathering more useful data to generate samples.

Academic Achievements

I have been working on combining Shapley values with interpretable AI, and

have achieved some results, published a few papers, and attended a number of

conferences, which are listed below.

Article for Journal

• High-dimensional explainable AI for cancer detection; 2021. Published[31]

• Explainable AI: Graph Based Sampling Approach for High Dimensional AI

System; Preparing.

Article for Conference

• Explainable AI: using Shapley value to explain the anomaly detection sys-

tem based on machine learning approaches; 2020 Control Processes and

Stability.[32]
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• XAI evaluation: evaluating black-box model explanations for prediction;

2021 II International Conference on Neural Networks and Neurotechnolo-

gies (NeuroNT)[29].

Structure

This section is an introduction to the paper, which will be described in the fol-

lowing way: Chapter 1 will introduce in detail the anomaly detection and ANN

model and show the detection results of the model. Chapter 2 introduces the

interpretable algorithm and our proposed new technique to reduce the time of

computing shapley values by sampling method. Chapter 3 presents our experi-

mental results and analysis. Chapter 4 presents the conclusions and concludes

with future work.
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1 ANN Models and Cancer Detection

The concept of artificial neural networks (ANNs) dates back to the 1940s and

1950s, when Warren McCulloch and Walter Pitts first proposed a simplified

model of biological neurons, the M-P model[13], which laid the foundation for

subsequent work on neural network development. After decades of accumula-

tion, artificial neural networks have become a mature model and are widely used

in various fields.

1.1 Artificial Neurons

Artificial neurons are derived from the neuron theory, which was realized in the

late 19th century that the complex nervous system is made up of a large number

of neurons combined. Neurons consist of cells and the many protrusions they

send out. The cell has a nucleus inside the cell and the role of the protrusions

is to transmit information. Several protrusions are called ”dendrites” that in-

troduce the input signal, while only one protrusion is called ”axon” that is the

output. Such a basic unit with multiple inputs and a single output can be con-

sidered from an information processing point of view. The following figure 1.1

introduces the MeCulloch-Pitts model, which is shown in a schematic structure.

For the j neuron, the input signal i is received from multiple other neurons. The

strength of each synapse is expressed as a coefficient wij, which is the weighted

value of the action of the i neuron on the j neuron[19]. The combined effect

of the input signals using some operation to give their total effect is called the
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Figure 1.1: M-P model

”net input” and is denoted by Ij. The simplest expression (1.1) of the net input

is a linear weighted summation:

Ij =
∑

wijxi (1.1)

This action causes a change in the state of neuron j, and the output of neuron

j, yj is a function of its current state. Therefore, the mathematical equation

(1.2) of the M-P model is shown below:

yj = sgn(
∑

wijxi − θj) (1.2)

where θj is the threshold value and sgn is the sigh function. When the input

exceeds the threshold value yj takes +1 as output, conversely, −1 as output.

An artificial neural network composed by using a large number of interconnected

neurons will show several features of the human brain, and the artificial neural
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network also has preliminary self-adaptation and self-organization capabilities.

The value of the weights wij is changed during the training process to adapt to

the requirements of the surrounding environment.

1.2 Basic Elements of Artificial Neural Networks

In the design and application of artificial neural networks, it is usually necessary

to consider three most basic elements, namely, the activation function[22], the

form of connections between neurons and the training of the network.

Activation function consists of the process from the input signal to the input

activation value, which eventually produces the output signal. Activation func-

tions come in various forms, and different features can be used to form artificial

neural networks with different functions. In our cancer recognition problem, we

choose the Sigmoid function as the activation function of the artificial neural

network.

f(x) =
1

1 + e−x
(1.3)

Sigmoid function has smooth and continuous characteristics, and its gradient

can be directly expressed by the value of Sigmoid function. This advantage

makes it possible to have the gradient derived from the output of Sigmoid

function directly in the subsequent training process, which greatly reduces the

computational effort in the training process. At the same time, the Sigmoid

function maps any real number input to between (0, 1), a feature that makes

this function very popular in binary classification problems.
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In the network, several neurons form the layers of the network, and the signals

are transmitted from input to output in the order of the layers. The neurons

in layer i only accept the signals given in layer i − 1, and there is no feedback

between neurons. The figure 1.2 shows the structural features of the forward

network. It can be seen that the input node is not involved in the computation,

each layer has neurons with computational functions, and each neuron involved

in the computation has any number of inputs but only one output. The input

node layer is layer 0, and the computational node layers form layer 1 to layer n

one at a time from the bottom to the top, and we call this structure an n-layer

forward network. In the forward network, the input and output layers are called

visible layers and the intermediate layers are called hidden layers.

