Санкт-Петербургский Государственный Университет

Машкина Валерия Владиславовна

Выпускная квалификационная работа

Малый сигнальный пептид RALF34 как регулятор внутриклеточных процессов в корнях *Cucumis sativus* L. Уровень образования: Бакалавриат Направление 06.03.01 Биология

Основная образовательная программа СВ.5017.2019 «Биология»

Профиль «Биохимия»

Научный руководитель: доцент кафедры физиологии и биохимии растений к.б.н. Смоликова Галина Николаевна

> Рецензент: Заведующий лабораторией Генетики растительно-микробных взаимодействий ФГБНУ ВНИИСХМ, к.б.н. Жуков Владимир Александрович

Санкт-Петербург 2023

Оглавление

Благодарности	4
Список сокращений	5
1. Введение	9
2. Литературный обзор	
2.1. Значение корневой системы растения	
2.2. Клеточные механизмы формирования боковых корней	
2.3. Молекулярные механизмы формирования боковых корней	11
2.4. Роль пептидного сигналинга в формировании боковых корней	13
2.4.1 Сигналинг PAMP-INDUCED SECRETED PEPTIDE-LIKE3 (PIPL3)/TARGET LBD SIXTEEN2 (TOLS2)	'OF
2.4.2. Сигналинг GOLVEN/ROOT GROWTH FACTOR/CLE-LIKE (RGF/GLV/CLE	EL)13
2.4.3. Сигналинг C-TERMINALLY ENCODED PEPTIDES (CEP)	14
2.4.4. Сигналинг INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)	14
2.4.5. Пептиды семейства RAPID ALKALINIZATION FACTOR (RALF)	14
2.5. Рецепция RALF	
2.6. FERONIA – один из наиболее изученных рецепторов RALF	16
2.7. RALF34 y Arabidopsis thaliana	19
2.8. RALF34 y Cucumis sativus	20
3. Материалы и методы	20
3.1. Материалы	20
3.1.1. Растительный материал	20
3.1.2. Реагенты	21
3.2. Методы	22
3.2.1. Определение содержания пероксида водорода	22
3.2.2. Определение содержания веществ, реагирующих с тиобарбитуровой	
кислотой	22
3.2.3. Определение содержания гидропероксидов липидов	23

3.2.4. Определение содержания аскорбиновой кислоты	23
3.2.5. Выделение тотального белка из корней Cucumis sativus	24
3.2.6. Определение концентрации белка	25
3.2.7. Диск-электрофорез в полиакриламидном геле в присутствии додецилсуль натрия	ьфата 25
3.2.8. Гидролитическое расщепление белка трипсином	26
3.2.9. Твердофазная экстракция пептидов	27
3.2.10. Подготовка проб для LC-MS/MS анализа	27
3.2.11. Nano LC-MS/MS	27
3.2.12. Биоинформатический анализ данных	29
3.2.13. Статистический анализ данных	
4. Результаты	
4.1. Анализ биохимических маркеров стресса в корнях Cucumis sativus	
4.2. Выделение белка и его триптический гидролиз	32
4.3. Аннотация белков Cucumis sativus	34
4.4. Количественная оценка и функциональная аннотация	35
4.5. Функциональная аннотация	
4.6. Влияние CsRALF34 на метаболизм корней и сигнальные пути	40
5. Обсуждение	43
5.1. Функции CsRALF34	43
5.1.1. Ингибирование роста корней и регуляция пролиферации клеток	43
5.1.2. Влияние CsRALF34 на передачу сигналов АФК и адаптацию к стрессу	44
5.1.3. Динамика клеточного метаболизма, связанная с RALF	46
5.1.4. RALF34 как модулятор фитогормональных реакций	46
5.1.5. Сверхэкспрессия RALF активирует биосинтез белка	47
6. Выводы	47
Список литературы	48
Приложение	57

Благодарности

Благодарю руководителя своей научной группы, **д.б.н.** Фролова Андрея Александровича за интересную тему исследования. Благодарю своего научного руководителя, к.б.н. Смоликову Галину Николаевну, а также научного консультанта **д.б.н** Кирилла Николаевича Демченко, за поддержку и помощь при выполнении работы.

Благодарю к.б.н. Жукова Владимира Александровича за рецензирование данной работы.

Выражаю особую благодарность своему ментору, Шумилиной Юлии Сергеевне, за постоянную поддержку, помощь в планировании и постановке экспериментов, интерпретации и анализу данных и написании выпускной квалификационной работы бакалавра.

Выражаю искреннюю благодарность всем коллегам, с которыми мне довелось работать. В частности, к.б.н. Биловой Татьяне Евгеньевне за помощь в освоении методов определения биохимических маркеров состояния растений, к.б.н. Фроловой Надежде Владимировне и Данько Катерине Владимировне за помощь в интерпретации массспектрометрических данных.

Посылаю свою искреннюю благодарность Кирюшкину Алексею Сергеевичу за предоставление растительного материала.

Список сокращений

АА – акриламид

- АБК абсцизовая кислота
- АМФ аденозинмонофосфат
- АМК апикальная меристема корня
- АФК активные формы кислорода
- **бАА** *N*,*N*′-метилен-бис-акриламид
- БК боковые корни
- БХТ бутилированный дигидрокситолуол
- ГТФаза гуанозинтрифосфат гиролаза
- ИМК индол-2-масляная кислота
- ИУК индол-3-уксусная кислота
- ДНК дезоксирибонуклеиновая кислота
- ДДС-Na додецилсульфат натрия
- ПААГ полиакриламидный гель
- ПСА персульфат аммония
- ПТМ посттрансляционные модификации
- ТБК тиобарбитуровая кислота
- $T\Phi$ транскрипционный фактор
- ТХУ трихлоруксусная кислота
- ТЭМЕД *N, N, N, N*-тетраметилэтилендиамин
- $\mathbf{Y} \square \Phi$ уридиндифосфат
- $\mathbf{V} \boldsymbol{\Phi} \mathbf{y}$ льтрафиолет
- ЦТК цикл трикарбоновых кислот
- АВА абсцизовая кислота
- АВС бикарбонатный буфер для гидролитического расщепления трипсином
- АСМ ацетонитрил
- ACR4 рецепторподобная киназа ACT domain repeat 4
- АНА протонная АТФаза
- ALF4 ядерный белок ABBERANT LATERAL ROOT FORMATION 4
- АМРК активируемая аденозинмонофосфатом протеинкиназа
- ANX рецепторная киназа ANXUR
- ARF транскрипционный фактор ауксина (Auxin Response Factor)
- АТР аденозинтрифосфат

Aux/IAA – белки AUXIN/INDOLE 3-ACETIC ACID

BUPS – рецепторная киназа BUDDHA'S PAPER SEAL

СДКА – циклин-зависимая киназа А

СDРК12 – кальций-зависимая протеинкиназа 12

СЕР – семейство малых сигнальных пептидов C-TERMINALLY ENCODED PEPTIDES

CEPR – мембраносвязанные рецепторы для C-TERMINALLY ENCODED PEPTIDES

CLE – семейство пептидов CLAVATA3/Embryo Surrounding Region-Related

CrRLK1L – рецепторные киназы Catharanthus roseus RLK1-LIKE

DDA – алгоритм анализа на основе полученных данных (Data-dependent Acquisition)

dH2O – дистиллированная вода

DTT – дитиотреитол

ETI – иммунитет, индуцированный эффекторами

ESI – система электроспрей-ионизации масс-спектрометра

FA – муравьиная кислота

FC – изменение кратности относительного количества белков

FER – ген, кодирующий рецепторную киназу FERONIA

FW – сырая масса

GAPDH – глицеральдегид-3-фосфатдегидрогеназа

GEF – фактор обмена гуаниновых нуклеотидов

GlcII – маннозилолигосахарид а-1,3-глюкозидаза

GLUT – белок-переносчик глюкозы

HAE – рецептор HAESA сигнального пептида INFLORESCENCE DEFICIENT IN ABSCISSION

HSL – рецептор HAESA-LIKE сигнального пептида INFLORESCENCE DEFICIENT IN ABSCISSION

Няр – белок теплового шока

I – изолейцин

IDA – семейство малых сигнальных пептидов INFLORESCENCE DEFICIENT IN ABSCISSION

КЕGG – база данных Kyoto Encyclopedia of Genes and Genomes

L – лейцин

LBD – транскрипционный фактор LATERAL ORGAN BOUNDARIES DOMAIN

LC-MS – жидкостная хроматография, сопряженная с масс-спектрометрией

Milli-Q – деионизированная вода

MS – масс-спектрометрия

MS/MS – тандемная масс-спектрометрия

MAKR – MEMBRANE-ASSOCIATED KINASE REGULATOR

МАР/МАРК – митоген-активируемая протеинкиназа

МАРКК – киназа митоген-активируемой протеинкиназы

Nano LC-MS/MS - нанопоточная жидкостная хроматография, сопряженная с тандемной масс-спектрометрией

OST1 – белок open stomata 1

PCA – метод главных компонент (Principal Component Analysis)

РСЛА – ядерный антиген пролиферирующих клеток

РС1, РС2 – главная компонента 1, главная компонента 2

PIPL - семейство малых сигнальных пептидов PAMP-INDUCED SECRETED PEPTIDE-

LIKE

РР2А - серин/треонин-протеинфосфатаза 2А

РР2СА – протеинфосфатаза 2С типа А

РУК/РУL/RCAR – рецепторы абсцизовой кислоты

QC – контроль качества

QqToF-MS – квадрупольный времяпролетный масс-спектрометр

R – аргинин

Rab – член суперсемейства малых G-белков RAS

RALF – семейство малых сигнальных пептидов Rapid Alkalinization Factor

RGF/GLV/CLEL – семейство малых сигнальных пептидов GOLVEN/ROOT GROWTH

FACTOR/CLE-LIKE

RIPK – RPM1-индуцируемая протеинкиназа

RLК – рецептороподобные киназы

ROP – Rho-подобная ГТФаза

ROS – активные формы кислорода

RSD – относительное стандартное отклонение

S – серин

SAM – S-аденозилметионин

SCF – комплекс Stem-Cell Factor

SDS-PAGE – диск-электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия

SLAC1 – анионный канал медленного типа 1

SnRK2 – SNF1(sucrose non-fermenting 1)-связанная протеинкиназа 2

SRP – рибонуклеопротеин Signal Recognition Particle

S1P – протеаза сайта 1

TBARS – вещества, реагирующие с тиобарбитуровой кислотой

ТВС1D1 – член семейства доменов ТВС1 1

THE – рецепторная киназа THESEUS

TIR1 – Transport Inhibitor Response 1

TOLS – семейство малых сигнальных пептидов TARGET OF LATERAL ORGAN BOUNDARIES DOMAIN SIXTEEN

