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1. Abstract

In this work we consider an ellipsoid E(1, b), b ∈ Q with standard symplectic structure. There
is also a complex structure on E(1, b) such that the resulting complex manifold is holomorphic
to C2. These structures are bound by Kähler potential – a function on the ellipsoid whose
hessian is a Kähler form. We try to investigate some properties of the maps which establish
this connection.

1.1. Motivation. The correspondence between symplectic and complex structures can be
viewed as one of the various signs of mirror symmetry – a phenomena which came to mathe-
matics from physics. The mirror symmetry is one of the biggest mysteries and I consider the
work on this thesis as the first tiny step towards its understanding.

2. Symplectic geometry

Definition. A pair (M,ω) is called symplectic manifold, if M is a smooth manifold and ω ∈
Ω2(M) is a closed non-degenerate 2-form.

It is immediate corollary from the definition that all symplectic manifolds are orientable and
of even dimension. Here are some basic examples:

(1) (R2n, ω0), where R2n has coordinates (x1, y1, . . . , xn, yn) and ω0 =
∑n

k=1 dxk ∧ dyk
(2) (T ∗X,ω), where X – is any smooth manifold and ω = −dα, where α is a 1-form given

by α(x,ξ) = (d(x,ξ)π)
∗ξ at point (x, ξ) ∈ T ∗X.

(3) For n > 1 there no symplectic structure on S2n since in this case H2(S2n;R) = 0.

Definition. A map f : (M,ωM)→ (N,ωN) of symplectic manifolds is called symplectomorphism
if it is a diffeomorphism and f ∗ωN = ωM .

Darboux theorem says that all symplectic manifolds of the same dimension are locally sym-
plectomorhpic. In other words, symplectic manifolds do not have local invariants (such as
curvature in Riemannian geometry). Thus to understand something about these objects we
need to study global invariants. Lagrangian submanifolds may play such role.

2.1. Lagrangian submanifolds.

Definition. Let (M2n, ω) be a 2n-dimensional symplectic manifold. A submanifold X of M
is called Lagrangian if, at each point p ∈ X, ωp|TpX ≡ 0 and dimTpX = n.

Studding Lagrangian submanifolds may help to understand the structure of ambient mani-
fold.

3. Almost complex structure

Definition. A vector space V is said to have almost complex structure if there is an endo-
morphism J : V → V such that J2 = −Id

Once V has an almost complex structure J we can define the multiplication of vectors by
complex numbers as follows:

(a+ ib)v = av + bJv
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Definition. A manifold M is said to be endowed with almost complex structure if there is a
smooth family {Jp}p∈M of almost complex structures for each TpM . The pair (M,J) is called
almost complex manifold.

3.1. Pseudo-holomorphic curves.

Definition. Let j be a complex structure on Riemannian surface Σ2.
Pseudo-holomorphic curve is a map u : (Σ2, j)→ (M,J) such that

du ◦ j = J ◦ du

As in symplectic case Lagrangian submanifolds posses some information about ambient
symplectic manifold. So psedo-holomorphic curves might be viewed likewise in almost complex
manifold.

4. Compatible structures. Kähler potential

4.1. Compatible almost complex structures.

Definition. Let (V,Ω) be symplectic vector space. A complex structure J on V is called
compatible with Ω (or Ω-compatible) if G(u, v) := Ω(u, Jv) is a positive defined inner product
on V .

Note that

J is Ω-compatible⇔
{
Ω(Ju, Jv) = Ω(u, v)
Ω(u, Ju) > 0,∀u ̸= 0

It can be shown that for any symplectic vector space (V, J) there exists Ω-compatible complex
structure J on V .

Definition. Let (M,ω) be a symplectic manifold. An almost complex structure J on M is
called compatible with ω (or ω-compatible) if g(u, v) := ω(u, Ju) is a Riemannian metric. The
triple (ω, g, J) is called compatible triple.

It also can be shown that any symplectic manifold has compatible almost complex structures.

