
Saint Peterburg State University

GULYAEV Nikita Alekseevich

Master’s thesis

Game-theoretic analysis of the Restricted Play principle

Specialization 01.04.02
Applied Mathematics and Informatics

Master’s Program Game Theory and Operation Research

Research Advisor:
Elena Gubar,
Ph.D., Associate Professor of Department of
Mathematical Game Theory and Statistical Decisions

Reviewer:
Denis Fedyanin,
IEEE member, V. A. Trapeznikov Institute of Control
Sciences of RAS

Saint Petersburg

2023 г.

Contents

Introduction . 3

Literature review . 5

Chapter 1. Problem formulation . 7
1.1. Game-theoretic description . 7
1.2. Aspects of a game . 11
1.3. Criteria definitions . 12

Chapter 2. Example: Continuous Colonel Blotto 16
2.1. Utilization case . 18

2.1.1 Rational behaviour . 18
2.1.2 Sub-optimal behaviour 20

2.2. Modified utilization case . 20
2.3. Capture case . 21

Conclusion . 24

Appendix . 25

References . 39

2

Introduction

Game balance is the fine-tuning phase of the game development, involving the
slight adjustment of the game rules to make the game closer to its intended form
[8]. This process may often be costly, but it is crucial for how the game is perceived
by its target audience. Therefore, game balance is a key for the game’s success
[7]. Moreover, as shown in [9], the applications are not limited solely to the game
development. As a consequence, there is a demand for the high-efficient methods
of the game balance.

This thesis is an attempt to formulate some empiric game balance criteria math-
ematically. It uses the concept of restricted play first introduced by A. Jaffe to
define certain game imbalance criteria formally. In [2], it is described in the fol-
lowing way: "...to understand the balance of some dynamic, we may frame it as
the fairness of a match between two players, one of whom is restricted in a way
that highlights that dynamic. In other words, we hallucinate a player (realistic or
otherwise) whose behavior captures that dynamic or the lack thereof".

[2], as well as [3], provides some examples on the applications of this technique:
for example, to evaluate the fairness of starting conditions, a fairness of a match
between a restricted player always choosing a specific starting condition and an
unrestricted player may be assessed. Similarly, the importance of playing unpre-
dictably may be derived from the observations of the match between a normal
player and a player who implements the low-entropy mixed strategies. The same
logic is applied to a diversity of other balance features.

It should be noted that the original formulation assumes the (at least theoretical)
possibility of holding a match between two players. Therefore, in this form, this
principle cannot be directly applied to, for instance, single-player games, for which
the problem of obtaining the effective balancing techniques (for example, difficulty
evaluation, as in [1]) remains relevant. On the other hand, the notion of fairness
is not well-defined and thus, before mathematical reasoning may be applied, it is
necessary to introduce the formal definition for this concept.

Due to the reasons outlined above, for the purposes of this thesis, we introduce

3

a more formal, albeit less general, formulation of the restricted play principle.
The main difference between this and the original version is that, in our case, we
compare the performance of two imaginary versions of the same player, one of
which is restricted in its choices. The performance is defined in two different ways,
emerging from the game theory and probability theory correspondingly: through
worst-case and average-case payoff values. While it is natural to apply the first
estimate of a payoff when a player has no prior information about his/her possible
opponent, the second estimate is more suited to the cases when such information is
widely available, for example, when there is some statistical data on the preferences
of the game’s audience.

Using the game-theoretic concept of a normal-form game as the modelling frame-
work, we provide formal definitions for some game balance criteria through the
notions of aspect set and aspect mapping. Defined arbitrarily by a game designer
according to his or her goals, the aspects can be any kind of mathematical objects
corresponding to the important qualities of the player strategies, which, for any
concrete strategy of a concrete player, may be either implemented by this strategy
or not. This correspondence is strictly defined by the introduction of the aspect
mapping, which maps any element of the aspect set to the set of strategies imple-
menting it. Then, the formulations of the considered criteria emerge naturally from
the single question, namely, whether there exists a rational strategy that doesn’t
implement a certain aspect. There, rational strategy is defined as a strategy yield-
ing a non-negative (worst-case or average-case) payoff of a player implementing
it.

The analogous questions regarding the existence of a rational strategy that does
implement an aspect or about whether all the rational strategies do/don’t implement
an aspect can be easily reduced to that form by introducing the complementary
aspect, which is implemented by a strategy if and only if this strategy doesn’t
implement the given one. This makes the corresponding criteria applicable to
both the situations where we want to give a player the freedom to avoid the aspect
without sacrificing some payoff and the cases when we implicitly try to force
the players to use only the strategies implementing a certain aspect, crucial for
delivering the right gameplay experience.

4

Alternatively, instead of a rational strategy one may use a sub-optimal strategy,
which yields a payoff lying within the given range of a maximum possible value.
For this modification, a separate set of criteria is also constructed.

The whole proposed approach heavily relies on the assumption that players tend
to play the game as rationally as possible given their knowledge and skills. This
assumption doesn’t hold for every real-world gameplay scenario. Normally, the
goal of each player is to have a fun time playing. This doesn’t always correspond
to getting the non-negative or maximum (depending on the rationality definition)
payoff. Such discrepancy often leads to the behaviour of the players becoming
more uncontrollable than it is expected to be. A so-called griefing, i.e., a deliberate
act of irritating and harassing other players, may serve as an example of such
disruptive behaviour. As such problems frustrate the players and make them leave
the game eventually, it is considered a good practice to align the goals of the game
with the most entertaining and satisfying aspects of the game. The concept of fun
is very individual, but the game designer’s experience is typically enough to be
able to guide most of the players towards playing for the win using just the game’s
rules. For that reason, we can only consider the games where players try to play
rationally. Alternatively, the estimated amount of fun a player has may itself be
taken as this player’s payoff.

The criteria proposed in this work are illustrated on one concrete example: the con-
tinuous version of the Colonel Blotto game, where each of the aspects corresponds
to a combination of a player and a battlefield and is implemented by a strategy if
and only if this strategy belongs to a corresponding player and involves sending a
positive number of units to the corresponding battlefield. The criteria are checked
for the three variations of this game, each with its own payoff function.

Literature review

In [8], Becker and Görlich examine a number of game balance definitions conclud-
ing that further research is necessary before a commonly agreeable definition may
be derived, but nevertheless "it seems coherent that game balancing supports the
design goal “fun”". In this thesis, we put the burden of separating the strategies

5

that may prevent some players from having fun on the game designer. The criteria
derived, in turn, provide a way to ensure that the players will be motivated to avoid
(or, conversely, to stick with) a certain class of strategies.

As was mentioned in the introduction, the first version of the approach used for
assessing the player motivation in regards to choosing a strategy was proposed
in [3] and then described more thoroughly in [2]. In addition, with the usage of
MCTS, these papers demonstrated the feasibility of automated playtesting.

