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Abstract

We describe an implementation and testing of a congruence closure
algorithm for Horn equation based on equation flattening in Python.

1 Introduction

In the quantifier-free theory of uninterpreted functions (QF UF ), in addition
to logical operators, there are equalities between expressions and variables for
uninterpreted functions. They satisfy the conditions of reflexivity, symmetry,
transitivity, and congruence relation, the first three of which are the conditions
defining an equivalence relation and the last of which is the property that for
all expressions x, y and functions f, g in our domain of discourse,

x = y ∧ f = g =⇒ f(x) = g(y)

In SMT (satisfiability modulo theory), the aim is to determine whether a set
of logical formulas containing equalities and inequalities over over uninterpreted
functions is satisfiable. One can fittingly view SMT as SAT with the addition of
uninterpreted functions and equalities. Thus, there is a direct correspondence
between SMT and QF UF . Moreover, SMT solvers can be applied directly to
resolve problems of equality reasoning, wherein one is to determine whether a
set of equalities and inequalities over uninterpreted functions is satisfiable.

Equality reasoning arises in many applications including compiler optimiza-
tion, functional languages, and reasoning about databases as well as, most im-
portantly, reasoning about different aspects of software and hardware. [Kap19]
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�st095712@student.spbu.ru
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For example, in symbolic execution, problem inputs, instead of processed as
concrete input instances as happens upon actual execution of the program, a
more abstracted execution is performed on a symbol for each input. As an-
other example, in the theory of uninterpreted functions, a specific function is
abstracted to an uninterpreted one, and the simplification therein is often useful
for proof of equivalence of programs.

[Kap19] described an algorithm that computes congruence closure for a
Horn equations, which an implication statements, wherein the antecedent is a
conjunction of equalities and the consequent is a single equality.

Congruence closure and decision procedures for Horn equations is still a spe-
cial case of QF UF theory, since the case of Horn equations is a special case
of logical formulas containing equalities. Hence, deciding satisfiability for Horn
equations can be solved using the DPLL(T ) algorithm. However, the DPLL(T )
algorithm, designed for general cases, required multiple rounds of interaction
between SAT solving and congruence closure, whereas Kapur’s algorithm solves
this using propagation only, without using SAT solving. In principle, this should
be more efficient than the DPLL(T ) algorithm for this particular class of prob-
lems.

This paper will describe the implementation and verification of such an al-
gorithm in Python by the author (as well as more minor changes by Bohua
Zhan).

2 Overview of algorithm

We begin some preliminary definitions and notation. We let F be a set of
function symbols including constants (here, we note that a constant is fittingly
seen as a 0-ary function) and GT (F ) be the ground terms constructed from
F . From here on, we will simply use constant to mean a 0-ary function. Ever
symbol f ∈ F can be considered uninterpreted.

A Horn (conditional) equation is of the form {(∧hi
1 = hi

2) ⇒ (ci1 = ci2)|1 ≤
ı̇ ≤ k} is a conditional equation, wherein the h’s and c’s are ground terms from
T (F ).

Below are the decision problems the algorithms of which were implemented
by the author.

1. Congruence closure: which terms are equal according to the Horn equa-
tions?

2. (Extended) congruence closure: is an inputted Horn equation implied by
the existing Horn equations?

3. Decision procedure: is an inputted set of Horn equations is satisfiable?

The most non-trivial and/or critical parts of the implementation as are fol-
lows

1. 3.1 of [Kap19] (Computing Constant Equivalence Closure from Constant
Horn Equations) wherein only constants are considered.
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2. 3.3 of [Kap19] (Extension to Nonconstant Function Symbols).

3. A clever means of encoding the flattening described in 2.2.2 of [Kap19]
suggested to the author by Bohua Zhan which optimizes the introduction
of extra symbols in the flattening of multiple equalities.

Now, we shall present some major ideas behind these algorithm. For details,
we suggest that the reader refers to [Kap19].