4.2. Kähler manifolds and Kähler potential.

Definition. A Kähler manifold is a symplectic manifol (M,ω) equipped with an integrable
compatible almost complex structure. The symplectic form ω is then called a Kähler form.

Here integrability property of an almost complex structure means that some tensor N of
type (2, 0) vanishes. It can be shown that in this case our manifold is complex.

Definition. LetM be a complex manifold of compldex dimension n. A function ρ ∈ C∞(M ;R)
is strictly plurisubharmonic if, on each local complex chart (U , z1, . . . , zn), the matrix

(
∂2ρ

∂zj∂z̄k
(p)

)
is positive-defined for all p ∈ U .

Proposition 1. Let M be a complex manifold and let ρ ∈ C∞(M ;R) be strictly plurisubhar-
monic function. Then
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ω =
i

2
∂∂̄ρ

is Kähler form.

In this case ρ is said to be Kähler potential.

Example. Let M = Cn ∼= R2n with coordinates (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn). Let

ρ(z1, . . . , zn) =
n∑

j=1

|zj|2 =
n∑

j=1

zj z̄j

Then

∂2ρ

∂zj∂z̄k
= δjk ⇔

(
∂2ρ

∂zj∂z̄k
(p)

)
= Id

i.e. ρ is strictly plurisubharmonic. The corresponding Kähler form

ω =
i

2
∂∂̄ρ =

i

2

∑
j,k

δjkdzj ∧ dz̄k =
n∑

j=1

dxj ∧ dyj

is the standard form.

Kähler potential is the main object under investigation in this work.

5. Symplectic toric varieties

5.1. Moment map.

Definition. Let (M,ω) be a symplectic manifold. We say that there is a symplectic action of
Lie group G on (M,ω) if there exists a homomorhphism

ψ : G→ Symp(M,ω) ⊂ Diff(M)

Definition. Let g be a Lie algebra of Lie group G. The action ψ is a hamiltonian action on
symplectic manifold (M2n, ω) if there exists a map

µ : M → g∗

such that
(1) For each X ∈ g let

• µX : M → R, µX(p) := ⟨µ(p), X⟩
• X# be a vector field on M generated by {exp tX|t ∈ R} ⊂ G

Then
dµX = ιX#ω

(2) For all g ∈ G
µ ◦ ψg = Ad∗

g ◦ µ
The map µ is called moment map for a hamiltonian G-space (M,ω,G, µ).
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We will be interested only in the case when G = Tn, i.e. our Lie group is a torus of half
dimension of symplectic manifold. Lie algebra of Tn is Rn with trivial Lie bracket which makes
the definition of the moment map much simpler.

The Atiyah-Guillemin-Sternberg theorem tells that for G = Tm the image µ(M) of the
moment map is a convex polytope which is called moment polytope.

Even apart from this observation we know that the case G = Tn is particularly interesting
since toric topology arises frequently in mathematics. This leads us to the following definition.

Definition. A 2n-dimensional symplectic toric manifold is a compact connected symplectic
manifold (M2n, ω) equipped with an effective hamiltonian action of an n-torus Tn and with a
corresponding moment map µ :M → Rn.

It turns out that for the symplectic toric manifolds the moment polytope is of very special
type.

5.2. Delzant polytopes.

Definition. A Delzant polytope P ⊂ Rn is a convex polytope satisfying:
• it is simple, i.e. there are n edges meeting at each vertex;
• it is rational, i.e., the edges meeting at the vertex p are rational in the sense that each

edge is of the form p+ tui , t ≥ 0, where ui ∈ Zn;
• t is smooth, i.e., for each vertex, the corresponding u1, . . . , un can be chosen to be a
Z-basis of Zn.

There is remarkable theorem of Delzant.

Theorem 1 (Delzant[3]). Symplectic toric manifolds are classified by Delzant polytopes. More
specifically, there is the following one-to-one correspondence

{Symplectic toric manifolds} ←→ {Delzant polytopes}
(M2n, ω,Tn, µ) 7−→ µ(M)

6. Kähler potential for toric varieties

It turns out that symplectic toric varieties apart from symplectic structure also posses com-
patible complex structure and then they are Kähler manifolds. Moreover, the Kähler potential
can be written explicitly in terms of Delzant polytope corresponding to this manifold. Let us
make it more precise.

