Санкт-Петербургский государственный университет

НАЗАРОВ Роман Сергеевич

Выпускная квалификационная работа

Когерентные оптические свойства экситонов в полупроводниках

Уровень образования: *Магистратура* Направление 03.04.02 «Физика» Основная образовательная программа ВМ.5511.2021 «Физика» Профиль «Фотоника»

> Научный руководитель: кандидат физ.-мат. наук, доцент Капитонов Юрий Владимирович

Рецензент: кандидат физ.-мат. наук, и. о. мл. научного сотрудника Косарев Александр Николаевич

Санкт-Петербург 2023 год

Оглавление

1.	Введение	2	
2.	Литературный обзор	3	
	2.1. Экситон	. 3	
	2.2. Галогенидные перовскиты	. 4	
	2.3. Фотонное эхо	. 5	
	2.4. Поляриметрия фотонного эха	. 6	
3.	Эксперимент	10	
	3.1. Образец	. 10	
	3.2. Экспериментальная установка	. 10	
	3.3. Параметры детектирования	. 11	
	3.4. Анализ данных	. 12	
4.	Выводы	16	
5.	Благодарности	17	
Сг	Список литературы		

1. Введение

В настоящее время существует необходимость в поиске новых материалов для создания квантовых логических элементов, позволяющих реализовывать обработку информации с помощью световых сигналов. Вычислительные машины, основанные на электрических импульсах, приближаются к пределу своих возможностей. Обработка информации чисто оптическим способом является одной из наиболее многообещающих альтернатив современной кремниевой электронике. Среди преимуществ использования света в обработке информации следует отметить наличие больших степеней свободы, возможность распространения света без проводников и отсутствие изменения свойств световых пучков при перекрытии. Одним из оптических явлений, которое может лечь в основу квантовых логических элементов, является фотонное эхо. Эксперименты по фотонному эху открывают перспективные возможности для создания оптической памяти [1]. Фотонное эхо широко исследовано в эпитаксиальных структурах, однако в последние годы внимание привлёк к себе класс галогенидных перовскитов. Этот материал обладает свойствами, близкими к эпитаксиальным структурам, но проще и дешевле в получении. В настоящей работе изучается характер когерентной динамики методом четырехволнового смешения и фотонного эха от экситонов в монокристалле галогенидного перовскита $MAPbI_3$ ($MA^+ = CH_3NH_3^+$).

Результаты, полученные в ходе настоящей работы, прошли апробацию на конференциях «Физика полупроводников и наноструктур, полупроводниковая опто- и наноэлектроника», «Всероссийская научно-практическая конференция им. Жореса Алфёрова», а также легли в основу статьи «Photon echo from free excitons in a $CH_3NH_3PbI_3$ halide perovskite single crystal» (DOI: 10.1103/PhysRevB.105.245202).

2. Литературный обзор

Вычислительные машины, в которых обработка информации осуществляется электрическими сигналами, практически достигли предела своих возможностей. В настоящее время разрабатываются квантовые компьютеры, одним из возможных способов реализации которых является хранение и обработка информации с помощью световых сигналов. Фотонное эхо - одно из оптических явлений, которое может быть использовано в основе оптической памяти. Ведётся поиск материалов, пригодных для наблюдения в них эффекта фотонного эха. Модельным материалом для ислледования в нём эффекта традиционно являлись эпитаксиальные структуры [2]. Недостатком таких материалов является дороговизна, сложность, время- и ресурсозатратность производства. Доступной альтернативой являются галогенидные перовскиты, которые в последние годы привлекли значительное внимание благодаря своим выдающимся оптическим свойствам, что делает их потенциальными кандидатами для широкого спектра оптоэлектронных применений, таких как солнечные элементы, светоизлучающие диоды и фотодетекторы [3–5]. Кроме того, эффективное взаимодействиеие со светом, большая сила осцилляторара, нелинейность оптических откликов в галогенидных перовскитах являются ключевыми характеристиками в вопросе поиска материалов для решения задач информационной фотоники.