Figure 1.2: Forward Neural Network

Rumelhant and Mcllelland proposed the Back Propagation (BP) algorithm in

1986 [22] , making it one of the most extensively utilised algorithms. According

to its fundamental principle, this network’s learning process consists of two

processes: forward propagation of the signal and backward propagation of the

error. In forward propagation, input samples are transmitted from the input
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layer to the concealed layer, where they are processed layer by layer, before

being transmitted to the output layer. When the output of the feeble output

layer does not match the desired output, the error is propagated backwards. The

back propagation of error is to reverse the output error back to the input layer,

and the error is apportioned to all units in each layer, so as to obtain the error

signal of the units in each layer, and this error signal several bits to correct the

weighting basis for each unit. Forward propagation and error back propagation

are performed continuously, so that the unit weights are continuously adjusted;

this is the neural network training process.

1.3 Mathematical principles for training phase

The structure of an artificial neural network, which is used as an example to

derive the bp algorithm, is depicted in the following schematic 1.3.

Figure 1.3: Structure of ANN

xi:input of ANN; yj:the actual output of the neural network; di: expected

output of the neural network; Wijk: the j neuron in layer i to the k neuron in

layer i + 1 connection weight; Oij: the output of the j neuron in i layer; θij :

threshold of the j neuron in i layer; netij: total input of the j neuron of the i
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layer.

Forward propagation process:

netij =

Ni−1∑
k=1

O(i−1)k ∗W(i−1)kj (1.4)

Oij = fs(netij) =
1

1 + exp[−(netij − θij]
(1.5)

Error between actual output and desired output:

ej = dj − yj (1.6)

The objective function to be optimized:

E =
1

2

∑
j

(dj − yj)
2 (1.7)

Update the weights of the network along the gradient descent direction of the

function E, η is the learning rate:

∇Wijk = −η
∂E

∂wijk
= −η ∂E

∂net(i+1)k
∗
∂net(i+1)k

∂wijk
= ηδik

∂net(i+1)k

∂wijk
(1.8)

Here δik :

δik = −
∂E

∂net(i+1)k
(1.9)
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1) Calculate the
∂net(i+1)k

∂wijk
at first :

∂net(i+1)k

∂wjik
=

∂

∂wijk
(

Ni∑
h=1

Oih ∗Wihk) = Oij (1.10)

∇Wijk = −η
∂E

∂wijk
= −ηδijOij (1.11)

2) Calculate the δik:

δik = −
∂E

∂net(i+1)k
= − ∂E

∂O(i+1)k
∗

∂O(i+1)k

∂net(i+1)k
(1.12)

A.

∂O(i+1)k

∂net(i+1)k
= f ′(net(i+1)k) = f(net(i+1)k)(1− f(net(i+1)k)) (1.13)

= O(i+1)k(1−O(i+1)k) (1.14)

B.

i) If O(i+1)k is a node in output layer:

∂E

∂O(i+1)k
= yk − dk; (1.15)

E =
1

2

∑
j

(dj − yj)
2 (1.16)
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Including the preceding result in the formula:

δik = −
∂E

∂net(i+1)k
= − ∂E

∂O(i+1)k
∗

∂O(i+1)k

∂net(i+1)k
= (dk − yk)O(i+1)k(1−O(i+1)k)

(1.17)

= (dk − yk)yk(1− yk) = (dk −Omk)Omk(1−Omk) (1.18)

ii) If O(i+1)k is a node in hidden layer:

∂E

∂O(i+1)k
=

Ni+2∑
h=1

∂E

∂net(i+2)h
∗
∂net(i+2)h

∂O(i+2)k
= −

Ni+2∑
h=1

δ(i+1)hw(i+1)kh (1.19)

netij =

Ni−1∑
k=1

O(i−1)k ∗ w(i−1)kj (1.20)

If O(i+1)k is a hidden node, its actual output is known, but its correct output

cannot be determined in advance, with the exception that the total error is

related to the output of the hidden layer, while the output of the hidden layer

must influence the input of each node in the next hidden layer.

