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Abstract

The present thesis is devoted to improving the performance of SAT solvers us-

ing machine learning methods, particularly, improving the branching heuristic.

Current state-of-the-art SAT solvers use deterministic and easily interpretable

heuristics, such as VSIDS, whereas one of the promising approaches is to use a

deep neural network for this job. The aim of this research is to study the imple-

mentation of the popular deep reinforcement learning approach called Graph-Q-

SAT and to improve its performance by making several changes to the original

implementation. In particular, the main goal is to reduce the amount of branch-

ing decisions and the wall-clock time required to solve a SAT instance, which

allows for more efficient implementation of SAT solvers in industrial-scale sce-

narios. It is achieved by embedding the neural network in the MiniSat solver

code using the C++ PyTorch API, which was not done in the original research.

It is shown that our implementation takes on average almost 4 times less to solve

SAT instances from the Uniform Random-3-SAT distribution and outperforms

Kissat, a solver more advanced than MiniSat. Furthermore, additional experi-

ments are conducted which show the extent to which our modification improves

the performance of the SAT solver.
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1. Preliminaries & Subject Area Research

1.1. Introduction. The Boolean satisfiability problem (SAT) is a paramount problem of com-

puter science that impacts various areas of knowledge, including but not limited to software

and hardware verification, circuit design, automatic proof checking and cryptography. This is

an NP-complete problem [9], which means that any problem from the NP class can be reduced

to it in polynomial time, and the problem itself is assumed to be computationally hard and

not having a straightforward algorithm that would solve it in a reasonable amount of time in

general case. In spite of this, conflict-driven clause learning solving algorithms achieve very

prominent results in reducing the time required to solve an instance of the SAT problem by

employing various heuristics.The branching heuristic that decides which variable to assign a

value during each iteration of the exhaustive search is one of the crucial ones.

In the Graph-Q-SAT [17] paper, a team of NVIDIA and the Oxford university researchers

proposed to improve the widely used Variable State Independent Decaying Sum (VSIDS) heuris-

tic [18] by using a deep neural network, particularly a graph neural network, to “communicate”

with the MiniSat solver via a GYM [7] environment (implemented in Python) and predict the

next variable to branch on during each step based on the current state of the problem. In many

cases this approach decreases the number of branching decisions required to solve an instance

of the SAT problem as compared to the original backbone solver MiniSat 2.2 [10]. However,

as stated by the researchers themselves, it did not show any substantial results in improving

wall-clock time, which is a key factor in industrial-scale settings.

In the proposed approach named Graph-Q-SAT++ the implementation of Graph-Q-SAT is

studied and several changes are suggested in order to improve the results achieved in the original

research. First of all, the deep neural network is embedded in the MiniSat 2.2 solver itself using

the C++ PyTorch API and, secondly, experiments with the architecture of the network are

conducted in order to shave off some computational time while preserving the quality of its

predictions.

The structure of this work. In Section 1 of this thesis we state the Boolean satisfiability

problem, provide an insight into CDCL solvers, a class of algorithms commonly used to solve

the SAT problem, and study various approaches to increasing the SAT solving efficiency via

machine learning methods. Particularly, in Section 1.4 the Graph-Q-SAT heuristic is studied

and the relevant results obtained by the authors of the Graph-Q-SAT paper are described in

detail. Then throughout Section 2 the architectures of Graph-Q-SAT and Graph-Q-SAT++

are compared and our work is described, which was done to implement Graph-Q-SAT++ and

compare its efficiency in terms of wall-clock time with Graph-Q-SAT, plain MiniSat 2.2 and

one of the state-of-the-art solvers Kissat. In Section 2.4 we discuss the applicability of our

implementation. Section 3 concludes the paper.

1.2. Boolean Satisfiability Problem & SAT Solvers. The Boolean satisfiability problem

(often abbreviated SAT) is a problem of determining whether there exists a set of assignments

for variables in a Boolean formula that would satisfy it. In other words, it poses a task of

assigning the variables in a Boolean formula values TRUE or FALSE in such a way that the

formula evaluates to TRUE, or proving that there is no such assignment.



6

The Boolean formula in conjunctive normal form (CNF) is built from Boolean variables,

conjunctions (also denoted by AND, ∧), disjunctions (also denoted by OR, ∨) and negation (also

denoted by NOT, ¬) operations. A Boolean formula in conjunctive normal form is essentially a

conjunction of a number of clauses (or a single clause), each of which is a disjunction of Boolean

literals, each literal being a variable or its negation (or a single literal). When the satisfying

assignment exists we say that the formula is satisfiable, or SAT for short, and when it does

not we say that it is unsatisfiable, or UNSAT. Example instances of the Boolean satisfiability

problem can be seen in Figure (1).

(¬x1 ∨ ¬x2) ∧ (x1 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x4)

{SAT; x1 = 0, x2 = 1, x3 = 1, x4 = 0}

(¬x1) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ ¬x3)

{UNSAT}

Figure 1. Examples of Boolean formulae with verdicts.

On computers, Boolean formulae in CNF are commonly stored in DIMACS format. The

text file containing a formula in this format consists of several lines, each line being one of the

following:

• p cnf <NUMBER OF VARIABLES> <NUMBER OF CLAUSES> — the problem line (only one

per problem, other problem formats such as sat may be put instead of cnf, of which

the parsing algorithm should take notice),

• c <ANY ASCII TEXT> — the comment line, which gives human-readable information

and should not affect the behaviour of the parsing algorithm,

• <VARIABLE OR ITS NEGATION 1> ... <VARIABLE OR ITS NEGATION N> 0 — the

clause line, each value in which (except the final 0 denoting the end of the clause)

corresponds to a literal present in the clause. For arbitrary ordinal number i of the

variable, such value equals i if the literal is equal to this variable without negation, and

−i otherwise

and possibly a line containing a single % or 0 sign, explicitly denoting where the formula ends.

