Санкт-Петербургский государственный университет

Сиавичай Мендоса Мария Хосе

Выпускная квалификационная работа

Исследование спектра поглощения гексафторизопропанола в области обертонов валентного колебания группы OH.

Уровень образования: <u>магистратура</u> Направление: <u>03.04.01 Прикладные математика и физика</u> Основная образовательная программа: <u>BM 5510.2021 Прикладные физика и математика</u>

> Научный руководитель: доцент кафедры молекулярной спектроскопии, канд. ф-.м. н., доцент Меликова Сона Меджидовна

Рецензент: эксперт-физик ФГУЗ «Центр гигиены и эпидемиологии в городе Санкт-Петербурге и Ленинградской области, канд. ф.-м. н. Голубкова Ольга Сергеевна

Санкт-Петербург 2023

Оглавление:

Введение	3
Содержание	4
1. Литературный обзор	4
2. Описание эксперимента	6
3. Квантово-химический расчет структуры, электронной энергии и	
колебательного спектра HFIP в гармоническом приближении	9
4. Ангармонический расчет интенсивностей	
первого и второго обертона HFIP	14
Заключение	20
Список использованных ресурсных центов СПбГУ	21
Список использованной литературы	22

Введение

В работе исследованы инфракрасные спектры молекулы Гексафторизопропанола (CF₃)₂-CH-OH (в англоязычной литературе принято сокращение: HFIP). Получены экспериментальные спектры поглощения HFIP в газовой фазе при комнатной температуре в области основных колебаний HFIP, а также в области первого и второго обертонов моды ОН. Кроме того, с использованием пакета программ Gaussian 16 выполнен квантово-химический расчет структуры молекулы (определены дины связей, валентные углы между связями и двугранные углы между плоскостями) и электронная энергия. Рассчитан колебательный спектр молекулы в гармоническом приближении. Для оценки интенсивностей первого и второго обертона по моде ОН были использованы формулы, полученные по теории возмущений в двухатомном приближении в работе [1]. Для определения ангармонических параметров, входящих в эти формулы, проводилось поточечное сканирование поверхностей потенциальной функции и функции дипольного момента с использованием пакета Gaussian 16 с использованием того же базисного набора. Результаты работы доложены на Всероссийской конференции "Наука СПбГУ-2022" [2].

Литературный обзор.

Инфракрасные спектры гексафторизопропанола (HFIP) в низкотемпературных матрицах впервые были изучены в работе Барнса и др. в 1972 г. [3]. В этой работе получены спектры в Ar, N2 и CO матрицах при 20К, приведены частоты колебаний в основной области и их отнесение. Обсуждается наличие двух устойчивых конформеров HFIP.

В работе [4] 1973 г. получены ИК спектры газообразного HFIP, спектры жидкости и твердой фазы, а также спектры комбинационного рассеяния (КР) жидкости. Впервые определены частоты первого обертона по моде ОН для двух конформеров в газовой фазе (7240 и 7150 см⁻¹).

В работе [5] 1988 г. изучены спектры HFIP в далекой ИК области (FIR) в газовой фазе и спектр КР жидкости. Проведена оценка высоты барьеров для внутреннего вращения по двугранному углу НОСН.

Наконец, в сравнительно недавней работе 2008 г. [6], получены спектры растворов HFIP в CCl₄ при комнатной температуре и проведен квантово-химический расчет с использованием теории функционала плотности (DFT) на уровне B3LYP/6-311++G(df,pd). Рассчитана геометрия, определены энергии для двух конформеров, рассчитан колебательный спектр. С использованием результатов расчета проведено отнесение полос в ИК спектрах двух конформеров, отличающихся двугранным углом $H_3O_2C_1H_9$ (см. Рисунки 1 и 2).

Рис. 1 Конформер HFIP - ар (antiperiplanar).

Рис. 2. Конформер HFIP- sc (synclinal).

Описание эксперимента.

Спектры поглощения HFIP измерялись на Фурье-спектрометре Nicolet-6700 (Рис. 3), с разрешением 0.5 см⁻¹.

Рис.3 Внешний вид FTIR спектрометра NICOLET 6700.

Спектрометр имеет два кюветных отделения и возможность использования 4 приемников ИК излучения. В нашей работе мы использовали приемник DTGS для средней ИК области и светоделитель KBr в средней ИК области (500 – 5000 см⁻¹) и приемник InSb в сочетании со светоделителем из CaF₂ в ближней ИК (2000 – 12000 см⁻¹). Для избавления от мешающего поглощения атмосферных газов (H₂0, CO₂) прибор продувался осушенным воздухом.