TRAP – *α*-субъединица белка, ассоциированного с транслоконом

UA – раствор мочевины

UHPLC – ультравысокоэффективная жидкостная хроматография

UHPLC-MS/MS – ультравысокоэффективная жидкостная хроматография, совмещенная с тандемной масс-спектрометрией

VAMP7 - мембранный белок, связанный с везикулами 7

13(RS)-ГПОД –13S-гидроперокси-9Z,11Е-октадекановая кислота

1. Введение

Малые сигнальные пептиды, участвуя во многих процессах развития растений, являются ключевыми молекулами межклеточной коммуникации. Все малые сигнальные пептиды условно разделяют на несколько классов, один из которых представляют цистеинбогатые пептиды, к которым относится и семейство пептидов RAPID ALKALINIZATION FACTOR (RALF).

Первоначально было показано, что при добавлении пептидов в культуру клеток табака происходит резкое подщелачивание среды – пептиды семейства RALF, связываясь со своей рецепторной киназой FERONIA, ингибируют работу H⁺-АТФазы 2 (AHA2), в связи с чем они и получили свое название. Спустя некоторое время конкретных представителей данного семейства пептидов начали изучать более подробно, с каждым разом обнаруживая новые роли RALF. В частности, для Arabidopsis thaliana было показано, что RALF34 действует транскрипционный каскад, приводящий на к инициации бокового корня. Чуть позже для огурца (*Cucumis sativus*), представителя важного в сельскохозяйственном отношении семейства *Cucurbitaceae*, был идентифицирован ортолог CsRALF34. Однако роль RALF34 в развитии боковых корней Cucumis sativus до сих пор не определена, хотя предполагается сходный молекулярный механизм действия, как и у Arabidopsis thaliana. Расширение фундаментальных знаний о роли малого сигнального пептида RALF34 – основа перспективного влияния на продуктивность ценных сельскохозяйственных культур. Именно поэтому исследование роли RALF34 в регуляции внутриклеточных процессов в корнях *Cucumis sativus* стало целью этой работы.

Для реализации данной цели, были поставлены следующие задачи:

- 1. Оценить состояние корневой системы растений *Cucumis sativus*, сверхэкспрессирующих *CsRALF34*, и контрольных растений *Cucumis sativus* при помощи биохимических маркеров стресса;
- Получить препарат тотального белка из корней растений *Cucumis sativus*, сверхэкспрессирующих *CsRALF34*, и контрольных растений *Cucumis sativus*, измерить концентрацию белка, провести его ограниченный протеолиз и хроматомасс-спектрометрический анализ полученных пептидов;
- Выполнить анализ масс-спектрометрических данных для идентификации, проведения относительной количественной оценки и функциональной аннотации обнаруженных белков;

4. С помощью биоинформатических подходов определить внутриклеточные процессы в корнях *Cucumis sativus*, на которые потенциально может оказывать влияние RALF34.

2. Литературный обзор

2.1. Значение корневой системы растения

Корневая система играет важную роль в жизни растений, отвечая за широкий спектр функций, в частности, синтез физиологически активных соединений, поглощение питательных веществ, а также поддержание различных механизмов адаптивности к изменяющимся условиям окружающей среды.

Организация корневой системы определяется сложно регулируемыми механизмами ветвления, происходящего как через формирование боковых корней (БК) из зародышевого корешка, так и путем развития придаточных корней [1]. Посредством данных механизмов происходит увеличение эффективной площади поверхности корневой системы, поглощающей питательные вещества, в частности, верхние слои поглощают фосфор, а более глубокие – нитраты [1]. Кроме того, повышается прочность заякоривания растения в почве. Особую роль играют боковые корни, так как их формирование определяет всю архитектуру корневой системы [2], а значит, они выполняют ключевую роль в развитии растения и влияют на его продуктивность.

2.2. Клеточные механизмы формирования боковых корней

В настоящее время известны несколько клеточных механизмов формирования боковых корней у растений. Например, у большинства двудольных, в частности, у *Arabidopsis thaliana*, формирование боковых корней происходит из пар клеток перицикла родительского корня, образующихся из прилегающих к полюсу ксилемы трех рядов клеток (Рисунок 1) [3, 4]. В результате нескольких циклов делений данных клеток происходит формирование примордия бокового корня [5], который по клеточной организации во многом схож со стержневым корнем [5]. В то же время, у растений семейства *Poaceae* боковые корни возникают непосредственно из клеток перицикла полюса флоэмы при дополнительном участии энтодермы [6, 7]. Кроме того, Chiatante и соавторы описали случаи формирования БК у *Populus nigra* из вторичных тканей материнского корня [8]. Таким образом, подобные случаи, чаще всего описываемые для однодольных растений, свидетельствуют о том, что первичное развитие БК не всегда пространственно ограничено исключительно клетками перицикла, локализованными напротив полюса ксилемы.

Рисунок 1. Морфологические изменения, происходящие при развитии боковых корней у *A.thaliana*, берущих начало из клеток перицикла первичного корня. (а) Общая схема бокового корня, (b) восемь стадий развития примордия, (c) демонстрация максимума передачи сигналов ауксина (синий градиент отражает содержание репортера DR5:GUS), (d) фотографии стадий развития боковых корней *A. thaliana*, окрашенных анилиновым синим. Столбики шкалы обозначают 20 мкм [2].

2.3. Молекулярные механизмы формирования боковых корней

Формирования боковых корней определяется клеточными механизмами, которые среди представителей растительного мира довольно вариабельны, однако в первую очередь регуляция возникновения БК происходит на молекулярном уровне. В данном контексте ведущая роль принадлежит фитогормонам, принимающим участие в обеспечении практически всех физиологических процессов. Например, гибберелины активируют процессы деления и растяжения клеток интеркалярных меристем, цитокинины совместно с ауксинами регулируют деление клеток и обладают аттрагирующим эффектом, абсцизоввая кислота (АБК) является ингибитором роста и неотъемлемым компонентом ответа растения на стресс, этилен участвует в регуляции роста и развития, активирует некоторые элементы системы защиты растения от патогенов, брассиностероиды регулируют процессы дифференцировки клеток, участвуют в фоторецепции и передаче световых сигналов [9]. Особое место среди фитогормонов принадлежит ауксину, градиенты концентрации которого – один из главных элементов, обеспечивающих формирование тканей и органов высших растений.

В частности, в морфогенезе боковых корней ауксин также играет ведущую роль [10-13], регулируя работу Aux/IAA (AUXIN/INDOLE 3-ACETIC ACID) – белковрепрессоров группы транскрипционных факторов (ТФ) ARF (Auxin Response Factor) –

11

посредством влияния на убиквитинирование и гидролиз данных белков (Рисунок 2). При физиологически низких концентрациях ауксина Aux/IAA формируют димеры с ARF, предотвращая их связывание с ДНК и последующую экспрессию чувствительных к индолил-3-уксусной кислоте генов [11]. Характеризуясь высокими концентрациями, ауксин связывается с рецепторными белками TIR1 (Transport Inhibitor Response 1) F-бокса убиквитин-лигазного комплекса SCF^{TIR1}, в результате чего в 26S протеасоме происходит деградация Aux/IAAs и реализация функций факторов ARF в полной мере [11]. Считается, что разметка инициальных клеток примордия БК определяется осцилляцией клеточного ответа на действие ауксина в базальной части меристемы, которая происходит каждые 15 часов [4].

Рисунок 2. Ранние события в ходе закладки бокового корня. **ACR4** - рецепторподобная киназа ACT domain repeat 4; **ALF4** – ядерный белок ABBERANT LATERAL ROOT FORMATION 4; **ARF7,19** – транскрипционные факторы Auxin Response Factor 7 и 19; **AUX1** – AUXIN 1, белок-репрессор ARF; **CK** – цитокинины; **IAA14** – INDOLE 3-ACETIC ACID, белок-репрессор ARF; **LOB** – транскрипционный фактор LATERAL ORGAN BOUNDARIES DOMAIN [2].

Одной из мишеней действия ауксина в клетках-основательницах БК является транскрипционный фактор GATA23 [14-16]. Экспрессия гена *GATA23* считается наиболее ранним событием, связанным с инициацией примордия БК – данный ТФ контролирует начальный этап спецификации клеток-основательниц [16].

У *A.thaliana* был идентифицирован компонент разметки корня, регулируемый индол-3-масляной кислотой (ИМК), MEMBRANE-ASSOCIATED KINASE REGULATOR 4 (MAKR4), превращающий компетентные клетки в инициальные клетки будущего примордия БК [17]. Считается, что переход ИМК в ИУК в корневом чехлике и последующий запуск экспрессии *MAKR4* определяют пространственно-временную разметку корня [17].