The DIMACS representations of formulae from Figure (1) are presented in Figure (2).

One of the current standard methods of SAT solving is using conflict-driven clause learning

algorithms, or CDCL solvers for short. During each of its iterations a CDCL solver decides

on a variable to pick and assigns it a binary value (i.e. TRUE (1) or FALSE (0)). This step

in usually referred to as branching. Then during propagation the solver tries to simplify the

1 p cnf 4 4

2 -1 -2 0

3 1 3 -4 0

4 2 -3 4 0

5 -4 0

1 p cnf 4 4

2 -1 0

3 1 2 0

4 -2 3 0

5 1 -3 0

Figure 2. Boolean formulae in DIMACS format.
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formula and builds an implication graph that holds information about the causal relationships

between assignments. If a conflict emerges during propagation, the implication graph is used to

infer new clauses and backtrack to the decision after which the newly inferred clause becomes

unit, i.e. having a single unassigned literal. This core heuristic is otherwise known as non-

chronological backtracking. Various heuristics are also implemented in CDCL solvers, such

as:

• pre-assigning literals that appear in the formula only in one polarity (always with or

without the negation operator),

• introducing priority on learned clauses and forgetting clauses with lower priority after

the amount of learned clauses becomes too large,

• using a separate algorithm dedicated to picking the variables to branch on

and so on with numerous modifications that improve the performance of the solver in some

scenarios. For example, at the time of writing the VSIDS [18] heuristic is one of the most

popular branching heuristics among its various modifications. This heuristic keeps an activity

value for each variable and picks a variable with the maximum activity value during branching.

The main idea of VSIDS is that the activity value of a variable is increased additively each

time it is involved in a conflict and multiplicatively decreased at regular step intervals.

1.3. Machine Learning for SAT.

1.3.1. Portfolio Algorithms. One of the earlier ideas was to use machine learning to perform an

algorithm selection task, i.e. train a model that would predict what SAT solver to choose for a

SAT instance. This is the core idea of SATzilla [25]: a portfolio-based algorithm that employs

machine learning models to predict the runtime of a solver on a given SAT instance based on

the hand-crafted features extracted from the instance. The estimated runtime values are used

to select a subset of solvers that should be ran to solve the problem. Despite heavily relying

on the power of solvers it uses, SATzilla combines them into a considerably more effective

algorithm than each of the solvers is by itself, and by doing so it won SAT Competition Awards

e.g. in 2007 and 2009.

Loreggia et al. [19] went further and used a deep neural network to construct the features

of a SAT instance not by hand, but by converting a SAT instance given in a text format

into a grayscale square image, which is afterwards fed to a convolutional neural network that

predicts which solver should be applied. Even though such approach is very unusual, the goal

of this study was straightforward: to automate the feature selection process that, if performed

manually, requires a tremendous amount of human expertise. Although their idea did not yield

an algorithm which would set a new state of the art, their implementation did improve the

set baseline of choosing the solver which on average performs best on the problems from the

training dataset and executing it on all of the problems from the testing dataset.

1.3.2. Graph Neural Networks: Architectures and Implementations. To understand approaches

to SAT solving featured in this section and further in the present thesis, it is necessary to

determine the format for Boolean formulae to be presented in which is interpretable and keeps

all the important information about it at the same time. First of all, the problem may be of

arbitrary size, making the application of neural architectures which perform inference on input
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of fixed size challenging from the very beginning. For example, convolutional neural networks

which are very popular and have found their application in a myriad of tasks, are inapplicable

to this problem. Moreover, the structure of the problem may change drastically in terms of the

amount of clauses during the process of finding the solution, as we keep adding learned clauses

after each conflict. Finally, the chosen structure should be permutation-invariable due to the

basic logic of two instances being equivalent if one of them can be turned into another simply

by rearranging clauses in the formula or literals within the same clauses and by permuting

the variables. With this, recurrent neural networks, which are otherwise very commonly used

to solve sequence processing tasks, may face a serious struggle, as well as other architectures

working with data samples of complex structure, e. g. recursive neural networks [22].

Indeed, a common way to represent an instance of a SAT problem, which allows to address

the specifics listed above, is a graph. More precisely, we may build an undirected bipartite

graph having a node for every literal, a node for every clause and an edge between every literal

and a clause that it can be found in. An approach to building a neural architecture for training

and performing inference on graph-structured data is described below.

Graph Neural Network. We denote the set of nodes (variables) by V and the set of edges

by E, then we denote the i-th graph node by vi and the edge connecting the i-th and j-th

nodes by eij. Now, suppose that we are given a graph with N types of nodes and M types of

edges. The first step is to look up an embedding (for our purposes, it is enough to think of

it as a learnable vector representation) of the corresponding type for each node vi, which we

denote by Vi, and for each edge eij, which we denote by Eij. This can be simply performed

by multiplying the matrix of all embeddings with a one-hot representation of the node or edge

type (the matrix dimensions are Dv × N for nodes and De × M for edges, where Dv and De

are the lengths of embeddings for nodes and edges correspondingly). Also, during training we

learn a global embedding U , the purpose of which will be explained later in this section. Then

we apply a graph network layer as follows:

• update the embedding of each edge eij as follows

Enew
ij = fE(U , Eold

ij ,Vold
i ,Vold

j )

• update the embedding of each node vi as follows

Vnew
i = fV

(
U ,Vold

i , ρE→V({Enew
ji | eji ∈ E})

)
• update the global embedding U as follows

Unew = fU
(
Uold, ρE→U({Enew

jk | ejk ∈ E}), ρV→U({Vnew
j | vj ∈ V })

