
Санкт-Петербургский государственный университет

Орачев Егор Станиславович

Выпускная квалификационная работа

Реализация библиотеки примитивов
разреженной линейной алгебры с
поддержкой вычислений на ГПУ

Уровень образования: магистратура

Направление 09.04.04 «Программная инженерия»

Основная образовательная программа ВМ.5666.2021 «Программная инженерия»

Научный руководитель:
Доцент кафедры информатики, к.ф.-м. н. С. В. Григорьев

Рецензент:
Эксперт, ООО ”Техкомпания Хуавэй” С. В. Моисеев

Санкт-Петербург
2023

Saint Petersburg State University

Egor Orachev

Master’s Thesis

Generalized sparse linear algebra library with
vendor-agnostic GPUs acceleration

Education level: master

Speciality 09.04.04 «Software Engineering»

Programme ВМ.5666.2021 «Software Engineering»

Scientific supervisor:
C.Sc., docent S. V. Grigorev

Reviewer:
Expert, Huawei S. V. Moiseev

Saint Petersburg
2023

Contents
Introduction 5

1. Problem statement 7

2. Background of study 8
2.1. Related Work . 8
2.2. GraphBLAS concepts . 11
2.3. GraphBLAS limitations . 14
2.4. GPU computations . 16
2.5. GPU architecture . 18
2.6. OpenCL concepts . 20
2.7. Implementation challenges on GPUs 22

3. Proposed solution description 24
3.1. Design Principles . 24
3.2. Architecture overview . 25
3.3. Data Containers . 26
3.4. Algebraic Operations . 27
3.5. Differences with GraphBLAS standard 29

4. Implementation details 31
4.1. Project structure . 31
4.2. Compile-time dependencies 32
4.3. Development automation 33
4.4. Library interface . 35
4.5. Algorithms registry . 38
4.6. Storage formats . 41
4.7. OpenCL backend . 43
4.8. Linear Algebra Operations 44
4.9. Graph Algorithms . 45
4.10. Running example . 46

3

5. Evaluation 48
5.1. Research questions . 48
5.2. Evaluation setup . 48
5.3. Methodology . 49
5.4. Graph algorithms . 49
5.5. Dataset . 50
5.6. Results Summary . 51

6. Results 59

References 62

4

Introduction
Graph model is a natural way to structure data in a number of a real

practical tasks, such as graph queries [1], graph databases [24], social net-
works analysis [22], RDF data analysis [6], bioinformatics [23] and static
code analysis [11]. In the graph model the entity is represented as a graph
vertex. Relations between entities are directed labeled edge. This notation
allows one to model the domain of the analysis with a little effort, preserv-
ing complex relationships between objects. What is not easy and clear to
do, for example, in a classic relational model, based on tables.

Practical real-world graph data tends to be sparse and counts dozens
of millions of vertices and billions of edges [22]. Thus, scalable high-
performance graph analysis is demanding area and an actual challenge for a
research. There is a big number of ways to attack this challenge [5] and the
first promising idea is to utilize general-purpose graphic processing units.
Such existing solutions, as CuSha [7] and Gunrock [16] show that utiliza-
tion of GPUs can improve the performance of graph analysis, moreover it is
shown that solutions may be scaled to multi-GPU systems. However, low
flexibility and high complexity of API are problems of these solutions.

The second promising thing which provides a user-friendly API for high-
performance graph analysis algorithms creation is a GraphBLAS API [20],
which provides linear algebra based building blocks to create graph analy-
sis algorithms. The idea of GraphBLAS is based on a well-known fact that
linear algebra operations can be efficiently implemented on parallel hard-
ware. Along with that, a graph can be natively represented using matrices:
adjacency matrix, incidence matrix, etc. While reference CPU-based imple-
mentation of GraphBLAS, SuiteSparse [9], demonstrates good performance
in real-world tasks, GPU-based implementation is challenging.

One of the challenges in this way is that real data are often sparse, thus
underlying matrices and vectors are also sparse, and, as a result, classical
data structures and respective algorithms are inefficient. So, it is necessary
to use advanced data structures and procedures to implement sparse linear
algebra, but the efficient implementation of them on GPUs is hard due to

5

the irregularity of workload and data access patterns. Though such well-
known libraries as cuSPARSE [25], clSPARSE [4], bhSPARSE [19], Cusp [8]
show that sparse linear algebra operations can be efficiently implemented
for GPUs, it is not so trivial to implement GraphBLAS on GPU. First
of all, it requires generalized sparse linear algebra, thus it is impossible
just to reuse existing libraries which are almost all specified for operations
over floats with classical element-wise functions. The second problem is
specific optimizations, such as masking fusion, which can not be natively
implemented on top of existing kernels. Nevertheless, there is a number
of implementations of GraphBLAS on GPU, such as GraphBLAST [28],
GBTL [13], which show that GPUs utilization can improve the performance
of GraphBLAS-based graph analysis solutions. But these solutions are not
portable across different device vendors because they are based on Nvidia
Cuda stack.

Although GraphBLAS is solid and mature standard with a number of
implementation, it has limitations and shortcomings discussed in a talk
given by John R. Gilbert [14]. Some of them are lack of interoperability
and introspection, what is an obstacle on the way of GraphBLAS integra-
tion into real-world data analysis pipelines. Implicit zeroes mechanism and
masking, which uses mix of engineering and math, leads to unpredictable
memory usage in some cases, keeping API complex for both implementation
and usage.

Summarizing, there is still no portable and high-performance library,
which provides generalized linear-algebra based building blocks for real-
world large sparse graph analysis problems. Such a library can potentially
solve a number of problems, such as complex user API for particular graph
algorithms implementation, GPUs performance and portability issues. Al-
though GraphBLAS standard is a good reference point for implementation,
it is still possible to design a bit different API. The solution can solve
some of technical GraphBLAS limitations while still being coherent with
the standard for further co-operation.

6

1 Problem statement
The goal of this work is the implementation of the generalized sparse lin-

ear algebra primitives and operations library with portable vendor-agnostic
yet high-performance GPUs accelerated computations. The work can be
divided into the following tasks.

• Conduct the survey of existing solutions, focusing on design prin-
ciples and programming model, overview technologies and tools for
programming GPU computations and highlight challenges of GPU
programming.

• Develop the architecture of the library. Design the high-level li-
brary structure, execution model, storage scheme, GPUs backend for
vendor-agnostic and portable computations acceleration.

• Implement the library according to the developed architecture, includ-
ing library core, backend for GPUs accelerated computations, some
GPU optimizations in order to speedup computations, and a set of
common graph algorithms.

• Conduct the preliminary experimental study of implemented artifacts.
Analyse the performance of the proposed solution compared to exist-
ing tools, test the portability and scalability of the developed library
on GPUs of different device vendors.

7

2 Background of study
This section provides a brief overview of existing solutions for graph

analysis on GPU. Also, it describes the concepts of the GraphBLAS stan-
dard, highlights some of its shortcomings and limitations on the way to a
full-fledged GPU implementation. Finally, this section gives a brief intro-
duction to a GPU programming.

2.1 Related Work
There is a number of graph processing frameworks for a both CPU and

GPU analysis. A great survey of such frameworks is done by Batari et
al. [18] and Shi et al. [15]. Problems, addressed by those graph processing
frameworks on a GPUs, can be categorized into the following major aspects:
data layout, memory access patter, workload mapping and graph program-
ming model. While all of them are important for a high-performance anal-
ysis, the latter is what the user directly encounters when solving applied
problems. A flexible, expressive, and at the same time efficient for imple-
mentation graph programming model is one of the determining factors for
the widespread use of the framework.

Existing GPU-based frameworks typically adopt vertex-centric model,
where computation is defined as a series of user functions, executed over
vertices in some parallel fashion. Thus, this model falls into two variations
further: gather-apply-scatter (GAS) and bulk synchronous parallel (BSP).

GAS model. Such frameworks as CuSha [7], MapGraph [12] adopt
GAS model. The computation in GAS model consists of three phases, were
each phase performs some vertex processing by user-defined functions, while
the framework controls the overall phases execution. This model allows to
abstract the need of explicit synchronizations, what simplifies analysis and
ensures correctness. However, this approach suffers from an extra GPU
overhead. High-level steps introduce explicit synchronization, which must
be done by the framework. Extra synchronization reduces the device uti-
lization and introduces extra time delays.

8

BSP model. Medusa [30], Gunrock [16] use BSP model. In this model
the computation is divided into a series of supper steps, where local com-
putation occurs within each step with message passing. This model allows
local computations, local memory usage, reduces synchronization and kernel
launch overhead, but may suffer from workload imbalance among threads
in super step.

Gunrock, one of the fastest programmable frameworks for GPU graphs
analysis [15], has solved this issue introducing several workload mapping
techniques. This improvement allows to achieve great speedup in almost all
algorithms. However, Gunrock is Cuda-oriented framework with relatively
low-level API, which requires a significant programming effort to implement
a particular algorithm for analysis. Also, this framework utilizes a number
of ad-hoc optimizations. So it is limited in it a generalization.

Linear algebra based model. This model was pioneered by Buluç
et al. [2] in CombinationalBLAS, which introduced primitives for a large
graph data analysis for a distributed memory CPU systems. This model
allows one to define graph algorithms using linear algebra operations over
matrices and vectors with some custom user-define element-wise operations.
This allows one to express complex computations in a few lines of code
without significant performance sacrifice. What makes it is promising for
implementation.

Linear algebra approach relies on the fact, that the graph traversal can
be represented as matrix-vector multiplication as shown in figure 1. The
graph is stored in an adjacency matrix A. The set of active vertices, also
called frontier, is represented as a vector v, with non-zero elements for
vertices of the front. Transposed matrix A multiplied by a vector v on the
right gives a new frontier with active vertices for the next iteration. In
order to traverse all vertices only once, we have to store additional vector
with visited vertices. This vector can be used in an inverse element-wise
multiplication to filter out those vertices from the frontier, which are already
visited.

9

This is a fundamental concept, which is lying in the most graph traver-
sal based algorithms, such as breadth-first search or single source shortest
paths. This method can be extended even further if we consider a multiple-
source traversal. In this we have a number of frontier vectors, which can
be stored as a matrix. It allows one use matrix-matrix product for a such
task.

The research community formalized linear algebra based model in a form
of GraphBLAS standard [20], which has a number of implementations for
CPUs, such as high-performance SuiteSparse library [9], Huawei Graph-
BLAS implementation [3], and some adaptations for a GPUs analysis.

GraphBLAS SuiteSprase [9] is a fully featured reference GraphBLAS
implementation for multi-core CPUs computations. It is written using C
language and OpenMP. Library is fully compatible with GraphBLAS API
standard. It is available for C and C++ programs usage. Also, it provides
a number of officially and unofficially supported packages, which export
the functionality into other runtime, such as Java or Python (via pygraph-
blas [31]). At this moment, the work is done in the project in order to
support Nvidia Cuda for GPU computations.

GraphBLAST [28] library provides set of sparse linear algebra primitives
and operations for computation on a single Nvidia GPU device. This project
follows the GraphBLAS concepts. However, it provides C++ header-only
interface and utilizes template meta programming along with Cuda C++ in
order to support user types and functions customization. At this moment
the project is in an active phase of the development. Authors of the project
published the corresponding research report on the thematic conference.
But, the stable and production-ready solution with full functionality is still
unavailable.

GBTL [13] is a GraphBLAS-like framework for Cuda GPUs focused on
programming language research, API formalization and correctness rather
than high performance.

It is worth to mention a number of high-performance sparse linear al-
gebra libraries, such as proprietary cuSPARSE [25] sparse math library for

10

Nvidia Cuda platform, open-source clSPARSE [4] sparse math library for
OpenCL platform, open-source bhSPARSE [19] sparse math library for het-
erogeneous computations which is still in development, Cusp [8] template-
based sparse math library with support for Nvidia Cuda, etc. These libraries
are focused on a numerical computations over floating-point values with
standard element-wise addition and multiplication. Some of these libraries
support only Nvidia Cuda devices. Other libraries use cross-platform tech-
nologies, but still missing some features required for graph analysis, such as
user-defined functions, masking, etc. Thus, they are not fully suitable for
needs of a GPU graph analysis.