The automation of game balancing is a growing area of research [23]. Dynamic
game balancing, a process in which a game adapts itself to the player’s perfor-
mance as a result sustaining an optimal level of difficulty throughout the whole
playthrough, is widely studied. [7] explores a variety of AI-based approaches to
game balancing. [18] demonstrates how reinforcement learning can be applied to
determine when and how to spawn enemy units to keep the score as close to zero as
possible effectively ensuring that the win probability is always around 50%. The
usage of the NEAT and rtNEAT methods for the similar purpose is explored in
[19]. [25] uses particle swarm optimization to ensure diversity while also adapting
to the change in the player’s characteristic. Overall, the problems of dynamic game
balancing in the most cases are relevant to the single-player games only, though
the automation of game balancing may also be applied to multi-player games [24].

Actionable conclusions regarding are usually derived through the analysis of the
automatically collected data. In [11], a set of AlphaZero self-play games was
generated and then used to gather the statistical data, in particular on the percentage
of draws, for the different chess variants, provided near-optimal play. [10]measures
the impact of cooperation in Halo: Reach, the data is extracted from public API.
[14] and [15] analyze the data collected via telemetry.

The formal analysis is often performed using PCA, for example, in [10] and [13]. In
the latter it is used to assess the diversity of the player’s strategies. The importance
of this quality serves as a motivation for the aspect inclusion criteria discussed in
the later chapters. [12] uses PCA alongside a number of other methods, such as
survival analysis, binary classification and k-means to predict customer churn after
the content update is released. Similarly, [14] makes use of k-means and simplex

6

volumemaximization to cluster the player behaviour. Therewere attempts tomodel
the player behaviour with the usage of the deep learning as well [22]. Machine
learning is also applied in [16] to predict the game’s outcome based on a given set
of the starting conditions.

Despite the significant amount of work in the field of game balance, there were a
few attempts to provide some formal criteria. One attempt was made in [17]: in
this paper, the hypothesis that the orthogonal unit differentiation is necessary for
the game to be balanced was tested on the example of StarCraft II. However, the
results were negative: the game that was assumed to be balanced had units falling
below the expected rank.

The purpose of this thesis is to fill the gap in the study of the formal approaches
to game balance. One of the possible applications is the partial automation of
the parameter fine-tuning (one of the different approaches would be to use active
learning technique, as in [26]). Another one is procedural content generation,
which is currently one of the most active fields of research within AI in games
research motivated by a real need within the industry [20]. Much of the research is
devoted to studying the level generation, however, even generation of the complete
games was also discussed [21]. Formal game balance criteria may be used as an
additional filter for the generated content.

Chapter 1. Problem formulation

1.1 Game-theoretic description

We will formulate the subsequent results within the framework of normal-form
games [4].

Definition 1. An n-player normal-form game is a tuple Γ = (N,X ,u), where:

• N = {1, ..., n} is the set of n players;

• X = X1 × ...×Xn is the strategy space, andXi is the set of pure strategies
of player i;

7

• u = (u1, . . . , un) is the vector-valued payoff function, whose ith component
ui : X 7→ R is the payoff function of player i.

Note that the individual strategies of a player can be vectors, whose components
correspond to different choices made by the player. Thus, we assume, in general,
that Xi ⊂ Rni (or Xi ⊂ Zni), where ni is the number of choices available to the
ith player. An element of X , denoted by x = (x1, . . . , xn), is called the strategy
profile. Hence, the payoff of any specific player depends not only on the strategy
that this player chooses, but also on the strategies of other players.

In practice, the payoff of a player represents some measure of howmuch this player
succeeded in reaching his or her goals. Often, it can be easily quantified as the
number of points scored in the game. It is assumed that the payoff function can
take on both positive and negative values, whereas the positive values correspond
to a positive outcome of the game, while negative values correspond to a certain
degree of loss.

Below, we introduce two measures of the outcome of a strategy: the worst-case
payoff and the average-case payoff.

Given I ⊂ N , define XI =×i∈I Xi and X−i = XN\{i}. We will use the short
notation ui(x̂i,x−i) to denote ui(x1, ..., xi−1, x̂i, xi+1, ..., xn), where x̂i ∈ Xi, and
x−i = (x1, ..., xi−1, xi+1, ..., xn) ∈ X−i.

Definition 2 (Worst-case payoff). The worst-case payoff of the ith player corre-
sponding to the strategy xi ∈ Xi is denoted by ui(xi) and defined as

ui(xi) = min
x−i∈X−i

ui(xi,x−i).

Let ui denote the maximal possible worst-case payoff that the player can guarantee
by a proper choice of the strategy. In game theory, this is referred to as the lower
value of the game for player i [5]:

ui = max
xi∈Xi

ui(xi) = max
xi

min
x−i

ui(xi,x−i).

8

To introduce the notion of average-case payoff, the described framework has to
be extended by considering mixed strategies. Assume that x−i is a random vector
with discrete probability distribution f−i(x̄−i) = P{x−i = x̄−i}.

Definition 3 (Average-case payoff). Given the discrete probability distribution
f−i(x̄−i), the average-case payoff of the ith player corresponding to the strategy
xi ∈ Xi is denoted by Eui(xi) and defined as

Eui(xi) =
∑

x−i∈X−i

ui(xi,x−i)f−i(x−i).

Similarly, if x−i is a random vector with the continuous probability density function
f−i(x̄−i) (implying that the strategy sets are uncountable), the above definition is
modified as follows:

Definition 4 (Average-case payoff). Given the probability density function f−i(x̄−i),
the average-case payoff of the ith player corresponding to the strategy xi ∈ Xi is
denoted by Eui(xi) and defined as

Eui(xi) =
∫
x−i∈X−i

ui(xi,x−i)f−i(x−i)dx−i.

We will use Eui to denote the best average payoff that the ith player can guarantee
by a proper choice of pure strategy when the rival players employ mixed strategies:

Eui = max
xi∈Xi

Eui(xi).

One can readily observe that Eui(xi) ≥ ui(xi) for any xi (and, consequently,
Eui ≥ ui). Note that the average-case payoff is computed with respect to a
particular probability distribution function. In the following, we will assume that
the probability function fi is specified, either explicitly or implicitly.

Since optimal strategies are typically not or hardly achievable in a well-designed
game, the player aims at playing as good as possible. To formalize this, we intro-
duce two classes of player’s strategies that correspond to two types of reasonable

9

behaviour of a player.

Definition 5 (Rational strategy). The strategy xi ∈ Xi of a player i is said to be
worst-case rational if ui(xi) ≥ 0. Further, the strategy xi is said to be average-case
rational if Eui(xi) ≥ 0.

Definition 6 (ε-suboptimal strategy). The strategy xi ∈ Xi of player i is said to be
worst-case ε-suboptimal if

ui − ui(xi) ≤ ε.

The strategyxi of player i is said to be average-case ε-suboptimal ifEui−Eui(xi) ≤
ε.

A worst-case (average-case) rational strategy has the property that a player may
restrict him- or herself to using only this strategy and still warrant (expect) a non-
negative total payoff when playing the game repeatedly. Therefore, it is important
to ensure that no such strategy has certain undesirable qualities. In other words,
preferring a strategy with such qualities over the other possible ones should be
punished by the means of using the negative payoff values. A formal definition
along with an example of the qualities being discussed is presented later in Sec. 1.2.
It should be noted, though, that this approach should be used thriftily to provide
the players with sufficient degree of freedom.