)
The message passing algorithm is very flexible, because it leaves room for selection of update

functions fE , fV , fU and aggregation functions ρE→U , ρE→V , ρV→U with the only restriction of

these functions having to be differentiable, however, usually multi-layer perceptrons (MLPs) are

chosen as the update functions and the element-wise sum and the element-wise mean functions

are used as the standard gather functions. Moreover, in order for it to be possible to reuse

the same graph network layer multiple times, the original embedding often shares its length

with the updated one. Now, from the formulae featured in the steps of the message passing
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algorithm, the importance of adding the global embedding U can be observed. Particularly, if

we remove U from the right-hand side of the edge update and the node update formulae, it

will only be possible to pass information between neighbouring nodes and edges. Therefore,

to carry the signal between every pair of nodes and every pair of edges an amount of layers

more or equal to the width of the entire graph is required, which at least for some problems

is unacceptable in terms of computation time. In a sense global embedding may be considered

as an extra entity, which neighbours all nodes and edges of the graph, offering a shorter path

to carry the signal through. Nevertheless, using this workaround is not imperative for every

problem. The resulting node, edge and global embeddings can then be used for node-level,

edge-level and global classification and regression tasks by applying a separate network that

is dedicated for solving the specific target problem. The present architecture can be modified

in a variety of ways, for example, the first two steps of the message passing algorithm may be

swapped around, still yielding an algorithm with a permutation invariant result.

All in all, the flexibility and graph-like nature of message passing networks allows them to

be applied to different tasks in various areas of knowledge including medicine [1], bioinformat-

ics [29], social network analysis [11, 23] and even image processing (for instance, human-object

interaction [20] and pose estimation [26, 28]).

Returning to the area of SAT solving, an implementation of a message passing neural

network named NeuroSAT [21] is also among approaches to build an end-to-end ML-based

solver. It is trained from a single bit of supervision, which encodes whether the instance is

satisfiable or not. Such network trained on a distribution of SAT instances possesses multiple

noteworthy qualities: the solution can be almost always decoded from the activation values of

the network, it can generalize to larger and more difficult problems simply by increasing the

number of message passing iterations, or even to entirely different domains, and it can also

look for certain contradictions in the SAT problem to guess UNSAT with a similar property of

allowing to find the variables involved in the contradiction from the activation values of the net-

work, which allows for more efficient construction of a resolution proof, when the contradiction

involves a small subset of variables. In Figure (3) it can be observed how the activation values

for each variable change during the execution of message passing. After the required amount

of message passing iterations is performed, the mean of the “votes” of the literals is calculated

by applying a separate MLP to final embeddings of nodes that correspond to literals, and it

is treated as a logit of the predicted satisfiability of the instance. The model parameters are

trained by minimizing the binary cross-entropy loss between the predicted satisfiability and the

true label.

Despite the novelty of such approach, the authors saw “no obvious path” to improving the

state of the art with this architecture. The main problem of using an end-to-end SAT solvers

based entirely on machine learning methods is understandable: as any machine learning model,

such solvers are uninterpretable, and in practice leave room for making mistakes, which means

that they do not solve the problem per se.

However, instead of building a whole SAT solver from scratch, one can modify an existing

solver by implementing an ML-based heuristic, which would only interfere with the

solution finding process and not with the way the verdict is carried out. Such heuristic was
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Figure 3. An image from the NeuroSAT paper, showing a sequence of the
activation values of the message passing network as the iteration number increases
from left to right. Each cell corresponds to a certain variable or its negation,
colors correspond to the votes of literals on whether the instance is satisfiable
(blue represents negative, red represents positive and white means zero), while
higher saturation means higher confidence.

developed by the authors of the NeuroCore [6] paper. NeuroCore is a branching heuristic

that uses a NeuroSAT-inspired model to predict how likely is each variable in the formula to

be present in an unsatisfiable core, and periodically uses these values instead of the activity

values of VSIDS. The main assumption of this approach is that it is beneficial to branch on

variables that have a high chance of being present in an unsatisfiable core. Several widely

used solvers substantially increased their performance on the SATCOMP-2018 [15] dataset

after being modified to query NeuroCore. Moreover, if trained and tested on a dataset of

formulae from a specific distribution, NeuroCore yields even better results. This quality makes

it more likely for this heuristic to find an application in an industrial environment, since in

numerous areas we indeed have to deal with specific Boolean formulae, which occur as a result

of translating a certain combinatorial task, e.g. graph colouring, into SAT.

Authors of NeuroComb [24] expanded the idea of NeuroCore and devised an ML-based heuris-

tic that uses a graph neural network to predict “important variables” and “important clauses”

once before the solution process begins and use these predictions to guide the solver, the im-

portant variables being of two types: those that appear in unsatisfiable cores and those that

have the same value among all satisfying assignments, and important clauses being those which

participate in conflict resolutions more often than others. Finding important variables and

important clauses are both treated as node classification tasks, one on variable nodes and the

other on clause nodes respectively, and separate GNNs are trained and used to perform the two

tasks.

Han in their research [13] introduced the glue variable prediction and glue level minimization

heuristics, implemented via a trained graph neural network. The main idea of both heuristics

revolves around a key feature of the Glucose [2] series of solvers, that introduces a value called

“glue level” for every clause learnt during conflict analysis, which is used to reflect the quality

of a clause. The lower the glue level of a clause is, the more important it is for the solver,

and if the glue level is lower than 2, it is never removed from the learnt clauses database (such

clauses are called “glue clauses”). Both heuristics were implemented into a state-of-the-art

solver CaDiCaL [3, 4, 5], and the first heurstic was trained and tested on problems used in
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the the SAT Competition1 while the second was trained and tested on a dataset of SHA-1

preimage attacks in the form of Boolean formulae. The results of both tests show an increase

of the efficiency of the solver.