2.1 Union-find

First, the main data structure is the disjoint set (which supports union and
find both of which can be for practical purposes seen to run in constant time (in
theory, its complexity involves the Ackermann function which grows extremely
slowly)). On it, we also use path compression, which updates roots of all nodes
on the path traversed when we go up the tree on input u to find its root.

In Python, it is as follows.

t r ave r s ed node s = [ ]
while u != s e l f . pa r en t s [ u ] :

t r ave r s ed node s . append (u)
u = s e l f . pa r en t s [ u ]

# path compression techn ique
for name in t r ave r s ed node s :

f o rmer roo t = s e l f . pa r en t s [ name ]
s e l f . pa r en t s [ name ] = u

The disjoint union enables us to rewrite constant terms to the its root (which
can be seen as representative of its equivalence class) in Horn equations. This
operation is run whenever a new equivalence between constant terms is intro-
duced and as an optimization, we persist a pointer from symbol to the Horn
equations in which appears, so that we need not iterate thru all Horn equations.

2.2 Propagation

The idea is that the algorithm for constant cases coupled with flattening nat-
urally induces the extended algorithm via propagating of equality to constants
on the right hand side (RHS) of flat equations with the same flat term on the
left hand side. As with the constant case, we use disjoint union and rewrite to
root upon invocation of union, doing so in this case for flat equations. As more
constant equivalences are introduced, flat terms are rewritten, which induces
another constant equivalence per two flat terms now deemed to be identical per
the disjoint union.

2.3 Flattening

As mentioned previously, flattening is a major idea behind this algorithm. Be-
fore going into details on flattening, we shall first talk about testing of a Horn
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conjecture, the form of which is closely related. The hypotheses and consequent
of Horn conjecture can be arbitrarily nested, and by nesting we mean the likes
of f(w, g(h(x), y, z)) = h(z) as an example of two layers. The idea is that in
order to write this in an equivalent form wherein all equations are either flat
equations or constant equations, we introduce new symbols for nested terms in
a recursive manner.

To minimize the number of extra symbols reduced, we store mappings from
newly introduced symbols to their corresponding expressions in a recursive man-
ner via the following code.

class Replacement :
def i n i t ( s e l f ) :

s e l f . symbols : Dict [ str , Expr ] = dict ( )
s e l f . symbols rev : Dict [ Expr , str ] = dict ( )
s e l f . counter = 0

def add symbol ( s e l f , name , expr ) :
s e l f . symbols [ name ] = expr
s e l f . symbols rev [ expr ] = name

def new symbol ( s e l f ) :
r e s = ” x” + str ( s e l f . counter )
s e l f . counter += 1
return r e s

def has expr ( s e l f , expr : Expr ) => bool :
return expr in s e l f . symbols rev

def t o f l a t e q s ( s e l f ) => ” l i s t [ Equation ] ” :
return [ Equation ( func , Const ( symb name ) )

for symb name , func in s e l f . symbols . i tems ( ) ]

A few points to be noted:

� There is a counter which is incremented upon introduction of a new sym-
bol.

� has expr is used to perform a lookup for an expression that is nested
which we must rewrite to a symbol. If an equivalence expression has
already been rewritten to a symbol, then we simply reused that symbol.
An illustrative example in this case would be f(g(x), g(x)) = c. g(x) that
is the first argument of f is rewritten to introduced symbol x0 and then
when it appears again as in the second argument, we simply look up in
our cache and replace.

The code for actually flattening that uses replacement below (note especially
the invocation of has expr):
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def f l a t t e n ( s e l f , r e p l : Replacement ) => Expr :
new args = l i s t ( )
for arg in s e l f . a rgs :

i f isinstance ( arg , Func ) :
new args . append ( arg . f l a t t e n ( r ep l ) )

else :
new args . append ( arg )

new expr = Func ( s e l f . func name , new args )
i f r ep l . has expr ( new expr ) :

return Const ( r ep l . symbols rev [ new expr ] )
else :

new name = rep l . new symbol ( )
r ep l . add symbol ( new name , new expr )
return Const ( new name )

to_flat_eqs in Replacement is used to flatten a list of equations, with the
cache of expression to rewrite symbol persisted throughout. By this we mean
that if we have f0(g(x)) = c and then f1(g(x)) = c, then with

def f l a t t e n e qu a t i o n s ( equat ions : l i s t [ Equation ] ,
r e p l : Replacement=None )