Образец HFIP в виде капли помещался в газовую кювету с длиной оптического пути 10 см (См. Рис. 4).

Рис 4. Кювета для исследования образцов в газовой фазе.

Капля вещества испарялась и мы наблюдали спектр поглощения насыщенного пара HFIP при температуре 20 С (~ 100 мм ртутного столба). Окна кюветы можно менять, мы использовали окна из KBr для средней ИК области и флюорит CaF₂ для ближней ИК.

Полученные экспериментальные спектры HFIP в области основного колебания по моде ОН и первого и второго обертонов приведены на Рисунках 5, 6, 7.

Рис. 5. Спектр поглощения HFIP в области основного колебания v(OH).

Рис. 6 Спектр поглощения HFIP в области первого обертона по моде OH.

Рис. 7 Спектр поглощения HFIP в области второго обертона по моде OH.

Квантово-химический расчет структуры, электронной энергии и

колебательного спектра HFIP в гармоническом приближении.

Расчеты DFT проводились с помощью пакета программ Gaussian 16.

Были исследованы молекулярные структуры, определены колебательные частоты и инфракрасные интенсивности антиперипланарного (ар) и синклинального (sc) конформеров 1,1,1,3,3,3-гексафтор-2-пропанола (HFIP). При этом был использован метод функционала плотности (B3LYP) с использованием расширенного базисного набора 6-311++G(df,pd). Результаты расчета приведены в Таблицах 1-5.

Таблица 1. Выбранные геометрические параметры (длины связей в Å, валентные углы в градусах) и энергии (Hartree) конформера HFIP-ар.

	наш расчет	[6]
C1-C8	1.544	1.545
C1-C4	1.544	1.545
C1-H9	1.091	1.091
C1-O2	1.396	1.396
O2-H3	0.966	0.965
C8-F10	1.339	1.339
C4-C1-C8	113.8	114.2
O2-C1-C8	110.5	110.5
O2-C1-C4	110.5	110.6
С8-С1-Н9	106.9	106.8
C4-C1-H9	106.9	106.5
O2-C1-H9	107.8	107.5
С1-О2-Н3	109.4	109.6
C1-C8-F10	109.4	109.4
Н9-С1-О2-Н3	180.0	180.0
H9-C1-C4-F6	57.1	56.9
H9-C1-C8-F10	-57.1	-56.8
С4-С1-О2-Н3	-63.4	-63.7
С8-С1-02-Н3	63.4	63.7
H9-C1-C4-F6	57.1	56.9
H9-C1-C8-F10	-57.1	-56.8
E, a.u.	-790.098885	-790.08859
ΔΕ	0	0

Таблица 2. Выбранные геометрические параметры (длины связей в Å, валентные углы в градусах) и энергии (Hartree) конформера sc HFIP-sc.

	наш расчет	[6]
C1-C6	1.539	1.532
C1-C5	1.544	1.550
C1-H2	1.097	1.096
C1-O3	1.397	1.398
O3-H4	0.963	0.962
C6-F11	1.340	1.342
C5-C1-C6	113.6	114.0
O3-C1-C6	106.7	106.6
O3-C1-C5	111.1	111.0
H2-C1-C6	106.1	106.2
H2-C1-C5	106.0	106.0
H2-C1-O3		113.0
С1-О3-Н4	109.6	109.6
C1-C6-F11	109.4	109.4
H2-C1-C3-H4	55.6978	-53.1
H2-C1-C5-F9	-69.9	69.6
H2-C1-C6-F11	57.0	56.0
С5-С1-О3-Н4	-63.5	65.8
С6-С1-О3-Н4	172.2	-169.5
H2-C1-C5-F9	-69.9	69.6
H2-C1-C6-F11	57.0	-56.0
E a.u.	-790.096898	-790.08670
$\Delta E, kJ/mol$	5.2	4.3

No	CALCULATIONS		EXPERIMENT		
			Ar матрица		
	наш расчет	[6]	ν		
1	3791	3794	3604		
2	3106	3104	2994		
3	1425	1423	1415		
4	1376	1378	1380		
5	1309	1307	1311		
6	1270	1270	1271		
7	1244	1245	1243		
8	1228	1227	*		
9	1197	1196	1202		
10	1168	1168	*		
11	1113	1115	1113		
12	1102	1103	1105		
13	892	897	898		
14	828	827	836		
15	736	736	740		
16	686	688	688		
17	604	604 605			
18	548	550	554		
19	528	529	535		
20	511	512	518		
21	456	455	460		
22	393	388	332		

Таблица 3. Выбранные колебательные частоты конформера ар (см⁻¹).