2.4. Роль пептидного сигналинга в формировании боковых корней

Было показано, что, помимо фитогормонов, в частности, ауксина, развитие боковых корней растений также контролируют малые сигнальные пептиды посредством активации различных путей передачи сигнала, взаимодействуя с сопряженными рецептороподобными киназами (RLK), локализованными на мембране клеток-мишеней [18]. К таким пептидам относят, например, следующие семейства малых сигнальных пептидов:

- PAMP-INDUCED SECRETED PEPTIDE-LIKE3 (PIPL3)/TARGET OF LBD SIXTEEN2 (TOLS2);
- GOLVEN/ROOT GROWTH FACTOR/CLE-LIKE (RGF/GLV/CLEL);
- C-TERMINALLY ENCODED PEPTIDES (CEP);
- INFLORESCENCE DEFICIENT IN ABSCISSION (IDA);
- RAPID ALKALINIZATION FACTOR (RALF) [18].

2.4.1. Сигналинг PAMP-INDUCED SECRETED PEPTIDE-LIKE3 (PIPL3)/TARGET OF LBD SIXTEEN2 (TOLS2)

Малый сигнальный пептид TOLS2, также известный как PAMP-INDUCED SECRETED PEPTIDE-LIKE3 (PIPL3), экспрессируется в клетках-основательницах БК, специфически ингибируя их новообразование, поддерживая постоянное число уже образовавшихся клеток и тем самым сохраняя паттерн их распределения по перициклу [20]. TOLS2/PIPL3 – мишень действия транскрипционного фактора инициации боковых корней LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16), индуцируемого ауксином через ARF7 и ARF19 [20, 21]. В качестве рецептора TOLS2/PIPL3 выступает RLK7, ингибирующая ауксиновый сигнал, и которая, связываясь с лиагндом и взаимодействуя с участниками сигнального пути TOLS2/PIPL3-RLK7, опосредованно активирует экспрессию гена *PUCHI*, что приводит к подавлению увеличения количества клеток-основательниц БК [20, 22, 23].

2.4.2. Сигналинг GOLVEN/ROOT GROWTH FACTOR/CLE-LIKE (RGF/GLV/CLEL)

Сигнальные пептиды, принадлежащие к семейству GLV/RGF/CLEL, являются регуляторами поддержания апикальной меристемы корня (AMK) у *A.thaliana*. Пептиды GLV11/RGF1, GLV5/RGF2 и GLV7/RGF3 участвуют в гомеостазе AMK, положительно

транскрипционный фактор PLETHORA1,2 транскрипционном регулируя на И посттранскрипционном Кроме представители уровнях [24]. того, семейства GLV/RGF/CLEL участвуют в гравитропных реакциях корней и контролируют поток ауксина в апексе корня путем модуляции циркуляции белка-переносчика ауксина PIN2 [25]. Fernandez и соавторы показали, что и сверхэкспрессия гена GLV6, и экзогенная обработка данными пептидами нарушает первые асимметричные клеточные деления, необходимые для правильного формирования зародыша [26]. Таким образом, GLV6 контролирует первые деления клеток перицикла во время инициации боковых корней.

2.4.3. Сигналинг C-TERMINALLY ENCODED PEPTIDES (CEP)

Пептиды семейства СЕР, характеризующиеся наличием коротких консервативных доменов вблизи С-конца, негативно контролируют рост и развитие корней, взаимодействуя со специфическими мембраносвязанными рецепторами (CEPR1, CEPR2) на клеткахмишенях [27-29]. Показано, что при активации сигнальных путей, опосредованных действием СЕР, уменьшается скорость роста и плотность расположения БК, также происходит редукция длины первичного корня [18]. Например, Roberts с соавторами продемонстрировали, что подавление экспрессии CEP5 приводит к увеличению плотности примордиев БК на ранних стадиях инициации, а также к более быстрому прохождению стадий развития БК при инициации, индуцированной гравистимуляцией [30].

2.4.4. Сигналинг INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)

Взаимодействие сигнального пептида IDA со специфическими рецепторами HAESA (HAE) и HAESA-LIKE2 (HSL2) стимулирует сепарацию клеток, лежащую в основе процесса опадения органов цветка после его опыления [29]. Аналогичный сигнальный каскад активирует дифференциацию клеток в процессе прорастания зачатков боковых корней, происходящих из находящихся под многочисленными слоями прочих тканей клеток перицикла первичного корня [32, 33]. Комплекс IDA-HAE/HSL2 активирует MAP-киназный каскад, в рамках которого ключевые роли играют MAPKK4/5 и MAPK6/3 [33, 34]. Было показано, что данный MAP-киназный сигнальный модуль регулирует экспрессию генов ремоделирования клеточной стенки. Продукты экспрессии данных генов усиливают деградацию пектина в стенках клеток, окружающих примордии БК [33], тем самым обеспечивая развитие БК.

2.4.5. Пептиды семейства RAPID ALKALINIZATION FACTOR (RALF)

Малые сигнальные пептиды семейства RALF участвуют во многих физиологических процессах, а также процессах роста и развития растений [35, 36]. Общей чертой большинства членов семейства (не показано для RALF11, RALF12 и RALF37) является их

способность ингибировать рост, в частности, 22 из 37 пептидов, описанных для *A.thaliana*, индуцируют ингибирование роста корня [38]. Первично было показано, что при добавлении RALF в культуру клеток *Nicotiana tabacum* происходит резкое повышение pH среды, в связи с чем пептиды данного семейства и получили свое название [39].

Для многих видов растений описана высокая степень гомологичности первичной структуры RALF, что свидетельствует о высокой консервативности и фундаментальности функций пептидов данного семейства во многих семействах растений [39]. Более того, было показано, что в ходе эволюции наземных растений семейство RALF значительно расширилось, что свидетельствует о неофункционализации данных пептидов [40].

RALF принадлежат к классу цистеин-богатых пептидов, к которым относятся крупные, положительно заряженные пептиды, содержащие в своем составе до 160 аминокислотных остатков, в том числе от 4 до 16 остатков цистеина, образующих дисульфидные мостики, необходимые для правильного сворачивания зрелого пептида [39].

Функциональный пептид RALF образуется в результате протеолитического процессинга препропетида, состоящего из 79-160 аминокислот (Рисунок 3) [36]. Сначала расщепление происходит по сайту, отделяющему сигнальную N-концевую последовательность от пропептидного остова, затем – по каноническому двухосновному аргининовому сайту (RRXL, где X – любая аминокислота), узнаваемому растительной протеазой SITE-1-PROTEASE (S1P) и оттесняющему С-домен зрелого RALF [36, 41-43]. Данный канонический сайт узнавания субтилазы идентифицирован у десяти из 37 пептидов RALF, описанных для *A.thaliana* [36].

Рисунок 3. Молекулярная структура препропептида RALF. I – изолейцин; L – лейцин; R – аргинин; X – любая аминокислота; Y – тирозин.

Зрелый пептид представлен С-концевым доменом предшественника из 48-52 аминокислотных остатков, включающих 4 консервативных остатка цистеина [39], которые окружают консенсусные последовательности. Среди таких последовательностей отдельное место занимает N-концевой мотив YI/LSY, играющий важную роль в активации сигнального каскада при связывании RALF с одним из своих рецепторов – FERONIA [44, 45]. В растворе главная цепь пептида является довольно гибкой, и на примере RALF8 было

показано, что большей степенью упорядоченности характеризуются лишь 2 петли (C₂₁-C₂₉ и C₄₁-C₄₉), отделяемые дисульфидными мостиками [46]. Отсутствие определенного свернутого состояния данного пептида в растворе предполагает, что дополнительные пространственные структуры могут быть индуцированы исключительно при взаимодействии с другими белками, включая белки-рецепторы [46]. Изоэлектрическая точка пептидов RALF варьирует в пределах значений pH от 4.42 до 10.31, индивидуально для каждого представителя рассматриваемого семейства малых сигнальных пептидов [47].

2.5. Рецепция пептидов RALF

Было показано, что пептиды RALF являются лигандами для *Catharanthus roseus* RLK1-LIKE рецепторных киназ (*Cr*RLK1L) [48], характеризующихся наличием малектиноподобных доменов во внеклеточной части рецептора [49]. Связываясь с рецептором, представители этого семейства пептидов могут принимать участие в ряде сигнальных процессов:

- RALF1, RALF22 и RALF23 связываются с FERONIA, регулируя рост корней, реакции на абиотический и биотический стресс [50-52];
- RALF4 и RALF19 являются лигандами для рецепторных киназ ANXUR1 (ANX1), ANX2 и BUDDHA'S PAPER SEAL 1, 2 (BUPS1,2) в контексте роста пыльцевых трубок и поддержания целостности клеточной стенки [53];
- RALF34 связывает рецепторная киназа THESEUS1 (THE1), регулируя рост при ингибировании биосинтеза целлюлозы [54];
- RALF с высоким сродством связываются с белками LEUCINE-RICH REPEAT EXTENSINS (LRX), участвуя в передаче сигнала от клеточной стенки во внутреннюю часть пыльцевой трубки для регуляции роста растений и в обеспечении устойчивости к солевому стрессу [55, 56].

Такие *Cr*RLK1L как FERONIA, ANX1/ANX2 и BUPS1/2 работают совместно с гликозилфосфатидилинозитол-заякоренными белками LORELEI или родственными LORELEI-подобными белками, имеющими потенцию к формированию рецепторнокорецепторных комплексов для восприятия сигналов, опосредованных пептидами RALF [57, 58].

2.6. FERONIA – один из наиболее изученных рецепторов RALF

На данный момент для *A.thaliana* описано 17 рецепторных киназ *Cr*RLK1L, занимающих важное место в осуществлении различных физиологических функций на молекулярном уровне [37, 49, 59]. Из данных *Cr*RLK1Ls лучше всего изучена FERONIA,

называемая также SIRENE и обнаруженная на поверхности клеток всех органов растения [60, 61]. Было показано, что FERONIA опосредует узнавание RALF1, RALF22, RALF23, и RALF33 в различных физиологических контекстах [50-52, 62].

Продемонстрировано, что активация путей передачи сигналов RALF1-FERONIA приводит к фосфорилированию локализованного на плазматической мембране экспортера протонов H⁺-ATФазы 2, что, в свою очередь, снижает его активность и предотвращает подкисление апопласта, которое требуется для разрыхления клеточной стенки и роста клеток первичного корня [50].