δik = O(i+1)k(1−O(i+1)k)
∑
h=1

Ni+2δ(i+1)hw(i+1)kh (1.21)

Therefore, we derive the formula for updating the weights of the BP algorithm:
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∇Wijk =


η(dk − yk)yk(1− yk)Oij, if i+1 is output layer

ηO(i+1)k(1−O(i+1)k) ∗ (
∑Ni+2

h=1 δ(i+1)hw(i+1)kh)Oij,

if j+1 is hidden layer

(1.22)

The neurons in i layer:

δik =

 (dk − yk)yk(1− yk), if i+1 is output layer

O(i+1)k(1−O(i+1)k) ∗ (
∑Ni+2

h=1 δ(i+1)hw(i+1)kh), if j+1 is hidden layer

(1.23)

Wijk(t+ 1) = Wijk(t) +∇Wijk = Wijk + ηδikOij (1.24)

1.4 Anomaly Detection with ANN model

We use the dataset on breast cancer to detect anomalies. In our case, the value

B in the dataset’s ”diagnosis” column corresponds to benign breast cancer and

can be considered a normal sample, whereas the value M corresponds to ma-

lignant breast cancer and can be considered an aberrant sample. Moreover,

the dataset contains 569 patient cases with 30 characteristics, including hemi-

faciality, symmetry, concavity, and compactness. The tame samples accounted

for 70% of the overall number of samples, while the test samples accounted for
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30%. On the basis of the theory outlined in the preceding sections, we devised

an ANN model for identifying patients with breast cancer that is malignant.

These are the outcomes of our experiments:

Figure 1.4: confusion matrix of the

Table 1.1: Evalution of ANN model

Accuacy Precision Recall F1-score

96.49% [99.03%,92.54%] [95.37%,98.41%] [97.17%,95.38%]

Precision defines the proportion of predicted positive class (abnormal) samples

that are, in fact, positive class. In this case, the precision is 0.99 (normal)

and 0.92 (abnormal), indicating that the prediction is highly accurate. Recall

identifies the proportion of actual positive classes among samples that were

predicted to be positive classes. Recall values of 0.95 (non-anomalous) and

0.98 (anomalous) indicate that the model has a high sensitivity for detecting

anomalies. The fscore’s cumulative mean is determined by combining accuracy
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and recall. In this instance, the F1 scores of 0.9717 (non-anomalous) and 0.9538

(anomalous) indicate that the model performs better overall.

The test results indicate that the neural network model is relatively accurate

at detecting breast cancer. This demonstrates that the artificial neural network

is capable of learning and capturing breast cancer-related data features. It also

demonstrates that breast cancer detection models with a high degree of accuracy

can provide supplementary information for clinical diagnosis and aid physicians

in determining the nature of lesions with greater speed and precision, allowing

for the creation of individualised treatment plans for patients.

In the previous section, the fundamentals of ann and the BP algorithm were de-

scribed, and breast cancer detection with ann produced more favourable results.

However, when implementing these algorithms in the actual world, we must

provide the most believable and accessible explanation possible. Therefore, the

remainder of this paper will concentrate on the interpretable AI approach, the

problems we encountered during our research, and the solutions we developed.
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2 Interpretive artificial intelligence for AI models with

high-dimensional input

In 1951, Lloyd Shapley invented the idea of Shapley’s value[25], for which he

was awarded the 2012 Nobel Prize in Economics. Shapley’s value is a notion

in cooperative game theory. It gives each cooperative game’s total surplus pro-

duced by the alliance of all players a different allocation. A number of desired

characteristics define the Shapley value.

Scott and his colleagues proposed in 2017 to adapt the concept of Shapley values

to the field of interpretable artificial intelligence in order to explain predictive

models [11]. SHAP (SHapley Additive exPlanations) is an interpretable method

that can explain the output of the majority of machine learning models. In

analysing their results, we discovered that SHAP does not precisely compute the

true Shapley value to guarantee computational efficiency, but instead provides

distinct computational strategies for various types of machine learning. How-

ever, the properties of Efficiency, Symmetry, Dummy, and Additivity enable an

accurate interpretation of the Shapley values for the solutions. Therefore, we

wish to reduce the amount of time and memory required to compute Shapley

values.

In their 2021 paper[28], Zhanghao and his research team investigated methods

for interpreting multivariate Shapley interactions utilising deep neural networks.

We propose a new method to compute and explain multivariate Shapley interac-

tions using locally sensitive hashing (LSH) and approximate nearest neighbour
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search, thereby enhancing the model’s interpretability. The method can divide

the input feature space into multiple bins, thereby reducing the complexity of

Shapley value computation and estimating Shapley values through the selection

of a representative sample set.

The way it works is that a coalition of players works together to achieve a

specific overall gain. What should the final allocation of the ensuing surplus be

among the players in any given game given that certain players may contribute

more to the alliance than others or may have differing negotiating power? Or,

to put it another way, how significant is each participant to the total effort, and

what benefits can each realistically anticipate? Shapley values offer a potential

response to this query.