2.1. Экситон

Экситон - квазичастица, возникающая в результате возбуждения электронной системы полупроводника, которое приводит к переходу электрона из валентной зоны в зону проводимости. Дырка, образованная в валентной зоне в результате возбуждения, ведет себя как положительно заряженная частица. Так как электрон и дырка имеют заряды противоположного знака, их притяжение описывается кулоновским взаимодействием. Принято выделять два предельных случая: экситон Ванье-Мотта (Рис. 1 (a)) и экситон Френкеля (Рис. 1 (b)). [2]

Рис. 1: Экситоны: Ванье-Мотта (a) - расстояние между электроном и дыркой больше постоянной решётки, Френкеля (b) - расстояние между электроном и дыркой сравнимо с постоянной решётки

Экситоны Ванье-Мотта характеризуются радиусом, который может достигать десятков межатомных расстояний, в то время как экситон Френкеля имеет радиус, не превышающий межатомное расстояние. Экситоны могут свободно перемещаться по кристаллу, либо могут быть связанными. Связанный экситон возникает в случае, если хотя бы один из носителей заряда локализован на примеси или дефекте.

2.2. Галогенидные перовскиты

Галогенидные перовскиты неожиданно привлекли внимание научного сообщества как эффективная среда для создания поглотителей солнечных элементов [6–8]. С постепенным развитием исследований стало ясно, что помимо высокой поглощающей способности, эти прямозонные полупроводники также хорошо излучают свет. Это свойство в значительной мере обусловлено их высокой устойчивостью к дефектам [9, 10]. Однако природа фотовозбужденных частиц в перовскитных устройствах при комнатной температуре оставалась открытым вопросом [11]. С одной стороны, считалось, что экситоны при комнатной температуре являются стабильными, основываясь на низкотемпературной магнитоабсорбционной спектроскопии, которая ранее показала энергии связи экситонов Ванье-Мотта в диапазоне от 37 до 50 мэВ в типичном представителе класса галогенидных перовскитов, MAPbI₃ [12–14]. С другой стороны, имелись данные о больших диффузионных длинах [15, 16], что противоречило этому утверждению.

Этот парадокс был разрешен только после экспериментального исследования ридберговской серии экситонов Ванье-Мотта в MAPbI₃. В результате этих экспериментов была обнаружена значительно более низкая энергия связи экситонов, составляющая порядка 16 мэВ при низких температурах и несколько мэВ при комнатных температурах, что полностью соответствует ранее сделанным теоретическим предсказаниям [17]. Дальнейшие исследования монокристаллов MAPbI₃ [18] и MAPbBr₃ [19] окончательно подтвердили существование резонансов, связанных с экситонами Ванье-Мотта и сопоставили наблюдаемые ранее резонансы со связанными экситонами или дополнительными особенностями, различающимися в зависимости от способа получения образца. Что касается свободных экситонов, они были экспериментально исследованы в трехмерных галогенидных перовскитах, включая гибридные и неорганические соединения [20-22]. Свободные экситоны представляют большой интерес для приложений информационной фотоники из-за их высокой силы осциллятора, сконцентрированной в узком спектральном диапазоне, и сильной нелинейности оптического отклика. Одним из простейших экспериментов, демонстрирующих появление сигнала исключительно из-за нелинейности, является четырехволновое смешение (ЧВС). В ряде работ исследовалось ЧВС в тонких поликристаллических пленках MAPbI₃ [23–25]. Однако из-за высокой плотности поверхностных дефектов в таких образцах была обнаружена экситонная динамика лишь на субпикосекундных временах. Неоднородное уширение переходов также ограничивает применение ЧВС-спектроскопии. Аналогичные результаты были получены для ансамблей нанопластинок MAPbI₃ [26] и поликристаллических тонких пленок двумерных галогенидных перовскитоподобных материалов [27–29]. Субпикосекундное фотонное эхо наблюдалось также и в монокристаллах MAPbI3 [30]. Наиболее подходящим объектом для изучения фундаментальных оптических свойств галогенидных перовскитов являются монокристаллы, исследуемые при криогенных температурах. В таких условиях как неоднородное, так и тепловое уширение материальных резонансов минимизируются.

2.3. Фотонное эхо

Фотонное эхо (ФЭ) представляет собой явление формирования когерентного оптического отклика системы в результате воздействия ультракороткими лазерными импульсами, разделенными во времени.