Недавние исследования на уровне генов показали, что FERONIA находится на перекрестке несколько регуляторных путей, лежащих в основе множественных гормональных реакций, включая стимулируемый ауксином рост корневых волосков [63], регулируемое этиленом и брассиностероидами удлинение гипокотиля [64, 65] и АБКопосредованные реакции на абиотический стресс (Рисунок 4) [65, 66]. Были продемонстрированы функции FERONIA и тесно связанных с ней RLK в обеспечении фертильности растений, роста клеток и в поддержании целостности клеточной стенки [67-69].

Рисунок 4. Схема регуляторных путей, связанных с FERONIA. ABA – абсцизовая кислота; ABI2 – член семейства протеинфосфатазой 2С А-типа; AHA2 – протонная АТФаза 2; BR – брассиностероиды; GA – гибберелины; ETI - иммунитет, индуцированный эффекторами;

GAPDH – глицеральдегид-3-фосфатдегидрогеназа; GEFs, GEF1/4/10 – факторы обмена гуаниновых нуклеотидов 1/4/10; NADPH – НАДФН-оксидаза; OST1 – open stomata 1; PYR/PYL/RCAR – рецепторы абсцизовой кислоты; RALF – малый сигнальный пептид Rapid Alkalinization Factor; RIPK – RPM1-индуцируемая протеинкиназа; ROP2, 11 – Rho-подобная ГТФаза 2, 11; ROS – активные формы кислорода; SAM – S-аденозилметионин; SnRK2 – SNF1 (sucrose non-fermenting 1) -связанная протеинкиназа 2 [72].

В рамках общего обзора профиля экспрессии генов семейства RLK *FER* идентифицируют как один из генов, репрессируемых АБК [70]. Результаты исследований, проведенных Yu с соавторами, подтвердили генетическую связь между функцией FERONIA и ответами на воздействие AБК [71]. Двугибридный анализ показал, что три FERONIAсопряженных GEF (GEF1, GEF4 и GEF10) активируют ROP11 (GEF–Rho-like GTPase 11), который взаимодействует с ABI2, протеинфосфатазой 2C A-типа (PP2CA), отрицательно регулирующей ответ на действие AБК [72]. Yu с соавторами заключили, что FERONIA подавляет AБК-ответ, активируя путь GEF1/4/10–ROP11–ABI2 (Рисунок 4) [71]. Было показано, что при связывании RALF1 или AБК с FERONIA происходит его фосфорилирование, в то время как четыре члена семейства PP2CA (ABI1, ABI2, HAB1 и HAB2) дефосфорилируют его, тем самым ингибируя сигнальный путь RALF–FERONIA. Примечательно, что PP2CA-зависимое дефосфорилирование находится под контролем рецепторов AБК типа PYR/PYL/RCAR [72]. Вызванное стрессом повышение уровня содержания AБК подавляет протеинфосфатазы типа ABI2, усиливая опосредованное RALF-FERONIA ингибирование роста корневых клеток [72].

В дополнение к подщелачиванию апопласта, пептиды RALF также индуцируют быстрое увеличение концентрации цитоплазматического кальция, что является отличительным признаком активации FERONIA [50, 73]. Было показано, что у *A.thaliana* передача Ca^{2+} -сигнала активировалась в течение 40 с после обработки пептидом [73], что позволяет позиционировать ее в качестве первичной реакции на индукцию RALF. Считается, что изменение концентрации цитоплазматического Ca^{2+} , распространенного вторичного мессенджера, облигатно для многих реакций роста, развития и ответа растительных клеток на изменения окружающей среды.

Рисунок 5. Модель работы для пути FERONIA в регуляции реакции на абсцизовую кислоту. ABA – абсцизовая кислота; ABI2 – член семейства протеинфосфатазой 2C А-типа; DFs – мишени фосфорилирования snRK2; FER – рецепторная киназа FERONIA; GEFs – факторы обмена гуаниновых нуклеотидов; PYR/PYL/RCAR – рецепторы абсцизовой кислоты; ROS – активные формы кислорода; SLAC1 – анионный канал медленного типа 1; SnRK2 – SNF1 (sucrose non-fermenting 1) -связанная протеинкиназа 2 [71].

2.7. RALF34 y Arabidopsis thaliana

На данный для *A. thaliana* описано 37 представителей семейства RALF [38]. Было высказано предположение, что RALF34, идентифицированный у *A. thaliana* (*At*RALF34), вовлечен в регуляторную сеть, контролирующую инициацию БК [74]. *At*RALF34 служит негативным регулятором инициации боковых корней и, согласно предположению Murhy и соавторов, ограничивает инициацию в непосредственной близости от уже существующих примордиев [74], действуя автономным образом, аналогично пептидам семейства CLE (CLAVATA3/Embryo Surrounding Region-Related) [75, 76].

RALF34 начинает экспрессироваться в клетках перицикла, ассоциированных с полюсом ксилемы, до появления каких-либо видимых признаков инициации боковых корней и продолжает экспрессироваться в зачатках БК на протяжении всего процесса развития. Кроме того, *RALF34* экспрессируется в клетках перицикла, обрамляющих примордии БК [77].

Помимо FERONIA, в качестве рецептора для RALF34 у *A.thaliana* была идентифицирована рецептороподобная киназа THESEUS1 (THE1) [54]. Ген данной рецептороподобной киназы экспрессируется по всему центральному цилиндру, включая перицикл, а также в развивающихся примордиях боковых корней. Мутанты с потерей функции *the1* демонстрируют те же дефекты, что и мутанты с нокдауном *RALF34* [38].

Сигнальный механизм, с помощью которого модуль RALF34-THE1/FERONIA регулирует инициацию БК, на данный момент не описан.

2.8. RALF34 y Cucumis sativus

Ранее для 19 из 37 пептидов RALF, в том числе RALF34, идентифицировнных у *A.thaliana*, были найдены гомологи у *Cucumis sativus*, в то время, как для 18 (*At*RALF1, *At*RALF5–*At*RALF7, *At*RALF10–*At*RALF14, *At*RALF16, *At*RALF18, *At*RALF25–*At*RALF27, *At*RALF29, *At*RALF30 и AT2G32890) подобных гомологов обнаружено не было [78].

Считается, что *CsRALF34* является ортологом *AtRALF34*. Ген *CsRALF34*, кодирующий данный пептид, экспрессируется в большинстве органов растений, в частности, в корнях. Экспрессия *CsRALF34* начинается в клетках ряда протоксилемы на удалении около 200 мкм от инициальных клеток, а затем распространяется в клеткиосновательницы боковых корней, расположенные в перицикле. Кроме того, экспрессия сохраняется в клетках рядов ксилемы непосредственно в примордиях БК и между ними [78]. Также Kiryushkin и соавторами было показано, что в корнях *Cucumis sativus* после синтеза в клетках ксилемы и перицикла RALF34 транспортируется и накапливался в апопласте, а также клеточных стенках клеток коры в базальной части меристемы корня [78].

Сигнальные пути, в которых принимает непосредственное участие CsRALF34 до сих пор не были описаны. В частности, роль CsRALF34 в инициации БК не была точно определена.

3. Материалы и методы

3.1. Материалы

3.1.1. Растительный материал

Материал корней огурца (*Cucumis sativus* L., сорт «Феникс») был предоставлен коллегами из Лаборатории клеточных и молекулярных механизмов развития растений Ботанического института им. В.Л. Комарова РАН (Санкт-Петербург, Россия). Растения контрольной группы и группы со сверхэкспрессией *CsRALF34* были трансформированы с помощью сконструированных на основе плазмид *Rhizobuim rhizogenes* бинарных векторов pKGW-RR-MGW-*p35S*::*gusA* и pKGW-RR-MGW-*p35S*::*csRALF34*, соответственно (Рисунок 6). Оба вектора в качестве скринингового маркера в пределах границ T-ДНК содержали

DsRED1 под контролем промотора AtUBQ10. Вектор pKGW-RR-MGW-p35S::CsRALF34 содержал вставку p35S::CsRALF34 с промотором 35SCaMV для сверхэкспрессии CsRALF34, вектор pKGW-RR-MGW-p35S::gusA – вставку p35::gusA, несущую репортерный ген β -глюкуронидазы A в качестве контроля против сверхэкспрессии CsRALF34, и идентичный промотор.

Рисунок 6. Карты векторов, использованных для трансформации проростков растений *C. sativus.* (**A**) Вектор для сверхэкспрессии *CsRALF34*, (**Б**) вектор для сверхэкспрессии β -*глюкуронидазы А.*

3.1.2. Реагенты

Были использованы химические реагенты от следующих производителей.