=> Tuple [ l i s t [ Equation ] , Replacement ] :
i f r ep l i s None :

r ep l = Replacement ( )
return [ eq . f l a t t e n ( r ep l ) for eq in equat ions ] , r e p l

we would upon the first invocation on f0(g(x)) = c, the introduced symbol
x0 = g(x), which is reflected by the update of Replacement object which is
passed in to our call on f1(g(x)) = c. flatten_equations should return in this
case [f_0(_x0) = c, f_0(_x0) = c] along with [_x0 -> g(x)] encoded in
repl.

2.4 Pointers to Horn equations

If there is clause a1 = a2 =⇒ c1 = c2, union of a1, a2 should trigger the
union of c1, c2. Similar holds for Horn clauses with multiple antecedents. From
this arises the subproblem of propagating to the hypotheses and determining
when the they are all satisfied. This is done by persisting both a mapping from
symbols set to Horn equations in which of the given symbol appears thru which
we can efficiently also persist counter of number of satisfied antecedents of each
Horn clause.

For details on this, see the explanation of the example given in ?? as well as
the appendix of [Kap19].

5



3 Concrete example cases

If the reader wants to understand the algorithm in more detail, we suggest
going thru the theoretical explanation guided by examples. The author has
the intention of supplementing the more theoretically presented [Kap19] with
concrete cases and actual implementation.

3.1 One of constant Horn equations

Example 3.1. � Let F = {c0, c1, c2, c3, c4, c5}.

� Let our constant equivalences be {c0 = c1, c1 = c2, c3 = c4}, which induces
the equivalence classes {0, 1, 2}, {3, 4}, {5}.

� Let our only Horn equation be c0 = c1 ∧ c0 = c2 ∧ c1 = c1 =⇒ c4 = c5.

� The preprocessing of this Horn equation will all the antecedent inequalities
trivial, thereby reducing it to =⇒ c4 = c5, which is simply c4 = c5.

� Propagation of the consequent of this Horn equation to the extant equiv-
alence relation will result in the merging of {3, 4} and {5}.

� The resulting equivalence classes are then {0, 1, 2} and {3, 4, 5}.

3.2 Propagation of newly added equalities by example

Here, we will illustrate the propagation part of the algorithm described in 3.1
of [Kap19].

Symbol set is {c0, c1, c2, c3, c4}.
Horn equations:

� c4 = c2 ∧ c3 = c4 ∧ c0 = c1 =⇒ c1 = c4

� c1 = c0 ∧ c4 = c2 ∧ c0 = c0 =⇒ c0 = c0

� c0 = c2 ∧ c1 = c2 =⇒ c0 = c4

� c2 = c2 =⇒ c0 = c1

� c2 = c4 =⇒ c1 = c2

Constant equations:

c2 = c3, c2 = c0, c4 = c4

induce equivalence classes {c0, c2, c3}, {c1}, {c4}
Preprocessing via these equivalence classes results in

� c4 = c0 ∧ c0 = c4 ∧ c0 = c1 =⇒ c1 = c4

� c1 = c0 ∧ c4 = c0 =⇒ c0 = c0
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� c1 = c0 =⇒ c0 = c4

� =⇒ c0 = c1

� c0 = c4 =⇒ c1 = c2

There is queue of equivalences to be propagated. It is initialized to be
identical to the list of specified constant equations excepting trivial ones. In
this case, it is c2 = c3, c2 = c0. When we propagate an equation a = b,
in addition to performing the disjoint union operation, we must also modify
hyp_pointers and cone_pointers, which map a symbol to the hypotheses and
consequent equations in which they appear respectively. The idea behind this
is that if each symbol appears sparsely among the Horn equation, then via this
data structure we can minimize the number of lookups necessary for propagation
of newly added equivalences.