Figure 1: Graph traversal by matrix-vector product

2.2 GraphBLAS concepts
GraphBLAS standard [20] is a mathematical notation translated into a

C API. This standard provides sparse linear algebra building blocks for the
implementation of graph algorithms in terms of operations over matrices
and vectors. Essential parts of this standards are the following.

Data containers. Primary data containers in this standard are general
M by N matrix and M vector of values, as well as a scalar value. Containers
are parameterised by the type of stored elements. The standard provides
a set of predefined commonly used types, as well as, the ability to declare
custom user defined types.

11

Matrix is used to represent the adjacency matrix of the graph. Vector
is used to store a set of active vertices for traversal purposes. The scalar
value is used to extract edge data from the graph or to aggregate the data
across multiple edges.

Algebraic structure. Primary algebraic structures are called semir-
ing and monoid, where two or one operation is provided respectively with
some semantic requirements, such as associativity, commutativity, etc. This
structures are adapted for a sparse graph analysis, so its mathematical prop-
erties differ a bit from those, which are stated in classical algebra.

These structures define the element-wise operations, which work with
elements in the containers. For example, they are passed as a parameters
multiply and add in the matrix product, where elements for row and column
are multiplied, and then reduced to the final element.

There is a number of semirings, which can be used to solve different
types of problems. For example, consider MinPlus semiring ⟨min,+,R ∪
{+∞},+∞⟩, for a shortest path problem solving, where:

• Min used to aggregate distances and select the smallest one.

• Plus used to concatenate distances between two vertices.

• The domain is all real values with plus infinity.

• The identity element is infinity, what marks unreached vertices.

Programming constructs. GraphBLAS provides extra objects, which
are required for practical algorithms implementation. One of these pro-
gramming features is a concept of the mask. Any matrix or vector can be
used as a mask, which structure defines the structure of the result. It is a
crucial and essential concept, since in many cases we are interested only in
a partial result, not the whole matrix or vector. Mask is passed as extra
argument, and implementation is free to make the fusion of the mask into
the operation.

12

Another important construct is a descriptor. Descriptor is a set of named
parameters and values associated with them. Descriptor used to tell the im-
plementation, that, for example, mask complementary pattern required, or
result must not be accumulated with old content. This concept can be ex-
tended further, what is done in some GraphBLAS extensions.

Operations. GraphBLAS provides a number of commonly used lin-
ear algebra operations, such as matrix-vector and matrix-matrix products,
transpose, element-wise multiplication. Also, there are some extra opera-
tions, which are more familiar for experienced developers, such as filtering,
selection using predicate, reduction of matrix to vector or of vector to scalar,
etc.

The important concept of the GraphBLAS operations is shown in the
figure 2. For example, we can consider matrix-vector and matrix-matrix
product operations, called mxv and mxm respectively. From the users per-
spective, they only have to use these operations, when the implementation
is free to select the best algorithm, which fits the sparsity of the input ar-
guments.

Figure 2: Key operations of the GraphBLAS standard and their implemen-
tations

Algorithms. Using GraphBLAS constructs it is possible to write gen-
eralized graph analysis algorithms. There is a number of common and well-
known graph algorithms, such as breadth-first search (BFS), single-source
shortest path (SSSP), triangles counting (TC), connected components (CC),
etc. which have a linear-algebra based formulation, described by Kepner et
al. [17].

13

For example, consider a procedure with BFS algorithm in listing 1. As
arguments it accepts vector v to store levels of reached vertices, adjacency
matrix A, index of the start vertex s, and number of graph vertices n.
Algorithm starts in lines 5 – 9 with initialization of result vector. Also, it
allocates vector q, which is used as a frontier of currently active vertices
to make a traversal step. The primary traversal loop in lines 14 – 19 of
the algorithm works while the frontier has at least one active vertex. In
the body, it updates current traversal level. Then, it assigns current level
to currently reached vertices in the frontier in line 16 using apply function.
Then in the line 17 it makes traversal step to find all children of current
frontier vertices. Note, it uses inverted v as a mask with GrB_DESC_RC
to filter our already visited vertices.

Listing 1 Breadth-first search using GraphBLAS API
1 #include ”GraphBLAS.h”
2

3 GrB_Info BFS(GrB_Vector *v, GrB_Matrix A, GrB_Index s, GrB_Index n)
4 {
5 GrB_Vector_new(v, GrB_INT32, n);
6

7 GrB_Vector q;
8 GrB_Vector_new(&q, GrB_BOOL, n);
9 GrB_Vector_setElement(q, true, s);

10

11 int32_t level = 0;
12 GrB_Index nvals;
13

14 do {
15 ++level;
16 GrB_apply(*v, GrB_NULL, GrB_PLUS_INT32, GrB_SECOND_INT32, q, level, GrB_NULL);
17 GrB_vxm(q, *v, GrB_NULL, GrB_LOR_LAND_SEMIRING_BOOL, q, A, GrB_DESC_RC);
18 GrB_Vector_nvals(&nvals, q);
19 } while (nvals);
20

21 GrB_free(&q);
22

23 return GrB_SUCCESS;
24 }

2.3 GraphBLAS limitations
Although GraphBLAS is a mature standard with a number of imple-

mentations, it has some limitations and shortcomings, discussed in a talk

14

given by John R. Gilbert [14]. Some of them are explained in the next
paragraphs.

1. Lack of interoperability. GraphBLAS declares opaque objects with
hidden from the user structure. It is not possible to some-how extend
or interact with an existing standard implementation. However, some
practical tasks may required integration of existing formats, storage
into a library for practical tasks solving. For example, it can be use
full to integrate NumPy arrays into library in order to avoid extra
copy operations and reduce marshaling overhead between execution
environments.

2. Little introspection. GraphBLAS declares a very limited function-
ality to inspect structure, state, type, behaviour, performance, cor-
rectness, progress of library primitives and operations. It is not feasi-
ble to build production-ready data-analysis platform without featured
introspection, which is a port of all modern DBMS.

3. Implicit zeros. GraphBLAS standard tries to use a mix of math
and engineering concepts to address the values storage model. As the
result, this model is to complex and not obvious for both mathemati-
cians and programmers. GraphBLAS has a know issue with a storage
of implicit zeroes or identity elements in memory. Inaccurate storage
manipulations may cause a sufficient memory usage increase in your
application even if you correctly follow the standard.

4. Inflexible masking. GraphBLAS standard provides an ability to
apply a mask to filter out result matrices or vectors. However, rules
for selecting values from a mask are implicit and rely on selecting raw
zero values, like in a C program. This mechanism is not configurable.
An alternative for that is the ability to select mask values using user-
provided predicate.

5. Templates usage. There is a number of libraries which implement
GraphBLAS in a form of C++ interface. These libraries heavily rely

15

on a template meta programming for a generalization of a processed
data. This approach simplifies implementation of the library, reduce
number of auxiliary code (in this case, it is generated by the com-
piler). However, template based approach requires the whole project
recompilation for each executable and for any change of a source code.
Distribution of a such solution cannot be done in a form of binary file,
since the user must compile the library locally each time for usage.

6. GPU support. GraphBLAS has no fully-featured implementation
with GPU support. The primary reason for this is the complexity of
the standard. There is a number of attempts to adopt GraphBLAS
for a GPU analysis. But, most of them are focused only on Nvidia
platform, what limits the portability of the potential solution.

Summarizing, the GraphBLAS is solid and mature standard with a num-
ber of some conceptual and technical shortcomings. Thus, it is important to
overcome these technical limitations and address some conceptual problems
designing similar yet distinct API, which can be wrapped with GraphBLAS
API if required.

2.4 GPU computations
GPGPU (general-purpose computing on graphics processing units) is a

technique of graphics processor utilization of a graphics card accelerator for
a non-specific computations, which are typically done by a central process-
ing unit of a computer. This technique allows to get a significant speedup,
when the computation involve large homogeneous data processing with a
fixes set of instructions.

There is a number of existing industry standards for a development of
GPU programs, such as Vulkan, OpenGL, DirectX, Metal for graphics and
computations tasks, as well as OpenCL, SyCL, Nvidia Cuda for computa-
tional tasks only.

Existing graph analysis tools in most cases use OpenCL and Nvidia
Cuda APIs for GPU work offload. The following sections provide a brief

16

overview for each of this technologies.

Nvidia Cuda. It is an industrial proprietary technology, created by a
Nvidia, which is available on graphics devices of this vendor only. This API
has rich language support for C and C++ programs. It supports template
meta programming, what allows to implement generalized parallel GPU al-
gorithms, such as sort, scan, reduce, which are parameterized by the type
of sorted element and used functions and predicates. Also, Nvidia provides
a rich set of tools of debugging and profiling Cuda code. What simplifies
development significantly.

OpenCL. It is an open industrial standard for a programs’ develop-
ment, which utilize different accelerators for parallel computations. This
standard is supported on a number of platforms, such as Nvidia, AMD,
Intel, Apple M1, what makes it portable for usage on a large spectrum of
devices. This API is designed in a form of C interface. It doesn’t have
built-in support for generalized meta-programming (opposite to Cuda sup-
port). Since this is an open standard, its supports varies significantly from
platform to platform. What makes the development and testing of OpenCL
application as a complex tasks.

SyCL. It is a higher-level programming model to improve programming
productivity on various hardware accelerators. It is a single-source embed-
ded domain-specific language based on pure C++ standard language. The
SyCL is a open-source standard maintained by a Khronos Group. SyCL
allows to program heterogeneous computations within single C++ applica-
tion, while the compiler infrastructure is used to translate SyCL specifics
into specific computations backend. This is a new and promising tech-
nology, while its support across different compilers, devices and operating
systems is still debatable.

In this work the OpenCL is utilized as a API for GPU computations.
This API is chosen, since its required for the project version 1.2 is supported

17

on all actual devices. OpenCL API is low-level. It gives precise control over
execution and resources management. Also, this API allows dynamic code
compilation in runtime for GPU execution. What makes it is usable for
creating generalized library, where the user is able to implement custom
primitive types and operations in a form of OpenCL code, passed as a
string.

2.5 GPU architecture
This section gives an overview for a typical GPU architecture. Un-

derstanding of a target hardware is a key to performance optimizations,
required to speed up developed GPU library.

The particular GPU architecture is a very controversial topic for a dis-
cussion. Implementation details of a given GPU depend on a number of
factors, such a GPU’s vendor, family, generation, etc. Thus, writing an
efficient GPU code forces a programmer to learn a particular details of a
target processor for execution. For the sake of brevity, let’s focus on an
existing, open-source and well-document state-of-the-art modern GPU mi-
croarchitecture such as AMD’s RDNA.

Radeon DNA (RDNA) is a GPU microarchitecture and accompany-
ing instructions set architecture developed by AMD. The block diagram
of Radeon RX 5700 XT GPU having RDNA architecture is depicted in a
figure 3. The GPU itself is placed on a infinity fabric surface for a fast
data interconnect between units. PCIe controller allows communication of
a GPU with the system RAM.

The GPU is composed of two shader engines. Each engine has a number
of shader arrays. Each array possess own L1 cache and a set of actual dual
compute units, which responsible for computation work. Shader engines
surrounded by a L2 shared cache. Any of L2 banks can be accessed by
shader array during the computations.

Programs for the execution are structured in a form of kernels. Kernel
is a single stream of instructions that operate on large number of data par-
allel work items. The work items organized into a work groups, which can

18

Figure 3: The block diagram of a Radeon RX 5700 XT GPU powered by
the RDNA architecture.

19

communicate explicitly through local memory. The shader compiler sub-
divides the work groups further into micro-architecture specific wavefronts
that are scheduled for parallel execution on a compute unit.

Figure 4: AMD Radeon DNA dual compute unit. Compute unit consist of a
number of SIMD processors. Each processor has independent registers set.
All processors share local memory, called local data share in AMD terms.

Dual compute unit in AMD architecture is depicted in a figure 4. Com-
piler crates wavefronts of a size 32 (wave32). Every item inside a wavefront
is executing the same instruction (SIMD). Each compute unit (CU) includes
four SIMD units. Each SIMD unit has 32 ALUs, has 32-wide vector reg-
isters and scalar registers. SIMD executes full wavefront instruction over
single clock cycle.