While the rational strategies correspond to the secure, risk-adverse behaviour of
the players who attempt at least not to lose, the suboptimal strategies are better
suited to describe the behaviour of players who tend to maximize their guaranteed
or expected profit. Therefore, it is natural for a game designer to define the payoff
functions in such a way that the payoff of the strategies possessing the desired
qualities will be closer to the optimal value than the payoff of the strategies that
do not possess these qualities. In contrast to the rational strategies, analysing the
suboptimal strategies is, hence, more useful for determining whether the desired
choice of strategies is rewarded sufficiently. Conversely, the analysis of the rational
strategies, or rather vice versa, the strategies that are not rational, may help to check
whether the undesired behaviour is penalized.

Let us denote by X
min[+]
i ⊂ Xi and X

min[ε]
i ⊂ Xi the set of all worst-case rational

10

strategies and the set of all worst-case ε-suboptimal strategies of the ith player.
Similarly, Xavg[+]

i ⊂ Xi and X
avg[ε]
i ⊂ Xi denote the sets of average-case rational

and average-case ε-suboptimal strategies. We will refer to each of these four sets as
a reasonable strategy set Xb

i for the corresponding reasonable behaviour scheme
b ∈ {min[+],min[ε], avg[+], avg[ε]}.

1.2 Aspects of a game

Although the ultimate goal of any player is to win, the overall experience of the
player also depends on the gameplay, its richness and variability. To address the
player’s experience during the game, we introduce the notion of an aspect.

Let Ai = {ai1, . . . , aiki} be the set of aspects specified for the ith player. We
define a map that associates with each aspect a subset of the player’s strategies:
αi : Ai → Si, where S = 2Xi.

We say that the strategy profile x = (x1, ..., xn) implements the aspect aij if

xi ∈ αi(a
i
j).

Each aspect corresponds to a certain experience the player encounterswhen playing
the game. To determinewhether the choice of the strategy containing certain aspect
by a (realistic) player is encouraged (or, conversely, discouraged), the following
questions have to be answered:

• does there exist a rational strategy implementing this aspect?

• does there exist an ε-suboptimal strategy implementing this aspect?

Take, for example, the shooting game genre. Dealing damage to the members of
the same team is usually considered bad behaviour and is therefore impossible
in a wide range of games. However, some games, such as Rainbow Six: Siege,
allow the friendly fire feature [6]. A logical step in motivating the players to avoid
harming their teammates is to ensure that no rational strategy will involve such
actions. In this example, the presence of the intentional friendly fire is taken as an
aspect and the first of the questions mentioned above is posed.

11

1.3 Criteria definitions

Given aspect aik defined for the ith player’s strategies, a designer may wish to
construct the gameplay in a way that the player inescapably chooses the strategies
that either strictly avoid or completely include this aspect when employing a
particular type of behaviour. On the other hand, the preceding requirements can
be relaxed by asking that the player always has an option of selecting a strategy
that either avoids or includes the considered aspect when following a particular
behavioural scheme. In this way, we can formulate 4 classes of conditions: strict
aspect inclusion, strict aspect exclusion as well as weak aspect inclusion, and weak
aspect exclusion. Below, we will formally describe conditions for checking the
second class of conditions (i.e., strict aspect exclusion) and show that the remaining
3 classes can be derived from this one.

Each condition is associated with a Boolean function that returns 1 (True) if the
condition is satisfied, and 0 (False) otherwise. In the following, we will use these
functions to show equivalence between different criteria.

The strict aspect exclusion criterion characterizes the conditions such that a player
who acts reasonably (in some sense) would be compelled to avoid the strategies
implementing a certain aspect. To formalize the above said we introduce a map
SE : (i, aik, b) → {0, 1}, which is defined for the ith player, reasonable behaviour
scheme b associated with the reasonable strategy set Xb

i and the aspect aik ∈ Ai.
We say that the strict aspect exclusion is satisfied, i.e., SE(i, aik, b) = 1 if the
following condition holds true:

Xb
i ∩ αi(a

i
k) = ∅.

For each of the four reasonable behaviour schemes b, the strict aspect exclusion
criterion can be formulated as an optimization problem as stated in the following
lemma.

Lemma 1 (Strict aspect exclusion). For each reasonable behaviour scheme b, the
satisfaction of the strict aspect exclusion criterion is equivalent to a particular
optimization problem:

12

• Worst-case rationality, b = min[+],

SE(i, aik,min[+]) : X
min[+]
i ∩ αi(a

i
k) = ∅ ⇐⇒ max

x∈α(aik)
ui(x) < 0. (1)

• Average-case rationality, b = avg[+],

SE(i, aik, avg[+]) : X
avg[+]
i ∩ αi(a

i
k) = ∅ ⇐⇒ max

x∈αi(aik)
Eui(x) < 0.

• Worst-case sub-optimality, b = min[ε],

SE(i, aik,min[ε]) : X
min[ε]
i ∩ αi(a

i
k) = ∅ ⇐⇒ max

x∈αi(aik)
ui(x) < ui − ε.

• Average-case sub-optimality, b = avg[ε],

SE(i, aik, avg[ε]) : X
avg[ε]
i ∩αi(a

i
k) = ∅ ⇐⇒ max

x∈αi(aik)
Eui(x) < Eui−ε.

(2)

Proof. We prove the equivalences (1) and (2).

By definition,
X

min[+]
i =

{
x ∈ Xi

∣∣ui(x) ≥ 0
}
.

Therefore,

X
min[+]
i ∩ αi(a

i
k) = ∅ ⇐⇒ ∀x ∈ αi(a

i
k) : x /∈ X

min[+]
i

⇐⇒ ∀x ∈ αi(a
i
k) : ui(x) < 0

⇐⇒ max
xi∈α(aik)

ui(xi) < 0.

As for (2), by definition we have

X
avg[ε]
i =

{
x ∈ Xi

∣∣Eui − Eui(x) ≤ ε
}
,

13

which implies the following chain:

X
avg[ε]
i ∩ αi(a

i
k) = ∅ ⇐⇒ ∀x ∈ αi(a

i
k) : x /∈ X

avg[ε]
i

⇐⇒ ∀x ∈ αi(a
i
k) : (Eui − Eui(x)) > ε

⇐⇒ min
xi∈α(aik)

(Eui − Eui(x)) > ε

⇐⇒ Eui − ε > max
xi∈α(aik)

Eui(x).

The remaining implications are shown in the same way.

In contrast to the strict aspect exclusion case described above, one may often be
more interested in providing the player with the freedom to choose whether to
implement a certain aspect by ensuring that there exists at least one reasonable
strategy for implementing such an aspect. To formalize this situation, we introduce
the weak inclusion function WI : (i, aik, b) → {0, 1} in the same way as the
function SE above. We have WI(i, aik, b) = 1 if the following condition holds:

Xb
i ∩ αi(a

i
k) ̸= ∅.

From the formula presented above, it follows that the weak aspect inclusion crite-
rion can, in fact, be obtained as the negation of the strict aspect exclusion criterion:

WI(i, aik, b) ≡ SE(i, aik, b).