Although the results shown in the studies of these heuristics are positive, their effectiveness

relies on already made assumptions about variables or clauses of certain types being more

valuable that others, and GNNs are just used as a means to implement them. Further in

the thesis, we consider a broader approach that solves the problem of obtaining a branching

heuristic more straightforwardly — by training a graph neural network that actually predicts

the variable to branch on and the value that should be assigned to it.

1.4. Graph-Q-SAT: The Original Approach. As seen in the previous section, effective

SAT solving is a very challenging task, the base solution of which relies on performing a time-

consuming exhaustive search among all possible solutions, and many approaches have been

tried to advance the current state-of-the-art for this problem, among which machine learning

methods have shown themselves to be promising. However, machine learning models (when

directly applied to the task) are known to be notorious for their “probabilistic” nature, in

other words, one cannot guarantee that that an end-to-end SAT solver implemented via a deep

neural network, for example, can yield a correct verdict in every single case despite possibly

being more time efficient than deterministic models.

Therefore a question arises of the possibility of implementing ML-based heuristics in existing

solvers that will optimize the solution process of a solver in some cases, at the same time keeping

it complete, i.e. always yielding a correct verdict.

Looking for an answer to this question, in this section we look at one such approach and

try to improve it (Section 2) in terms of wall-clock time, which is one of the most important

industrial-scale criteria.

1.4.1. Idea and Implementation Details. In Section 1.3.2 we have taken a look at some examples

of ML-based branching heuristics, which do not make an impact on the verdicts carried out by

the solver they are implemented in. In spite of this, they help the solver during the solution

process by hinting it which variables it should focus on during branching steps.

A natural approach for building a branching heuristic that utilizes machine learning methods

is to consider the problem of choosing a branching heuristic as a reinforcement learning (RL)

problem. An RL problem is often posed as follows: having a set of states S, a set of actions A, a

reward function R(s′|s, a) and the transition probability function P(s′|s, a), where s, s′ ∈ S, a ∈
A, we wish to obtain an optimal policy π(a|s) that would maximize the expected discounted

cumulative reward R =
∞∑
t=0

γtrt, where γ ∈ [0, 1) is a discounting factor and rt = R(st+1|st, at)

is the instantaneous reward after performing the t-th action. Here and thereafter the triple

(s, a, s′), just like the triple (st, at, st+1) denotes the current state, the action that was or is

to be taken and the resulting state (the sequence may be continued by either a′, s′′, a′′ or

st+1, st+2, at+2 and so on).

In case of creating the environment for a branching heuristic a state s ∈ S represents the

current state of the solver, i.e. currently assigned variables, given and learnt clauses, and other

1http://www.satcompetition.org/

http://www.satcompetition.org/
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information, some of which may be exclusive to a certain implementation of the solver. A set

of actions A consists of all possible decisions the heuristic may guide the solver with, which are

given the assignment TRUE or FALSE for any unassigned variable. Since we demand that

the heuristic guides the solver to make its verdict in the least amount of decisions possible,

we should “punish” it more for longer solving sessions, therefore our reward function R yields

a constant negative reward for reaching any non-terminal state, i.e. the state from which a

verdict cannot be deduced without performing more branchings. Otherwise it yields a reward

of zero. When describing the transition probability function P it should be noted that SAT

solvers akin to MiniSat [10] are deterministic algorithms, which after picking the same variable

during branching in the same state will always lead to the exact same resulting state. Therefore

in case of such solvers the distribution is degenerate (however it is not guaranteed in a broad

sense).

Even having a certain tuple (S,A,R,P , γ) the question still remains how do we find an

algorithm to “train” an agent to act in the given environment. The authors of Graph-Q-SAT [17]

decided to apply DQN, a Q-Learning algorithm which involves training a deep neural network

to infer the action that would yield the largest expected reward in the current state. More

formally, Q-Learning involves approximating a function Q∗, which estimates the discounted

sum of rewards after performing action a in state s and acting in accordance with current

optimal policy afterwards. The optimal policy itself is achieved by choosing actions which yield

the largest expected reward, according to the Q∗ function. This can be rewritten in the form

of a Bellman equation

Q∗(s, a) = EP
(
R(s′|s, a) + max

a′
Q∗(s′, a′)

)
and the optimal policy π∗ being a degenerate distribution with support only in action a∗, which

yields the maximum value of Q∗.

The neural network is trained by minimizing a temporal difference loss L(θ) =
(
Qθ(s, a) −

(r + γmaxa′ Qθ′(s
′, a′))

)2
, where Qθ is a Q-function approximated by a trained network and

Qθ′ is approximated by a network with exactly the same architecture with fixed parameters,

which are periodically updated by copying the parameters from Qθ. In order to expose the

trained model to more problems more effectively, the length of a training episode on each SAT

instance is limited to a constant threshold, after which the training algorithm moves on to the

next problem even if the current problem is still not solved.

The representation of SAT instances in graph form is very similar to one discussed in section

1.3.2 with some modifications, e.g. instead of a node for each literal there is a node for each

variable, and the nodes representing variables and nodes representing clauses are connected

by two types of edges, depending on whether the variable is negated in the clause or not.

An example of such graph can be seen in Figure (4). It is important to note that the graph

representation only includes currently unsatisfied clauses, in which only unassigned variables

occur. This is done to rule out any possibility of the heuristic picking an already assigned

variable. Also, the global embedding of an encoded SAT instance always holds a scalar zero

value.
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Figure 4. A variable-clause graph represen-
tation of the formula (x1∨x2)∧(¬x2∨x3) used
in Graph-Q-SAT. For clearer understanding,
the clauses correspond to the nodes named
c1 and c2. Two numbers near each node and
on every edge show the one-hot vector that is
used to encode their types.