Thus, writing an OpenCL kernel requires saturation of CU with work
as well as keeping all slots of a SIMD processor active. Elimination of some
of these features causes inefficiency and, as the consequences, performance
drop of a target application.

2.6 OpenCL concepts
This section gives a brief introduction to the OpenCL standard. This

section covers platform, execution and memory model. It introduces essen-
tial programming constructs and gives and understanding on how a typical
OpenCL program is written.

20

Platform. OpenCL exists in a context of a platform. Platform in
OpenCL terms is vendor, or organization, which provides OpenCL imple-
mentation for a target machine. Several platforms on single machine may
be available. It depends on the installed CPU, GPU or FPGA.

Typical providers of OpenCL implementations are Intel, Nvidia, AMD
and Apple. For computations only single platform can be selected. Thus,
resources and features are not shared between different implementations.

OpenCL is an open API. Its implementation and support is optional.
So, the presence of the OpenCL, actual version, set of features and exten-
sions is a subject, which varies a lot from one system to another.

Execution. Execution of an OpenCL program takes within an execu-
tion context. Context is an environment, which is created using platform
and list of devices, which must be used for computations. Context keeps
track of all resources, manages global execution state.

Device is an logical unit, which performs operations. Several devices
may be available in a single platform. Typical devices are integrated Intel
GPUs, discrete Nvidia or AMD video adapters.

Device consists of a set of compute units. Compute unit is a small
processor with its own instruction and data caches, registers, controllers.
Distinct compute units can run distinct programs. However, single compute
unit can run only single program at given time.

Work for a compute unit is structured as work items. Single work item
inherently is a thread, which executes instructions stream and has own reg-
isters.

Memory. The whole available memory for an OpenCL program is di-
vided into three parts. Global memory is available across all devices within
a context. In most cases, it is a dedicated VRAM with L2 cache of the GPU.
Local memory is a memory available only within single compute unit. This
memory is visible only inside this unit. It is not persistent, and exist only
in time or program execution. Local memory is registers, available for a
single work item.

21

Programming. OpenCL provides C-compatible API for applications
development. From a user point of view an OpenCL program is a set of
kernel invocations with some resources, bound to the kernel.

Resources are different memory buffers or textures, which can be con-
sumed on a GPU for read/write operations. These resources created from
CPU side using specialized C API. The data inside buffers can be access
using copy commands or specialized map/unmap functions. Actual location
for a storage is hidden for the user. However, it is possible to hint storage
properties using some flags.

Kernels are scheduled for the execution using command queues. Com-
mand queue is an logical abstraction, which control the order of execution
of different kernels. User can create multiple command queues and synchro-
nize them using specialized events. Commands queues mapped to hardware
queues automatically by the OpenCL driver.

Kernel is a special function, written using C-language extension and
compiled using OpenCL built-in compiler. This function is invoked for
each work item to perform some meaningful work.

2.7 Implementation challenges on GPUs
GPU programming in a connection with a sparse linear algebra domain

and large data processing introduces an number of challenges, which must
be addressed by the developers of a such frameworks.

Fine-grained parallelism. The most straightforward method of a par-
allelism is a vertex-based parallelism. However, in many graph, particularly
scale-free graphs, the number of outgoing edges per vertex may vary dra-
matically. In this case, the time of processing of such a vertex will vary in
the same way. Thus, assigning a tread per vertex will cause a significant
load imbalance in a such case.

This problem may scale to sparse linear algebra approach, where a row

22

of a matrix can be assigned per a thread. So, it is important to dynamically
define the load balance and assign different number of threads, accounting
the possible amount of work to occur.

Minimizing overhead. GPU kernels running on a large load bal-
anced dataset with a large number of computations achieve the maximum
throughput. However, in some cases, the runtime may be dominated by the
overhead, not by a computations. For example, GPU kernel may do not
have enough work to occupy the whole computational device. In this case,
many GPU processing block will be stalled and unused.

Synchronization points can also introduce additional overhead. GPU
cores will finish their work and be stalled until the synchronization point is
reached. Only after this point the new work will be offloaded. Also, one of
the possible overheads may be introduced by the driver runtime. JIT GPU
kernels compilation, data transfer to GPU and kernel launch may take ad-
ditional time.

Computations intensity. Good GPU kernel may be characterised as
highly parallel grid of threads, where each group of threads process a small
portion of the data, which must fit into the on-chip L1 memory. In this case
the peak performance is achieved, since the memory latency is minimized
to its limits. However, it is almost never achieved in a graph processing
kernels, where the working threads have a lot of unstructured memory load
operations with pure computational work, which cannot be avoided.

23

3 Proposed solution description
This section describes the high-level details of the proposed solution.

It highlights the design principles, high-level architecture of the solution,
data storage representation, operations, and also shows differences from
the GraphBLAS API.

3.1 Design Principles
Spla library aims to address some of GraphBLAS standard limitations.

It is designed the way to maximize potential library performance, to simplify
its implementation and extension, and to provide the end-user verbose,
but expressive interface allowing customization and precise control over
operations execution. These ideas are captured in the following principles.

• Optional acceleration. Library is designed in a way, that GPU
acceleration is fully plugable and optional part. Library can perform
computations using standard CPU pipeline. If GPU acceleration is
presented, library can offload a part of a work for it. It allows both
non-trivial processing of the data on the CPU only, as well as possi-
bility to integrate different backends in the future.

• User-defined functions. The user can create custom element-wise
functions to parameterize operations. Custom functions can be used
for both CPU and GPU execution.

• Predefined scalar data types. The library provides a set of built-
in scalar data types that have a natural one-to-one relationship with
native GPU built-in types. Data storage is transparent. The library
interprets the data as POD-structures. The user can interpret indi-
vidual elements as a sequence of bytes of a fixed size.

• Hybrid-storage format. The library automates the process of data
storage and preprocessing. It supports several data formats, chooses
the best one depending on the situation.

24

• Exportable interface. The library has a C++ interface with an au-
tomated reference-counting and with no-templates usage. It is com-
piled into a shared library. The interface is wrapped by C99 compat-
ible API and exported to other languages, for example, in a form of
a Python package.

• Introspection. Each library class instantiates into a first-class ob-
ject. Such objects can be captured, manipulated, passed as arguments
and returned as function results. Parameterization types of containers
can be inspected, as well as declared user functions.

3.2 Architecture overview
The general idea of the proposed solution is depicted in Fig. 5. The core

of the library and its main part is the CPU, which is the master node which
controls all computations. It is responsible for storing data, maintaining
a registry with algorithms, and scheduling operations to perform. In this
paradigm, the GPU is an optional backend for acceleration, implemented
through a special interface. It can optionally store data in a specific format.
The CPU can offload the calculation of a part of the operations to the GPU,
if the corresponding operation is supported by the given accelerator.

The reason for this is that the CPU and GPU are inherently asymmetric
in nature. The end-user uses CPU side API. Thus, some preprocessing on
the CPU side must be always done in the majority of cases.

In addition, access to data on the GPU and their storage is carried out
differently due to the peculiarities of the execution of kernels. Also, VRAM
is more expensive and has less capacity than RAM. Therefore, RAM is a
cache for VRAM, and data duplication can be neglected.

In the end, the explicit separation of the CPU side from the GPU back-
end gives the modularity. This can be used not only to support different
GPU technologies, but also to integrate multiple GPUs or distributed pro-
cessing in the future.

25

Figure 5: Library primary design idea. The CPU side of the library is a
master. It is fully featured to perform computations. GPU is an optional
acceleration. It can be used to offload some work. Data and algorithms
support is optional.

3.3 Data Containers
Library provides general M-by-N Matrix, N Vector, Scalar and N Array

data containers. Underlying primitive value types are specified by Type
object. Single vector or matrix data is stored in specialized multi-format
storage container. An example of the single vector storage is depicted in
Fig. 6.

The storage is responsible for keeping data in multiple different for-
mats at the same time. Each format is best suited for a specific type of
task and requested on demand. Key-value dictionary suites well frequent
insertion, query or deletion operations, when memory usage and response
time are critical. Mathematical operations perform better with compacted
sequential lists of values since they have more friendly cache behaviour.
GPU operations require separate format with a copy of the data resident in
VRAM.

The storage and particular format can be inspected using array primi-
tive. It allows one to get the view of an existing CPU or GPU buffer without
actual copy, or initialize matrix or vector in particular format from existing
arrays, which may be created and filled by user code. Also array gives an
ability to acquire raw pointer to memory or GPU buffer handler, what can
be used for interoperability and seamless integration into user data pipeline.

26

Figure 6: Vector decorations storage. Storage provides slots for different
representations. Representation choice depends on a task currently being
solved.

Data transformation from one format to another is carried out using
a special rules graph. Example graph for a vector storage is shown in
Fig. 7. The directed edges in this graph indicate conversion rules. The
graph must be the single strongly connected component. An example of
the data transformation process is depicted in Fig. 8. For a requested
format the best path of convertation is obtained. Currently, the shortest
one is used. Weight assignment to rules can potentially be used to prioritize
convertations for some formats.

Currently, several storage formats are supported. There is dictionary
of keys for vector and matrix (DoK), list of coordinates (COO), dense vec-
tor, list of lists (LIL) and compressed sparse rows (CSR) matrix formats.
Other formats, such as CSC, DCSR, ELL, etc., can be added to the library
by the implementation of formats conversion and by the specialization of
operations for a specific format.

3.4 Algebraic Operations
Library provides a number of commonly used operations, such as vxm,

mxv, mxmT, element-wise add, assign, map, reduce, etc. Other operations
can be added on demand. Interface of operations is inspired by GraphBLAS
standard. It supports masking, parametrization by binary mult and binary
add functions, select for filtering and mask application, unary op for values
transformation, and descriptor object for additional operation tweaking.

27

Figure 7: Vector decorations storage transformations graph. Graph declares
transformation rules between different decoration formats. Existence of a
path in this graph allows to convert one decoration into another automati-
cally.

Figure 8: Vector storage transformation process. Target format is 1 (red
circle). Source format is 4 (green circle). The shortest path is the best path
for convertation.

28

3.5 Differences with GraphBLAS standard
To be clear, the proposed solution is not an implementation of Graph-

BLAS C or C++ API. The design of the library uses only the concepts
described by the standard. Thus, the signatures and semantics of some of
the operations have been changed in the proposed solution. The API has
been made more verbose and explicit. In particular, the handling of zero
elements and masking are made cleaner for the end user.

• Interoperability (issue 1). The library provides additional Array
primitive for storage inspection. Array gives an ability to acquire a
raw CPU data pointer or a GPU buffer pointer, which can be retained
and used in a user-side applications without additional heavy and
expensive copy operations.

• Introspection (issue 2). The library is designed with reflection and
extra type information embedded into library objects. It allows user
to inspect any created primitive and gives more runtime information.

• Explicit zeros (issue 3). The library interprets data simply as col-
lections of bytes, without mathematical semantics. Identity element
must be explicitly passed by the user where required. Special fill value
used for sparse-dense convertations. It allows to make the memory
usage predictable and the result of each operation clear to the end
user without internal implicit storage manipulations.

• Configurable masking (issue 4). Mask applied using separate
user-defined predicate for selection. Predicate explicitly selects arbi-
trary elements, not only zeros and not-zeros. It gives more flexibility
than GraphBLAS concept and removes an ambiguity of a result and
its memory consumption.

• No templates usage (issue 5). The API of the library is designed
without C++ templates meta-programming. It allows to compile li-
brary once into a shared executable object, distribute it and use with-
out extra manipulations.

29

• GPU support (issue 6). The library is designed in a modular
fashion with a backend for GPU computations kept in mind. The API
allows to express computations over matrices and vectors with user-
defined functions, what can be accelerated using GPU as evaluation
backend.

30

4 Implementation details
This section describes implementation details of the proposed solution.

It highlights key aspects of the core implementation, OpenCL specifics,
optimization of particular operations, and high-level optimizations of graph
algorithms. It gives an insight into the selected storage formats, algorithms
for GPU processing, and chosen third-party instruments for the library
foundation.