Принцип возникновения эха заключается в следующем: на систему оказывает воздействие первый импульс, за которым, через задержку времени τ_{12} , следует второй импульс. В результате через время $2\tau_{12}$ наблюдается когерентный отклик системы. При рассмотрении простейшей модели вещества в качестве двухуровневой системы, временной профиль сигнала фотонного эха описывается следующим выражением:

$$A(t) \sim \sqrt{I_1} I_2 \exp \frac{-t}{T_2} \exp \frac{-4\ln 2(t - 2\tau_{12})^2}{T_2^*}$$
(1)

Используемая модель двухуровневой системы хорошо описывает момент прихода $\Phi \Im$ и его профиль - функция Гаусса, центрированной на времени $2\tau_{12}$ с шириной на половине высоты T_2^* (Рис. 2). Также рассматриваемая модель описывает экспоненциальное затухание амплитуды с ростом задержки между импульсами. В рамках модели двухуровневой системы невозможно объяснить явление, связанное с уменьшением времени необратимой фазовой релаксации при увеличении интенсивности, а также явление прекращения роста интенсивности сигнала ФЭ при возрастании интенсивности обоих импульсов. Возможно, такое поведение можно было бы объяснить с помощью введения параметра, который отражает процесс энергетической релаксации, то есть релаксации населенностей.

Рис. 2: Теоретический вид сигнала фотонного эха, полученный в рамках модели двухуровневой системы

Первоначальное обнаружение $\Phi \Im$ произошло в кристалле рубина [31], а затем было обнаружено и в газах [32]. В настоящее время активно исследуется когерентная динамика с использованием метода $\Phi \Im$ как в традиционных полупроводниковых структурах, таких как квантовые ямы и квантовые точки на основе (In,Ga)As [1], так и в новых материалах, например, в монослоях дихалькогенидов переходных металлов [33] и галогенидных перовскитах [34]. Все перечисленные материалы обладают неоднородно уширенным ансамблем квазичастиц с ненулевым дипольным моментом, что позволяет им взаимодействовать со светом. Квазичастицами, которые могут служить источниками сигнала $\Phi \Im$, могут выступать экситоны или их комплексы, такие как трионы или экситоны, локализованные на примесях.

2.4. Поляриметрия фотонного эха

Для определения, какой ансамбль квазичастиц является источником сигнала ФЭ, возможно проведение измерений поляризации сигнала эха в зависимости от поляризации возбуждающих импульсов. Образец подвергается воздействию двух возбуждающих импульсов линейной поляризации. При этом поляризация второго импульса повёрнута на угол ϕ относительно первого. Поляризацию детектирования задаёт линейно поляризованный опорный импульс. Чтобы получить теоретический вид поляризационной зависимости сигнала фотонного эха, предположим, что исследуемый образец представим в виде трёхуровневой системы (рис. 3).

Рис. 3: Схема энергетических уровней в исследуемом образце

Основное состояние $|0\rangle$ и возбужденное состояние $|H\rangle$ ($|V\rangle$) связаны H-(V-) линейно поляризованным светом. Эта система может быть описана матрицей плотности ρ :

$$\rho = \begin{pmatrix} \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{31} & \rho_{32} & \rho_{33} \end{pmatrix}$$
(2)

Здесь матричные элементы ρ_{11} и ρ_{22} представляют собой населенности возбужденных состояний $|H\rangle$ и $|V\rangle$ соответственно, а $\rho_{01} = \rho_{10}^*$ и $\rho_{02} = \rho_{20}^*$ – матричные элементы, отвечающие за оптические поляризации. Временную эволюцию системы можно найти с помощью уравнения фон Неймана:

$$\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$$

Гамильтониан системы с учётом взаимодействия со светом можно записать в следующем виде:

$$\hat{H} = \begin{pmatrix} 0 & d^* E_H(t)^* e^{i\omega t} & d^* E_V(t)^* e^{i\omega t} \\ dE_H(t) e^{-i\omega t} & \hbar\omega_0 & 0 \\ dE_V(t) e^{-i\omega t} & 0 & \hbar\omega_0 \end{pmatrix}$$
(3)

Матрица плотности для системы в начальный момент времени имеет вид:

$$\rho^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(4)