No	CALCULATIONS		EXPERIMENT
			Раствор в CCl ₄
		ν	
	Наш расчет [6]		
1	3833	3843	3617
2	3036	3039	2938
3	1439	1440	1422
4	1383	1385	1376
5	1300	1302	1295
6	1293	1281	1270
7	1233	1233	1224
8	1204	1200	1198
9	1192	1185	1182
10	1152	1146	1127
11	1136	1132	1122
12	1095	1096	1105
13	887	892	892
14	845	842	841
15	733	734	739
16	680	683	684
17	604	603	610
18	546	547	548
19	532	533	532
20	511	513	513
21	458	457	463
22	351 347		350

Таблица 4. Выбранные колебательные частоты конформера sc (см⁻¹)

Таблица 5. ИК-ИНТЕНСИВНОСТИ (РАСЧЕТНЫЕ В КМ МОЛЬ⁻¹, ЭКСПЕРИМЕНТАЛЬНЫЕ В СМ⁻¹) ДЛЯ SC КОНФОРМЕРА НFIP

No	CALCULATIONS		EXPERIMENT		
			Раствор в CCl ₄		
	наш	[6]	[6]		
1	77	83	26		
2	12	11	2		
3	42	43	5		
4	40	45	16		
5	187	203	67		
6	106	107	35		
7	214	211	33		
8	210	238	23		
9	487	400	81		
10	26	52	4		
11	144	161	21		
12	186	185	33		
13	42	47	9		
14	35	33	7		
15	23	23	*		
16	44	44	10		
17	0.7	1			
18	1	1			
19	9.5	4			
20	3	9			
21	3	3			
22	2.8	2			

Ангармонический расчет интенсивностей первого второго обертона HFIP.

Потенциальная энергия в двухатомном приближении рассчитывается по следующей формуле:

$$U(q) = \frac{1}{2}\omega q^2 + \alpha q^3 + \beta q^4 + \cdots$$
(1)

Где q- нормальная безразмерная координата.

Кубическая и квартичная постоянные ангармоничности α, β и гармоническая частота ω были получены с использованием поточечных сканов функции (1) из квантовохимического расчета на уровне MP2/6-311++G(d,p). Фитирование (fitting) функции проводился с использованием программы Origin 8.

Компоненты дипольного момента (Р) рассчитываются по следующей формуле:

$$P_{\gamma} = P_{\gamma}^{0} + \left(\frac{\partial P_{\gamma}}{\partial q}\right)q - \frac{1}{2!}\left(\frac{\partial^{2} P_{\gamma}}{\partial q^{2}}\right)q^{2} + \frac{1}{3!}\left(\frac{\partial^{3} P_{\gamma}}{\partial q^{3}}\right)q^{3}$$
(2)

где $\gamma - x, y, z$.

Моменты переходов для первого обертона рассчитывались в первом порядке теории возмущений по формулам из работы [1]:

$$\langle 0|P|2\rangle = \frac{1}{\sqrt{2}} \left(\frac{p''}{2} + P' \frac{\alpha}{\omega} \right)$$
(3)

Формула для второго обертона – во втором порядке теории возмущений [1]:

$$\langle 0|P|3\rangle = \frac{\sqrt{3}}{4} \left[\frac{p^{\prime\prime\prime}}{3} + 2P^{\prime\prime} \frac{\alpha}{\omega} + P^{\prime} \left(\frac{\beta}{\omega} + \frac{3}{2} \frac{\alpha^2}{\omega^2} \right) \right]$$
(4)

Где $\langle 0 | P_{\gamma} | n \rangle$ – матричный дипольный момент.

Производные дипольного момента (P', P", P"") и кубические и квартичные постоянные ангармоничности двух конформеров HFIP определялись путем сканирования сечения потенциальной поверхности по нормальной координате Q₁(OH).