4.1 Project structure
Developed spla library is written using C++17 language and standard

library. CMake 3.17 is used as build configuration tool. Ninja library is used
to generate platform specific build files. Library supports build on Linux
(tested on Ubuntu 20.04), Windows (tested on 10) and macOS (tested on
Catalina). Git used as version control system. The source code of the
project is hosted on a GitHub page. Library is compiled into shared exe-
cutable object with respect to the target platform naming convention and
object extension.

Project directory has the following structure.

• 🗀 include. Public library interface files in .hpp and .h format.
• 🗀 src. Source files, compiled into shared executable object.
• 🗀 deps. Third-party project dependencies stored as a source code.
• 🗀 tests. Directory with unit tests files for Google Tests.
• 🗀 examples. Example applications for graph algorithms.
• 🗀 python. Source code for a python package for spla library.
• 🗎 CMakeLists.txt. Root cmake file of the project.
• 🗎 build.py. Python script to build library artifacts.
• 🗎 generate.py. Python script to generate .hpp from .cl files.
• 🗎 run_tests.py. Python script to run unit tests.
• 🗎 bump_version.py. Python script to upgrade package version.

31

4.2 Compile-time dependencies
This section briefly covers third-party libraries and projects, utilized by

the spla library.

Khronos OpenCL headers. C-compatible OpenCL header files li-
brary developed and maintained by the Khronos Consortium. Since the
OpenCL is an public API declared as a standard, its support is optional
for operating systems and programming environments. In order to access
OpenCL functions the respective header files with OpenCL functions decla-
rations, signatures, constants, defines and other symbols must be manually
used by a project. An alternative is to install this headers to a computer
manually. But this step is error prone and less flexible.

Khronos OpenCL hpp headers. C++-compatible OpenCL header
files library developed and maintained by the Khronos Consortium. Since
the spla project is written using modern C++ standard, safe C++ bindings
for an OpenCL code must be used.

OpenCL C++ bindings provide a memory and exceptions safe, object-
oriented API, which relies on a standard containers and data structures. It
allows to automate and simplify objects lifetime management.

Khronos OpenCL ICD loader. OpenCL installable client driver
(ICD) library developed and maintained by the Khronos Consortium. It
provides a mechanism to allow developers to build applications against an
ICD loader rather than linking their applications against a specific OpenCL
implementation.

The ICD loader is responsible for: exporting OpenCL API entry points,
enumerating OpenCL implementations, forwarding OpenCL API calls to
the correct implementation.

The ICD mechanism is required in order to load dynamically particular
OpenCL implementation at runtime. The motivation for that is the vast
variety of different OpenCL implementations. Each implementation can be

32

shipped with a GPU driver. The system can have a number of different
GPUs with distinct drivers and vendors. Thus, it is not possible to know a
target implementation a priory.

The ICD loader is bundled inside the spla dynamic library during build
process. Loader is used on a library startup. It quires available OpenCL
drivers in the system. Then it selects one to use in the application. The
selection is based on a user parameters. Then it loads OpenCL symbols
through shared library mechanism and initializes global OpenCL state.

GTest. GTest is an open source unit-testing library for C++ projects.
This library is developed and maintained by a Google company. The library
provides flexible macro system for declaring unit tests and assertions. This
library is used extensively for testing a spla functionality. Project units
testes with gtest are stored in a tests directory.

Cxxopts. Cxxopts is an open-source command-line arguments parsing
library for C++ projects. This library automates processing of executable
arguments, passed in a classic argc & argv fashion. Library is used a an
auxilary tool for example applications, built using library API. Example
applications used for a benchmarking of the library performance.

4.3 Development automation
The library source code is hosted on a GitHub platform. This platform

provides a convenient actions mechanism, also called workflows. It allows
to automate the process of a continuous project changes integration and
continuous delivery of the project artifacts to potential users. The GitHub
repository is configure with the following list of scripts for automation.

• build. The build action, which compiles the source code of the library,
executable examples and test for three target platform: Windows 10,
Ubuntu (20.04) and macOS (for x64 and arm architectures). The
artifacts of a build process are published automatically in a GitHub

33

repository. These artifacts are reused in a later step, when the python
package is assembled to be pushed to either test or retail index repos-
itory.

• clang-format. The formatting script which automatically checks the
conformance of the library header and source files. The project uses a
clang-format tool to check the code style of the project automatically.
Definition of a code style is stored in repository as a configuration file
in special format.

• deploy. Deployment script is responsible for an automated publishing
of a spla python package to the python package index (PyPI) repos-
itory. This action assembles a bundle, which stores python sources
as well as artifacts for all platforms from build action. Action auto-
matically pushes package to the PyPI using credentials, stored in a
repository. The action is triggered automatically on commits to spe-
cial release branch. This is supposed to happen on a major and minor
library versions’ releases.

• deploy-test. Deployment script similar to deploy action. The differ-
ence is that this script pushes package to the Test PyPI repository for
testing purposes. The action is triggered automatically on commits
to special pre-release branch.

• docs-cpp. Script which assembles C/C++ library documentation
using Oxygen format. The documentation is represented by a set of
html pages. These pages are deployed automatically to the project
website page.

• docs-pythos. Script which assembles python package documentation
using python docs library. The documentation is represented by a set
of html pages. These pages are deployed automatically to the project
website page.

34

Table 1: A list of the supported operations to access vector and matrix
containers.

Method Description
Matrix Matrix constructor from type T and dimensions
Vector Vector constructor from type T and dimension
clear Empty vector or matrix
get_nrows Query number of rows for a matrix or vector
get_ncols Query number of columns for a matrix or vector
get_type Query the type T of elements
set_<T> Set element of type T at index ⟨i, j⟩
get_<T> Get element of type T at index ⟨i, j⟩

4.4 Library interface
This section the technical details of the library public interface are cov-

ered. Interface includes matrix, vector and scalar containers for a typed
data storage, operations for the execution, algebraic functions for opera-
tions customization, etc.

Containers. Library provides vector, matrix and scalar data contain-
ers. Each container can be parameterised with a type of stored values. The
actual storage mechanism is automated and is hidden from a user. Matrix
and vector containers can store data in multiple formats at the same time.
In order to access them, the library provides opaque interface, which allows
to incrementally build containers, query elements, inspect its properties an
state. List of supported operations to access containers is shown in a table 1.

Operations. An expression for the execution is constructed as a sched-
ule object using library API. The primitive unit of the schedule is a single
task. Task represents an operation over matrices, vectors and scalars. Li-
brary provides a number of common and widely used operations for evalu-
ation. List of supported operations provided in the table 2.

35

Table 2: A list of the spla mathematical operations for computations.

Operation Math equivalent Description
masked mxmT Ri,j = (ABT)i,j, ∀i, j : f(Mi,j) Masked matrix-matrix transposed product
masked vxm ri = (vM)i, ∀i : f(mi) Masked vector-matrix product
masked mxv ri = (Mv)i, ∀i : f(mi) Masked matrix-vector product
reduce by row ri = ΣMi,j Matrix reduce by row to column vector
ewise add ri = vi + ui Vector element-wise addition
masked assign ri = s, ∀i : f(mi) Masked vector scalar assignment
map ri = g(vi) Vector map to vector using unary function
reduce s = ΣMi,j Matrix reduce to scalar
reduce s = Σvi Vector reduce to scalar
select count s = |{vi : f(vi)}| Vector select count

Element-wise functions. The core feature of the library is the ability
to parameterise math operations mentioned above with arbitrary algebraic
element-wise binary and unary functions. The list of build-in functions,
which supported for both CPU and GPU computations, is depicted in the
table 3. The operations can be used for any of build type such int, uint
and float values. The only exception is bit-wise operations, which can be
applied only to integral types.

Signatures. Library heavily relies on a built-in mechanism of auto-
mated reference counting of objects. Each object has an atomic counter,
which tracks number or references. When the counter reaches the zero, it
frees up the object. This mechanism used for safe arguments passing around
library and for safe marshaling of objects through C and python APIs.

Library employs explicit operations signatures. All arguments and pa-
rameters must passed by the user through operation interface. If operation
has variations or provides tweaking, all parameters must be specified.

As an example, consider the signature of the masked matrix-vector prod-
uct operation in a listing 2. This is a procedure, which can be loaded from a
dynamic or shared library. As the result of an invocation it returns special
Status enumeration value. Library uses no exceptions. Thus, error codes
are employed. It is standard practice for libraries with C-compatible API.

36

Table 3: A list of the spla element-wise mathematical functions to param-
eterise operations.

Function Equivalent Type Description
plus r = a+ b function Sum of two elements
minus r = a− b function Difference of two elements
mult r = a ∗ b function Product of two elements
div r = a/b function Division of two elements
min r = min(a, b) function Minimum value
max r = max(a, b) function Maximum value
first r = a function First argument of function
second r = b function Second argument of function
one r = 1 function Identity element
and r = a ∧ b function Bit-wise product
or r = a ∨ b function Bit-wise sum
xor r = a⊕ b function Bit-wise exclusive sum
eqzero a == 0 predicate Check equals zero
nqzero a ̸= 0 predicate Check not-equals zero
gtzero a > 0 predicate Greater than zero
ltzero a < 0 predicate Less than zero
geero a >= 0 predicate Greater equals zero
lezero a <= 0 predicate Less equals zero

The procedure takes nine input in lines 1 – 9 and one optional output
argument in line 10. The r is a vector where to store result of operation
execution. The mask is a vector of the same dimension as r, which is used
to update only selected entries of the vector r. Matrix M and vector v are
the actual primitives to multiply. Actual algebraic element-wise functions
from multiplication and addition are passed as op_multiply and op_add.
The predicate to filter result by a mask passed as a op_select. Note, that
functions in the library are first-class objects, which can be manipulated
as any other library object. The identity element for product evaluation is
passed as init scalar.

An optional parameter is a Descriptor desc object. It has the same usage
as in a GraphBLAS standard. Descriptor stores additional parameters,
which configure actual execution of the operation, occupation, preferred
device, mode, etc. It can be used to optimize the execution of particular
operations for edge cases.

37

Listing 2 The C++ signature of the spla masked matrix-vector product.
1 SPLA_API Status exec_mxv_masked(/* in */ ref_ptr<Vector> r,
2 /* in */ ref_ptr<Vector> mask,
3 /* in */ ref_ptr<Matrix> M,
4 /* in */ ref_ptr<Vector> v,
5 /* in */ ref_ptr<OpBinary> op_multiply,
6 /* in */ ref_ptr<OpBinary> op_add,
7 /* in */ ref_ptr<OpSelect> op_select,
8 /* in */ ref_ptr<Scalar> init,
9 /* in */ ref_ptr<Descriptor> desc = nullptr,

10 /* out */ ref_ptr<ScheduleTask>* task_hnd = nullptr);

Finally, the procedure accepts an optional output argument. It is a
pointer to the handle of the schedule task object. If pointer is null, then the
procedure executes the operation in an imperative fashion. If this pointer is
not null, then the implementation creates a deferred task for the execution,
stores reference to this task in provided pointer and returns. In this case,
the returned task can be used to construct schedule object, which can be
submitted at once as a whole. The scheduling mechanism implemented as
previously described in architecture section.

4.5 Algorithms registry
The implemented library uses the concept of a registry to find oper-

ations as shown in Fig.9. A call to a particular operation is stored as a
command to be executed later by Dispatcher. For each command the spe-
cial lightweight string key is built depending on type of the operation and
arguments passed. This key is used as a regex to get the required implemen-
tation of the requested operation. The advantages of the proposed approach
are listed below.

• Late binding. The operation call becomes a command. The process-
ing of such a command can be configured at run time. Changing the
acceleration backend can be done without recompilation. Moreover,
several backends can be transparently used within a single applica-
tion.

• Optionality of accelerator. The acceleration backend is free to

38

support only those operations that require it. Fallback implementa-
tions will be used automatically for the rest of the operations.

• Performance tuning. The key of the command reflects operation
type, arguments types, passed user functions types, etc. It can be used
for ad-hoc optimizations. Custom operation implementation with a
verbose key can be also stored in the registry. If several operations
match the key, the longest key is used, since it is more specific for a
particular operation.