АМRESCO LLC (Fountain Parkway Solon, OH, CША): бисакриламид (ultra pure), трис-(2-карбоксиэтил)-фосфин гидрохлорид (ultra pure), 2-меркаптоэтанол (biotechnology grade), фенилметилсульфонилфторид (high purity); Bioanalytical Technologies 3M (St. Paul, MN, CША): твердофазные октодециловые экстракционные диски EmporeTM; Calbiochem (Мэдисон, США): глицин (molecular biology grade); Диа-М (Москва, Россия): фенол для молекулярной биологии (ос.ч., 99/5%); Экос-1 (Москва, Россия): ацетон (ос.ч.); Helicon (Москва, Россия): N,N,N',N'-тетраметилэтилендиамин (ultra pure), персульфат аммония (ACS), додецилсульфат натрия (biotechnology grade), акриламид 2K (standard grade, extra pure), мочевина (USP grade), монолаурат полиоксиэтилен-20-сорбитана (reagent grade), DTT-дитиотреитол (biotechnology grade), калия хлорид (CP); Научно-исследовательский Институт ЛГУ (Санкт-Петербург, Россия): хлороформ; Merck KGaA (Дармштадт, Германия): ацетонитрил (LC-MS grade), метанол (LC-MS grade); Реахим (Москва, Россия): соляная кислота (GR for analysis), трихлоруксусная кислота, карбонат натрия (extra pure); SERVA Electrophoresis GmbH (Гейдельберг, Германия): Coomassie Brilliant Blue G-250

(ultra pure), 2-меркаптоэтанол (research grade), трипсин NB (sequencing grade); Thermo Fisher Scientific (Waltham, MA, CIIIA): PageRullerTM Plus Prestained Protein Ladder #26619 (10–250 кДа); Dichrom GmbH (Марль, Германия): адаптеры Progenta^{тм} для наконечников для автоматических дозаторов на 200 мкл; Sigma-Aldrich Chemie GmbH (Tayфкирхен, Германия): аскорбатоксидаза от *Cucurbita sp.*, каталаза, этилендиаминтетрауксусная кислота, иодоацетамид (BioUltra), бикарбонат аммония (≥99.0%), муравьиная кислота $(\geq 98\%)$, тетранатриевая соль ксиленового оранжевого (ACS grade), ацетат аммония $(\geq 98\%)$, сорбитол (GR for analysis); Вектон (Санкт-Петербург, Россия): тиобарбитуровая кислота (≥99%). Деионизирование производили с воды использованием системы кондиционирования и очистки воды Elix 3 UV (Millipore, Москва, Россия) или Millipore Milli-Q Gradient A10 (сопротивление 5–15 мΩ/см, Merck Millipore, Дармштадт, Германия).

3.2. Методы

3.2.1. Определение содержания пероксида водорода

Содержание H₂O₂ определялось по методу, описанному Chantseva и соавторами [79], с небольшими модификациями. К 100 мг замороженного перемолотого растительного материала, добавлялся 1 мл ледяной (4°C) 0.4 моль/л хлорной кислоты, затем пробы были перемешаны на вортексе (30 с) и центрифутированы (13000х g, 10 мин, 4°C). Далее супернатант был нейтрализован 4 моль/л гидроксидом калия с последующим центрифугированием (13000х g, 10 мин, 4°C). Затем добавлялось 375 мкл натрийфосфатного буфера (0.1 моль/л, pH 5.6), 1 UN аскорбатоксидазы и 125 мкл экстракта исследуемого образца в 2 кюветы для спектрофотометрии, после чего суспензии перемешивались на вортексе (30 с). Далее в одну из кювет добавлялся 1 мкл раствора каталазы (1 UN) и инкубировался (2 мин, 25°C). Наконец, 500 мкл FOX-реагента (0.2 ммоль/л тетранатриевая соль ксиленового оранжевого, 200 ммоль/л сорбитол, 50 ммоль/л серная кислота, 0.5 ммоль/л аммония-железа (II) сульфата гексагидрат) добавлялись в обе кюветы (с добавленной каталазой и без). Содержимое кювет перемешивалось (30 с), инкубировалось в темноте в течение 30 минут при 25°С, после чего измерялась оптическая плотность при 575 нм (длина оптического пути – 1 см).

3.2.2. Определение содержания веществ, реагирующих с тиобарбитуровой кислотой

Содержание веществ, реагирующих с ТБК, выраженных в эквивалентах малонового диальдегида, определялось по протоколу, описанному Soboleva и соавторами, с небольшими модификациями [80]. 25 мг замороженного перемолотого растительного материала инкубировались на льду (4°С) в течение 3 минут перед добавлением 300 мкл 5% (w/v)

трихлоруксусной кислоты (ТХУ). Затем образцы перемешивались на вортексе (30 с) и центрифугировались (10000х g, 20 мин, 4°С). Далее к 250 мкл супернатанта добавлялся 1 мл ТБК-реагента (0.5% w/v ТБК в 20% ТХУ). После, пробы инкубировались в твердотельном термостате (BioSan, Латвия) в течение 30 минут при 95°С. Для остановки реакции пробы охлаждались на льду (4°С), центрифугировались (1900х g, 10 мин, 4°С), после чего отбирался 1 мл окрашенного супернатанта для измерения поглощения при 532 нм (длина оптического пути – 1 см). Неспецифическое поглощение при 600 нм вычиталось из поглощения при 532 нм (длина оптического пути – 1 см). Содержание веществ, реагирующих с ТБК, рассчитывали по формуле: $\varepsilon = 155$ мМ⁻¹см⁻¹.

3.2.3. Определение содержания гидропероксидов липидов

Уровень содержания гидропероксидов липидов определяли по методу, описанному Frolov и соавторами [81], с небольшими модификациями. 10 мг замороженного перемолотого растительного материала инкубировались на льду (3 мин, 4°С), после чего добавлялось 750 мкл ледяной (4°С) смеси хлороформ-метанол (соотношение 1:2, v/v) и 150 мкл уксусной кислоты в dH_2O (0.15 моль/л), затем пробы перемешивались на вортексе (30 с). Добавлялось 225 мкл 0.01% (w/v) дигидрокситолуола (БХТ) в хлороформе и идентичный объем дистиллированной воды, после пробы перемешивались (30 с) и центрифугировались (3000x g, 5 мин, 4°С). Далее отбиралась нижняя фаза, переносилась в черные полипропиленовые пробирки и сушилась в вакуумном концентраторе CentriVap (Labconco, Kansas City, США) в течение 120 минут. Затем добавлялось 100 мкл 0.01% (w/v) БХТ в метаноле, и пробы инкубировались на льду (30 мин, 4°С). Дальнейшее добавление 900 мкл FOX-реагента (1.0 ммоль/л ксиленовый оранжевый и 2.5 ммоль/л сульфат железа-аммония в 250 ммоль/л серной кислоте, 0.01% (w/v) БХТ в метаноле, 1:9, v/v) также сопровождалось 30-минутной инкубацией на льду (4°С) и, впоследствии, измерением оптической плотности при 560 нм (длина оптического пути - 1 см). Содержание гидропероксидов липидов рассчитывалось как количество эквивалентов 13S-гидроперокси-9Z,11E-октадекановой кислоты (13(RS)-ГПОД), $\varepsilon = 6.0 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$.

3.2.4. Определение содержания аскорбиновой кислоты

Уровень содержания аскорбиновой кислоты определяли по методу, описанному в работе Shumilina и соавторов [82], с небольшими модификациями. К 50 мг замороженного измельченного растительного материала добавлялось 500 мкл ледяной (4°C) 2.5 моль/л хлорной кислоты, затем пробы перемешивались на вортексе (30 с) и центрифугировались (13000x g, 10 мин, 4°C). После, супернатант нейтрализовался насыщенным раствором карбоната натрия и центрифугировался (13000x g, 10 мин, 4°C). Для оценки содержания

восстановленной аскорбиновой кислоты 1.8 мкл натрий-фосфатного буфера (0.1 моль/л, pH 5.6) и 200 мкл супернатанта вносились в кюветы для УФ-спектрофотометрии. Суспензии перемешивались (30 с), после чего измерялась оптическая плотность (A₁) образцов при 265 нм. Далее в те же кюветы добавлялось 4 мкл аскорбатоксидазы (0.5 е.а./мкл) и образцы перемешивались (30 с). После 5-минутной инкубации при 25°С измерялась оптическая плотность (A₂) при 265 нм. Для оценки содержания общей аскорбиновой кислоты к 250 мкл супернатанта добавлялось 3.3 мкл дитиотреитола (DTT), и пробы перемешивались (30 с), затем инкубировались в течение 15 минут при 25°С. После к 200 мкл восстановленного образца добавлялось 1.8 мкл натрий-фосфатного буфера (0.1 моль/л, pH 5.6), пробы перемешивались (30 с), и измерялась оптическая плотность (A₃) при 265 нм. Значение содержания окисленной формы аскорбиновой кислоты (дегидроаскорбиновой кислоты) рассчитывалась как разность между значениями содержания общей аскорбиновой кислоты и ее восстановленной формы. Длина оптического пути для всех измерений составляла 1 см.

3.2.5. Выделение белка методом фенольной экстракции

Выделение белка производилось по методу, описанному Frolov и соавторами [83], с небольшими модификациями. К 250 мг измельченного растительного материала добавлялось 700 мкл ледяного (4°С) буфера для фенольной экстракции (0.7 моль/л сахароза, 0.1 моль/л хлорид калия, 5 ммоль/л этилендиаминтетрауксусная кислота, 2% (v/v) β меркаптоэтанол и 1 ммоль/л фенилметилсульфонилфторид, растворенные в 0.5 моль/л буфере Трис-НСІ, рН 7.5). Образцы перемешивались на вортексе в течение 30 с. Затем добавлялось 700 мкл ледяного (4°С) фенола, предварительно насыщенного 0.5 моль/л буфером Трис-HCl (pH 7.5). После дальнейшего перемешивания (30 с) образцы инкубировались в термошейкере (BioSan, Латвия) в течение 30 минут, при 900 об./мин, 4°С, после чего центрифугировались (5000× g, 15 мин, 4°С). Далее фенольная фаза дважды промывалась путем добавления объема буфера для фенольной экстракции, равного объему фенольной фазы, с последующим центрифугированием (5000× g, 15 мин, 4°С). После каждого добавления буфера пробы перемешивались (30 с), инкубировались в термошейкере (900 об./мин, 30 мин, 4°С) и центрифугировались (5000× g, 15 мин, 4°С). Затем тотальный белок осаждался добавлением 1 мл ледяного 0.1 моль/л ацетата аммония, растворенного в метаноле в течение ночи при -20°C. На следующее утро белковая фракция осаждалась центрифугированием (5000× g, 10 мин, 4°С). Белковый осадок дважды промывался двойным объемом ледяного метанола (относительно объема фенольной фазы), затем ацетона. Обе промывки производились при 4°С. Каждый раз после ресуспендирования образцы центрифугировались (5000× g, 10 мин, 4°С). В конце очищенный белковый осадок высушивался в вытяжном шкафу в течение часа и после растворялся в 70 мкл 4% додецилсульфата натрия (ДДС-Na).