The remaining two criteria are constructed analogically by considering whether a
player has the freedom to avoid implementing a certain aspect or not.

The strict aspect inclusion criterion, which is fulfilled when the player i is forced to
include a certain aspect aik while following the behavioural scheme b, is associated
with the function SI(i, aik, b) that takes the value 1 if

(Xi \Xb
i) ∩ αi(a

i
k) = ∅.

14

At the same time, weak aspect exclusion corresponds to the cases when the player
has the option to avoid using the strategies implementing a particular aspect. The
fulfilment of this criterion is described by the function WE(i, aik, b), which takes
the value 1 (true) if

(Xi \Xb
i) ∩ αi(a

i
k) ̸= ∅.

Analogically to the first two criteria, SI and WE are connected through the
boolean negation as well:

WE(i, aik, b) ≡ SI(i, aik, b).

To establish a relation between the two pairs of criteria, we introduce the notion of
the aspect complement aik, which is defined as follows:

Definition 7. The complement of the aspect aik is defined as

αi(aik) = Xi \ αi(a
i
k),

This allows us to formulate the relation between all the four criteria defined above:

SI(i, aik, b) ≡ WE(i, aik, b) ≡ WI(i, aik, b) ≡ SE(i, aik, b). (3)

In (3), the first and the third equivalences have already been shown, while the
second one is valid because

Xi \ (Xi \Xb
i) = Xb

i .

It is worth noting that the four criteria outlined above define the approach that is, in
fact, the modified version of the restricted play principle. Indeed, by considering
only the strategies implementing a certain aspect, we assess the efficiency of a
player who is “restricted in some way” that distinguishes some quality of a strategy
expressed by this aspect. Moreover, by making use of the notion of the sub-optimal
strategies, we compare this efficiency to one of an unrestricted player.

15

On the other hand, the outlined approach bears several important distinctions from
the original formulation of restricted play in [2].

First, instead of comparing the efficiency of the two players in a match between
them, this approach relies on the comparison of the efficiencies of two instances
of the same player, making this approach applicable to a wider range of cases,
including single-player games and games with asymmetric conditions, where it
is impossible to organize or simulate a match between a restricted player and an
unrestricted player. In addition, the proposed approach offers another way to judge
about the efficiency of a restricted player, which does not involve an unrestricted
player at all: by testing for the existence of a rational strategy implementing an
aspect.

Second, in contrast to the more abstract original formulation of the principle, two
concrete measures of a strategy’s efficiency are proposed: the worst-case payoff
and the average-case payoff. This distinction allows the formal definition of the
above-mentioned criteria for the evaluation of game feature balance.

Chapter 2. Example: Continuous Colonel Blotto

To illustrate the application of the formulated criteria, wewill first consider a simple
two-player normal form game ΓB = (N,X1, X2, u1, u2), where N = {1, 2}, the
strategy sets are defined as

X1 =

{
x = (x1, ..., xm) ∈ Rm

≥0

∣∣∣∣∣
m∑
j=1

xjc
1
j ≤ 1

}
,

X2 =

{
y = (y1, ..., ym) ∈ Rm

≥0

∣∣∣∣∣
m∑
j=1

yjc
2
j ≤ 1

}
,

(4)

and the payoff functions ui : X1 ×X2 7→ R, i ∈ N will be defined below. Here,
the dimension of the strategy space is larger than 1, i.e.,m > 1, and cij are positive
weights.

The kth component of a player’s strategy corresponds to the amount of resource
invested into the battle on battlefield k, which has a certain value Rk > 0. Fur-

16

thermore, the coefficients cij model the costs of transporting the jth unit of the
ith player to the battlefield. The rules for determining which player claims the
battlefield as well as how it affects the players’ payoffs are defined by the concrete
form of the payoff functions. In this thesis we will consider three cases:

• Utilization u1(x, y) =
∑m

j=1Rj(xj − yj),

u2(x, y) =
∑m

j=1Rj(yj − xj),
(5)

where R = (R1, R2, . . . , Rm);

• Modified utilizationu1(x, y) =
∑m

j=1Rj max(xj − yj; 0),

u2(x, y) =
∑m

j=1Rj max(yj − xj; 0);
(6)

• Capture u1(x, y) =
∑m

j=1Rj · 1xj>yj − p,

u2(x, y) =
∑m

j=1Rj · 1yj>xj
− p.

(7)

Note that the utilization and capture cases are formulated as zero-sum games, i.e.,
u1 ≡ −u2, while the modified utilization is not.

Suppose each battlefield has its own unique terrain and requires a different approach
to battle. Consequently, a designer does not want the players to skip any battlefield,
but rather invest at least a bit of resource into each of them.

We will attempt to reach this goal by adjusting the values of the following param-
eters for all i ∈ N and j = 1, . . . ,m:

• Rj > 0 - battlefield valuations;

• cij > 0 - resource transportation costs.

17

This can be reformulated as the following strict aspect exclusion problem:
Ai = {aij|j ∈ 1,m}, i ∈ N,

αi(a
i
j) = {v|v ∈ Xi ∧ vj = 0}, i ∈ N ∧ j ∈ 1,m,

SE(i, aij, b) ≡ 1, i ∈ N ∧ j ∈ 1,m.

(8)

There, as we don’t have any prior information about players’ preferences, the
scheme b may be either min[+] or min[ε] depending on the concrete problem
statement. From there, we will consider both cases separately.

2.1 Utilization case

This case, having the linear payoff function R(x− y) (or R(y − x)), corresponds
to a situation where the battlefields do not yield immediate reward, but instead
provide the winner an opportunity to make use of their resources (such as oil or
other fossil fuels). After the battlefield was captured, the remainder of the troop
gets involved in resource extraction. Hence, the reward is proportional to the
number of units left and, in the simplest case, it is a linear function with no bias,
whose slope is determined by the battlefield’s valuation.

Recall that here we deal with a zero-sum game. When the battle for a certain
battlefield ends with a decisive outcome, rather than just dealing with the conse-
quences of the money being wasted for nothing, the losing side also bears the cost
equal to the corresponding increase in the winner’s payoff.

2.1.1 Rational behaviour

Below, we consider the min[+] behaviour scheme. First, note that

u1(x) = min
y∈Y

u1(x, y) = min
y∈Y

R(x− y) = min
y∈Y

[
Rx−Ry

]
= Rx−max

y∈Y
Ry.

The minimum of u1 with respect to y is thus determined by the maximum of Ry

and thus doesn’t depend on x. This means that the formula for the maximin value

18

of u1 can be decoupled:

max
x∈α(a1j)

u1(x) = max
x∈α(a1j)

[
Rx−max

y∈Y
Ry

]
= max

x∈α(a1j)
Rx−max

y∈Y
Ry. (9)

The same logic may be used to obtain the maximin payoff for the second player:

max
y∈α(a2j)

u2(y) = max
y∈α(a2j)

Ry −max
x∈X

Rx.