• Scheduling. The full list of submitted commands for execution can
be examined at runtime. This opens up the possibility for the fusion
of some operations, sorting, rearrangement, and any other high-level
optimizations that require introspection.

The structure of keys is depicted in a figure 10. The key is effectively
a string literal, which is constructed using specialized rules. The prefix of
the key is the name of the operation which must be evaluated. As a name
for operation actual mathematical name can be used, such as matrix-vector
product, matrix-matrix product, etc.

The name is followed by the name of used functions and their type codes.
Mathematical functions must be parameterized by scalar functions. Each
function has a name and a set of type codes for each type of the argument.
Scalar multiplication and addition functions has three opcodes. Since each
function is a binary operator of type A× B −→ C.

Binary functions are followed by a selection operation. Selection is an
unary function with the signature A −→ bool. Selection operator is used to
filter final results using masking. Typically, we are not interested in a whole
result. So the mask is provided. Type of mask values used to parameterize
select operation. Selection can be any unary predicate. In most cases,
greater than, equals or not equals zero are the most used one.

Finally, the key prefix is appended with a code of a backend for compu-
tations. Different accelerators, including CPU fallback, may be supported
for computations. Using accelerator suffix allows to switch between backend
at runtime and select the most optimized algorithm.

39

Figure 9: Registry of algorithms. Dispatcher looks up for optimized al-
gorithms first. As a fallback it uses cpu suffix to get default algorithm
implementation without an acceleration.

Figure 10: The structure of an algorithm key. The is a string literal
composed from several parts. Prefix shows the algorithm name and its
parametrization by operations. The suffix of the key shows which backed
or accelerator to use for the evaluation of the algorithm.

It is possible that there is no algorithms for a given key. Thus, the
fallback version must be utilized. In order to do that, key prefix may be
concatenated with a CPU suffix. All algorithms have a CPU analogues in
a registry.

Keys in a form of a string solve two major problems. Firstly, it gives
a readable and human understandable representation of an operation. Sec-
ondly, it allows to actually segregate an operation with its arguments and
particular algorithm instance. Algorithm is an object with its own state
and unified interface. It allows to maximize the performance and reuse
artifacts, which may appear between algorithm invocations, such as GPU
kernels, acceleration structures, etc.

40

4.6 Storage formats
The library is implemented following storage schema, introduced and

described in a previous section. In this schema each data container, such
as a matrix or vector has a number of decorations or formats, which can be
simultaneously assigned to the container. It introduces duplication. How-
ever, it gives the flexibility for the choice of target device and particular
implementation algorithm for the execution.

The same container can have a number of formats allocated at the same
time. The storage manager automatically controls the validity of the data.
This mechanism allows to cache the same data in both RAM and VRAM
memory. Since the RAM in most cases has a order of magnitude larger size,
the duplication is negligible.

The vector storage container supports following formats.

• CPU dictionary of keys (DoK). The format of the vector, where
non-zero entries stored as a dictionary. Storage space is proportional
to a number of values. It gives fast query and insertion operations at
cost of inefficient memory layout. This format is used for incremental
builds of container on a CPU side.

• CPU list of coordinates (COO). This format used for sparse vec-
tor representation. Data in this format stored as a list of indices
and as a list of values. Memory space proportional to the number
of non-zero entries. Used to prepare data for GPU source & target
transfer.

• CPU dense vector. This format used for a dense vector represen-
tation. Data in this format stored as a large array of values with
the same size as vector dimension. Memory space proportional to the
vector dimension. Memory consumption can be excessive on vectors
with over 1M elements. Used to prepare data for GPU source & target
transfer.

• OpenCL list of coordinates (COO). It is GPU representation of a

41

COO format using OpenCL API. Used for sparse vector manipulation
on GPU side.

• OpenCL dense vector. It is GPU representation of a COO format
using OpenCL API. Used for a dense vector manipulation on GPU
side.

The matrix storage container supports following formats.

• CPU dictionary of keys (Dok). This format is used for an in-
cremental matrix building on a CPU side as it is done for a vector.
The memory space used by this format is proportional to the number
of non-zero entries. This format provides fast query and insertion
operations at cost of inefficient memory layout.

• CPU list of lists (LiL). This format is used for an incremental
matrix building on a CPU side as well as DoK. The memory space used
by this format is proportional to the number of non-zero entries. This
format provides more efficient memory layout at the cost of slower
search, insert and deletion operations. Thus, LiL is better suited for
sequential ordered construction and for some operations on a CPU
side, such as reduction, product, map, etc.

• CPU compressed sparse row (CSR). Compressed sparse row is
one of the most common formats for a sparse matrix representation.
The data is stored in a form of three arrays: rows offsets, column
indices and column values. Rows values are packed. They are stored
continuously. Column indices of each value in a row and each value
are packed together in index and value arrays. Offsets to the start of
a particular row are stored in offsets buffer. Total memory cost of the
storage proportional to the number of entries in sparse arrays. Offsets
buffers always allocated using total number of rows of a matrix.

• OpenCL compressed sparse row (CSR). This is a CSR format
implementation for a GPU computations using OpenCL. Data to this
storage format is transfered from a CPU CSR format representation.

42

GPU CSR allows fast access to a random matrix row. However, the
access on a particular value in a row is linear and requires consecutive
reads. It is more suitable for GPUs processing, where each row can be
processed in parallel by separate SIMD processors or compute units.

4.7 OpenCL backend
OpenCL 1.2 is used as the primary API for backend GPU implementa-

tion. Header files with C and C++ definitions are supplied with the source
code of the project. Official Khronos installable client driver (ICD) loader
bundled within a library to load at runtime particular OpenCL implemen-
tation depending on running OS and GPU vendor.

Implementation of sparse linear algebra algorithms for a GPU requires
auxiliary libraries for memory management, sorting, reducing, merging,
scanning, etc. Nvidia Cuda platform features libraries such as Thrust and
Cub. OpenCL lacks such support. All primitives for this project are imple-
ment from a scratch in most cases. What is an extra challenge. Third-party
library, such as Boost Compute [26], cannot be used, since it has significant
runtime overhead, portability and performance issues, and lack of long term
support.

User-defined functions for GPU usage are represented as strings with ad-
ditional metadata, such as type of parameters, return types, unique id, etc.
Source code of particular operations stored in a form of .cl files. Operations
implemented with generalization for parameters types and user functions.
Their definitions obtained later at runtime in a compilation step through
the text pre-processing.

Compilation of actual OpenCL kernels is done on demand. All compiled
kernels are stored in a cache. Cache key is composed from types of kernel
parameters, defines, etc., which identify uniquely a particular variation of
a kernel. Key composition is done in O(1).

In-place allocation is utilized for a key builder to avoid global heap usage.
In order to reduce CPU overhead and keep access to the cache fast, library
uses robin hood hashing based hash map.

43

Custom linear memory allocator implemented in order to reduce the
overhead of frequent and small buffer allocations, arising in a time of exe-
cution of some operations. Allocator uses sub-buffer mechanism and serves
request typically less than 1 MB of size. Otherwise, the general GPU heap
is used.

4.8 Linear Algebra Operations
The following primitives are the core of computations: masked sparse-

vector sparse-matrix product, masked sparse-matrix dense-vector product
and masked sparse-matrix sparse-matrix product. Efficient implementation
and load balancing of those operations dominate the performance of par-
ticular algorithms. The following paragraphs give an insight into these
operations implementation in the library.

Masked sparse-vector sparse-matrix product. The implementa-
tion is based on the algorithm proposed by Yang et al. [29]. It is a k-way
merge based algorithm which suites well for sparse vectors. Our implemen-
tation uses custom gather to collect temporary products. Radix sort used
to sort products for further reduction. Reduction by key uses parallel prefix
scan to carry out final destination of reduced values.

Masked sparse-matrix dense-vector product. The implementa-
tion of this operation relies on a classic row-based parallel algorithm. Both
scalar and vector versions are implemented to fit better relatively sparse
and dense matrix rows.

Masked sparse-matrix sparse-matrix product. The implementa-
tion of this algorithm uses the approach proposed by Yang et al. [28]. It is
straightforward single-pass row-major and column-major matrix product.
Mask is used to estimate the size of the final result to filter out some result
of the product.

44

4.9 Graph Algorithms
The advantage of the linear algebra approach is that graph algorithms

can be easily composed of primitive operations using a few lines of code. For
preliminary study breadth-first search (BFS), single-source shortest paths
(SSSP), page rank (PR) and triangles counting (TC) algorithms were cho-
sen. These are the most commonly evaluated graph algorithms. They allow
one to test basic operations and key aspects of graph frameworks perfor-
mance. Implementation details for chosen algorithms are given below.

BFS. It utilizes a number of optimizations described by Yang et al. [27].
It uses masking to filter out already reached vertices, change of direction
(push-pull) to switch from sparse from to dense and vice versa, and early
exit in mxv operation.

SSSP. This algorithm uses change of direction as well. Also, it employs
filtering of unproductive vertices according to Yang et al. [28]. Vertices
which do not relax their distance in current iteration are removed from a
front of the search. It keeps workload moderate.

PR. This algorithm assigns numerical weights to objects in the network
depending on their relative relevance. As a key operation it uses mxv oper-
ation with a dense vector. For error estimation it uses custom element-wise
function with a fusion of subtraction and square operations.

TC. Triangles counting uses masked sparse matrix product [28] and
reduction. As an input algorithm accepts a lower triangular component L

of an adjacency matrix of the source graph. The result is a count of non-
zero values from B = LLT . ∗ L, where .∗ used for the masking. The second
argument is not actually transposed, since row-column based product gives
exactly the required effect.

45

4.10 Running example
As an example of the developed spla library usage consider breadth-first

search algorithm implementation shown in the code listing 3.
Algorithm procedure is declared in the spla namespace in the public

interface file. The implementation of the algorithm is defined in the private
cpp source file, compiled into shared object library. Procedure expects as
an input reference to the result vector v where to store reached depths of
vertices, adjacency matrix of the undirected graph A, index of the start
vertex s and an optional descriptor to tweak algorithm execution.

Before actual execution, the graph size saved as N in line 5. Then
in lines 7 – 11 data containers required for the algorithm execution are
allocated. The front of the search is created in lines 7 – 8. Two instances
are used, since the update of the front for the new iteration requires the
previous version of the front. In order to avoid unintentional costly GPU
memory allocations, these fronts allocated explicitly and kept until the end
of the procedure. The front size scalar is created in line 9. Scalar holding
current depths and scalar with identity elements are created in lines 10 –
11. A number state tracking variables are created in lines 12 – 15. They
are used to track current state of the search.

Initial frontier start vertex is set in line 20. The starting depths of the
source vertex is 1. Yet unreached vertices or unreachable vertices have a
depth equal to 0 by default.

The algorithm iterates in the while loop in lines 22 – 34 until frontier
of vertices to visit is not empty. Iteration operations executed in lines 23 –
26. Firstly, the scalar is updated with new depth value. Then, this depth
is assigned to the result vector using frontier from the previous iteration as
a mask. After assignment new frontier is obtained as a single search step
from front vertices to next vertices through vector-matrix product. Note,
that vector v used as mask to filter all already visited vertices. The special
predicated for that is used. Only mask values which equal to zero will be
touched. It implies to the update only of yet unreached vertices.

After the execution the vector v for each graph vertex stores either the

46

depth of the vertex or zero in the case if this vertex is not reachable from
the BFS source vertex s. Since library API relies on C++ RAII mechanism,
no explicit resources cleanup is required after the execution.