Будем использовать приближение бесконечно коротких импульсов. В этом случае эксперимент по двухимпульсному ΦЭ можно разбить на последовательность следующих процессов: воздействие первым импульсом, эволюция во времени, воздействие вторым импульсом, вторая эволюция во времени. Площадь импульса Θ определяется выражением:

$$\Theta = \int \frac{dE(t)}{\hbar} dt \tag{5}$$

Тогда площади импульсов в проекции на горизонтальную и вертикальную оси имеют вид:

$$\Theta_{H1} = \frac{\pi}{2}, \quad \Theta_{H1} = 0; \quad \Theta_{H2} = \pi \cos(\phi), \quad \Theta_{V2} = \pi \sin(\phi)$$
(6)

То есть первый импульс полностью H-поляризован, а второй повёрнут относительно оси H на угол ϕ .

Компоненты поляризации $P_{H(V)}$ системы могут быть найдены как $P_{H(V)} = Tr(\hat{d}_{H(V)}\rho) = 2Re(d\rho_{01(02)}(\omega_0, t))$, где $\hat{d}_{H(V)}$ - оператор дипольного момента для переходов $|0\rangle \leftrightarrow |H\rangle$ ($|0\rangle \leftrightarrow |V\rangle$). Для вычисления сигнала ФЭ различной поляризации необходимо суммировать $P_{H(V)}(\omega_0, t)$ по всем значениям ω_0 . Мы рассмотрим ансамбль экситонов, распределение которых подчиняется Гауссу с центром на частоте света: $\omega_0 = \omega$. Наконец, две компоненты линейно поляризованного сигнала ФЭ в момент времени $t = 2\tau$ могут быть получены следующим образом: $P_H \sim \cos^2(\varphi)$, $P_V \sim \sin(\varphi) \cos(\varphi)$.

Полученные результаты совпадают с литературой [35], из которой известно, что поляризации сигнала эха от экситона и триона будут иметь вид, изображённый на рисунке 4:

Рис. 4: Теоретический вид поляризационных зависимостей сигнала ФЭ для триона и экситона [35]. Первые две буквы в обозначениях вида HH → H обозначают поляризации возбуждающих импульсов, а третья – детектируемую поляризацию

В экспериментальной части работы для наблюдения ФЭ был поставлен эксперимент по вырожденному четырехволновому смешению с временным разрешением путём оптического гетеродинирования. Оптическое возбуждение осуществлялось перестраиваемым титан-сапфировым пикосекундным лазером. Независимый контроль поляризации каждого из импульсов позволил провести поляриметрические измерения фотонного эха.

3. Эксперимент

3.1. Образец

Исследуемый образец, монокристалл галогенидного перовскита MAPI₃, изображен на рис. 5 (а). Процесс роста, показанный на рис. 5 (b) включал следующие этапы: В U-образную стеклянную трубку был помещён силикогель, поверх которого в одно из колен заливали раствор PbI₂. В другое колено заливали раствор MAI. U-образная трубка помещалась в термостат при температуре T = 35 °C. Через 2–3 недели монокристаллы MAPbI₃ в геле зародились кристаллы. Полностью выращенные кристаллы механически удаляли из геля, промывали в разбавленном растворе йодистоводородной кислоты и после сушки в печи при 40°C использовали для дальнейших исследований.

Рис. 5: (a) - фотография исследуемого образца, (b) - установка для синтеза образца

3.2. Экспериментальная установка

На рисунке 6 представлена схема экспериментальной установки. Лазерный импульс, генерируемый титан-сапфировым лазером Spectra Physics Tsunami (1) в режиме синхронизации мод, расщепляется на два с помощью светоделительного куба (2): один проходит без изменения направления на следующий куб (3), а другой, обозначенный зелёным (будем называть его опорным импульсом) проходит через оптическую линию задержки (4) и акустооптический модулятор (5). Далее исходный лазерный импульс, прошедший без изменения направления, снова делится на кубе (3) на два: первый импульс (обозначен красным) и второй импульс (обозначен жёлтым). Второй импульс, проходя через оптическую линию задержки (6), задерживается относительно первого, фокусируется с помощью параболического зеркала (7) и попадает на образец, находящийся в гелиевом криостате замкнутого цикла (10). Первый же проходит через оптический механический модулятор (8) и акуст-оптический модулятор (AOM) (9), а затем фокусируется с помощью параболического зеркала (7) и попадает на образец. Сигнал фотонного эха смешивается с опорным импульсом на кубе (12). Далее смешанные импульсы направляются на входы балансного фотоприемника, который подключен к быстрому синхронному детектору. Разностная частота AOMов в качестве опорной подаётся в быстрый синхронный детектор. Медленный синхронный детектор детектирует сигнал, поступающий с быстрого синхронного детектора на частоте, генерируемой блоком управления оптического механического модулятора. Далее сигнал, прошедший все этапы синхронного детектирования, с медленного синхронного детектора поступает на компьютер.