Per

while len ( s e l f . q ) :
eqn = s e l f . q . p op l e f t ( )
s e l f . union ( eqn . l h s . name , eqn . rhs . name)

the major steps executed are the following:

� Queue: c2 = c3, c2 = c0

� Pop and union c2, c3. This results setting the root of c2 to that of c3.

� In updating pointers (here on c2, c3), we also detect for a trivial conse-
quent, in which case the hypotheses are irrelevant. This result in deletion
of c1 = c0 ∧ c4 = c0 =⇒ c0 = c0.

� Preprocessing resulted in =⇒ c0 = c1, which means the counter was
initialized to 0. Add this to the queue.

� Queue: c2 = c0, c0 = c1

� Pop and union c2, c0. c2 already has root c3, root of c0 is made to be c3.

� Update pointers for this. A counter is decremented when an equation in
the hypothesis is equivalent to newly introduced relation c2 = c0. There
are no deletions of Horn equations or adding of new equalities to the queue
though.

� Queue: c0 = c1

� Pop and union c0 = c1

� Counter of c4 = c0 ∧ c0 = c4 ∧ c0 = c1 =⇒ c1 = c4 is 3, since we are
about to equate c0 = c1, we decrement the counter (the corresponding
hypothesis is the last one).
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� Decrement counter for c1 = c0 =⇒ c0 = c4. With the counter of this
one now 0, we then add to queue c0 = c4. This Horn equation also gets
deleted.

� Queue: c0 = c4

� Pop and union c0 = c4.

� c4 = c0 ∧ c0 = c4 ∧ c0 = c1 =⇒ c1 = c4 has counter 2

� With c4 and c0 now to be equated, the first two hypotheses hold. Thus
we decrement twice, which results in c1 = c4

� Everything is equal.

3.3 Horn equations with functions

We now give an example to illustrate induction of an equivalence via equivalent
f -terms on LHS.

Example 3.2. � Let F = {c0, c1, c2, c3}.

� Our only constant equation is c2 = c3.

� The equivalence classes {c0}, {c1}, {c2, c3}.

� Our non-constant equations are f(c2) = c0 and f(c3) = c1.

� This induces c0 = c1.

� The resulting equivalences are then {c0, c1}, {c2, c3}.

Example 3.3. � Introduce constant equivalence c1 = c2.

� Introduce flat equations f(c1) = a, f(c2) = b, f(c3) = d. Then a = b is
induced.

� Introduce the Horn equation a = b =⇒ c2 = c3. Then c2 = c3 holds
since a = b holds.

� Now that we have deduced c2 = c3, we can use it to deduce b = d.

4 Verification of correctness

To verify correctness, we construct a corresponding SMT instance. What is
a bit tricky about the SMT solver analogy is that the solver does not directly
construct the congruence closure but rather it tests whether or not some equality
is actually is in the closure. Say we have some equality E and it is in the closure.
Then we cannot satisfy all equations (in generality, this consists of constant
equations, flat equations, and Horn equations) as well as ¬E is necessarily not
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satisfied. On the other hand, if the equality E is not in the closure, then
necessarily we can satisfy ¬E in addition to all the prespecified conditions.

Moreover, to deal with Horn equations with consequents, we use the fact
that an implication A =⇒ B is equivalent to ¬A ∨ B, which enables us to
express it in terms of Or and Not.

In terms of actual implementation detail, we use the z3 SMT solver library
of Python.

5 Horn conjecture testing

We observe that the Horn conjecture testing that can be interpreted as follows.
The hypotheses of the Horn conjectures are flattened and introduced. Their
introduction results in preprocessing on Horn equations and possibly additional
propagation of constant equalities. Constant symbols are then introduced for
both the LHS and RHS of the consequent of the Horn conjecture via flattening.
Equality of these constant symbols (under of the context of introduced hypothe-
ses) is tested in order to determine whether or not the Horn conjecture is in the
closure or not. We also note that in the Horn conjecture, a symbol not already
in the constant equations, flat equations, and Horn equations can occur.