The following proposition holds, for which the proof is presented in the appendix:

Proposition 1. Each optimal strategy assigns positive values to the battlefields
with the maximum reward-to-transportation-cost ratio only. Those values, mul-
tiplied by the respective transportation costs, sum up to 1. This means that, for
optimal strategies, the budget of player i is fully distributed between battlefields jk
maximizing Rjk/c

i
jk
.

As a direct corollary of the proposition 1, there is always a strategy v ∈ Xi

maximizing Rv such that only one of its components is greater than zero (this can
be any of the components, for which the ratio of the reward to the transportation
cost is maximal). Therefore,

max
v∈α(aij)

Rv = max
v∈Xi

Rv = max
j

(Rj/c
i
j). (10)

And thus

SE(i, aij,min[+]) ⇔ max
j

(Rj/c
i
j) < max

j
(Rj/c

i′

j), i
′ ̸= i.

As a consequence, SE(1, a1j ,min[+])∧ SE(2, a2j ,min[+]) ≡ 0, implying that the
problem (4), (5), (8) has no solution for worst-case rational behaviour scheme
b = min[+].

19

2.1.2 Sub-optimal behaviour

Directly from (9) and (10) it follows that

max
x∈α(a1j)

u1(x) = max
x∈X1

u1(x).

And therefore,

SE(i, aij,min[ε]) ≡ max
x∈α(a1j)

u1(x) < max
x∈X1

u1(x)− ε ≡ ε < 0 ≡ 0.

Consequently, for worst-case sub-optimal behaviour scheme b problem (4), (5), (8)
doesn’t have any solution as well.

2.2 Modified utilization case

The results obtained above lead to the question of whether the payoff function
can be slightly altered to make it impossible to represent its maximin value in
the decoupled form, as in (9). One logical way to construct such a function is to
make the game non-antagonistic. Modified utilization payoff (6), considered in
this section, achieves this by making the players care only about their rewards, but
not the ones of their opponent.

Proposition 2. For every strategy of the first player, there will be a second player’s
strategy delivering a minimum value to the first player’s payoff which possesses the
following property: for each battlefield, the amount of resources assigned is less
than or equal to the amount assigned by the first player

From this proposition, it follows that

min
y∈X2

u1(x, y) = min
y∈X2

m∑
j=1

max(0;Rj(xj−yj)) = min
y∈X2

m∑
j=1

Rj(xj−yj) = min
y∈X2

R(x−y).

From there, by following the same steps as in the previous section, it can easily
be shown that problem (4), (6), (8) has no solution for both worst-case behaviour

20

schemes.

2.3 Capture case

The results that were achieved in the previous section imply that the payoff function
needs more substantial modifications in case we want the strict aspect exclusion
to be satisfied for both players simultaneously. We will abandon the previous
interpretation of the payoff function in favour of the new one. Suppose the battle-
fields do not contain any useful resources, instead, they are the important vantage
points granting the side which manages to capture one an immediate advantage
that doesn’t depend on the number of units left alive. This case is described by the
payoff functions defined as in (7).

Let us define some supplementary sets. First, for convenience, a set of battlefields
(referred to by their indexes) is introduced:

J = {1, ...,m}.

Then, we define a one-parametric family of sets. Each set Da in this family
will consist of all sets of battlefields D, such that control over these battlefields
guarantees the payoff not less than a regardless of the outcome on the remaining
ones.

Da =
{
D ⊂ J

∣∣∣ ∑
j∈D

Rj − p ≥ a
}
.

These setsDa possess a significant quality. If a player has a strategy that guarantees
that, for any response of an opponent, the battlefields he or she manages to capture
will constitute at least one of the sets inDa, this player will guarantee the payoff not
less than a. An important point (and the main roadblock) here is that the strategy
guaranteeing such payoff may alternate between those sets of captured battlefields
depending on what strategy the opponent will use. The idea is that even if the
opponent succeeds in preventing the player from capturing one of the sets in Da,
there will be another set in Da consisting of battlefields captured by the player.

One can also note that this family consists of sets nested inside each other. Indeed,

21

∑
j∈D

Rj − p ≥ a =⇒ ∀a′ < a
∑
j∈D

Rj − p ≥ a ≥ a′.

From there,
∀a, a′ : a > a′ D ∈ Da ⇒ D ∈ Da′.

In other words,
∀a, ϵ > 0 Da−ϵ ⊃ Da ⊃ Da+ϵ.

As the sets Da demonstrate the possible combinations of the battlefields a player
needs to capture to guarantee a certain payoff, the logical question arises: over
which combinations of the battlefields an opponent needs to establish control to
prevent a player from receiving the payoff not less than a? The next supplementary
set is constructed to serve as an answer to this question:

T ′
a =

{
T ⊂ J

∣∣∣ ∀D ∈ Da T ∩D ̸= ∅
}
.

Indeed, if, for any set D ∈ Da, there exists a battlefield in it that is not captured
by the player, this player will not capture the battlefields guaranteeing at least a
payoff. Rigorous proof for this fact is presented in the appendix.

It can be noted, though, that T ′
a , in a way it is constructed, is a bit of an overkill.

If some set of battlefields belongs to it, then all of its supersets will also be among
the elements of T ′

a . These supersets bear no additional relevant information.
Therefore, the core of T ′

a , denoted as Ta may also be used:

Ta =
{
T ∈ T ′

a

∣∣∣ ∄ T̂ ∈ T ′
a : T̂ ̸= T ∧ T̂ ⊂ T

}
. (11)

Nowwe will present the important result, which allows us to compute the maximin
values necessary for checking the strict aspect exclusion criteria.

Proposition 3.
max
x∈X

min
y∈Y

u1(x, y) = max(B0),

22

max
x∈α(a1j)

min
y∈Y

u1(x, y) = max(Bj),

where B0 is a set of all values of a for which the following system has a solution:

∑
j∈T

cyjxj > 1, T ∈ Ta,

xj ≥ 0, j ∈ J,∑
j∈J

cxjxj ≤ 1,

(12)

and Bj is a set of all values of a for which there exists a solution of a system:

∑
j∈T\{k}

cyjxj > 1, T ∈ Ta,

xj ≥ 0, j ∈ J \ {k},∑
j∈J\{k}

cxjxj ≤ 1.

(13)

The algorithm for computing SE(i, aij,min[+]) and SE(i, aij,min[ε]) consists of
several stages. First, as the number of possible payoff values is finite, every possible
value of Ta is obtained and stored along with the maximum of the corresponding
values of a. Next, the m + 1 maximin values are calculated by solving the linear
problems outlined in the proposition. Finally, those maximin values are substituted
into the formulas of the strict aspect exclusion criteria.

Both the algorithm (written in Python 3.9) and the proof of proposition 3 are
presented in the appendix.

In the concrete case of two battlefields with valuations 3 and 5, epsilon threshold of
suboptimal behaviour schemes equal to 2 and the transportation cost matrix with
values on the main diagonal equal to 0.5 and the other two varying from 0.1 to 1,
the following results were obtained with the usage of the constructed algorithm:

23

The possible values of cx2 are plotted on the X-axes and the possible values of cy1
are plotted on the Y-axes. The red areas correspond to the cost combinations for
which the respective criterion doesn’t hold. Conversely, in the green areas, the
respective criterion is valid.