Рис. 6: Оптическая схема установки

3.3. Параметры детектирования

Лазер¹ (1) настраивается на резонанс, соотвествующий оптическому переходу экситона - 758 нм. АОМы, через которые проходят первый и опорный импульсы, создают бегущие акустические волны в прозрачных кристаллах на частотах $F_1 = 80$ МГц и $F_2 = 81$ МГц. Частота света, проходящего через среду внутри АОМа, сдвигается на частоты F_1 и F_2 соответственно. Помимо этого, первый импульс модулируется низкой частотой f=1 КГц с помощью механического модулятора. За счет модуляции первого импульса модулируется и фотонное эхо, которое смешивается на кубе (12) с опорным импульсом. Смешанные пучки попадают на детекторы балансного фотоприемника так, что полезный сигнал, детектируемый на одном из детекторов, сдвинут по фазе на π относительно другого детектора. Балансный фотодетектор фильтрует синфазные помехи, а полезный сигнал удваивает. Сигнал с фотоприемника детектируется быстрым синхронным детектором на частоте $|F_2 - F_1| = 1$ МГц, подаваемой

¹Здесь и далее будут присутствовать ссылки на рис. 6

с блока управления АОМов. Выходящая из быстрого синхронного детектора компонента сигнала детектируется медленным синхронным детектором на частоте f = 1КГц, подаваемой с блока управления механического модулятора. Далее сигнал из медленного синхронного детектора поступает на компьютер. Детектируемый сигнал является кросс-корреляцией фотонного эха с опорным импульсом:

$$(f * g)(\tau_{ref}) = \int_{-\infty}^{\infty} f(t)g(\tau_{ref} + t) dt$$

где g - огибающая опорного импульса, а f - сигнал фотонного эха. Таким образом, детектируемый сигнал является функцией τ_{ref} .

3.4. Анализ данных

Был получен сигнал фотонного эха при температуре T = 1.45 К. На рисунке 7 представлен типичный временной профиль фотонного эха. Образец подвергается последовательному воздействию двух возбуждающих импульсов, с задержкой $\tau = 12$ пс между ними. Возбуждающие импульсы обозначены красным цветом. Временной профиль фотонного эха хорошо описывается функцией Гаусса (изображенной чёрным пунктиром) с центром в точке $t = 2\tau$. Ширина импульса соответствует времени необратимой фазовой релаксации, характерная величина которой в эксперименте составила $T_2^* = 7.2$ пс.

Рис. 7: Типичный вид временного профиля фотонного эха. Возбуждающие импульсы изображены красным цветом

В дальнейшем исследовании были получены временные профили фотонного эха при различных значениях τ , которые были построены на основе цветовой карты (см. Рисунок 8). На графике наблюдается смещение максимума амплитуды сигнала, которое приблизительно соответствует значению $t = 2\tau$, в соответствии с теоретическим предсказанием положения сигнала фотонного эха. Для облегчения восприятия на графике изображена пунктирная линия $t = 2\tau$, отражающая теоретический прогноз положения ФЭ.

Рис. 8: Зависимость временной огибающей амплитуды фотонного эха от задержки между первым и вторым импульсами. Пунктирная линия $t = 2\tau$ соответствует положению эха

Была получена зависимость амплитуды сигнала фотонного эха от времени между возбуждающими импульсами, что можно рассматривать как эксперимент по измерению затухания фотонного эха. (см. Рисунок 9). С увеличением задержки между импульсами наблюдается экспоненциальное уменьшение амплитуды сигнала. Согласно теории, зависимость может быть аппроксимирована экспоненциальной функцией вида $\exp(-\frac{2\tau}{T_2})$, где T_2 представляет время необратимой фазовой релаксации. В данном эксперименте значение T_2 составило $T_2 = 8.2$ пс.