Listing 3 Breadth-first search algorithm implementation using Spla API
1 SPLA_API Status spla::bfs(const ref_ptr<Vector>& v,
2 const ref_ptr<Matrix>& A,
3 uint s,
4 const ref_ptr<Descriptor>& desc) {
5 const auto N = v→ get_n_rows();
6

7 ref_ptr<Vector> front_prev = make_vector(N, INT);
8 ref_ptr<Vector> front = make_vector(N, INT);
9 ref_ptr<Scalar> front_size = make_int(1);

10 ref_ptr<Scalar> depth = make_int(1);
11 ref_ptr<Scalar> zero = make_int(0);
12 int current_level = 1;
13

14 front_prev→ set_int(s, 1);
15

16 while (!(front_size→ as_int() == 0)) {
17 depth→ set_int(current_level);
18

19 exec_v_assign_masked(v, front_prev, depth, SECOND_INT, NQZERO_INT, desc);
20 exec_vxm_masked(front, v, front_prev, A, BAND_INT, BOR_INT, EQZERO_INT, zero, desc);
21 exec_v_reduce(front_size, zero, front, PLUS_INT, desc);
22

23 current_level += 1;
24

25 std::swap(front_prev, front);
26 }
27

28 return Status::Ok;
29 }

47

5 Evaluation
For performance analysis of the proposed solution, a few most common

graph algorithms were evaluated using real-world sparse matrix data. The
following tools for comparison were chosen: LaGraph [17] (ver. Feb 13,
2022) in connection with SuiteSparse [9] (ver. Jan 14, 2022) as a baseline
CPU tool, Gunrock [16] (ver. Nov 7, 2021) and GraphBLAST [28] (ver. Jun
18, 2021) as a Nvidia GPU tools. Also, algorithms were tested on several
devices with distinct OpenCL vendors in order to validate the portability
of the proposed solution.

5.1 Research questions
In general, these evaluation intentions are summarized in the following

research questions.

RQ1 What is the performance of the proposed solution relative to existing
tools for GPU analysis?

RQ2 What is the performance of the proposed solution on various devices
vendors and OpenCL runtimes?

RQ3 What is the performance of the proposed solution on integrated GPU
compared to existing CPU tool for analysis?

5.2 Evaluation setup
For evaluation of RQ1, a PC with Ubuntu 20.04 installed used, which

has 3.40Hz Intel Core i7-6700 4-core CPU, DDR4 64Gb RAM, Intel HD
Graphics 530 integrated GPU, and Nvidia GeForce GTX 1070 dedicated
GPU with 8Gb on-board VRAM.
For evaluation of RQ2, a PC with Ubuntu 22.04 installed used, which

has 4.70Hz AMD Ryzen 9 7900x 12-core CPU, DDR4 128 GB RAM, AMD
GFX1036 integrated GPU, and either Intel Arc A770 flux dedicated GPU

48

with 8GB on-board VRAM or AMD Radeon Vega Frontier Edition dedi-
cated GPU with 16GB on-board VRAM.
For evaluation of RQ3, the first PC with Intel CPU and integrated

GPU and the second PC with AMD CPU and integrated GPU are used.
Spla and LaGraph were compiled with GCC v9.4. Gunrock and Graph-

BLAST were compiled with GCC v8.4 and Nvidia NVCC v10.1. Release
mode and maximum optimizations level were enabled for all tested pro-
grams.

5.3 Methodology
All tests are averaged across 10 runs. The deviation of measurements

does not exceed the threshold of 10 percent. Additional warm-up run for
each test execution is excluded from measurements.

Only actual execution time of algorithms is measured. Data loading
time, preparation, format transformations, and host-device initial commu-
nications are excluded from time measurements.

The graph vertex with index 1 is set as the initial traversal vertex in the
algorithms BFS and SSSP for all tested instruments and all tested devices.

For measurements standard official benchmarks are used, which pro-
vided by compared tools developers. These benchmarks are intended for
performance comparison. Thus, all tools agree on measurements, what is
clearly seen from the source code of those benchmarks.

5.4 Graph algorithms
For preliminary study breadth-first search (BFS), single-source shortest

paths (SSSP), page rank (PR) and triangles counting (TC) algorithms were
chosen. Implementation of those algorithms for competitors is used from
official source code repositories with default parameters. Compared tools
are allowed to make any optimizations as long as the result remains correct.

49

Table 4: Dataset description.

Graph Vertices Edges Out Degree
Avg Sd Max

coAuthorsCit 227.3K 1.6M 7.2 10.6 1.4K
coPapersDBLP 540.5K 30.5M 56.4 66.2 3.3K
amazon2008 735.3K 7.0M 9.6 7.6 1.1K
hollywood2009 1.1M 112.8M 98.9 271.9 11.5K
comOrkut 3.1M 234.4M 76.3 154.8 33.3K
citPatents 3.8M 33.0M 8.8 10.5 793.0
socLiveJournal 4.8M 85.7M 17.7 52.0 20.3K
indochina2004 7.4M 302.0M 40.7 329.6 256.4K
belgiumosm 1.4M 3.1M 2.2 0.5 10.0
roadNetCA 2.0M 5.5M 2.8 1.0 12.0
rggn222s0 4.2M 60.7M 14.5 3.8 36.0
rggn223s0 8.4M 127.0M 15.1 3.9 40.0
roadcentral 14.1M 33.9M 2.4 0.9 8.0

5.5 Dataset
Thirteen matrices with graph data were selected from the Sparse Ma-

trix Collection at University of Florida [10]. Information about graphs is
summarized in Table 4. This is a common graphs collection used for sparse
linear algebra and graph algorithms benchmarks in other works in the do-
main. These graphs represents typical analysed data structure, sparsity,
distribution, and allows one to study common behaviour and performance
characteristics of developed libraries.

The dataset is converted to undirected graphs. Self-loops and duplicated
edges are removed. Average, sd and max metrics relate to out degree prop-
erty of the vertices. For SSSP weights are initialized using pseudo-random
generator with uniform [0, 1] distribution of floating-point values.

Graphs are roughly divided into two groups. The first group represents
relatively dense graphs, where the number of edges per node is sufficient on
average to effectively load the GPU with useful work. The second group
represents relatively sparse graphs, where the average vertex degree is below

50

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent

100

101
Sp

ee
du

p

BFS

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent

100

101

102
SSSP

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

rggn223s0
rdcent

Graph

101

Sp
ee

du
p

PR

coAutCit

coPapDBLP

amaz2008
rdNetCA

comOrkut
citPat

socLvJr

rggn222s0

rggn223s0
rdcent

Graph

101

102

TC
GraphBLAST
Gunrock
Spla

Figure 11: Performance of Spla library and GPU tools on the same device
compared to LaGraph. Logarithmic scale is used.

the typical GPU vector register size, and the search depth reaches hundreds
of hoops. Graphs are sorted in ascending order by the number of vertices
within each group.

5.6 Results Summary
Fig. 11 presents results of the evaluation and compares the performance

of Spla against other Nvidia GPU tools and uses as a baseline LaGraph
CPU tool. Fig. 12 presents result of the portability analysis of the proposed
solution. It shows performance of the proposed solution on discrete GPUs
of distinct vendors. Fig. 13 present result of per-device comparison of Spla
library running on integrated GPU and CPU LaGraph running on the same
chip.

The absolute results of the performance study are available in the Ta-
ble 5, Table 6 and Table 7 for each stated research question. Cells left with
none if tool failed to analyze graph due to out of memory exception.

51

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent

103

104

105

106
Ed

ge
/s

 p
er

 c
or

e

BFS

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent

103

104

105

106
SSSP

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

rggn223s0
rdcent

Graph

105

106

Ed
ge

/s
 p

er
 c

or
e

PR

coAutCit

coPapDBLP

amaz2008
rdNetCA

comOrkut
citPat

socLvJr

rggn222s0

rggn223s0
rdcent

Graph

105

TC
Intel Arc a770 x 4096 cores
AMD Vega FE x 4096 cores
Nvidia Gtx 1070 x 1920 cores

Figure 12: Performance of Spla library on different devices relative to the
number of compute cores. Logarithmic scale is used.

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ee

du
p

BFS

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

i2004

rggn223s0
rdcent0

1

2

3

4

5

SSSP

coAutCit

coPapDBLP

amaz2008
holl2009

belgosm
rdNetCA

comOrkut
citPat

rggn222s0
socLvJr

rggn223s0
rdcent

Graph

0

2

4

6

8

10

12

Sp
ee

du
p

PR

coAutCit

coPapDBLP

amaz2008
belgosm

rdNetCA
citPat

rggn222s0
rdcent

Graph

0.0

0.5

1.0

1.5

2.0

2.5

TC
Spla (Intel i7 4x, HD Graphics 530 GPU)
Spla (AMD Ryzen 12x, GFX1036 GPU

Figure 13: Performance of Spla library on integrated GPU compared to
LaGraph on the same chip.

52

RQ1. What is the performance of the proposed solution relative to
existing tools for GPU analysis? In general, Spla shows very acceptable
performance in all algorithms, running with comparable speed to its near-
est competitor, GraphBLAST. Also proposed library does not suffer from
memory issues on some large graphs such as indochina, orkut and rggn23.
Spla is consistently several times faster than LaGraph, overcoming it up to
25× in some cases. Gunrock is the fastest GPU framework for analysis. It
dominates the overall performance and only suffers in a PR algorithm.

Taking a closer look at Fig. 11, Spla-based BFS shows comparable to
GraphBLAST performance in most cases. Spla has good speed at relatively
dense graphs with high vertex degree and small depth of the search, what
allows to saturate GPU with a work better. However, the performance
degrades in network and road graphs with small front of the search and large
diameter, what cause a lot of iterations. Thus, both Spla and GraphBLAST
suffer from the overhead of kernel launches and relatively small amount of
the work for a GPU. SSSP shares with BFS the same picture in general.
However, Spla behaves here slightly better than GraphBLAST, running up
to 36× faster at some extreme cases.

For PR, Spla and GraphBLAST show the best performance, except cases
with GraphBLAST memory issues. Both tools are faster than Gunrock in
average reaching up to 20× and more relative speedup. This performance
can be motivated by the usage of mxv operation as a core primitive for
pull-updates, which is computationally intensive and has good work load
balance compared to Gunrock push-updates. However, Spla suffers a bit in
case of lower-degree graphs due to lack of more precise balance for small
matrix rows.

Finally, Gunrock dominates performance in TC as well, except two
sparse road graphs where it has significant performance drop down. Spla
and GraphBLAST have comparable results. However, GraphBLAST slightly
faster nearly in all runs. Both tools use the same approach for mxm imple-
mentation. However, Spla may encounter some OpenCL overhead or lack
of precise performance tuning.

53

RQ2. What is the performance of the proposed solution on various
devices vendors and OpenCL runtimes? Spla successfully launches and
workes on the GPU of distinct vendors, including Intel, AMD and Nvidia.
It shows promising performance and demonstrated scalability in relation to
the number of computing cores. Fig. 12 depicts the edge/s throughput per
a GPU core for all devices. This metric is quite predictable for the same
graphs. This can be seen if one takes into account the overall shape of the
figures for BFS, SSSP and PR as a whole.

In general, Spla on Nvidia shows better average performance, especially
for sparser graphs with relatively small degree per row. Nvidia OpenCL
driver features faster memory allocations and has less overhead on a fre-
quent kernel launches. Spla on Intel runtime lags a bit behind Nvidia, but
performs better in some PR and TC cases. Spla performance on AMD is
acceptable. However, better tuning and further polishing are required.

RQ3. What is the performance of the proposed solution on integrated
GPU compared to existing CPU tool for analysis? Result of detailed com-
parison are shown in Fig. 13. This figure depict Spla relative to LaGraph
speedup on the same chip, where Spla is running on integrated GPU part
and LaGraph is running on multi-core CPU part.

In general, LaGraph shows better performance for both CPUs, espe-
cially on a new powerful AMD Ryzen with 12 cores. The difference in a
speed is extremely dramatic in BFS and SSSP algorithms. For a PR al-
gorithm the picture is slightly better. Spla shows up to 10× speedup. PR
algorithm tends to be more computationally intensive, so difference to BFS
and SSSP is reasonable. For TC Spla performs better only for Intel device,
having in some cases conservative 2× speedup.

Summarizing, the evaluation of the proposed solution for some real-
world graph data in four different algorithms shows, that OpenCL-based
solution has a promising performance, comparable to analogs, has accept-
able scalability on devices of different GPU vendors, and, surprisingly, has a
speedup in some cases when compared with highly-optimized CPU library

54

on some integrated GPUs. However, there are still a plenty of research
questions and directions for improvement.