2.1 Shapley Value in Game Theory

The Shapley value [25] is a concept from game theory for distributing total

payoffs in a cooperative game to individual players in an equitable manner.

It was introduced in 1953 by Nobel laureate Lloyd Shapley and is regarded

as a stable and equitable allocation method.The Shapley value establishes the

proportion of each participant’s allocation by calculating the average marginal

contribution of each participant to the total compensation.The explicit equation

of the Shapley value is given in Eq. (3.1):

φi =
∑

S|i∈S⊆N

(|S| − 1)!(|N | − 1)!

|N |!
[v(S)− v(S \ {i})], (2.1)
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• i: The number of a player;

• |S|: The number of players in coalition S;

• v(S): The characteristic functions of coalition S ;

• N : The set of all players;

In game theory, the player contribution to cooperative games is measured by

the Shapley value. Due to the following characteristics, Shapley values are

theoretically significant and are often applied in various fields.

• Efficiency: The sum of the Shapley values of all agents equals the value

of the grand coalition, so that all the gain is distributed among the agents:

n∑
i=1

ϕi(v) = v(N) (2.2)

• Symmetry: If two players have the same impact on all subsets, their

Shapley values are equal. This property shows that the contribution of

each player is equal and they should receive fair rewards regardless of their

role in the game.

ϕi(v) = ϕj(v),∀v (2.3)

• Linearity: The distributed gains should match the gains derived from

v and the gains derived from w if two coalition games defined by gain

functions v and w are combined:

ϕi(v + w) = ϕi(v) + ϕi(w)ϕi(av) = aϕi(v) (2.4)
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for every i in N , and a ∈ R.

• Null Player: The Shapley value for a null player i in game v is zero. A

player i is null in v if v(S ∪ i) = v(S) for all coalition S that do not contain

i.

To increase the accuracy and readability of models in the field of machine learn-

ing, Shapley values are frequently utilised in feature importance evaluation and

model interpretation. We can comprehend the decision-making process of model

prediction and identify areas that want improvement by assessing the degree of

contribution of each feature to the model output. The Shapley value can also

assist us in locating the model’s issues with unfairness and offering appropriate

options for improvement. In conclusion, Shapley value is a crucial tool that may

help us better understand and analyse the model’s prediction outcomes as well

as increase the model’s dependability and interpretability.

Using the Shapley value, the joint reward is distributed among the players

(
∑n

i=1 φi = V (N)). Generally speaking, if a player makes a bigger contribu-

tion to the cooperation, then his imputation value will be bigger. In machine

learning, the Shapley value approach can explain the contribution of each fea-

ture value. It can be used for global explanation and for local explanation[31].

2.2 Sampling Shapley Approach

Shapley value is a method used in game theory to measure the contribution

of participants to a game, which enables us to comprehend the influence of
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each player on the game’s outcome. In machine learning, the Shapley value

is commonly employed in feature importance assessment, which informs us of

the significance of each feature for model prediction. In practise, however, as

the number of feature combinations and computational complexity increase, it

becomes impractical to explicitly calculate the Shapley value for each subset

of features. Consequently, sampling-based algorithms have become a prevalent

method for calculating Shapley values.

In 2009 a sampling method was proposed to reduce the computation complexity

of the exact formula for the Shapley value [2]. Basic cooperative game theory re-

search shows that the approximate Shapley algorithm is effective for large-scale

games. Although researchers have been attempting to identify an algorithm that

can accurately compute Shapley values, the time and resources devoted to this

endeavour have been considerable, and the results have been limited. Therefore,

it makes more sense to approximate the Shapley values using a sampling-based

algorithm.

The algorithm is presented below[31]:

1. Model the game: define n = |N | feature player from input data set D. Set

sampling size as M .

2. Set sample M : the population of the sampling process P will be the set

of all possible orders of N players, i.e., P = π(N). Let O : {1, . . . , n} →

{1, . . . , n} be a permutation that assigns to each position k the player O(k).

By π(N) denote the set of all possible permutations with player set N .
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3. Observe characteristic function: the characteristics observed in each sam-

pling unit, O ∈ π(N), are the marginal contributions of the players in the

order o, i.e. x(o) = (x(o)1, . . ., x(o)n), where x(o)i = v
(
Prei(o) ∪ {i}

)
−

v
(
Prei(o)

)
.

4. Estimate the Shapley values: the estimate Ŝhi of the parameter Sh, will

be the mean of the marginal contributions over the sample M , i.e. Ŝh =(
Sĥ1, . . . , ĥ1

)
, where Ŝhi =

1
m

∑
O∈M x(o)i.