Рис. 9: Зависимость амплитуды ФЭ от времени между возбуждающими импульсами. Пунктиром изображена аппроксимация экспонентой вида $\exp(-\frac{2\tau}{T_2})$

В целях определения спектрального положения сигнала ФЭ, были проведены измерения спектров сигнала при различных временных задержках между возбуждающими импульсами. (Puc. 10).

Рис. 10: Спектры ФЭ при различных временных задержках между возбуждающими импульсами.

Спектральное положение сигнала $\Phi \Theta$ совпадает с положением свободного экситона, определенным по спектру отражения [36]. Смещение спектрального максимума в красную область с увеличением τ является типичным проявлением роста T_2 для более локализованных экситонных состояний. В спектре отсутствует сигнал, сопоставленный со связанным экситоном, более низкое энергетическое положение которого на спектре было определено из спектров фотолюминесцении [36]. По-видимому, это связано с очень малой силой осциллятора связанного экситона. Таким образом, можно сделать вывод, что наблюдаемый сигнал ФЭ связан с свободным состоянием экситона.

В работе были проведены поляриметрические измерения. При этом регистрировалось ФЭ при фиксированной линейной поляризации первого импульса и линейной поляризации второго импульса, повернутой на угол ϕ относительно поляризации первого импульса. Выполнялось ко- и кросс-линейное детектирование по отношению к первому импульсу, что позволяет построить два графика в полярных координатах. Анализ этих графиков может быть использован для различения состояний с разными энергетическими диаграммами, таких как экситоны, трионы и биэкситоны. Известно, что поляризации сигналов от экситона и триона имеют вид, представленный на рис. 4. Важным преимуществом этого метода является отсутствие необходимости приложения внешнего магнитного поля к образцу. Поляриметрические измерения ФЭ можно представить в виде измерений в геометриях HR \rightarrow H и HR \rightarrow V, где первые две буквы обозначают поляризации возбуждающих импульсов (где R – сканирование с ϕ от 0 до 2 π), а третья – детектирование (поляризация, определяемая опорным импульсом).

Рис. 11: Поляриметрические измерения ФЭ HR \rightarrow H и HR \rightarrow V. Первые две буквы обозначают поляризации возбуждающих импульсов (где R – сканирование с ϕ от 0 до 2π), а третья – детектируемую поляризацию

На рис. 11 показаны полярные графики HR \rightarrow H и HR \rightarrow V для Φ Э из предполагаемого состояния свободного экситона (E = 1,635 эB, τ = 8 пс). Экспериментальные данные демонстрируют согласие с теоретическими предсказаниями (штриховые линии на рис. 11), что является еще одним подтверждением экситонной природы резонанса, наблюдаемого в Φ Э.

4. Выводы

Представленная работа демонстрирует возможность наблюдения спонтанного (двухимпульсного) ФЭ в монокристалле галогенидного перовскита. ФЭ-спектроскопия и поляриметрия доказывают свободное экситонное происхождение наблюдаемого резонанса. Обнаруженное в материале время дефазировки 8 пс и слабо выраженного эффекта дефазировки, вызванной возбуждением, позволяет предположить, что галогенидные перовскиты являются перспективным материалом для элементов оптической памяти в области информационной фотоники.

5. Благодарности

Работа выполнена при поддержке Министерства науки и высшего образования РФ (Мегагрант № 075-15-2022-1112) на оборудовании ресурсного центра СПбГУ "Нанофотоника".