55

Table 5: RQ1. Performance comparison of the proposed solution. Time in
milliseconds (lower is better).

Dataset GraphBLAST Gunrock LaGraph Spla (proposed)
BFS

coAuthorsCit 5.0 1.9 6.3 6.9
coPapersDBLP 19.9 4.5 18.0 11.5
amazon2008 8.3 3.3 20.4 8.1
hollywood2009 64.3 20.3 23.4 20.3
belgiumosm 200.6 84.4 138.0 181.2
roadNetCA 116.3 32.4 168.2 101.7
comOrkut none 205.0 40.6 53.2
citPatents 30.6 41.3 115.9 35.1
rggn222s0 367.3 95.9 1228.1 415.3
socLiveJournal 63.1 61.0 75.5 57.1
indochina2004 none 33.3 224.6 328.7
rggn223s0 615.3 146.2 2790.0 754.9
roadcentral 1383.4 243.8 1951.0 710.2

SSSP
coAuthorsCit 14.7 2.1 38.9 10.3
coPapersDBLP 118.6 5.6 92.2 25.7
amazon2008 43.4 4.0 90.0 21.7
hollywood2009 404.3 24.6 227.7 57.5
belgiumosm 650.2 81.1 1359.8 240.9
roadNetCA 509.7 32.4 1149.3 147.9
comOrkut none 219.0 806.5 241.0
citPatents 226.9 49.8 468.5 129.3
rggn222s0 21737.8 101.9 4808.8 865.4
socLiveJournal 346.4 69.2 518.0 189.5
indochina2004 none 40.8 821.9 596.6
rggn223s0 59015.7 161.1 11149.9 1654.8
roadcentral 13724.8 267.0 25703.4 1094.3

PR
coAuthorsCit 1.6 10.0 24.3 3.2
coPapersDBLP 17.6 120.2 297.6 6.1
amazon2008 5.2 40.6 89.8 5.5
hollywood2009 62.9 559.5 1111.2 32.4
belgiumosm 4.4 22.9 167.6 9.4
roadNetCA 6.6 37.7 225.8 19.6
comOrkut none 2333.6 5239.0 103.3
citPatents 27.0 686.1 1487.0 38.3
rggn222s0 45.2 320.0 563.5 26.6
socLiveJournal none 445.9 2122.5 112.0
rggn223s0 none 662.7 1155.6 103.4
roadcentral none 408.8 2899.9 172.0

TC
coAuthorsCit 2.3 2.0 17.3 3.0
coPapersDBLP 105.2 5.3 520.8 128.4
amazon2008 11.2 3.9 73.9 10.8
roadNetCA 6.5 32.4 46.0 7.7
comOrkut 1776.9 218.0 23103.8 2522.0
citPatents 65.5 49.7 675.0 54.5
socLiveJournal 504.3 69.2 3886.7 437.8
rggn222s0 73.2 101.3 484.5 77.7
rggn223s0 151.4 158.9 1040.1 204.2
roadcentral 42.6 259.3 425.3 52.7

56

Table 6: RQ2. Portability of the proposed solution. Time in milliseconds
(lower is better).

Dataset Intel Arc A770 AMD Vega Frnt. Edt. Nvidia Gtx 1070
BFS

coAuthorsCit 12.8 8.3 6.9
coPapersDBLP 10.8 14.9 11.5
amazon2008 12.3 12.6 8.1
hollywood2009 15.3 26.7 20.3
belgiumosm 627.5 292.4 181.2
roadNetCA 265.5 259.8 101.7
comOrkut 33.2 63.6 53.2
citPatents 21.0 30.3 35.1
rggn222s0 825.3 1259.7 415.3
socLiveJournal 43.0 85.8 57.1
indochina2004 220.6 573.4 328.7
rggn223s0 1245.5 2519.6 754.9
roadcentral 1864.9 1680.8 710.2

SSSP
coAuthorsCit 18.3 10.4 10.3
coPapersDBLP 22.9 27.7 25.7
amazon2008 23.4 22.2 21.7
hollywood2009 44.6 56.2 57.5
belgiumosm 1085.9 454.8 240.9
roadNetCA 447.3 422.5 147.9
comOrkut 79.7 111.5 241.0
citPatents 49.8 78.4 129.3
rggn222s0 1378.8 924.3 865.4
socLiveJournal 82.7 120.7 189.5
indochina2004 366.2 519.0 596.6
rggn223s0 1880.2 1201.4 1654.8
roadcentral 3176.3 2848.8 1094.3

PR
coAuthorsCit 3.9 1.0 3.2
coPapersDBLP 5.7 6.1 6.1
amazon2008 25.2 4.0 5.5
hollywood2009 22.6 32.4 32.4
belgiumosm 10.2 7.1 9.4
roadNetCA 10.8 15.7 19.6
comOrkut 31.9 46.6 103.3
citPatents 12.3 21.3 38.3
rggn222s0 13.4 22.4 26.6
socLiveJournal 210.0 64.2 112.0
rggn223s0 38.6 57.2 103.4
roadcentral 57.9 89.6 172.0

TC
coAuthorsCit 4.6 2.2 3.0
coPapersDBLP 57.6 106.2 128.4
amazon2008 6.9 8.5 10.8
roadNetCA 5.4 5.4 7.7
comOrkut 1533.5 3267.6 2522.0
citPatents 25.9 39.8 54.5
socLiveJournal 280.6 420.3 437.8
rggn222s0 21.0 57.8 77.7
rggn223s0 56.7 123.2 204.2
roadcentral 14.5 34.6 52.7

57

Table 7: RQ3. Integrated GPU mode performance comparison of the pro-
posed solution. Time in milliseconds (lower is better).

Dataset Intel i7, HD Graphics 530 AMD Ryzen 9, GFX1036
LaGraph Spla (proposed) LaGraph Spla (proposed)

BFS
coAuthorsCit 7.5 26.3 3.9 18.2
coPapersDBLP 18.7 57.3 12.0 54.9
amazon2008 24.6 65.0 13.5 40.0
hollywood2009 23.8 100.1 14.8 86.6
belgiumosm 131.4 536.0 60.0 527.6
roadNetCA 173.2 461.8 100.8 339.7
comOrkut 41.6 341.4 25.2 269.4
citPatents 126.9 371.6 61.3 217.7
rggn222s0 1288.0 1959.9 644.6 1821.7
socLiveJournal 75.0 429.8 41.6 301.6
indochina2004 228.5 1424.8 137.0 1445.1
rggn223s0 2850.8 3647.2 1403.9 3701.3
roadcentral 2087.8 3196.3 767.2 2670.3

SSSP
coAuthorsCit 40.5 42.5 29.2 40.5
coPapersDBLP 92.9 141.8 48.9 181.6
amazon2008 97.4 114.4 48.3 131.3
hollywood2009 236.7 337.9 93.8 507.4
belgiumosm 1383.2 854.3 588.9 845.7
roadNetCA 1174.2 721.7 712.7 482.9
comOrkut 822.9 1420.5 214.8 1699.5
citPatents 488.3 669.4 171.4 897.3
rggn222s0 4919.1 5928.3 2845.6 4952.9
socLiveJournal 534.7 1007.7 185.3 1205.1
indochina2004 837.1 3708.3 345.5 3971.8
rggn223s0 11375.6 11567.8 6099.6 9899.7
roadcentral 26314.1 4887.0 7867.2 3102.0

PR
coAuthorsCit 25.3 5.0 17.6 5.9
coPapersDBLP 302.3 26.2 154.5 39.0
amazon2008 93.0 17.5 36.0 22.4
hollywood2009 1109.8 179.9 531.7 300.7
belgiumosm 178.9 35.0 45.1 29.4
roadNetCA 236.9 86.9 67.6 86.2
comOrkut 4458.5 531.9 959.6 701.4
citPatents 1559.9 159.8 277.4 195.7
rggn222s0 576.7 145.9 275.1 270.2
socLiveJournal 2181.0 449.7 520.5 630.9
rggn223s0 1187.0 309.3 617.2 605.3
roadcentral 2995.8 461.4 993.7 409.8

TC
coAuthorsCit 17.3 8.3 5.2 28.3
coPapersDBLP 534.1 604.2 129.4 1682.3
amazon2008 75.4 34.5 22.2 126.6
belgiumosm 28.1 23.4 11.3 67.8
roadNetCA 47.7 35.2 21.5 105.6
citPatents 693.1 247.6 170.5 589.3
rggn222s0 495.2 481.3 177.7 1218.1
roadcentral 438.8 355.8 176.6 679.7

58

6 Results
The following results were achieved in this work.

• The survey of the field was conducted. Model for a graph analy-
sis were shown. Also, the concept of the linear algebra based approach
was described in a great detail with a respect to a graph traversal and
existing solutions. Introduction into a GraphBLAS standard was pro-
vided. Existing implementations, frameworks and most significant
contributions for a graph analytic were studied. Their limitations
were highlighted. General-purpose GPU computations concept was
covered. Different APIs for GPU programming were presented. Their
advantages and disadvantages were covered. General GPU program-
ming challenges and pitfalls were highlighted.

• The architecture of the library for a generalized sparse linear
algebra for GPU computations was developed. The architec-
ture and library design was based on a project requirements, as well
as on a limitation and experience of the existing solutions. The dif-
ferences with GraphBLAS standard were stated.

• The library was implemented accordingly to the developed
architecture. The core of the library, interface, data containers,
built-in scalar data types, built-in element-wise functions, expressions
processing, OpenCL backend functionality, common linear algebra
operations implementations were covered. Several graph algorithms
for a graph analysis were implemented using developed library API.

• The preliminary experimental study of the proposed arti-
facts was conducted. Obtained results allowed to conclude, that
the chosen method of the library development is a promising way to
a high-performance graph analysis in terms of the linear algebra on a
wide family of GPU devices. The proposed solution showed compara-
ble performance to the GraphBLAST, reaching up to ×36 speedup in
some cases, and showed constantly better performance, than SuiteS-

59

parse, reaching up to ×20 speedup in some cases. The developed
library showed a scalability on different device vendors GPUs. Also,
the proposed solutions got an acceptable performance on integrated
GPUs in some cases even if compared with highly-optimized multi-
core CPU frameworks.

All in all, there are still a plenty of research questions and directions for
improvement. Some of them are listed bellow.

• Performance tuning. There is a still space for optimizations. Bet-
ter workload balancing must be done. Performance must be improved
on AMD and Intel devices. More optimized algorithms must be imple-
mented, such as SpGEMM algorithm proposed by Nagasaka et al. [21]
for general mxm operation.

• Operations. Additional linear algebra operations must be imple-
mented as well as useful subroutines for filtering, joining, loading,
saving data, and other manipulations involved in typical graphs anal-
ysis.

• Graph streaming. The next important direction of the study is
streaming of data from CPU to GPU for out-of-memory graphs anal-
ysis. CuSha adopt data partitioning techniques for graphs processing
which do not fit single GPU. Modern GPUs have a limited VRAM.
Even high-end devices allow only a moderate portion of the memory to
be addressed by the kernel at the same time. Thus, manual streaming
of the data from CPU to GPU is required in order to support analysis
of extremely large graphs, which count billions of edges to process.

• Multi-GPU. Finally, scaling of the library to multiple GPUs must
be implemented. Gunrock shows, that such approach can increase
overall throughput and speedup processing of really dense graph. In
connection with a streaming, it can be an ultimate solution for a large
real-world graphs analysis.

60

The library source code is published on a GitHub platform. It is avail-
able at https://github.com/SparseLinearAlgebra/spla.

61

https://github.com/SparseLinearAlgebra/spla

References
[1] Barceló Baeza Pablo. Querying Graph Databases // Proceedings of

the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. —New York, NY, USA : Association for Comput-
ing Machinery. — 2013. — PODS ’13. — P. 175–188. — Access mode:
https://doi.org/10.1145/2463664.2465216.

[2] Buluç Aydın and Gilbert John R. The Combinatorial BLAS: Design,
Implementation, and Applications // Int. J. High Perform. Comput.
Appl. — 2011.— nov.—Vol. 25, no. 4. — P. 496–509.—Access mode:
https://doi.org/10.1177/1094342011403516.