Figure 5. The values of the Q-function
approximated by the deep neural network.
There are two values that correspond to
each variable node: the estimated rewards
for choosing it to be TRUE or FALSE.

The architecture of the Q-function approximating model follows an encoder-core-decoder

principle. The model is comprised of three graph neural networks, and its basic idea is somewhat

similar to that of a recurrent neural network. The first model, which is the encoder, is an

independent graph network, i.e. it performs inference on all embeddings as they are without

message passing. The second model, or the core, performs multiple inferences with message

passing and gathers the output of the encoder and its own current output before each message

passing step: a trick very similar to adding residual connections in deep neural networks first

featured in the ResNet [14] architecture. After a certain amount of message passing iterations,

the final output of the core is fed to the decoder, which makes two predictions for every node

in the graph. However, only nodes that correspond to variables are considered and the two

predictions for each of them are interpreted as the estimated rewards for assigning the TRUE

or FALSE Boolean value to the variable that the node represents. Figure (5) shows a graphical

example of inferred Q-function values.

1.4.2. Experimental Results. Various experimental results can be found in the original Graph-

Q-SAT paper, most of which utilize Median Relative Iteration Reduction (MRIR) as the main

performance metric. MRIR equals the median of ratios of the amount of branchings

performed by plain MiniSat against that of the version of MiniSat which queries

Graph-Q-SAT over all SAT instances featured in a certain dataset.

According to the MRIR metric, the proposed approach does improve the efficiency of the

solver upon the modification of VSIDS used in MiniSat in terms of the required amount of

branching decisions. Moreover, the trained model performs well on datasets containing both

SAT and unSAT problems and problems with more variables and clauses, albeit sampled from

a similar distribution, as seen in Figure (6).

In the paper it is stated that decisions made by Graph-Q-SAT result in more propagations

and it is shown that the exposure of the problem as a whole to Graph-Q-SAT plays a huge

role in this as opposed to VSIDS having to warm up before its activity values actually begin

to effectively guide the solver. The experiments conducted to show this involve varying the
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Figure 6. A table from the Graph-Q-SAT
paper showing the mean, minimum and max-
imum MRIR values over five models trained
on problems from the SAT 50-218 dataset of
SATLIB [16] benchmark. All the featured
datasets belong to the same benchmark. For
the evaluation on SAT 50-218 dataset, a sep-
arate subset of problems was used.

Figure 7. A plot from the Graph-Q-SAT
paper depicting the relation between the
amount of starting iterations and MRIR.
Models trained on the SAT 50-218 dataset
were used. The graph shows the mean MRIR
value, whereas the shade represents the range
between the minimum and maximum values
of the metric.

amount of times Graph-Q-SAT is queried in the beginning of the solution process and reducing

it to extremely low values. As seen in Figure (7) even if queried for as few as 10 times Graph-Q-

SAT helps to achieve amounts of decisions several times smaller than the amount plain MiniSat

makes.

Although these results seem very promising, it is worth bearing in mind that the MRIR

metric is used in a proof-of-concept setting and does not reflect the actual demands of the

industry. As the authors of the original paper state themselves, more work is required for

Graph-Q-SAT to be applied in an industrial setting.

1.5. Research Objectives. Considering the results of Graph-Q-SAT shown in Section 1.4.2,

the main goal of this study is to translate the reduction of the amount of branching decisions into

a reduction in the wall-clock time taken for the SAT solver to prove (or disprove) satisfiability

for SAT problems by making our own improved version of the solver which implements the

Graph-Q-SAT heuristic, and study further possibilities of making it more time efficient. In

order words, the present thesis is devoted to implementing the means necessary for it to be

possible to utilize Graph-Q-SAT in an industrial-scale setting. In Section 2 a re-envisioned

version of Graph-Q-SAT, named Graph-Q-SAT++, is presented, which is aimed at reducing

the wall-clock time needed to solve the SAT problem.
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Dataset Mean MRIR Lowest MRIR Highest MRIR

SAT 50-218 2.59 2.31 2.7

SAT 100-430 3.67 2.92 4.75

SAT 250-1065 4.65 4.21 5.09

unSAT 50-218 2.26 1.99 2.48

unSAT 100-430 2.25 1.89 2.58

unSAT 250-1065 1.39 1.21 1.61

Table 1. Our reproduced values of the MRIR metric of Graph-Q-SAT. For
evaluation, 100 problems were randomly selected from every dataset. The present
results for the SAT 50-218 dataset are for a separated testing subset of problems.

2. Graph-Q-SAT++: Re-envisioning a Popular Approach

2.1. Reproducing the Original Results. Before moving on to describing our process of

embedding the Graph-Q-SAT heuristic into an existing solver and conducting the experiments

required to show the improvements in efficiency, a starting point should be set by reproducing

those results from the Graph-Q-SAT paper, which are important to our research.

First, we obtain the datasets from the SATLIB benchmark2 used in the original study and

important to our studies, namely the Uniform Random-3-SAT datasets (which possess an im-

portant quality of having the ratio of the amount of clauses to the amount of variables close

to 4.26 to 1, making it harder for the solver to make a verdict for problems from them [8]),

and clone the Graph-Q-SAT repository3. We train the models the same way it was done in

Graph-Q-SAT by using the train.sh script provided and only changing the arguments that

correspond to the directories of the training and validation datasets, trained models, etc. Then

we perform model selection on all the models that we saved during the execution of the training

script by evaluating them with the evaluate.sh script and choosing the one that showed the

best results, according to the MRIR metric (see Section 1.4.2). The best model is then evaluated

on separate testing datasets using the same evaluation script and the MRIR value it returns is

considered the overall metric of the training run. In the same fashion as in Graph-Q-SAT, five

training runs are performed. The resulting MRIR values are presented in Table (1).