Conclusion

We have shown how some of the game balance problems can be reformulated as
rigorous mathematical criteria. To do this, we introduced an improved restricted
play principle, applicable for games with any number of players and not requiring
simulation of the game instances. After that, using the flexible framework of
normal-form games, we proposed two measures of strategy effectiveness: the
worst-case and the average-case payoffs. To be able to work with the realistic
behaviour of the players, who do not always play optimally, we introduced two
reasonable behaviour schemes: rational and suboptimal behaviour. After that, we
provided formal criteria that can be used to assess the balance of a game. These
criteria were then illustrated using the concrete example: a continuous version of
the Colonel Blotto game.

To the best of our knowledge, this thesis is novel in the application of formal
methods to game balance problems. Other papers focused mainly on two subjects.
The first one is performing manual statistical analysis on either real data collected
using various methods (telemetry, public APIs, etc.) or data derived from the

24

matches between AI players. The second subject is automatic adjustment of the
difficulty in single-player games. On the contrary, this thesis proposes an approach
that doesn’t require manual analysis and is applicable to multiplayer games.

We believe that further work on the formalization of game balance problems may
lead to significant improvements in the field of playtesting. The criteria proposed
in this thesis allow for the development of automatic testing systems, which will
both reduce the amount of manual playtesting needed and provide a way to monitor
matches between real players to be able to react in time in case some design flaws
went unnoticed. This will allow designers to focus on high-level goals while
parameter tweaking is being done automatically.

Appendix

Proof of Proposition 1. We prove that

∀i ∈ N argmax
v∈Xi

Rv =
{
v∗ ∈ Xi

∣∣∣ ∑
j∈argmax(Rj/cij)

cijv
∗
j = 1

}
.

We will prove the proposition above for the strategies of the second player. The
proof for the first player’s strategies can be derived analogically.

Let
Y ∗ =

{
y∗ ∈ X2

∣∣∣ ∑
j∈argmax(Rj/c

y
j)

cyjy
∗
j = 1

}
.

Then, for y ∈ X2

y /∈ Y ∗ =⇒
∑

j∈argmax(Rj/c
y
j)

cyjyj ̸= 1
y∈X2
===⇒

∑
j∈argmax(Rj/c

y
j)

cyjyj < 1 =⇒

25

=⇒


m∑
j=1

cyjyj < 1,∑
j /∈argmax(Rj/c

y
j)

cyjyj > 0.

In the first case,
m∑
j=1

cyjyj < 1 =⇒ y /∈ argmax
y∈X2

Ry,

since all valuations are positive (Rj > 0) and thus an increase in any of the
components ys by 1−

∑m
j=1 c

y
j yj

cys
will yield strictly greater payoff while the whole

strategy y will still be inside X2.

In the second case,∑
j /∈argmax(Rj/c

y
j)

cyjyj > 0 =⇒ ∃j1 /∈ argmax
Rj

cyj
: yj1 > 0 =⇒

=⇒ ∃j1, j2 : yj1 > 0 ∧ Rj2

cyj2
>

Rj1

cyj1
.

This, once again, implies that y /∈ argmaxy∈X2
Ry because there exists a strategy

y′ defined as 
y′j = 0, j = j1

y′j = yj1 + yj2, j = j2

y′j = yj otherwise,

which guarantees strictly greater payoff than y does.

To sum up,
y /∈ Y ∗ =⇒ y /∈ argmax

y∈X2

Ry.

In other words,
argmax

y∈X2

Ry ⊂ Y ∗.

26

On the other hand,

∀y∗ ∈ Y ∗ Ry∗ =
∑

j∈argmax(Rj/c
y
j)

Rjy
∗
j =

∑
j∈argmax(Rj/c

y
j)

Rjy
∗
j

cyj
cyj

=

= (max
j

Rj

cyj
) · (

∑
j∈argmax(Rj/c

y
j)

cyjy
∗
j) = max

j

Rj

cyj
= const.

Therefore,
argmax

y∈X2

Ry = Y ∗.

Proof of Proposition 2. We prove that

∀x ∈ X1 ∃y ∈ argmin
y∈X2

u1(x, y) : ∀j yj ≤ xj.

Since X2 is compact,

∀x ∈ X1 ∃y ∈ argmin
y∈X2

u1(x, y).

Assume ∃i : yi > xi. Let

ŷ = (min(x1; y1), ...,min(xm; ym)).

By construction,
∀j ŷj ≤ xj.

Obviously,
ŷ ∈ X2.

And

u1(x, ŷ) =
m∑
j=1

max(0;Rj(xj−min(xi; yi))) =
m∑
j=1

max(0;Rj max(0;xi−yi))) =

27

=
m∑
j=1

max(0;Rj(xj − yj)) = u1(x, y) =⇒ ŷ ∈ argmin
y∈X2

u1(x, y).

Proof of Proposition 3. Before presenting the proof, we need to formulate sev-
eral auxiliary lemmas. Recall that T ′

a is a one-parametric family of the sets of
battlefields such that capturing every battlefield in such set guarantees that the
opponent’s payoff will not exceed a, and Ta is the core of T ′

a .

Lemma 2. For every set of battlefields in T ′
a there exists at least one subset in Ta

Proof. The lemma’s statement may be written as

∀T ′ ∈ T ′
a ∃T ∈ Ta : T ⊂ T ′.

We carry out the proof by contradiction. Suppose

∃T 1 ∈ T ′
a : ∀T ∈ Ta T ̸⊂ T 1.

As T 1 ∈ T ′
a , T1 ⊂ J and thus |T 1| ≤ |J | = m. On the other hand, as T 1 ⊂ T 1,

T 1 /∈ Ta
(11)
==⇒ ∃T 2 ∈ T ′

a : T 2 ̸= T 1 ∧ T 2 ⊂ T 1.

From T 2 ̸= T 1 ∧ T 2 ⊂ T 1 it follows that

|T 2| < |T 1| ≤ m ⇒ |T 2| ≤ m− 1.

T 2 ∈ Ta contradicts the initial assumption as T 2 ⊂ T 1, therefore

T 2 /∈ Ta
(11)
==⇒ ∃T 3 ∈ T ′

a : T 3 ̸= T 2 ∧ T 3 ⊂ T 2.

Here, by the same logic, |T 3| ≤ m− 2 and

T 3 ⊂ T 2 ⊂ T 1 ⇒ T 3 /∈ Ta.

28

After m+ 1 steps one obtains

∃Tm+1 ∈ T ′
a : |Tm+1| ≤ 0 ⇒ Tm+1 = ∅.

But then

Tm+1 = ∅ ⇒ ∀D ∈ Da Tm+1 ∩D = ∅ ⇒ Tm+1 /∈ T ′
a?!

This contradiction refutes the initial assumption, thus

∀T ′ ∈ T ′
a ∃T ∈ Ta : T ⊂ T ′.

Lemma 3. If for every combination of battlefields in Da there exists a battlefield
not captured by the first player, then there exists a combination in Ta consisting
solely of the battlefields player 1 failed to capture. The reverse is true as well.