5. Obtain the final result: the selection process used to determine the sample

M will take any order O ∈ π(N) with probability 1
n! .

The following is the pseudocode for this algorithm[31]:
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Algorithm 1: AlgorithmApproShapley

begin

Determine m ;

Cont := 0 and Ŝhi := 0 ∀i ∈ N ;

While Cont < m;

begin

Take O ∈ π(N) with probability 1/(n!) ;

For all i ∈ N ;

begin

Calculate Prei(O);

Calculate x(O)i := v(Prei(O) ∪ {i})− v(Prei(O));

Ŝhi := Ŝhi + x(O)i;

end

Cont := Cont+ 1

end

Ŝhi :=
ˆShi

m ∀i ∈ N

end

In our previous paper, we used the same dataset but performed interpretive

work on the Isolation forest algorithm. It is difficult to calculate the Shap-

ley value explanation using the exact approach by enumerating and analyzing

the characteristic function for all coalitions. Therefore we proposed to use the

Sampling approach to approximate the results for the exact approach[31]. The

error was calculated using the formula
∑

(shk−1
i − shk

i ), where k is the iteration

number and i is the index of features. It can be observed that the algorithm
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Figure 2.1: Shapley value explanation for Isolation forest model using Sampling approach.

converges faster within 300 iterations (figure 2.1 and figure 2.2).

Despite the fact that the Shapley value is approximated in this manner, the

time-intensive character of the sampling method remains significant. Similarly,

we did not analyse the information provided by the ranking changes in the

previous paper. We have therefore improved the sampling procedure.

2.3 Sampling based on Weighted Graphs

During practical testing, we discovered that the sampling method requires a

significant amount of computational time during the sampling phase, which

may impose a significant computational burden on the estimation of Shapley
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Figure 2.2: Convergence of Samping Shapley algorithm

values for massive datasets and complex models. Therefore, we would like to

investigate a method for simplifying the sampling procedure in order to reduce

computational complexity and boost efficiency. By enhancing the current sam-

pling technique, we hope to accomplish a faster and more accurate estimation

of feature contributions, while preserving its applicability across a variety of

scenarios and applications.

2.3.1 Pearson correlation coefficient

The Pearson correlation coefficient examines the linear relationship between

two continuous variables. This coefficient has been utilised in a number of med-
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ical contexts[15]. In biomarker correlation analysis, for instance, it assesses the

degree of correlation between various biomarkers, thereby assisting in the identi-

fication of potential risk factors or pathological mechanisms[8]. Gene expression

correlation studies can also utilise the Pearson correlation coefficient to reveal

co-expression patterns, functional similarity, and regulatory mechanisms among

genes[17].

In our situation, we use the Pearson product-moment correlation coefficient to

investigate the relationship between various features and to construct a graph

depicting the relationships between all features. Equation 2.5 displays the for-

mula for the Pearson product-moment correlation coefficient.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.5)

Figure 2.3: Original relationship map

The relationship graph between all features is depicted in figure 2.3. We use
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Figure 2.4: Relationship map with most importance link

equation 2.5 to compute the correlation coefficient between every pair of fea-

tures, and a high correlation coefficient between two features indicates that they

share a certain amount of redundant information and can be considered compa-

rable. We argue that the stronger the correlation, the stronger the connection

between features. Consequently, based on this concept and in an effort to re-

duce the number of connections, we propose filtering the weak connections by

locating the q% quartiles, which can be altered based on efficiency requirements.

As depicted in Figure 2.4, this method enables us to reduce the complexity of

the graph while conserving all significant connections between features.

2.3.2 Biased Random Path Searching Method

In the algorithm for the sampling method used to calculate Shapley, the sam-

pling object is the coalition formed by all participants, and during our exper-
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iments we ran into the issue of high computational cost. Utilising relational

graphs, we endeavoured to create a new method with a lower computational

cost. This strategy reduces the number of coalitions processed while retaining

the information that the participants in the coalition being processed are highly

interconnected. We believe this effect will be realised by generating alliances in

a relationship graph filtered by Pearson’s correlation coefficient.