Список литературы

- [1] Access to long-term optical memories using photon echoes retrieved from semiconductor spins / L. Langer, S. V. Poltavtsev, I. A. Yugova [и др.] // Nature Photonics. 2014. T. 8.
- [2] Difference in the behavior of the photon echo of excitons in InGaAs/GaAs quantum wells from the predictions of the model of two-level system ensemble / I I Yanibekov, I A Solovev, S A Eliseev [и др.] // Journal of Physics: Conference Series. 2020. . Т. 1482, № 1. с. 012020. URL: https://doi.org/10.1088/1742-6596/1482/1/012020.
- [3] Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells / Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai [и др.] // Journal of the American Chemical Society. 2009. . T. 131, № 17. C. 6050–6051. URL: https://doi.org/10.1021/ja809598r.
- [4] Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites / Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka [и др.] // Science.
 2012. Т. 338, № 6107. С. 643–647. URL: https://doi.org/10.1126/science.1228604.
- [5] Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% / Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im [и др.] // Scientific Reports. 2012. . Т. 2, № 1. URL: https://doi.org/10.1038/srep00591.
- [6] Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells / Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai [и др.] // Journal of the American Chemical Society. 2009. . T. 131, № 17. C. 6050–6051. URL: https://doi.org/10.1021/ja809598r.
- [7] Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites / Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka [и др.] // Science.
 2012. Т. 338, № 6107. С. 643–647. URL: https://doi.org/10.1126/science.1228604.
- [8] Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% / Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im [и др.] // Scientific Reports. 2012. . Т. 2, № 1. URL: https://doi.org/10.1038/srep00591.
- Kang Jun, Wang Lin-Wang. High Defect Tolerance in Lead Halide Perovskite CsPbBrsub3/sub // The Journal of Physical Chemistry Letters. 2017. T. 8, № 2.
 C. 489–493. URL: https://doi.org/10.1021/acs.jpclett.6b02800.

- [10] Defect Tolerance in Methylammonium Lead Triiodide Perovskite / K. Xerxes Steirer, Philip Schulz, Glenn Teeter [и др.] // ACS Energy Letters. 2016. . Т. 1, № 2. C. 360–366. URL: https://doi.org/10.1021/acsenergylett.6b00196.
- [11] Loi Maria Antonietta, Hummelen Jan C. Perovskites under the Sun // Nature Materials. 2013. T. 12, № 12. C. 1087–1089. URL: https://doi.org/10.1038/nmat3815.
- [12] Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 / M. Hirasawa, T. Ishihara, T. Goto [μ др.] // Physica B: Condensed Matter. 1994. T. 201. C. 427–430. URL: https://doi.org/10.1016/0921-4526(94)91130-4.
- [13] Ishihara Teruya. Optical properties of PbI-based perovskite structures // Journal of Luminescence. 1994. T. 60-61. C. 269–274. URL: https://doi.org/10.1016/0022-2313(94)90145-7.
- [14] Kitazawa N., Watanabe Y., Nakamura Y. // Journal of Materials Science. 2002. T. 37, № 17. C. 3585–3587. URL: https://doi.org/10.1023/a:1016584519829.
- [15] Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber / Samuel D. Stranks, Giles E. Eperon, Giulia Grancini
 [и др.] // Science. 2013. Т. 342, № 6156. С. 341–344. URL: https://doi.org/10.1126/science.1243982.
- [16] Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH sub3/sub NH sub3/sub PbI sub3/sub / Guichuan Xing, Nripan Mathews, Shuangyong Sun [и др.] // Science. 2013. . T. 342, № 6156. C. 344–347. URL: https://doi.org/10.1126/science.1243167.
- [17] Even Jacky, Pedesseau Laurent, Katan Claudine. Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites // The Journal of Physical Chemistry C. 2014. . T. 118, № 22. C. 11566–11572. URL: https://doi.org/10.1021/jp503337a.
- [18] Narrow Linewidth Excitonic Emission in Organic–Inorganic Lead Iodide Perovskite Single Crystals / Hiba Diab, Gaëlle Trippé-Allard, Ferdinand Lédée [и др.] // The Journal of Physical Chemistry Letters. 2016. . Т. 7, № 24. С. 5093–5100. URL: https://doi.org/10.1021/acs.jpclett.6b02261.
- [19] Hydrogen-like Wannier-Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite / Jenya Tilchin, Dmitry N. Dirin, Georgy I. Maikov [и др.] // ACS Nano. 2016. . Т. 10, № 6. С. 6363-6371. URL: https://doi.org/10.1021/acsnano.6b02734.