В приближении двухатомной молекулы интенсивность (A) полосы колебательного перехода $0 \rightarrow n$ равна (в км/моль):

$$A_{0n} = \frac{8\pi N_A \cdot \nu_{0n} \cdot 10^{-41}}{3hc} \langle 0|P|n \rangle^2 = 2.496 \cdot \nu_{0n} \langle 0|P|n \rangle^2$$
(5)

С помощью программы fiting программы Origin Lab нам удалось получить следующие параметры:

Таблица 6. Параметры для вычисления моментов перехода второго и третьего порядков по моде v(OH) молекулы HFIP. Расчет MP2/6-311++G(d,p).

	ap			sc		
α , cm ⁻¹	-432			-409		
β , cm ⁻¹	+67			+62		
	Х	у	Z	Х	у	Z
P ₀ , Debye	0	0.4613	-0.1263	-1.0895	1.3369	-2.0401
P', Debye	0	0.1103	0.0497	-0.0754	0.0994	-0.0338
P"/2,	0	-0.0019	-0.0041	0.0013	-0.0047	$-4.09*10^{-4}$
Debye						
P""/6,	0	$-5.4*10^{-4}$	$-2.17*10^{-5}$	$4.5*10^{-4}$	$-2.9*10^{-4}$	$2.85*10^{-4}$
Debye						

Таблица 7. Интенсивности и частоты, полученные в эксперименте и расчетах.

		calc.			exp. gas	
Conf.	Assign.	ν,	А,	A_{rel}	ν,	A_{rel}
		cm^{-1}	km/mol		cm ⁻¹	
	v_{01}	3662	70.19	(100)	3626.8	(100)
ap	v_{02}	7157	2.56	3.64	7085.3	5.4
	v_{03}	10481	0.14	0.20	10379	0.28
sc	v_{01}	3707	77.24	(100)	3666.5	(100)
	v_{02}	7246	3.0	3.9	7165.6	5.7
	V ₀₃	10616	0.12	0.16	10500	0.30

Рис.8 Потенциальная энергия конформера ар.

Рис.9 Дипольный момент координата у конформера ар.

Рис.10 Дипольный момент координата z конформера ар.

Рис.11 Потенциальная энергия конформера sc.

Рис.12 Дипольный момент координата х конформера sc.

Рис.13 Дипольный момент координата у конформера sc.

Рис.14 Дипольный момент координата z конформера sc.

Заключение.

- Рассмотрены и проанализированы результаты по исследованию ИК спектров гексафторизопропанола в мало изученной области обертонов валентного колебания О-Н как в газовой фазе.
- Получены спектроскопические параметры (положение максимума, относительная интенсивность и ширина полос на половине высоты) основной полосы и полос первого и второго обертона. Измерения проведены с использованием ИК Фурье-спектрометра NICOLET 6700.
- Экспериментальные результаты проинтерпретированы в рамках двухатомного приближения с использованием теории возмущений. Расчет находится в разумном соответствии с данными измерений.

Список использованных ресурсных центов СПбГУ.

Измерения и расчеты и выполнялись с использованием оборудования ресурсных центров Санкт-Петербургского государственного университета (СПбГУ): «Геомодель», «Криогенный отдел» и РЦВЦ (<u>http://cc.spbu.ru</u>).

Список литературы:

[1] P. Geerlings, D. Berkmans, H.P. Figeys, The influence of electrical and mechanical anharmonicity on the vibrational transition moments of diatomic and polyatomic molecules, Journal of Molecular Structure 1979, Vol. 57, p. 283-297.

[2] Меликова С.М., Сиавичай Мендоса М.Х, Рутковский К.С. Спектры гексафторизопропанола в обертонной области в газовой фазе и сжиженном ксеноне, Сборник материалов Всероссийской конференции "Наука СПбГУ-2022", С.Петербург, 21.11.2022.

[3] A.J. Barnes, J. Murto, Infra-red Cryogenic Studies. Part 10- Conformational Isomerism of 1,1,1-3,3,3-Hexafluoropropan-2-ol, J. Chem. Soc. Faraday II, 68 (1972) 1642-1651.

[4] J. Murto, A. Kivinen, R. Viitala, J. Hyomaki, Flouroalcohols-XX. Infrared and Raman spectra of hexafluoro-2-propanol and its deuterated analogues, Spectrochim. Acta A 29 (1973) 1121-1137.

[5] J.R. Durig, R.A. Larsen, F.O. Cox, B.J. van der Veken, Raman and Far-Infrared spectra of gaseous 1,1,1,3,3,3-hexafluoro-2-isopropanol, conformational stability and barriers to internal rotation, J. Mol. Struct. 172 (1988) 183-201.

[6] B. Czarnik-Matusewicz, S. Pilorz, D. Bienko, D. Michalska, Molecular and electronic structures, infrared spectra, and vibrational assignment for ap and sc conformers of hexafluoro-iso-propanol, Vibrational Spectroscopy 2008, Vol.47, p. 44-52