[3] Yzelman A. N., Di Nardo D., Nash J. M., and Suijlen W. J. A
C++ GraphBLAS: specification, implementation, parallelisation, and
evaluation. — 2020. — Preprint. Access mode: http://albert-jan.
yzelman.net/PDFs/yzelman20.pdf.

[4] Greathouse Joseph L., Knox Kent, Poła Jakub, Varaganti Kiran, and
Daga Mayank. ClSPARSE: A Vendor-Optimized Open-Source Sparse
BLAS Library // Proceedings of the 4th International Workshop on
OpenCL. — New York, NY, USA : Association for Computing Ma-
chinery. — 2016. — IWOCL ’16. — Access mode: https://doi.org/
10.1145/2909437.2909442.

[5] Coimbra Miguel E., Francisco Alexandre P., and Veiga Luís. An anal-
ysis of the graph processing landscape // Journal of Big Data. —
2021. —Apr. —Vol. 8, no. 1. — Access mode: https://doi.org/10.
1186/s40537-021-00443-9.

[6] Zhang Xiaowang, Feng Zhiyong, Wang Xin, Rao Guozheng, and
Wu Wenrui. Context-Free Path Queries on RDF Graphs // CoRR.—
2015.—Vol. abs/1506.00743.— 1506.00743.

[7] Khorasani Farzad, Vora Keval, Gupta Rajiv, and Bhuyan Laxmi N.
CuSha: Vertex-Centric Graph Processing on GPUs // Proceedings

62

https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1177/1094342011403516
http://albert-jan.yzelman.net/PDFs/yzelman20.pdf
http://albert-jan.yzelman.net/PDFs/yzelman20.pdf
https://doi.org/10.1145/2909437.2909442
https://doi.org/10.1145/2909437.2909442
https://doi.org/10.1145/2909437.2909442
https://doi.org/10.1145/2909437.2909442
https://doi.org/10.1186/s40537-021-00443-9
https://doi.org/10.1186/s40537-021-00443-9
https://doi.org/10.1186/s40537-021-00443-9
http://arxiv.org/abs/1506.00743
https://doi.org/10.1145/2600212.2600227

of the 23rd International Symposium on High-Performance Parallel
and Distributed Computing. —New York, NY, USA : Association for
Computing Machinery.— 2014.—HPDC ’14.—P. 239–252.—Access
mode: https://doi.org/10.1145/2600212.2600227.

[8] Dalton Steven, Bell Nathan, Olson Luke, and Garland Michael. Cusp:
Generic Parallel Algorithms for Sparse Matrix and Graph Computa-
tions. — 2014. — Version 0.5.0. Access mode: http://cusplibrary.
github.io/.

[9] Davis Timothy A. Algorithm 1000: SuiteSparse:GraphBLAS: Graph
Algorithms in the Language of Sparse Linear Algebra // ACM Trans.
Math. Softw.— 2019.—Dec.—Vol. 45, no. 4.—Access mode: https:
//doi.org/10.1145/3322125.

[10] Davis Timothy A. and Hu Yifan. The University of Florida Sparse
Matrix Collection // ACM Trans. Math. Softw. — 2011. — dec. —
Vol. 38, no. 1.—Access mode: https://doi.org/10.1145/2049662.
2049663.

[11] Zhang Qirun, Lyu Michael R., Yuan Hao, and Su Zhendong. Fast Al-
gorithms for Dyck-CFL-Reachability with Applications to Alias Anal-
ysis // SIGPLAN Not. — 2013. — June. — Vol. 48, no. 6. — P. 435–
446.—Access mode: https://doi.org/10.1145/2499370.2462159.

[12] Fu Zhisong, Personick Michael, and Thompson Bryan. MapGraph: A
High Level API for Fast Development of High Performance Graph An-
alytics on GPUs // Proceedings of Workshop on GRAph Data Man-
agement Experiences and Systems. —New York, NY, USA : Associa-
tion for Computing Machinery. — 2014. — GRADES’14. — P. 1–6. —
Access mode: https://doi.org/10.1145/2621934.2621936.

[13] Zhang Peter, Zalewski Marcin, Lumsdaine Andrew, Misurda Saman-
tha, and McMillan Scott. GBTL-CUDA: Graph Algorithms and Prim-
itives for GPUs // 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW).— 2016.—P. 912–920.

63

https://doi.org/10.1145/2600212.2600227
http://cusplibrary.github.io/
http://cusplibrary.github.io/
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2499370.2462159
https://doi.org/10.1145/2499370.2462159
https://doi.org/10.1145/2621934.2621936
https://doi.org/10.1145/2621934.2621936
https://doi.org/10.1145/2621934.2621936
https://doi.org/10.1145/2621934.2621936
https://doi.org/10.1109/IPDPSW.2016.185
https://doi.org/10.1109/IPDPSW.2016.185

[14] Gilbert John R. What did the GraphBLAS get wrong? // HPEC
GraphBLAS BoF.— 2022.—Access mode: https://sites.cs.ucsb.
edu/~gilbert/talks/talks.htm.

[15] Shi Xuanhua, Zheng Zhigao, Zhou Yongluan, Jin Hai, He Ligang,
Liu Bo, and Hua Qiang-Sheng. Graph Processing on GPUs: A Sur-
vey // ACM Comput. Surv.— 2018.— jan.—Vol. 50, no. 6.—Access
mode: https://doi.org/10.1145/3128571.

[16] Wang Yangzihao, Davidson Andrew, Pan Yuechao, Wu Yuduo, Rif-
fel Andy, and Owens John D. Gunrock // Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. — 2016. — Feb. — Access mode: http://dx.doi.org/
10.1145/2851141.2851145.

[17] Szárnyas Gábor, Bader David A., Davis Timothy A., Kitchen James,
Mattson Timothy G., McMillan Scott, and Welch Erik. LAGraph: Lin-
ear Algebra, Network Analysis Libraries, and the Study of Graph Al-
gorithms.— 2021.— 2104.01661.

[18] Batarfi Omar, Shawi Radwa El, Fayoumi Ayman G., Nouri Reza,
Beheshti Seyed-Mehdi-Reza, Barnawi Ahmed, and Sakr Sherif.
Large Scale Graph Processing Systems: Survey and an Experimen-
tal Evaluation // Cluster Computing. — 2015. — sep. — Vol. 18,
no. 3. — P. 1189–1213. — Access mode: https://doi.org/10.1007/
s10586-015-0472-6.

[19] Liu Weifeng and Vinter Brian. A Framework for General Sparse
Matrix-Matrix Multiplication on GPUs and Heterogeneous Proces-
sors // J. Parallel Distrib. Comput. — 2015. — Nov. — Vol. 85,
no. C. — P. 47–61. — Access mode: https://doi.org/10.1016/j.
jpdc.2015.06.010.

[20] Kepner J., Aaltonen P., Bader D., Buluc A., Franchetti F., Gilbert J.,
Hutchison D., Kumar M., Lumsdaine A., Meyerhenke H., McMillan S.,

64

https://sites.cs.ucsb.edu/~gilbert/talks/talks.htm
https://sites.cs.ucsb.edu/~gilbert/talks/talks.htm
https://doi.org/10.1145/3128571
https://doi.org/10.1145/3128571
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
http://dx.doi.org/10.1145/2851141.2851145
http://dx.doi.org/10.1145/2851141.2851145
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1016/j.jpdc.2015.06.010
https://doi.org/10.1016/j.jpdc.2015.06.010
https://doi.org/10.1016/j.jpdc.2015.06.010

Yang C., Owens J. D., Zalewski M., Mattson T., and Moreira J. Math-
ematical foundations of the GraphBLAS // 2016 IEEE High Perfor-
mance Extreme Computing Conference (HPEC). — 2016. — Sep. —
P. 1–9.

[21] Nagasaka Yusuke, Nukada Akira, and Matsuoka Satoshi. High-
Performance and Memory-Saving Sparse General Matrix-Matrix Mul-
tiplication for NVIDIA Pascal GPU.— 2017.— 08.—P. 101–110.

[22] Ching Avery, Edunov Sergey, Kabiljo Maja, Logothetis Dionysios,
and Muthukrishnan Sambavi. One Trillion Edges: Graph Process-
ing at Facebook-Scale // Proc. VLDB Endow. — 2015. — aug. —
Vol. 8, no. 12. — P. 1804–1815. — Access mode: https://doi.org/
10.14778/2824032.2824077.

[23] Anderson James, Novák Adám, Sükösd Zsuzsanna, Golden Michael,
Arunapuram Preeti, Edvardsson Ingolfur, and Hein Jotun. Quantifying
variances in comparative RNA secondary structure prediction // BMC
bioinformatics.— 2013.— 05.—Vol. 14.—P. 149.

[24] Cailliau P., Davis T., Gadepally V., Kepner J., Lipman R.,
Lovitz J., and Ouaknine K. RedisGraph GraphBLAS Enabled Graph
Database // 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW).— 2019.—P. 285–286.

[25] Sparse matrix library (in Cuda). — Access mode: https://docs.
nvidia.com/cuda/cusparse/ (online; accessed: 16.04.2021).

[26] Szuppe Jakub. Boost.Compute: A Parallel Computing Library for
C++ Based on OpenCL // Proceedings of the 4th International Work-
shop on OpenCL. — New York, NY, USA : Association for Com-
puting Machinery. — 2016. — IWOCL ’16. — Access mode: https:
//doi.org/10.1145/2909437.2909454.

[27] Yang Carl, Buluc Aydin, and Owens John D. Implementing Push-Pull
Efficiently in GraphBLAS. — 2018. — Access mode: https://arxiv.
org/abs/1804.03327.

65

https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/ICPP.2017.19
https://doi.org/10.1109/ICPP.2017.19
https://doi.org/10.1109/ICPP.2017.19
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1186/1471-2105-14-149
https://doi.org/10.1186/1471-2105-14-149
https://doi.org/10.1109/IPDPSW.2019.00054
https://doi.org/10.1109/IPDPSW.2019.00054
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://doi.org/10.1145/2909437.2909454
https://doi.org/10.1145/2909437.2909454
https://doi.org/10.1145/2909437.2909454
https://doi.org/10.1145/2909437.2909454
https://arxiv.org/abs/1804.03327
https://arxiv.org/abs/1804.03327

[28] Yang Carl, Buluç Aydın, and Owens John D. GraphBLAST: A High-
Performance Linear Algebra-based Graph Framework on the GPU //
arXiv preprint.— 2019.

[29] Yang Carl, Wang Yangzihao, and Owens John D. Fast Sparse Ma-
trix and Sparse Vector Multiplication Algorithm on the GPU // 2015
IEEE International Parallel and Distributed Processing Symposium
Workshop.— 2015.—P. 841–847.

[30] Zhong Jianlong and He Bingsheng. Medusa: Simplified Graph Pro-
cessing on GPUs // IEEE Transactions on Parallel and Distributed
Systems.— 2014.—Vol. 25, no. 6.—P. 1543–1552.

[31] pygraphblas: a Python wrapper around the GraphBLAS API. — Ac-
cess mode: https://github.com/Graphegon/pygraphblas (online;
accessed: 28.12.2022).

66

https://doi.org/10.1109/IPDPSW.2015.77
https://doi.org/10.1109/IPDPSW.2015.77
https://doi.org/10.1109/TPDS.2013.111
https://doi.org/10.1109/TPDS.2013.111
https://github.com/Graphegon/pygraphblas

	Introduction
	Problem statement
	Background of study
	Related Work
	GraphBLAS concepts
	GraphBLAS limitations
	GPU computations
	GPU architecture
	OpenCL concepts
	Implementation challenges on GPUs

	Proposed solution description
	Design Principles
	Architecture overview
	Data Containers
	Algebraic Operations
	Differences with GraphBLAS standard

	Implementation details
	Project structure
	Compile-time dependencies
	Development automation
	Library interface
	Algorithms registry
	Storage formats
	OpenCL backend
	Linear Algebra Operations
	Graph Algorithms
	Running example

	Evaluation
	Research questions
	Evaluation setup
	Methodology
	Graph algorithms
	Dataset
	Results Summary

	Results
	References