6.1. Guillemin’s theorem. A Delzant polytope P can be described by a set of inequalities of
the form ⟨x, vr⟩ ≥ λr, r = 1, . . . , d, where d is the number of faces of Delzant polytope P , each
vr being a primitive element of the lattice Zn ⊂ Rn and inward-pointing normal to the r-th
(n − 1)-dimensional face of P . Consider the affine functions ℓr : Rn → R, r = 1, ..., d, defined
by

ℓr(x) = ⟨x, vr⟩ − λr
Then x ∈

◦
P if and only if ℓr(x) > 0 for all r and hence the function
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gP (x) =
1

2

d∑
j=1

ℓr(x) log(ℓr(x)) (♡)

is smooth on
◦
P .

Theorem 2 (Guillemin[2]). The "canonical" compatible complex structure on toric symplectic
manifold (M2n, ω) is given in symplectic coordinates (x, y) of

◦
M ∼=

◦
P × Tn by

JP =

(
0 −Hess(gP )−1

Hess(gP ) 0

)
7. Problem statement

In this work we consider the ellipsoid

E(1, b) =

{
(z1, z2) ∈ C2||z1|2 +

|z2|2

b2
<

1

π

}
with standard symplectic structure given by ω = dx1 ∧ dy1 + dx2 ∧ dy2 and standard torus
action:

(t1, t2) · (z1, z2) = (t1z1, t2z2)

In this case P is just right triangle with legs 1 and b ∈ Q. While symplectic structure is
standard the complex structure is tricky and it can given in various ways by Kähler potential.

In the previous section we have seen the explicit formula for Kähler potential for toric
symplectic varieties. Let us note that the function

Φ:
◦
P −→ R2

x 7−→ ∇xgP

establishes a diffeomorphism between
◦
P and R2. Moreover, regarded as a diffeomorphism

between
◦
P ×T2 with symplectic structure and R2×T2 with complex structure it respects both

of them. It easy to see that the matrix dΦ is self-adjoint.

Problem. Given a diffeomorhism Φ between symplectic domain and complex domain such
that it is equivariant with respect to torus action. Then show that dΦ is self-adjoint.

It turned out that the solution of the problem is written in the work of Miguel Abreu ([2]).
Namely, he proves the following theorem.

Theorem 3. Let (MP , ωP , µP ) be the toric symplectic manifold associated to a Delzant polytope
P ⊂ Rn, and J any compatible toric complex structure. Then J is determined by a potential
g ∈ C∞(

◦
P ) of the form

g = gP + h

where gP is given by (♡), h is smooth on the whole P , and the matrix G = Hessx(g) is positive
definite on

◦
P .
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Proof. •At first let us understand that (MP , JP , µP ) is equivariantly biholomorphic to (MP , J, µP )
for any ωP -compatible almost complex structure J .

For every point p ∈MP there is an open invariant affine neighbourhood Up which is equvari-
antly biholomorphic to Cn/2πiZk, where p belongs to k-face for 0 ≤ k ≤ n. These neigbour-
hoods exist due to the fact that there are 2n holomorphic vector fields (η1, . . . , ηn, JPη1, . . . , JPηn)
on (MP , JP ) and (η1, . . . , ηn, Jη1, . . . , Jηn) on (MP , J), where ηk are induced by the Hamilton-
ian torus action. Integrability of JP and J and Tn-invarince implies that these vector fields
commute with each other. The ωP -compatibility condition gives their linear independence on
the interior of MP .

Then for inner points there is a equivariant biholomorphism to Cn/2πiZn. The case when p
belongs to some k-face is completely determined by the combinatorics of P .