The biassed random path search method is a simple and effective heuristic search

technique appropriate for complex mathematical model and graph structure

issues. The method assigns probability values to neighbouring nodes based

on some informative metric beginning at a starting node of the graph. These

probabilities reflect the likelihood that the corresponding node will be selected as

the next step. Then, based on the designated probability values, a neighbouring

node is chosen at random and added to the list of visited nodes. This procedure

is repeated until a predetermined termination condition is met. The following

is the pseudocode for this algorithm:
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Algorithm 2: Random Path Generation

Input: Number of sample paths N , random length L, adjacency

matrix A

Output: N generated paths

for i← 1 to N do

Select a random starting node Node
(i)
1

for t← 1 to L− 1 do

Compute the sum of weights for adjacent nodes:

S
(i)
t =

∑
k ANode

(i)
t ,k

Normalize the weights in the adjacency matrix row:

P
(i)
t =

A
Node

(i)
t

S
(i)
t

Choose the next node based on normalized weights:

Node
(i)
t+1 ∼ P

(i)
t

end

end

In our case, we used this method to help us find affiliates with a high level of

interactive information. Our results are shown in the next section.

2.3.3 Convergence Measurements

We evaluate the convergence of the algorithm using Mean Absolute Error (MAE),

show in equation (2.6), which is a measure of the average absolute deviation be-

tween the predicted and actual values. To ascertain whether the algorithm has

converged, the MAE values of two consecutive iterations are compared. At each
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iteration stage, we compare the MAE of the Shapley value estimate from the

current iteration with the MAE from the previous iteration. By observing the

variation between MAE values, we can determine the algorithm’s efficacy at

various iteration stages. The equation of MAE:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.6)

where,

• n represents the number of observations.

• yi represents the true value of the i-th observation.

• ŷi represents the predicted value of the i-th observation

As stated in Section 2.2, we do not analyse the information from the ranking

changes, but rather only the numerical error in presuming the algorithm has

stabilised. As a result, we also incorporated the Spearman rank Correlation

Coefficient,show in equation (2.6), as a second metric to assist us in observing

the ranking information changes at each iteration.The Spearman correlation

coefficient is a commonly used nonparametric statistical method to measure the

degree of association between two variables. In feature selection, the Spearman

correlation coefficient can be used to assess the correlation between each feature

and the target variable and accordingly eliminate features that are uncorrelated

or redundant with the target variable[10]. The equation of Spearman Rank
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Correlation Coefficient(2.7):

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2.7)

• ρ represents the Spearman Rank Correlation Coefficient

• di represents the difference between the ranks of the paired data points for

the i-th observation.

• n represents the number of observations (data pairs)

•
∑

d2i is the sum of the squared differences between the ranks of the paired

data points

2.4 Summary of Sampling Method based on Weighted Graphs

We consolidate the previously mentioned technical details and outline the pro-

cedure for implementing the sampling method based on weighted graphs. The

novel sampling technique has been meticulously designed to reduce computa-

tional complexity. Both the number of samples and the path length influence

the convergence speed and accuracy of the algorithm throughout the process.

This is the pseudocode for the sampling method based on weighted graphs:
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Algorithm 3: Graph Based Sampling Approach for the Shapley value

Data: Data D, filtering parameter p, sample size M , sample length

Lj, sample size N

Result: Ŝhi

Initialize c← 0, Ŝhi ← 0

aij ←
∑n

i=1(xi−x̄)(yi−ȳ)√∑n
i=1(xi−x̄)2

√∑n
i=1(yi−ȳ)2

, where aij ∈ A.

for all a ∈ A, if a < p, then set it to 0 do

end

while c < M do

l← 0

Randomly select a player playeri and set length L, and add

playeri to the set O. while l < L do

Randomly select the next player playerj based on the

probability distribution P ∼ Aij∑
Ai
, and add playerj to the set

O. Set i = j, l← l + 1

end

for i in O do

Calculate Prei(O). Calculate

x(O)i = v(Prei(O) \ {i})− v(Prei(O)). Set Ŝhi = x(O)i. Set

counti ← counti + 1

end

Set c← c+ 1

end

Compute Ŝhi = Ŝhi/counteri.
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3 Results and Analysis

In this section, we’ll show the findings from our experiments in two different

ways. The Shapley values derived using the sampling approach based on rela-

tional graph information will be displayed first, followed by the corresponding

analysis. To demonstrate the advancement we have made, we shall compare our

approach to sampling with the original method used in the past.

3.1 Dataset description

The Breast Cancer Wisconsin (Diagnostic) dataset is accessible through the UCI

Machine Learning Repository. It has 30 real attributes, one numeric attribute

(id field), and one categorical attribute, which is a class label, with a dimension

of 569 by 32. Since this is a two-class classification problem, also known as

Binary Classification, there are two class values for diagnosis in this data set:

M (Malignant) and B (Benign).

The following ten real-valued characteristics are computed for each cell nucleus:

• Radius (mean of distances from the centre to the perimeter’s locations).