Below is code for handling introduction of a new symbol.

def introduce new symbol ( s e l f , symb name : str ) => None :
i f symb name not in s e l f . symbol names :

s e l f . symbol names . add ( symb name )
s e l f . symbols . append ( Const ( symb name ) )
s e l f . pa r en t s [ symb name ] = symb name
s e l f . hyp po in te r s [ symb name ] = set ( )
s e l f . c on e po in t e r s [ symb name ] = set ( )
s e l f . ranks [ symb name ] = 1
s e l f . num symbols += 1

Note especially that we must update also the node pointers.

6 Testing, debugging, and maintenance

Representative hand generated example cases were hard coded in Python and
tested with hand calculated result. Those interested in this code should look
at these examples to as a guide for both understanding of the algorithm and
familiarization with the code.

Then there is code for generating random constant equations and Horn equa-
tions. They are then inputted to the algorithm of [Kap19] and the result is com-
pared with that of the SMT solver. For the extended case (arbitrarily nested
function application equivalences), it was run on 1000 randomly generated test
cases. A seed was used to guarantee determinism, which of course much eases the
debugging process. The number of random tests run can of course be changed
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per the tradeoff of extent of verification of correctness with respect to execution
time of the testing.

In implementation for instances of congruence closure computation, there are
random and fixed subclasses of a base class. Needless to say, the fixed subclass
gives the user more flexibility while the random subclass gives the power of
generation of large number of tests. In the debugging process, the author also
took randomly generated tests and hard coded the data into an object of the
fixed subclass.

We shall conclude this subsection by describing the random generation in
more detail.

6.1 Random instance generation

We begin with an explanation of the parameters in this following to snippet of
code concerning both the size of the instance and types of the expressions and
equations.

class RandomNonConstantEquations ( NonConstantEquations ) :
def i n i t ( s e l f ,

num symbols : int ,
num const eqs : int ,
num func symbols : int ,
num f la t eqs : int ,
num horn eqs : int ,
f unc a rg range : Tuple [ int ] = (1 , 5 ) ,
max func nest ing : int = 2 ,
nes t prob : f loat = 0 .5 ,
func prob : f loat=0.33) => None :

What the parameters

� num_symbols

� num_const_eqs

� num_func_symbols

� num_flat_eqs

� num_horn_eqs

actually represent are self-explanatory from their variable names. As for the
remaining (optional) arguments, each of which are assigned a default:

� func_arg_range: the minimum and maximum possible arity of the func-
tion, from the corresponding range of which we randomly choose one.

� max_func_nesting: the maximum extent to which a function expression
is nested. As an example, the nested level of f(x, y) is 0, while the nesting
level of f(g(h(x, y), z), x) is 2.
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� flat_prob: the probably that a randomly generated expression is actually
function. (If not, it is necessarily constant)

To generate a random Horn equation, we also specify a range for the possible
number of antecedents in the form of optional argument with default values.
From that range, we select the number of equations to randomly generate.

def random horn equation ( s e l f ,
min antecedents=1,
max antecedents =10):

num antecedents = random . rand int (
min antecedents , max antecedents )

antecedents = [
s e l f . g en rand eq ( ) for in range ( num antecedents ) ]

consequent = s e l f . gen rand eq ( )
return HornEquation ( antecedents , consequent )

7 Code in gitee repo

The code is now publicly available on Gitee1. The author much regards the
substance of this thesis to be mostly in the code, and this document is meant
much to lead the reader into the code or at least give the reader a sketch of that
which is achieved by the code. We hope that this code will eventually be useful
for researchers or even people in industry who deal with congruence closures, or
at least educationally valuable.

8 Conclusion

In the future, given the infrastructure already developed, we can generate test
cases of a fixed case and compare the runtimes of our implemented algorithm
and the SMT solver. Moreover, we can extend to functions with commuta-
tivity/associativity/idempotency properties, details of which are described in
Section 6 of [Kap19].
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