Once we understood how the neighbourhood for every point looks like we can patch them
together. The patching is also determined by combinatorial structure of P . The gluing between
the neighbourhood of p laying in k-face for which the corresponding inward pointing normal
vectors form a part of a standard basis and the neighbourhood of inner point is given by

Cn/2πiZn −→ Cn/2πiZk

(z1, . . . , zn) 7−→ (z1, . . . , zk, e
zk+1 , . . . , ezn)

• Now let ϕ : (MP , JP )→ (MP , J) be such equivariant biholomorhpism. From the construc-
tion above it is clear that ϕ can be chosen to be the identity in cohomology. Thus ωJ = ϕ∗

JωP

and [ωP ] = [ωJ ] ∈ H2(MP ). Then the basics of Hodge theory says that there exists Tn-invariant
function fJ ∈ C∞(MP ) such that

ωJ = ωP + 2i∂∂̄fJ ,

where the ∂- and ∂̄-operators are defined with respect to JP .
Explicit calculation and Theorem 2 gives

ωJ =
n∑

j,k,l=1

∂

∂xj

(
(gP )

kl∂(fP + fJ)

∂xl

)
dxj ∧ dyk =: 2i∂∂̄fsum (♢)

where gP is given by (♡) and fsum = fJ + fP and fP is Legendre transform of gP :

fP (x) =
1

2

d∑
r=1

(λr log ℓr(x) + ⟨x, vr⟩)

where vr and λr are defined in 6.1.
• From (♢) it is easy to understand that the transformation

x̃ = ϕ̃(x) = x+G−1
P ·

∂fJ
∂x

gives a change of coordinates ϕ̃ : P → P corresponding to ϕ : MP → MP . The compatibility
condition says that ωJ(·, JP ·) is a Riemannian metric which implies that (dϕ̃)G−1

P is symmetric
and positive defined on the interior of P and det(dϕ̃) > 0 on P . It is now immediate that for
p belonging to the r-th (n− 1)-face of P
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⟨dpϕ̃(vr), vr⟩ > 0 (♣)
• Legendre duality between the potentials corresponding to symplectic and complex struc-

tures can be written as

f(x̃) + g(x̃) =
n∑

k=1

x̃k
∂g

∂x̃k
(x̃)

Knowing that f(x̃) = fsum(x) and J = ϕ̃∗JP we can rewrite it as

g(x̃) =
n∑

k=1

x̃k

(
∂gP
∂xk
◦ ϕ̃−1

)
(x̃)− (fP ◦ ϕ−1)(x̃)− (fJ ◦ ϕ−1)(x̃) (♠)

• The formula above will help us to understand that h = g − gP is smooth on the whole P
which is equivalent to the smoothness of h ◦ ϕ̃. It is not hard to compute that

h(ϕ̃(x)) =
1

2

d∑
r=1

(
⟨ϕ̃(x)− x, vr⟩+ ℓr(ϕ̃(x)) log

(
ℓr(x)

ℓr(ϕ̃(x))

))
− fJ(x)

So we only need to prove that ℓr(x)

ℓr(ϕ̃(x))
are positive and smooth on the whole P . This property

is evident for the interior of P . If p belongs to the r-th (n− 1)-face then by (♣) we have

dp(ℓr ◦ ϕ̃)(vr) = dpℓr(dpϕ̃(vr)) = ⟨dpϕ̃(vr), vr⟩ > 0

The map ϕ̃ preserves the faces of P and then ℓr(ϕ̃)(x) = ℓr(x) · sr(x), where sr is some smooth
function. Simple computation shows that sr is positive and then

ℓr(x)

ℓr(ϕ̃(x))
=

1

sr(x)

smooth and positive as desired. □

7.1. Further plan. Since for a given toric symplectic manifold we know everything about its
compatible complex structures, we can study subobjects of these to structures: Lagrangian
submanifolds and pseudo-holomorphic curves.

The idea is the following. In Delzant polytope we consider some set (namely a tropical curve)
and then we want to lift in our manifold in two ways: one way to a Lagrangian submanifold
and the other to a pseudo-holomorhic curve.

There is a hope that it will help us to develop the new method for studding toric symplectic
manifolds.
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