Proof. We can rewrite the lemma’s statement as

∀D ∈ Da ∃j ∈ D : yj ≥ xj ⇔ ∃T ∈ Ta : ∀j ∈ T yj ≥ xj.

First, let us prove that

∀D ∈ Da ∃jD ∈ D : yj ≥ xj ⇒ ∃T ∈ Ta : ∀j ∈ T yj ≥ xj.

Assume
∀D ∈ Da ∃jD ∈ D : yj ≥ xj.

Let T ′ = {jD | D ∈ Da}. Then

∀D ∈ Da jD ∈ T ′ ∩D ⇒ T ′ ∩D ̸= ∅.

Consequently, by construction
T ′ ∈ T ′

a .

29

As a result,
∃T ′ ∈ T ′

a : ∀j ∈ T ′ yj ≥ xj.

But due to Lemma 2,
∃T ∈ Ta : T ⊂ T ′.

That is,
∃T ∈ Ta : ∀j ∈ T yj ≥ xj.

Now, let us prove that

∃T ∈ Ta : ∀j ∈ T yj ≥ xj ⇒ ∀D ∈ Da ∃j ∈ D : yj ≥ xj.

If
∃T ∈ Ta : ∀j ∈ T yj ≥ xj.

Then
∃T : ∀D ∈ Da T ∩D ̸= ∅ ∧ ∀j ∈ T yj ≥ xj.

In particular,

∃T : ∀D ∈ Da T ∩D ̸= ∅ ∧ ∀j ∈ T ∩D yj ≥ xj.

And so
∀D ∈ Da ∃j ∈ D : yj ≥ xj,

Which proves the lemma’s statement in both directions.

Lemma 4. For any combination of battlefields T the necessary and sufficient
condition for the existence of the second player’s strategy that will make the first
player surrender every battlefield in T is

∑
j∈T c

y
jxj ≤ 1

Proof. We prove that

∃y ∈ X2 : ∀j ∈ T yj ≥ xj ⇐⇒
∑
j∈T

cyjxj ≤ 1.

30

Suppose ∑
j∈T

cyjxj ≤ 1.

Let y be such that

∀j ∈ J yj =

xj, j ∈ T,

0, j /∈ T.

Then
cyy ≤ 1 ∧ ∀j ∈ T yj = xj ≥ xj.

This means that the desired strategy y was found and the sufficiency is proven.

Now, suppose
∃y ∈ X2 : ∀j ∈ T yj ≥ xj.

Then, from the definition of X2,

1 ≥
∑
j∈J

cyjyj ≥
∑
j∈T

cyjyj ≥
∑
j∈J

cyjxj.

This immediately proves the necessity.

Now we are ready to present a proof of Proposition 3.

Proof of Proposition 3.

max
x∈A

min
y∈X2

u1(x, y) = M ⇒ ∃x ∈ A : ∀y ∈ X2 u1(x, y) ≥ M ⇒

⇒ ∃x ∈ A : ∀y ∈ X2

m∑
j=1

Rj · 1xj>yj − p ≥ M ⇒

⇒ ∃x ∈ A : ∀y ∈ X2

∑
xj>yj

Rj − p ≥ M ⇒

31

⇒ ∃x ∈ A : ∀y ∈ X2 ∃D ∈ DM :
∧
j∈D

xj > yj.

On the other hand,

max
x∈A

min
y∈X2

u1(x, y) = M ⇒ ∄x ∈ A : ∀y ∈ X2 u1(x, y) > M ⇒

⇒ ∄M ′ > M : ∃x ∈ A : ∀y ∈ X2 u1(x, y) ≥ M ′ ⇒

⇒ ∄M ′ > M : ∃x ∈ A : ∀y ∈ X2 ∃D ∈ DM ′ :
∧
j∈D

xj > yj.

Thus,

max
x∈A

min
y∈X2

u1(x, y) = max
({

a
∣∣∣∃x ∈ A : ∀y ∈ X2 ∃D ∈ Da :

∧
j∈D

xj > yj

})
.

(14)
There,

∃x ∈ A : ∀y ∈ X2 ∃D ∈ Da :
∧
j∈D

xj > yj ⇔

⇔ ¬
(
∀x ∈ A ∃y ∈ X2 : ∀D ∈ Da ∃j ∈ D : yj ≥ xj

)
Lemma 3⇐====⇒

Lemma 3⇐====⇒ ¬
(
∀x ∈ A ∃y ∈ X2 : ∃T ∈ Ta : ∀j ∈ T yj ≥ xj

)
⇔

⇔ ¬
(
∀x ∈ A ∃T ∈ Ta : ∃y ∈ X2 : ∀j ∈ T yj ≥ xj

)
Lemma 4⇐====⇒

Lemma 4⇐====⇒ ¬
(
∀x ∈ A ∃T ∈ Ta :

∑
j∈T

cyjxj ≤ 1
)
⇔

⇔ ∃x ∈ A : ∀T ∈ Ta
∑
j∈T

cyjxj > 1 ⇔

32

⇔ ∃x ∈ A :
∧
T∈Ta

∑
j∈T

cyjxj > 1 ⇔

⇔
(
x ∈ A ∧

∧
T∈Ta

∑
j∈T

cyjxj > 1
)
has a solution.

For A = X ,

x ∈ A ∧
∧
T∈Ta

∑
j∈T

cyjxj > 1 ⇔


∑

j∈T c
y
jxj > 1, T ∈ Ta,

xj ≥ 0, j ∈ J,∑
j∈J c

x
jxj ≤ 1.

For A = α(a1j),

x ∈ A ∧
∧
T∈Ta

∑
j∈T

cyjxj > 1 ⇔


∑

j∈T\{k} c
y
jxj > 1, T ∈ Ta,

xj ≥ 0, j ∈ J \ {k},∑
j∈J\{k} c

x
jxj ≤ 1.

Combined with (14), this leads directly to the formulation of the proposition.

Algorithm for checking SE criteria in Continuous Colonel Blotto, capture case
The algorithm is written in Python 3.9 and makes use of several libraries. numpy
and scipy are used to solve the linear programming problems. Some data structures,
such as SortedSet and SortedDict come from the sortedcontainers library. Lastly,
matplotlib is used to plot the result for the concrete case.

First, a utility function powerset computing the power set of a set is defined.

33

As was stated before, the set of all possible payoff values ui is finite. payoff_-
to_combinations_mapping function computes these values. Moreover, for every
such value, it also finds all of the battlefield combinations which, when captured,
guarantee that the payoff will not be less than this value (but do not guarantee any
higher possible value). The results are stored in the dictionary mapping with its
keys being the possible payoff values and the values being the respective sets of
battlefield combinations. This dictionary is sorted in descending order of its keys.

The function, as well as some of the following ones, takes two arguments: a list of
real numbers R and a single real number p, which are the parameters defining the
explored payoff function.

Likewise, a_to_Da_mapping function computes all possible values of Da and
maps them to the corresponding values of a such that for any key a in the resulting
mapping and the sufficiently small ϵ, Da = Da−ϵ.

By analogy, the mappings for T ′
a and then Ta are calculated by their definitions in

the functions a_to_Taprime_mapping and a_to_Ta_mapping respectively.