Afterwards, we obtain a distribution of the Minisat 2.2 solver from the MiniSat website4, build

it according to the instructions and launch execute it on problems from the same testing sets.

We save the computational time required for MiniSat to solve every problem and compare it to

the time measurements provided by the Graph-Q-SAT evaluation script. The time comparison

graph is shown in Figure (8).

Since the authors of the original research did not provide any information about the technical

specifications of the machine their tests are ran on, yet the MiniSat solver is fairly light and

memory efficient and the trained model is light in terms of VRAM usage, we speculate that

2https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
3https://github.com/NVIDIA/GraphQSat
4http://minisat.se/MiniSat.html

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://github.com/NVIDIA/GraphQSat
http://minisat.se/MiniSat.html
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Figure 8. A graph similar to one featured in the Graph-Q-SAT paper showing
the amount of time it takes for Graph-Q-SAT and MiniSat to solve problems from
the SATLIB Uniform Random-3-SAT datasets. It can be observed that Graph-
Q-SAT shows little to no improvement over MiniSat in terms of wall-clock time
and shows a significant disadvantage in comparison with MiniSat with disabled
restarts.

it would be enough for their tests to be ran on a personal computer with a somewhat modern

GPU. In our case the total time taken by Graph-Q-SAT is about 20% less than the total time

featured in the original research. Because we ran the tests on a personal computer with rather

high performance (Intel Core i5-9600K CPU & NVIDIA RTX 3070 GPU), we consider that

our measurements are congruent with the measurements provided in the original paper (see

Figure 5 in Appendix A5). However, the computational times for MiniSat measured by us is

very dissimilar to what is shown in the Graph-Q-SAT paper. In fact, the comparison of our

MiniSat measurements and Graph-Q-SAT measurements shows almost zero improvement of

Graph-Q-SAT over plain MiniSat, whereas in the graph provided in the original paper, the

improvements are somewhat noticeable.

We also analyze the values of the MRIR metrics of the selected models on the Uniform

Random-3-SAT testing datasets, and although they slightly differ from those featured in the

original paper (see Figure (6)), they share the same tendencies: as the problems become larger,

for the datasets containing satisfiable instances the MRIR metric grows, and for datasets with

unsatisfiable instances MRIR reduces. Our measurements are shown in Table (1).

2.2. Direct Implementation Into a SAT Solver. In this section of the thesis the technical

side of the work is described, i.e. what has been done in order to build a SAT solver which

utilizes the Graph-Q-SAT heuristic.

Before beginning to modify the SAT solver to implement the heuristic in question, the original

Graph-Q-SAT code had to be modified, specifically the file containing the code for the neural

modules which comprise the graph neural network for inferring the branching decision. The

reason for having to modify the code in the first place was to make it convertible in a format

5https://web.archive.org/web/20220320153903/https://arxiv.org/pdf/1909.11830.pdf

https://web.archive.org/web/20220320153903/https://arxiv.org/pdf/1909.11830.pdf
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that could be directly embedded into the C++ code of the solver. The TorchScript6 framework,

created by the PyTorch team, provides two means for converting a model into such format

(namely the script module format): tracing and scripting.

Tracing method is very easy to use, as it creates a script module simply by taking a sample

input from the user, performing inference on the values provided and then storing the compu-

tational path, which these values underwent. This method can be run on practically any neural

module, as long as it does not rely on any unsupported third party libraries, therefore this

method requires little to no changes. However, this method in inapplicable to any neural

architecture without a fixed computational path, in particular, to graph neural

networks, for the reason that the traced version of such architecture is only able to perform

inference on data of the exact same structure.

Therefore the original modules had to be scripted. The scripting technique recursively ana-

lyzes the Python code of the PyTorch module and transforms it into code written in language

used by TorchScript. The main difficulty of applying this method resides in this inner Torch-

Script language being strongly typed, unlike Python language which is dynamically typed and

offers much more freedom for the programmer. In the case of Graph-Q-SAT to ensure this

a considerable portion of the code of the neural modules had to be rewritten and

expanded during the process of constantly dealing with newly encountered errors returned

by the scripting algorithm, many of which are practically impossible to find a readily available

solution for.

The next step, after modifying the code of the Graph-Q-SAT framework in a way that made

it possible to save the branching model in the required format, was to implement the code

necessary for the solver to make use of the model by querying it during the branching step.

In spite of the obvious fact that there was an option to solely rely on the code of the training

environment in Graph-Q-SAT, please note that the structure of this training environment is

very different from how Graph-Q-SAT++ was envisioned (see Figure (9)). Most of the code

added to the solver in Graph-Q-SAT is written is Python, and instead of being directly called in

the solver this code “communicates” with the solver via SWIG7 — a framework which generates

code to allow such connections between the C/C++ code and code written in modern high-

level programming languages. Because of this, a large portion of Python code, including the

code which parses the current state of the solver and prepares input for the GNN based on it,

had to be rewritten in C++ as additional functionality of the solver. Moreover, each of the

additions made to the actual code of the solver by the authors of Graph-Q-SAT had to be

considered and analyzed in order for us to understand whether they had to be carried over

to Graph-Q-SAT++ and modified beforehand.

Also, the essential albeit not the hardest part of enhancing the solver with the ability to

query the script module was to study the C++ PyTorch API used for this purpose. Even

though a minor portion of the code uses it, calls to this API are much less intuitive than the

code usually written in Python which utilizes PyTorch, therefore modifying so that the solver

could make the required calls still posed a challenge.