3.2.6. Определение концентрации белка

Определение концентрации белка проводилось с помощью коммерческого набора Bicinchoninic Acid Kit for Protein Determination (Sigma-Aldrich, St. Louis, CША), согласно протоколу фирмы-производителя. Точность определения подтверждали при помощи дискэлектрофореза в полиакриламидном геле (ПААГ) в присутствии ДДС-Na, по методу Laemmli, с небольшими модификациями, описанными Greifenhagen и соавторами [84].

3.2.7. Диск-электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия

Для проведения диск-электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия использовался метод Laemmli, с небольшими модификацими, описанными Greifenhagen и соавторами [84].

Для формирования системы ПААГ и проведения диск-электрофореза использовали следующие растворы:

- Раствор для приготовления разделяющего геля: 13% АА, 0.4% бАА, 0.1% ДДС-Na, 0.75 моль/л буфер Трис-HCl (pH 8.8), 0.065% ТЭМЕД, 0.065% ПСА.
- Раствор для приготовления концентрирующего геля: 4% AA; 0.25% бАА;
 0.025% ДДС-Nа; 0.5 моль/л буфер Трис-HCl (pH 6.8); 0.065% ТЭМЕД; 0.065% ПСА.
- Электродный буфер: 0.1% ДДС-Na; 0.192 моль/л глицин; 0.025 моль/л Трис (pH 8.3).
- Двухкратный раствор для приготовления проб: 0.05% (w/v) бромфеноловый синий, 10% (v/v) глицерин, 2% (w/v) додецилсульфат натрия, 5% (v/v) β-меркаптоэтанол в 62.5 ммоль/л Трис-HCl (pH 6.8).

Пробы, содержавшие 5 мкг белка, разбавлялись в 10 мкл двукратного буфера для проб, после чего инкубировались в твердотельном термостате (BioSan, Латвия) в течение 5 минут при 95°С. После инкубации весь объем образцов вносился в лунки ПААГ. Для возможности определения молекулярных масс белков использовался маркер стандартных молекулярных масс PageRullerTM Plus Prestained Protein Ladder #26619, 10–250 кДа (Thermo Fisher Scientific, США). Электрофоретическое разделение проводилось в режиме: первые 15 мин при 80 В, затем 45-60 мин при 160 В. Гели окрашивались с помощью 0.1% Coomassie Brilliant Blue G-250 в течение 12 часов. Средние плотности отдельных дорожек геля,

выраженные в произвольных единицах, определялись системой визуализации ChemiDoc XRS (Bio-Rad Laboratories Ltd., США), управляемой программным обеспечением для анализа Quantity One® 1-D (Bio-Rad Laboratories Ltd., США). Для расчета относительных стандартных отклонений плотность отдельных дорожек геля нормализовалась до среднего значения при помощи программного обеспечения ImageJ (National Institutes of Health, США).

3.2.8. Гидролитическое расщепление белка трипсином

За день до проведения процедуры триптического гидролиза в фильтры Amicon Ultra 30К (Sigma-Aldrich, St. Louis, США) добавлялось 500 мкл 5% Tween-20, после чего фильтры инкубировались в термошейкере (BioSan, Латвия) при 350 об./мин, 12 ч, 25°С. На следующий день фильтры дважды промывались деионизированной водой (Milli-Q), инкубируясь в термошейкере (450 об./мин, 30 мин, 25°С). После промывки на фильтры наносилось 35 мкг белка, добавлялось 200 мкл раствора мочевины (8М мочевина, 50 ммоль/л буфер Трис-HCl, pH 7.5, UA), а затем фильтры центрифугировались (14000х g, 10 мин, 4°С). Супернатант удалялся, после чего все действия с UA повторялись трижды. Затем добавлялось 100 мкл восстанавливающего раствора (100 ммоль/л DTT в UA), после чего фильтры инкубировались в термошейкере (450 об./мин, 25°С, 1 ч) и центрифугировались (14000х g, 10 мин, 25°C) с последующим удалением супернатанта. Аналогичное центрифугирование (14000х g, 10 мин, 25°С) производилось и после добавления 100 мкл алкилирующего раствора (50 ммоль/л иодацетамид в UA), однако перемешивание (450 об./мин, 25°С, 1 ч) производилось в темноте. Следующим этапом была промывка фильтров 200 мкл UA с последующим центрифугированием (14000х g, 10 мин, 4°С). Все вышеперечисленные процедуры повторялись дважды. Те же процедуры повторялись и с буфером для гидролитического расщепления трипсином (50 ммоль/л бикарбонат аммония, АВС) последовательно 2 раза. После готовился стоковый раствор трипсина (соотношение фермент:белок – 1:20). Он добавлялся в фильтры, затем пробы инкубировались в термошейкере (450 об./мин, 4 ч, 37°С). Инкубация в термошейкере продолжалась (450 об./мин, 37°C, 12 ч) после повторного нанесения на фильтры раствора трипсина, но в соотношении фермент: белок – 1:50. На следующее утро образцы центрифугировались (14000х g, 10 мин, 25°С), при этом фильтраты сохранялись. Следующим шагом была поэтапная промывка фильтратов 40 мкл 50 ммоль/л АВС с последующим центрифугированием (14000х g, 10 мин, 25°С). Данный шаг повторяли дважды, после чего полученные гидролизаты белка хранили при -20°С. Полноту гидролиза оценивали с помощью диск-электрофореза в ПААГ в присутствии ДДС-Na, по методу Laemmli, с небольшими модификацими, описанными Greifenhagen и соавторами [84].

3.2.9. Твердофазная экстракция пептидов

Протеолитические гидролизаты очищались методом обращенно-фазной твердофазной экстракции по схеме, представленной в работе Spiller и соавторов [85]. Наконечники для автоматических дозаторов на 200 мкл с 6 слоями матрицы С-18, 66883-U (Sigma-Aldrich, CША), Stage-Tips, вставлялись в 2 мл пробирки с помощью специальных (Dichrom пластиковых адаптеров GmbH, Германия). Затем наконечники 100 кондиционировались путем внесения мкл метанола последующим с центрифугированием (2000х g, 5 мин, 25°C), после чего уравновешивались добавлением 200 мкл 0.1% (v/v) раствора муравьиной кислоты (FA) с последующим центрифугированием (2000х g, 5 мин, 25°С). После двухкратной промывки 0.1% (v/v) FA на матрицу С-18 наносился полный объем гидролизата белка, затем образцы дважды центрифугировались (2000х g, 5 мин, 25°С). Далее Stage-Tips дважды промывались 200 мкл 0.1% (v/v) FA и центрифугировались (2000х g, 5 мин, 25°С). Пептиды элюировались путем внесения 150 мкл 40% (v/v) ацетонитрила в 0.1% (v/v) FA и последующего центрифугирования (2000х g, 5 мин, 25°C) с сохранением элюата. Те же этапы повторялись и при последовательном добавлении 150 мкл 60% (v/v) и 150 мкл 80% (v/v) ацетонитрила в 0.1% (v/v) FA, однако время центрифугирования составляло 7 и 8 мин, соответственно. В конце, полученный элюат, содержащий пептиды, высушивался (4°С) под пониженным давлением в вакуумном концентраторе CentriVap Vacuum Concentrator (Labconco, Kansas City, США).

3.2.10. Подготовка проб для LC-MS/MS анализа

Высушенные пептиды растворялись в 2 мкл 60% ацетонитрила (ACN) в 0.1% муравьиной кислоте, затем перемешивались на вортексе (30 с) и подвергались воздействию ультразвука в течение 5 минут в ультразвуковой ванне (НПП Сапфир, Россия). Все вышеупомянутые этапы последовательно повторялись 3 раза, пока конечная концентрация пептидов не составляла 250 нг/мкл, конечный объем проб - 60 мкл, а содержание ACN – 3%. Также была приготовлена проба для контроля качества (QC) путем смешивания 5 мкл каждого исследуемого образца в одной пробирке. Во время процедуры рандомизации пробы QC помещали после каждых шести исследуемых образцов. Процедура рандомизации производилась в программе Microsoft Excel (Microsoft, CША).

3.2.11. Nano LC-MS/MS

Белковые гидролизаты загружали в 5-миллиметровый картридж-ловушку Acclaim PepMap (Thermo Fisher Scientific, США) и разделяли на колонке Bruker FORTY (C18

ReproSil AQ, 40 см × 75 мкм, 1.9 мкм, 120 A; Bruker Daltonics, Германия) с использованием хроматографичекой системы nanoElute UHPLC (Bruker Daltonics, Германия), сопряженной с квадрупольным времяпролетным масс-спектрометром Tim-sToF Pro (QqTOF-MS) через источник ионов CaptiveSpray (Bruker Daltonics, Германия) в режиме онлайн. Настройки метода хроматографического разделения указаны в Таблице 1.

Параметр	Настройки		
Параметры метода			
Объем инъекции	2 мкл		
Режим введения пробы	инъекция при 217.5 бар		
Температура колонки	45°C		
Э	люенты		
Элюент А	0.1% (v/v) FA в dH2O		
Элюент В	0.1% (v/v) раствор FA в ACN		
Режим элюции	Время (мин)	% B	
	0	2	
	40	40	
	40.5	85	
	55.9	85	
	57.9	2	
	60	2	
Колонка-ловушка	Thermo Trap Cartridge 5mm		
Объем	0.148 мкл		
Уравновешивающее давление	217.5 бар		
Расчетное время уравновешивания	0.65 мин		
Объем уравновешивания (×10)	1.48 мкл		
Разделяющая колонка	Bruker FORTY		
Объем	0.742 мкл		
Уравновешивающее давление	600.0 бар		
Расчетное время уравновешивания	7.91 мин		
Объем уравновешивания (×4)	2.97 мкл		

Таблица 1. Параметры метода Nano UHPLC.