34

Finally, lp_has_solution attempts to solve the linear programming problem equiv-
alent for the feasibility problems 12 and 13. The first argument is the value of Ta.
The second and the third argument are the lists of all transportation costs for the
first and the second player respectively (it is assumed that the lengths of these lists
are equal to the total number of battlefields and for each index, the corresponding
list elements will be equal to the transportation costs to the same battlefield). The
last argument defines the index of the battlefield to be excluded (and equals None
in the case of problem 12).

35

Function calc_maxmins calculates maximin values used in the expressions of the
strict aspect exclusion criteria given the mapping for values of Ta computed using
a_to_Ta_mapping function.

Lastly, compute_se_values checks the validity of the strict aspect exclusion criteria
for both rational and suboptimal reasonable behaviour schemes, for each player.
Concrete suboptimal behaviour scheme to be used is defined using the value ϵ

passed as an argument.

36

To plot the areas of validity of the abovementioned criteria in the concrete case
of two battlefields with valuations R1 = 3 and R2 = 5, payoff penalty p = 4 and
transportation costs cx1 = cy2 = 0.5, cx2 , c

y
1 ∈ [0.1, 1], the following code is used.

For suboptimal behaviours schemes ϵ is set to 2.

37

38

References

[1] Aponte, Maria-Virginia and Levieux, Guillaume and Natkin, Stephane. "Mea-
suring the level of difficulty in single player video games." Entertainment
Computing 2.4 (2011): 205-213.

[2] Jaffe, Alexander Benjamin. Understanding game balance with quantitative
methods. PhD diss., 2013.

[3] Jaffe, Alexander and Miller, Alex and Andersen, Erik and Liu, Yun-En and
Karlin, Anna and Popovic, Zoran. "Evaluating competitive game balance with
restricted play." Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. 8.1 (2012): 26-31.

[4] Leyton-Brown, Kevin and Shoham, Yoav. "Essentials of game theory: A con-
cisemultidisciplinary introduction." Synthesis lectures on artificial intelligence
and machine learning 2.1 (2008): 1-88.

[5] Petrosyan, Leon A and Zenkevich, Nikolay A. Game theory. World Scientific,
1996.

[6] Obreja, Dragoş M. "Postphenomenology, Kill Cams and Shooters: Exploring
the Code of Replay Sequences." Games and Culture 18.3 (2022): 267–282.

[7] Andrade, Gustavo and Ramalho, Geber and Gomes, Alex and Corruble, Vin-
cent. "Dynamic game balancing: An evaluation of user satisfaction." Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment 2.1 (2006): 3-8.

[8] Becker, Alexander and Görlich, Daniel. "What is game balancing?-an exami-
nation of concepts." ParadigmPlus 1.1 (2020): 22-41.

[9] Pusey, Portia and Tobey Sr, David and Soule, Ralph. "An argument for game
balance: Improving student engagement by matching difficulty level with
learner readiness." 2014 USENIX Summit on Gaming, Games, and Gamifica-
tion in Security Education (3GSE 14). 2014.

39

[10] Ashton, Martin and Verbrugge, Clark. "Measuring the Impact of Cooperation
in Halo: Reach." (2012).

[11] Tomašev, Nenad and Paquet, Ulrich and Hassabis, Demis and Kramnik,
Vladimir. "Assessing game balance with AlphaZero: Exploring alternative
rule sets in chess." arXiv preprint arXiv:2009.04374 (2020).

[12] Khan, Sulman. "Predicting Customer Churn in World of Warcraft." arXiv
preprint arXiv:2006.15735 (2020).

[13] Breuer, Kelvin. Competitive Balance Through Diversity and Technological
Ambidexterity: A Case Study of Magic: The Gathering. Master’s Thesis, 2020.

[14] Drachen, Anders and Sifa, Rafet and Bauckhage, Christian and Thurau,
Christian. "Guns, swords and data: Clustering of player behavior in computer
games in the wild." 2012 IEEE conference on Computational Intelligence and
Games (CIG). IEEE, 2012.

[15] Traish, Jason and Tulip, James and Moore, Wayne. "Data Collection with
Screen Capture." Artifical Intelligence and Simulation of Behaviour Conven-
tion (2015): 1–4.

[16] Semenov, Aleksandr and Romov, Peter and Korolev, Sergey and Yashkov,
Daniil and Neklyudov, Kirill. "Performance of machine learning algorithms
in predicting game outcome from drafts in dota 2." Analysis of Images, Social
Networks and Texts: 5th International Conference, AIST 2016, Yekaterinburg,
Russia, April 7-9, 2016, Revised Selected Papers 5 (2017): 26–37.

[17] Makin, Owen and Bangay, Shaun. "Orthogonal analysis of StarCraft II for
game balance." Proceedings of the Australasian Computer Science Week Mul-
ticonference (2017): 1–4.

[18] Ludwig, Jeremy and Farley, Art. "A learning infrastructure for improving
agent performance and game balance." Proceedings of the AIIDE 7 (2007):
7–12.

[19] Olesen, Jacob Kaae and Yannakakis, Georgios N and Hallam, John. "Real-

40

time challenge balance in an RTS game using rtNEAT." 2008 IEEE Symposium
On Computational Intelligence and Games (2008): 87–94.

[20] Shaker, Noor and Shaker, Mohammad and Togelius, Julian. "Evolving
playable content for cut the rope through a simulation-based approach." Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment 9.1 (2013): 72-78.

[21] Togelius, Julian and Nelson, Mark J and Liapis, Antonios. "Characteristics of
generatable games."Workshop on Procedural Content Generation for Games.
ACM, 2014.

[22] Pfau, Johannes and Smeddinck, Jan David and Malaka, Rainer. "Towards
deep player behavior models in mmorpgs." Proceedings of the 2018 Annual
Symposium on Computer-Human Interaction in Play (2018): 381-392.

[23] Volz, Vanessa and Rudolph, Günter and Naujoks, Boris. "Demonstrating
the feasibility of automatic game balancing." Proceedings of the Genetic and
Evolutionary Computation Conference 2016 (2016): 269-276.

[24] Hernandez, Daniel and Gbadamosi, Charles Takashi Toyin and Goodman,
James and Walker, James Alfred. "Metagame Autobalancing for Competitive
Multiplayer Games." 2020 IEEE Conference on Games (CoG) (2020): 275-
282.

[25] Xia, Wen and Anand, Bhojan. "Game balancing with ecosystemmechanism."
2016 international conference on data mining and advanced computing (SAPI-
ENCE) (2016): 317-324.

[26] Zook, Alexander and Fruchter, Eric and Riedl, Mark O. "Automatic
playtesting for game parameter tuning via active learning." arXiv preprint
arXiv:1908.01417 (2019).

41

	Introduction
	Literature review
	Problem formulation
	Game-theoretic description
	Aspects of a game
	Criteria definitions

	Example: Continuous Colonel Blotto
	Utilization case
	Rational behaviour
	Sub-optimal behaviour

	Modified utilization case
	Capture case

	Conclusion
	Appendix
	References