6https://pytorch.org/docs/stable/jit.html
7https://www.swig.org/

https://pytorch.org/docs/stable/jit.html
https://www.swig.org/


18

(a) Graph-Q-SAT

(b) Graph-Q-SAT++

Figure 9. Layouts of architectures of Graph-Q-SAT [17] (a) and Graph-Q-
SAT++ (b) (ours). Before making a verdict, MiniSat may query the network
multiple times, each time having its current state read via SWIG and transformed
by a parser written in Python and sent as input to the model implemented with
PyTorch. In our implementation the main goal is to drastically simplify the
architecture by embedding the neural network into the SAT solver and enhancing
the solver itself with the functionality required to provide it with the ability to
query the network directly, e.g. the state parser.

2.3. Experimental Results & Improvements. We conducted multiple experiments in order

to confirm that the modified solver allows to solve the SAT problem more efficiently in terms

of walltime, and to see if its performance may be increased further.

In the first experiment, we measure time required by the modified solver to find solutions

for problems from various datasets, both publicly available and generated by ourselves. The

testing was performed as follows: to estimate the time required for Graph-Q-SAT to solve

problems from a certain dataset, we provide a trained model to the standard evaluation script
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Approach SAT 250-1065 unSAT 250-1065 SAT 300-1278 unSAT 300-1278

Graph-Q-SAT
CPU

77.77 304.0 683 2477

Graph-Q-SAT
CUDA

64.38 290.3 667 2461

MiniSat 2.2 35.49 87.1 260 655

Kissat 3.0.0 29.87 273.7 186 2611

Kissat 3.0.0 OPT 27.77 501.1 130 >3600

Graph-Q-SAT++
CPU (ours)

31.44 70.6 140 418

Graph-Q-SAT++
CUDA (ours)

22.47 62.4 123 403

Table 2. Overall time taken (in seconds) by algorithms to solve all problems
from various testing datasets. For Graph-Q-SAT and Graph-Q-SAT++, time
measurements for launches with CPU inference are present as well. Values for
the Kissat 3.0.0 OPT row show the time measurements of total time taken by
the solver built with the --sat flag for satisfiable problems and --unsat for
unsatisfiable problems.

evaluate.py from the original repository and record the times required to solve each problem

it returns. To measure the wall-clock time required by plain MiniSat and Graph-Q-SAT++

we introduce miscellaneous changes to the solver which have nothing to do with the implemen-

tation of the heuristic, but are essential to provide fair testing grounds for Graph-Q-SAT++

(without affecting the performance of plain MiniSat). These changes are listed and explained

in Appendix A. For this experiment we also obtain a distribution of the Kissat solver8, a mod-

ification of which was considered the state of the art as of 2020 [12], and build it with the

--competition flag.

For testing Graph-Q-SAT, a model was trained on 800 problems from the SATLIB SAT 50-

218 benchmark using the exact same code and hyperparameters as in the original research

conducted by the authors of the paper. After each 1000 model updates, the model was eval-

uated on a separate validation set of 100 problems from the same benchmark and the model

with the best MRIR (see Section 1.4.2 for definition) was chosen. For Graph-Q-SAT++, we

launched a modified version of Graph-Q-SAT, and followed the same training and model choos-

ing algorithm.

The final solving time for MiniSat, Graph-Q-SAT and Graph-Q-SAT++ was then measured

on all 100 problems from the SATLIB SAT 250-1065 and unSAT 250-1065 benchmarks and

on custom datasets featuring 100 satisfiable and 100 unsatisfiable problems from a similar

distribution, but with each problem containing 300 variables and 1278 clauses, named CUSTOM

SAT 300-1278 and CUSTOM unSAT 300-1278 respectively. The CUSTOM datasets were

created using a SAT instance generator for various problem distributions, similar to the one

used by Yolcu and Poczos in their research [27]. The results for each problem are shown in

Figure (10) while the overall results are shows in Table (2).

8https://github.com/arminbiere/kissat

https://github.com/arminbiere/kissat
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Figure 10. Time taken (in seconds) by selected algorithms to solve each of
the problems in various testing datasets. The “10 QUERIES” suffix means that
the graph neural network was queried for the first 10 branching decisions of
the solution process for each problem (instead of the original 500). All solving
algorithms were launched without restarts, since this way they yielded better
results. For readability purposes, results for Graph-Q-SAT and Graph-Q-SAT++
with inference on CPU are not present since they are slightly worse than these
for inference on CUDA.

We then investigate whether the time efficiency of the modified solver may be increased even

further by changing the number of branching decisions the ML-based heuristic is queried for at

the start of the solution process. Finding the best performing amount of queries is essential in

improving performance due to the MRIR to inference time trade-off it introduces. To do so we

launch Graph-Q-SAT++ with inference on CUDA, since this method yielded the best results

according to the previous experiment, and keep track of MRIR, ARIR (which is the same as

MRIR, but equals the mean of all ratios instead of the median) and wall-clock time required

(in seconds) to solve all problems from a dataset. The results of this experiment are shown in

Table (3).

Although ARIR continues to grow as we make more starting decisions with accordance to the

heuristic, performing 10 queries to the neural model at the start of the solution process seems

to offer well-balanced trade-off between the decision amount reduction and time consumption

and provides the best overall results.
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Queries MRIR ARIR Time taken, sec.

1 1.50 1.53 210.5

3 1.99 2.88 159.0

5 2.35 4.44 130.8

10 2.36 10.65 123.3

20 2.15 11.80 127.6

40 2.49 11.90 136.3

(a) CUSTOM SAT 300-1278

Queries MRIR ARIR Time taken, sec.