• Texture (standard deviation of grayscale values).

• Perimeter.

• Area.

• The uniformity (local variation in radius lengths).
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• The surface.D compactness (perimeter2/area− 1.0).

• Concavity (severity of the contour’s concave portions).

• Concave elements (number of the contour’s concave portions).

• Symmetry.

• Fractal dimension (”coastline approximation” - 1).

For each image, the mean, standard error, and ”worst” or maximum (mean of

the three largest values) of these features were calculated, yielding 30 features.

Field 3 is the Mean Radius, field 13 is Radius SE, and field 23 is the Worst

Radius.Four significant numerals are used to record every feature value.

This dataset contains no attributes with missing values. The distribution of the

class is 357 benign and 212 malignant.

3.2 Simulation Results for Sampling method based on Graph

Based on the Pearson correlation coefficient introduced in 2.3.1, we first plotted

a heat map of the thirty features of the dataset. The outcomes are depicted in

figure 3.1.

Then, we filtered the weak connections between the features and set the param-

eter for filtering to 75% of the quartiles. This will help us to select coalitions

with higher relevance. The results are depicted in figure 3.2:
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Figure 3.1: Interaction based on Correlation

Figure 3.2: After Enhancing
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Figure 3.3: Shapley value of Graph sampling

Based on the experimental findings which shows on figure 3.3, this result con-

cluded that four parameters in the breast cancer data-set mean concavity, worst

concavity, worst area, and worst compactness were more significant than other

features. Particularly, these characteristics helped better to discriminate be-

tween malignant and benign tumours.

The graph Shapley sampling method accomplishes a 40% reduction in time cost

compared to other methods with the same number of iterations due to the ran-

dom scale design. This enhancement and efficiency gain gives the graphical sam-

pling technique a significant advantage in managing complex datasets, bringing

convenience to related research and applications. Moreover, the graphical Shap-

42



ley sampling method not only reduces computational cost, but also enhances

computational reliability and stability to a certain extent, allowing for more

precise results to be obtained in a shorter amount of time. The next subsection

will show the detailed results.

3.3 Comparison with Original sampling method

In our earlier work [31], we employed MAE as a metric to assess convergence,

however we failed to take into account a disadvantage. MAE is small does not

account for changes in ranking; it only indicates that the overall numerical error

has been minor throughout the course of two iterations. In order to improve our

trials, we included observations for the Spearman rank correlation coefficient.

Figure 3.4 and figure 3.5 demonstrate that the MAE stabilises after 500 it-

erations, while the Spearman correlation stabilises after approximately 2,000

iterations for Original sampling method. Random samples create a fluctuation

near the 2,500 iteration; however, the rank and Shapley values for the original

sampling method remain nearly the same between the 2,000 and 3,000 iterations.

The correlation between the two iterations is closer to 1, which means that the

change in ranking between the two iterations is smaller, and at the same time,

the overall mae of the data is almost constant (< 0.0001) , therefore, for the

original sampling method, although the algorithm is more time consuming, it

still achieves stable results.

The conditions are same for the graph sampling method. The MAE stabilises
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Figure 3.4: MAE for original sampling

Figure 3.5: Spearman rank for original sampling

after 500 iterations, as seen in figures 3.6 and 3.7. When doing simulations, there

is a certain amount of randomness in each random sample, which could cause

variations in the results regarding the Spearman Rank Correlation Coefficient.
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The size of the sample can also have an impact on how stable the results are.

The results fluctuated after 2500 iterations. When the number of iterations

reached 3,000, the results stabilised and no longer displayed significant changes

as a result of further increasing the number of iterations.

Figure 3.6: MAE for sampling based on graph

Figure 3.8 and figure 3.9 depict the efficacy of the graph-based Shapley sampling

method in interpreting the results. Notably, although the Shapley values and

feature rankings calculated by the two methods differ slightly, they both follow

a similar pattern in identifying significant characteristics. By comparing the

two graphs, we can see that 3 of the top 5, 8 of the top 10, and 3 of the bottom

5 features are shared by both approaches, with only minimal variations.

The table 3.3 gives details of the feature rankings given by the two methods.