Анализ UHPLC-QqToF-MS/MS проводился при помощи алгоритма анализа на основе полученных данных (DDA), выполненного в режиме положительной ионизации, включающем обзорное сканирование ToF-MS и зависимое MS/MS-сканирование для наиболее распространенных сигналов в течение следующих 3 с (при определенных значениях времени удержания) с зарядами в диапазоне от 2 до 5. Настройки массспектрометра приведены в Таблице 2.

системы ESI-Qo	ToF-MS	DDA.
----------------	--------	------

Параметр	Настройки			
Параметры MS-анализа				
Режим ионизации	Положительный			
Диапазон отношения массы к заряду (<i>m/z</i>)	150 - 2200			
Частота спектра	2 Гц			
Отклонение торцевой пластины	500 B			
Капиллярное напряжение	4500 B			
Распылитель	1.5 бар			
Температура высыхания	200°C			
Подача сухого газа	2.0 1/мин			
Параметры MS/MS-анализа				
Режим сканирования	Автоматическая MS/MS			
Тип фрагментации	Диссоциация, вызванная			
ini qpu weniuqini	столкновением			
Ширина изоляции	2 - 3			
Получение спектров MS/MS	8 – 32 Гц			
Пороговое значение (сум. для каждой 1000)	250 cts			
Продолжительность цикла	3 c			
Энергия столкновения Режим сканирования	от 23 эВ (m/z 300) до 65 эВ (m/z 1300) Автоматическая MS/MS			

3.2.12. Биоинформатический анализ данных

Обработка данных LC-MS производилась с использованием программного обеспечения PEAKS Studio (версия 10.6, Bruker Daltonics, Германия). Настройки поиска приведены в Таблице 3.

Настройки поиска в базе данных				
Аналитическая программа	PEAKS Studio 10.6 build 20201221			
Динамическое отклонение родительской массы:	10.0 ppm			
Динамическое отклонение массы фрагмента:	0.05 Да			
Тип поиска массы-предшественника:	Моноизотопный			
Фермент	Трипсин			
Пропущенные сайты расщепления	2			
FDR	2			
Фиксированные модификации:	Карбамидометилирование: 57.02			
Вариабельные модификации:	Окисление (M): 15.99			
	Ацетилирование (N-конец белка): 42.01			
	Дезамидирование (NQ): 0.98			
Наиболее вариабельные ПТМ для каждого пептида	2			

Идентификация пептидов и аннотирование белков основывались на поиске по аминокислотным последовательностям *Cucumis sativus* cv. Chinese Long v2 [86] (получено с FTP-сайта базы данных Cucurbit Genomics Database v1), выполненном с помощью алгоритма SEQUEST [87, 88]. Постобработка данных выполнялась в RStudio v.2021.09.0+351 (RStudio Team, 2021), среде для языка программирования R (версия 3.6.3, R Core Team, 2020). Количественный анализ белка проводился по преобразованным в логарифмические нормализованным данным с использованием пакета *limma* с минимальным ограничением изменения численности в 1.5 логарифмических раза [89]. Для аннотации белков использовалось программное обеспечение Mercator4 (версия 2.0) [90, 91]. Субклеточная локализация белков определялась с помощью программного расширения WoLF PSORT [92].

3.2.13. Статистический анализ данных

Статистический анализ данных выполнялся с помощью программы Microsoft Excel (Microsoft, США). Для биохимических маркеров стресса (H2O2, эквивалентов TБК, 13(RS)-HPOD, аскорбиновой кислоты) применялся t-критерий Стьюдента для независимых выборок в сочетании с тестом на нормальность. Для идентификации белков, продемонстрировавших увеличение и уменьшение относительного количества, использовался t-тест с коррекцией частоты ложных обнаружений Бенджамини-Хохберга. Во всех статистических тестах различия в значениях $p \le 0.05$, или ≤ 0.01 , или ≤ 0.001 принимались статистически значимыми.

4. Результаты

4.1. Анализ биохимических маркеров стресса в корнях *Cucumis sativus*

Эффекты пептида RALF34 могут быть связаны с реакцией растений на стресс. Для изучения уровня перекисного окисления липидов, целостности мембран и статуса антиоксидантной защиты контрольных корнях по сравнению корнями, В с сверхэкспрессирующими CsRALF34, было оценено несколько биохимических маркеров окислительного стресса: уровни пероксида водорода, гидропероксидов липидов, веществ, реагирующих с ТБК (выраженных в эквивалентах малонового диальдегида, TBARS), а так же соотношение восстановленной и окисленной форм аскорбиновой кислоты. Результаты показали, что уровни перекиси водорода были значительно ниже в корнях, сверхэкспрессирующих CsRALF34, по сравнению с контрольными корнями (Рисунок 7Б). Напротив, содержание TBARS в корнях, сверхэкспрессирующих CsRALF34, двухкратно превышало их содержание в контрольных (Рисунок 7А). С другой стороны, избыточная экспрессия *CsRALF34* не влияла на уровни содержания гидропероксидов липидов и аскорбиновой кислоты (Рисунок 8А,Б). Содержание общего аскорбата было ниже предела количественного определения во всех образцах, т.е. пул аскорбиновой кислоты был представлен только окисленной формой и дегидроаскорбатом.

Рисунок 7. Содержание (A) веществ, реагирующих с ТБК (TBARS), (Б) пероксида водорода (H₂O₂) в образцах корней трансгенных контрольных растений *Cucumis sativus* (Контроль) и корней со сверхэкспрессией *CsRALF34* (RALF34+). FW – сырая масса. Звездочками обозначены статистически значимые различия между группами выборок, t-критерий Стьюдента: $p \le 0.05$.

Рисунок 8. Содержание (А) гидропероксидов липидов, определенное как количество эквивалентов 13(S)-ГПОД, и (Б) общего аскорбата в образцах корней трансгенных

контрольных растений *Cucumis sativus* (Контроль) и корней со сверхэкспрессией *CsRALF34* (RALF34+). FW – сырая масса.

4.2. Выделение белка и триптический гидролиз

Для обеспечения эффективной экстракции белков корня и максимально возможного охвата протеома *Cucumis sativus*, использовался метод экстракции белка на основе фенола. Определение концентраций белка в полученных изолятах показало, что выход экстракции находится в диапазоне 0.234–0.463 мг/г FW (Таблица 4).

Таблица 4. Выход экстракции белка, концентрация белка в экстрактах и оптические плотности отдельных полос полиакриламидного геля, соответствующих отдельным образцам белковых экстрактов, выделенных из корней трансгенных контрольных корней *C. sativus* (Контроль) и культивируемых с избыточной экспрессией *CsRALF34* (RALF34+).

Προδο	Macca	Концентрация	Выход белка,	Оптическая
проба	навески, г	белка, мг/мл	мг/г FW	плотность
Контроль (1)	0.250	1.53	0.428	1595601
Контроль (2)	0.254	1.13	0.312	1612235
Контроль (3)	0.255	1.25	0.343	1525704
Контроль (4)	0.241	1.51	0.470	1525891
Контроль (5)	0.236	1.35	0.400	1572125
Контроль (6)	0.271	1.65	0.428	1598280
Контроль (7)	0.233	1.38	0.413	1625710
Контроль (8)	0.284	1.88	0.463	1658598
RALF34+(1)	0.253	1.47	0.407	1727770
RALF34+ (2)	0.248	1.64	0.462	1734730
RALF34+ (3)	0.273	1.50	0.385	1823112
RALF34+ (4)	0.224	1.05	0.330	1718919
RALF34+(5)	0.284	0.95	0.234	1736292
RALF34+ (6)	0.244	1.33	0.382	1768621
RALF34+(7)	0.260	1.51	0.405	1768116
RALF34+ (8)	0.224	1.27	0.397	1542560

Точность анализа определялась с помощью диск-электрофореза в денатурирующих условиях в присутствии ДДС-Na путем нанесения по 5 мкг белка на дорожку геля (Рисунок 9А,Б). Перекрестная проверка с помощью денситометрической оценки окрашенных с и использованием Coomassie Brilliant Blue G – 250 гелей выявила общую плотность дорожек 1.53×10^6 - 1.82×10^6 условных единиц (Таблица 4), (AU, RSD = 5.8%).

Наблюдаемые электрофоретические профили разделения белков были одинаковы в контрольных и экспериментальных пробах (Рисунок 9А, Б). Дополнительно полученные электрофореграммы показывают успешность проведения ограниченного гидролиза белка трипсином (Рисунок 10А,Б).

Рисунок 9. Электрофореграммы препаратов тотального белка (5 мкг) контрольных (**A**) и экспериментальных (**B**) образцов корней *C.sativus*. Разделяющий гель 12%. **М** – маркер молекулярных масс (PageRullerTM Plus Prestained Protein Ladder #26619 (10–250 кДа), Thermo Fisher Scientific, США). Гели окрашены 0.1% раствором Coomassie Brilliant Blue G – 250.

Рисунок 10. Электрофореграммы препаратов тотального белка (5 мкг) контрольных (**A**) и экспериментальных (**B**) образцов корней *C.sativus* после триптического гидролиза. Разделяющий гель 12%. **М** – маркер молекулярных масс (PageRullerTM Plus Prestained Protein Ladder #26619 (10–250 кДа), Thermo Fisher Scientific, США). Гель окрашен 0.1% раствором Coomassie Brilliant Blue G – 250.

4.3. Аннотация белков *Cucumis sativus*

С помощью MS/MS спектров во всем наборе данных было идентифицировано 10378 пептидов. Среди них 8561 и 8780 пептидов были идентифицированы в контрольных корнях и в корнях, сверхэкспрессирующих *CsRALF34*, соответственно (Рисунок 10А). Среди них 6983 пептида (67.3%) встречались в обеих группах, в то время как 1598 (15.4%) и 1797 (17.3%) пептидов были уникальными либо для контрольных, либо для *CsRALF34*сверхэкспрессирующих растений. Основываясь на полученных результатах, можно было аннотировать 2302 возможных белка (2147 и 2120 в контрольных корнях и в сверхэкспрессорах *CsRALF34*, соответственно, (Рисунок 11Б)), которые входили в 1946 белковые группы (Рисунок 11В). Среди них 2302 белков 1965 (85.4%) были общими для обеих групп корней, 182 (7.9%) и 155 (6.7%) белков были уникальными для контрольной группы и группы сверхэкспрессии *CsRALF34*, соответственно (Рисунок 11Б).