1 1.21 1.24 539.9

3 1.51 1.57 422.5

5 1.64 1.69 396.8

10 1.69 1.76 402.8

20 1.73 1.78 386.9

40 1.74 1.77 400.9

(b) CUSTOM unSAT 300-1278

Table 3. Measurements for varying amounts of Graph-Q-SAT++ starting
branching decisions for CUSTOM SAT 300-1278 (a) and CUSTOM unSAT 300-
1278 (b) datasets. It can be observed, especially in (a), that the reduction of
the amount of decisions is not always followed by the reduction of time taken,
and (b) shows that overkill amounts of queries do not produce more considerable
decision reduction.

2.4. Discussion. Even though our primary goal of increasing the time efficiency of one of the

standard and popular SAT solvers was achieved, one should take note that machine learning

methods are not some mechanism that is guaranteed to improve any solution, and should be

applied with care and awareness. Reflecting upon the experimental results of our research, one

should not speculate that a model trained on a set of random SAT instances will have an overall

decent performance in guiding a SAT solver while finding solutions for random SAT instances

sampled from a different distribution.

Moreover, it is important to choose the right amount of starting queries for each distribution.

Our basic recommendation would be to pick a larger number of queries, when trying to utilize

a trained GNN on an unfamiliar dataset, as the only disadvantage it brings is the extra overall

time required for inference, while picking a number of queries that is too slow results in hardly

noticeable reduction in decisions made, as seen in Table (3).

However, we consider our approach to be applicable in an industrial-scale setting, for the

reason that there are numerous combinatorial tasks that are important for the industry which

are usually solved by being transformed into SAT problems and sent as input to a solver. For

a certain task, we may assume that there is a distribution of SAT instances that corresponds

with it, and train a model to guide the solver to make verdicts for the problems from this

distribution more efficiently.
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3. Conclusion

In the present thesis, the domain of SAT solving was explored, and various machine learning

approaches to improving the performance of SAT solvers were studied and reviewed, focusing on

those which utilize graph neural networks, since they were showing very promising results at the

moment of writing. Out of all of the studied heuristics a popular and straightforward approach

called Graph-Q-SAT was picked. The approach and its implementation were thoroughly studied

and the reproduction of results of the original work of interest was carried out. Graph-Q-SAT

was then re-envisioned as an algorithm embedded into one of the standard solvers, MiniSat,

instead of being a separate algorithm which communicates with the solver re-implemented as

a reinforcement learning environment. The code of Graph-Q-SAT was modified to make it

possible for the algorithm to save the trained graph neural network, which predicts the next

beneficial decision for the solver, in TorchScript format, a format embeddable into C++ code,

and the MiniSat solver was modified to query this network.

The experiments, in which MiniSat, Graph-Q-SAT and Graph-Q-SAT++ are compared in

terms of wall-clock time, were conducted. They show that the latter approach is more efficient in

this setting. In particular, we observe that Graph-Q-SAT++ outperforms Kissat and shows an

average increase in speed of almost 4 times over Graph-Q-SAT on datasets containing problems

from the Uniform Random-3-SAT family.

Moreover, additional experiments were conducted which show the extent to which our mod-

ification improves the performance of the SAT solver.

In the future, the proposed approach can be released as an open source tool with readily

available models pre-trained on larger formulae sets, which could be embedded into various

SAT solvers (since a huge portion of them is written in C++), including the state-of-the-art

ones, in order to further improve their performance on certain pools of SAT problems.



23

References

[1] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and

Lars Petersson. Graph-based deep learning for medical diagnosis and analysis: Past,

present and future. CoRR, abs/2105.13137, 2021.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT

solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence,

IJCAI’09, page 399–404, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers

Inc.

[3] Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat compe-

tition 2017. In Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions,

2017.

[4] Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat compe-

tition 2018. In Proceedings of SAT Competition 2018: Solver and Benchmark Descriptions,

pages 13–14, 2018.

[5] Armin Biere. Cadical at the sat race 2019. In Proceedings of SAT Race 2019: Solver and

Benchmark Descriptions, pages 8–9, 2019.

[6] Nikolaj S Bjørner. 3.3 guiding high-performance SAT solvers with unsat-core predictions.

Deduction Beyond Satisfiability, page 29, 2019.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[8] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems

are. In Proceedings of the 12th International Joint Conference on Artificial Intelligence

- Volume 1, IJCAI’91, page 331–337, San Francisco, CA, USA, 1991. Morgan Kaufmann

Publishers Inc.

[9] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158, 1971.
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Appendix A. Non-Heuristic-Related Changes to the Solver

A couple of changes was made to the original code of MiniSat, which do not affect neither

the solver nor the implementation the Graph-Q-SAT heuristic, but maintain an environment

similar to one on which the time required by Graph-Q-SAT is measured.

Firstly, the input of the modified solver is a path to a text file containing paths to text files

with problems to be solved written in DIMACS format (explained in section 1.2), and the solver

is ran on all of them successively in a single execution. The reason for such modification is that

PyTorch models are known to perform inference much slower during the warm-up period, and

the implementation of Graph-Q-SAT deals with this problem by instantiating an environment

with a branching model only once before beginning to find solutions for all the SAT instances

provided. By doing so the high inference time during warm-up only affects the efficiency of the

algorithm on the first problem.

Secondly, instead of CPU time, the solver measures the real time taken for itself to make

the verdict, which is an interval from right before the instance of the solver is initialized in

the code and right after the solving function returns its value. This is primarily important for

Graph-Q-SAT++, as the inference of the graph network which performs branching decisions

on a CPU almost always runs on multiple cores. This affects the CPU time provided by the

operating system and makes it substantially larger than the actual time the solving algorithm

runs for.
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