The features that change within two places in the new method’s results are

represented by the features in the grid highlighted in green in the table. It is
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Figure 3.7: Spearman rank correlation coefficient for sampling based on graph

Figure 3.8: Shapley value for sampling method based on graph

evident that the results of the graph-based sampling approach are almost iden-

tical to those of the original sampling method for the most and least significant

features (Top 10 and Bottom 10), and that the features with the largest changes
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Figure 3.9: Shapley value for original sampling

in feature weight ranking are created in the middle ten features.
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RANK Original sampling Sampling based on graph

1 worst concavity worst concave points

2 mean concavity worst radius

3 worst concave points mean concavity

4 worst radius worst concavity

5 worst texture worst texture

6 mean concave points worst area

7 worst area mean radius

8 concavity error worst perimeter

9 worst perimeter mean concave points

10 mean radius mean area

11 mean area concavity error

12 worst smoothness area error

13 worst fractal dimension radius error

14 radius error mean texture

15 smoothness error worst smoothness

16 area error worst fractal dimension

17 mean texture worst symmetry

18 mean smoothness concave points error

19 symmetry error mean smoothness

20 worst symmetry mean symmetry

21 mean fractal dimension symmetry error

22 mean symmetry perimeter error

23 concave points error smoothness error

24 perimeter error mean fractal dimension

25 texture error texture error

26 fractal dimension error worst compactness

27 mean perimeter mean perimeter

28 worst compactness fractal dimension error

29 compactness error mean compactness

30 mean compactness compactness error
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In addition, we discovered that the Shapley Value determined by the graph-

based sampling approach was, to some extent, less than that of the original

sampling method. These issues might arise because, in the previous operation,

we eliminated the potential of coalition building among weakly related charac-

teristics, which resulted in the loss of some information and such experimental

findings.
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3.4 Validation of Interpretation Results

Based on the results in the previous subsection, we decided to validate the

feature importance. We can see that the three features worst concave points

, worst radius, mean concavity are among the features that contribute more

to the detection of malignant tumors in both methods. Therefore, we decided

to remove these features and retrain the model. At the same time, we also

remove the three features that contribute least to this work and retrain them

as controls. The following table is the results of the retraining:

Table 3.1: Evalution of ANN model

Features Accuacy Precision Recall

Without Top 3 87.32% [91.67%,92.53%] [93.42%,90.94%]
Without Bottom 3 96.31% [98.03%,92.31%] [94.25%,98.19%]

We found that when the three features with the largest contributions were re-

moved, the evaluation metrics of the model decreased significantly using the

same training process. However, when the three features with the smallest con-

tribution are removed, the metrics of the model are basically unchanged using

the same training process.
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4 Conclusion and Future works

4.1 Conclusion

This finding indicates that while the original Shapley sampling method and the

graph-based Shapley sampling method may differ in terms of specific values,

they have a high degree of consistency in identifying essential characteristics.

This consistency gives researchers and practitioners greater assurance that sim-

ilar results can be obtained when analysing data using both methods. This is

additional evidence that the graph-based Shapley sampling method can be an

effective and efficient alternative for feature selection, model interpretation, and

data analysis.

In this research, we try to find a solution to the high-dimensional complicated

artificial intelligence systems feature importance assessment challenge.Although

the Shapley Sampling algorithm is a frequently used evaluation technique, it has

a high processing complexity and is challenging to utilise with high-dimensional

datasets. In order to evaluate feature importance, we provide a biassed graph-

based Shapley Sampling approach.

In contrast to the original Shapley Sampling technique, our approach creates a

relationship graph using Pearson product moment correlation coefficients, and

then employs a biassed random path search method to create coalitions as sam-

ples. This speeds up computations without sacrificing precision. In particular,

our strategy enhances the quality of the sampled coalitions and balances com-
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putational complexity and accuracy by regulating the size of the coalitions.

The experimental findings demonstrate that, despite modest variations in fea-

ture ranks and Shapley values, the original technique and our suggested method

both consistently score positive and negative contributions on a scale of one to

ten. Additionally, for the same number of iterations, the computation time of

the new approach is 40% faster than the old algorithm.

Additionally, we added the capability to measure outcomes by combining the

MAE and Spearman index correlation. These techniques enable us to thor-

oughly assess the Shapley Sampling method’s effectiveness.

Challenges and Future Work

1. Future research must look more closely at how the interpretation results

can be used in practical situations. Incorporate with various real business

requirements to strengthen or develop the model depending on the findings

of the interpretation. Investigate ways to improve the model’s ability to

generalise depending on the results of the interpretation.

2. Investigate the explanation scheme’s metrics to confirm or validate the

explanation scheme’s correctness. The industry currently lacks a statistic

that can accurately gauge the outcomes of interpretation.

3. It is necessary to extend the application of our findings to additional ma-

chine learning models, such as reinforcement learning and unsupervised

learning. Other categories of machine learning models should take Shapley

value-based explanatory approaches into consideration.
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