- [20] Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors / Krzysztof Galkowski, Anatolie Mitioglu, Atsuhiko Miyata [и др.] // Energy & Environmental Science. 2016. Т. 9, № 3. С. 962–970. URL: https://doi.org/10.1039/c5ee03435c.
- [21] Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite / Zhuo Yang, Alessandro Surrente, Krzysztof Galkowski [и др.] // The Journal of Physical Chemistry Letters. 2017.
 . T. 8, № 8. C. 1851–1855. URL: https://doi.org/10.1021/acs.jpclett.7b00524.
- [22] Impact of the Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide Perovskites / Z. Yang, A. Surrente, K. Galkowski [и др.] // ACS Energy Letters. 2017. . T. 2, № 7. C. 1621–1627. URL: https://doi.org/10.1021/acsenergylett.7b00416.
- [23] Simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 using four-wave mixing spectroscopy / Samuel A. March, Charlotte Clegg, Drew B. Riley [и др.] // Scientific Reports. 2016. . Т. 6, № 1. URL: https://doi.org/10.1038/srep39139.
- [24] Four-Wave Mixing in Perovskite Photovoltaic Materials Reveals Long Dephasing Times and Weaker Many-Body Interactions than GaAs / Samuel A. March, Drew B. Riley, Charlotte Clegg [и др.] // ACS Photonics. 2017. Т. 4, № 6. C. 1515–1521. URL: https://doi.org/10.1021/acsphotonics.7b00282.
- [25] Ultrafast acoustic phonon scattering in CHsub3/subNHsub3/subPbIsub3/sub revealed by femtosecond four-wave mixing / Samuel A. March, Drew B. Riley, Charlotte Clegg [и др.] // The Journal of Chemical Physics. 2019. . Т. 151, № 14. c. 144702. URL: https://doi.org/10.1063/1.5120385.
- [26] Dephasing and Quantum Beating of Excitons in Methylammonium Lead Iodide Perovskite Nanoplatelets / Bernhard J. Bohn, Thomas Simon, Moritz Gramlich [и др.] // ACS Photonics. 2017. . Т. 5, № 2. С. 648–654. URL: https://doi.org/10.1021/acsphotonics.7b01292.
- [27] Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4 / Takashi Kondo, Satoshi Iwamoto, Shigenori Hayase [и др.] // Solid State Communications. 1998. Т. 105, № 8. С. 503–506. URL: https://doi.org/10.1016/s0038-1098(97)10166-1.
- [28] Time-to-space conversion of Tbits/s optical pulses using a self-organized quantum-well material / Junko Ishi, Hideyuki Kunugita, Kazuhiro Ema [и др.] // Applied Physics Letters. 2000. . Т. 77, № 22. С. 3487–3489. URL: https://doi.org/10.1063/1.1328365.

- [29] Influence exciton-exciton interactions frequency-mixing of on signals in \mathbf{a} stable exciton-biexciton system / Junko Ishi, Hideyuki Kunugita, Kazuhiro Ema [и др.] // Physical Review B. 2001. . T. 63, № 7. URL: https://doi.org/10.1103/physrevb.63.073303.
- [30] Photon Echo Polarimetry of Excitons and Biexcitons in a CHsub3/subNHsub3/subPbIsub3/sub Perovskite Single Crystal / Artur V. Trifonov, Stefan Grisard, Alexander N. Kosarev [и др.] // ACS Photonics. 2022. Т. 9, № 2. С. 621–629. URL: https://doi.org/10.1021/acsphotonics.1c01603.
- [31] Kurnit N. A., Abella I. D., Hartmann S. R. Observation of a photon echo // Physical Review Letters. 1964. T. 13.
- [32] Patel C. K.N., Slusher R. E. Photon echoes in gases // Physical Review Letters. 1968. T. 20.
- [33] Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides / Galan Moody, Chandriker Kavir Dass, Kai Hao [и др.] // Nature Communications. 2015. Т. 6.
- [34] Hydrogen-like Wannier-Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite / Jenya Tilchin, Dmitry N. Dirin, Georgy I. Maikov [и др.] // ACS Nano. 2016. Т. 10.
- [35] Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells / S. V. Poltavtsev, Yu V. Kapitonov, I. A. Yugova [и др.] // Scientific Reports. 2019. Т. 9.
- [36] Photoluminescence Excitation Spectroscopy of Defect-Related States in MAPbI sub3/sub Perovskite Single Crystals / Aleksei O. Murzin, Nikita I. Selivanov, Vadim O. Kozlov [идр.] // Advanced Optical Materials. 2020. . Т. 9, № 18. с. 2001327. URL: https://doi.org/10.1002/adom.202001327.