Рисунок 11. Количество пептидов (А), белков (Б) и белковых групп (В), идентифицированных в контрольных корнях *C.sativus* и корнях, сверхэкспрессирующих *CsRALF34*.

4.4. Количественная оценка и функциональная аннотация

На первом этапе наблюдаемые различия в протеоме были охарактеризованы с помощью метода главных компонент (PCA), примененного к полному набору данных (Рисунок 12). Результаты показали низкую внутригрупповую дисперсию и высокую степень объясненной межгрупповой дисперсии, т.е. более 99.1% группоспецифичных белков

обеспечивали надежное разделение групп по главной компоненте 1 (PC1). По главной компоненте 2 межгруппового разделения не наблюдалось.

Рисунок 12. Метод главных компонент, иллюстрирующий меж- и внутригрупповую дисперсии между трансгенными контрольными корнями *C.sativus* (Контроль) и корнями *C.sativus*, сверхэкспрессирующими *CsRALF34* (RALF34+). Дисп. – дисперсия; PC1/2 – главная компонента 1 и 2.

Количественный анализ с использованием безметочного подхода выявил 208 белков среди всех 2302 аннотированных белков, продемонстрировавших количественные изменения (t-критерий: $p \le 0.05$, FC ≥ 1.5 , Таблица 6 в Приложении) под влиянием сверхэкспрессии *CsRALF34* в корнях огурца. Среди них 92 белка продемонстрировали увеличение, 116 – уменьшение относительного количества. Наибольшее увеличение было показано для тиоредоксина (в 17.8 раза), глутатионпероксидазы (в 17.2 раза), карнитинового оперонного белка CaiE (в 16.6 раза) и белка раневого стресса (в 16.5 раза) (Таблица 5). Выраженное уменьшение относительного количества продемонстрировали: белок теплового шока 70 кДа (в 21.1 раза), фосфатаза, содержащая убиквитинподобный СTD-домен (в 18.7 раза) и флоэмный лектин (в 18.2 раза) (Таблица 5). 25 основных белков, в наибольшей степени оказавших влияние на изменения протеома огурца, связанные со сверхэкспрессией *CsRALF34*, перечислены в Таблице 5 (все белки перечислены в Приложении, Таблице 6).

Название белка	Направленность	PC1	FC	p adjusted
	эксперименталь	ных образцах	со сверхэкспр	есией CsRALF34
Таблица 5. 25 белкон	в, продемонстрировавши	их наибольши	е количествен	ные изменения в

	. I	_	_	I mjanica
	количественного			
	изменения			
Тиоредоксин	up	0.084	17.8	5.3×10^{-35}
Глутатионпероксидаза	up	0.081	17.2	4.4×10^{-35}
Рибосомный белок	up	0.081	17.0	$5.6 imes 10^{-35}$
L19				
СНР-богатый белок,	up	0.081	17.2	$6.8 imes 10^{-35}$
подобный цинковым				
пальцам				
Белок S24 40S	up	0.080	16.7	3.2×10^{-34}
рибосомы				
Карнитиновый	up	0.079	16.6	5.6×10^{-35}
оперонный белок CaiE				
Белок ранения/стресса	up	0.078	16.5	4.4×10^{-35}
Порин/белок	up	0.078	16.5	$5.6 imes 10^{-35}$
потенциалзависимого				
анион селективного				
канала				
Белок L18a 60S	up	0.077	16.4	$6.8 imes 10^{-35}$
рибосомы				
Фосфофруктокиназа	up	0.077	16.0	$8.7 imes 10^{-35}$
Субъединица С	up	0.077	16.3	1.4×10^{-32}
эукариотического				
фактора инициации				
трансляции 3				
Член семейства А,	up	0.077	16.3	$5.0 imes 10^{-16}$
содержащий домен,				
гомологичный домену				
плекстрина				

3-оксоацил-	up	0.076	16.3	$9.0 imes 10^{-35}$
[ацилпереносящий				
белок] синтаза 3				
РНК-связывающий	up	0.076	16.1	$8.3 imes 10^{-35}$
белок 8А				
Трансмембарнный	up	0.075	15.3	$9.5 imes 10^{-35}$
белок, член				
суперсемейства 9				
Белок теплового шока	down	-0.100	21.1	1.7×10^{-35}
70 кДа				
Фосфатаза,	down	-0.089	18.7	$4.5 imes 10^{-35}$
содержащая				
убиквитинподобный				
СТД-домен				
Флоэмный лектин	down	-0.086	18.2	$4.8 imes 10^{-35}$
Тепсин,	down	-0.083	17.6	2.4×10^{-34}
вспомогательная				
субъединица				
комплекса АР4				
10 кДа шаперони	down	-0.083	17.6	$4.8 imes 10^{-35}$
Белок, содержащий	down	-0.082	17.5	$1.7 imes 10^{-35}$
пентатрикопептидный				
повтор				
Белок L32 60S	down	-0.082	17.3	$2.0 imes 10^{-30}$
рибосомы				
Субтилизин-подобная	down	-0.081	17.4	$8.3 imes 10^{-35}$
сериновая протеаза				
Белок МЕМО1	down	-0.081	17.2	$6.8 imes 10^{-35}$
А-субкомплекс	down	-0.079	16.9	$5.6 imes 10^{-35}$
субъединицы 13				
NADH-дегидрогеназы				
1				

Up – увеличение относительного количества белка под влиянием сверхэкспресии *CsRALF34*; **down** – уменьшение относительного количества белка под влиянием сверхэкспресии *CsRALF34*; **FC** – изменение кратности относительного количества белков; **p**_{adjusted} – скорректированное значение р.

4.5. Функциональная аннотация

Функциональная аннотация 208 белков, продемонстрировавших количественные изменения под влиянием сверхэкспрессии *CsRALF34*, основывалась на программном обеспечении Mercator4. Анализ выявил 26 функциональных классов (Рисунок 13). Белки, относительное количество которых увеличилось (белки, связанные с организацией хроматина; фотосинтезом; биосинтезом РНК; вторичным метаболизмом и транспортом растворенных веществ) и уменьшилось (белки, участвующие в реакции на повреждение ДНК, мультипроцессной регуляции и транспорте растворенных веществ), представлены 25 и 22 классами соответственно.

В группе продемонстрировавших повышение относительного количества полипептидов преобладали участвующие в биосинтезе белка (15 белков), причем рибосомные белки L19, L18a, L35, S24 и фактор инициации трансляции эукариот 3 показали наибольший относительный прирост численности (17.0-, 16.4-, 15.7-, 16.7-, и в 16.3 раза больше, соответственно) под влиянием сверхэкспрессии CsRALF34. В данную группу также внесли значительный вклад 8 белков, участвующих в транспорте везикул, в частности, рецептор сортировки вакуолей 7, компонент комплекса экзоцисты, а также общий везикулярный транспортный фактор p115 (изменения в относительном количестве составили 14.9, 14.9- и 13.1 раза, соответственно). 12 белкам (13.3% от всех белков, характеризующихся повышением относительного количества) не удалось присвоить ни одну функцию в контексте доступных функциональных классов; они были обозначены как белки "неопределенной функции" (Рисунок 13).

Рисунок 13. Функциональная аннотация количественно изменившихся белков под влиянием сверхэкспрессии *CsRALF34* в корнях *C.sativus*. **Down – regulated** – белки, продемонстрировавшие уменьшение относительного количества; **up-regulated** – белки, продемонстрировавшие увеличение относительного количества. Числовые значения - количество белков, составляющих отдельные функциональные классы.

В группе полипептидов, характеризующихся уменьшением относительного количества, преобладали белки, участвующие в белковом гомеостазе (15 белков): белок теплового шока 70 кДа, шаперонин 10 кДа, субтилизиноподобная сериновая протеаза и Сlp-протеаза (снижение в 21.1-, 17.6-, 17.4-, и в 16.2 раза, соответственно). 7 ферментов, участвующих в модификации белков, также внесли значительный вклад в данную группу: в частности, глицилпептидная N-тетрадеканоилтрансфераза и долихилдифосфоолигосахарид белковая гликозилтрансфераза (изменение содержания в 16 и 15.4 раза, соответственно). Для 22 белков, продемонстрировавших уменьшение относительного количества (17.6%), функцию установить не удалось (Рисунок 13).

Предсказание субклеточной локализации было сделано при помощи программного расширения WoLF PSORT с последующей ручной проверкой на основе базы данных UniProt и литературных данных (Приложение, Таблица 6). Результаты продемонстрировали, что наибольший вклад в протеом, изменившийся под влиянием сверхэкспрессии *CsRALF34*, внесли белки, локализованные в цитозоле, пластидах и ядре (33.3%, 18.1% и 17.6%,

соответственно) (Рисунок 14А,Б). С другой стороны, в наименьшей степени изменилось относительное количество белков клеточной стенки, пероксисом, масляных тел и цитоскелета (1.9%, 1.9%, 1.0%, и 0.5%, соответственно). Примечательно, что паттерны локализации белков, продемонстрировавших как повышение, так и снижение относительного содержания, были схожими.

Рисунок 14. Субклеточная локализация белков, продемонстрировавших увеличение (**A**) и уменьшение относительного количества (**b**), в корнях *C.sativus* со сверхэкспрессией *CsRALF34*. Числовые значения указывают на количество белков.

4.6. Влияние CsRALF34 на метаболизм корней и сигнальные пути

Метаболические и сигнальные пути, подверженные влиянию сверхэкспрессии CsRALF34, были исследованы путем картирования отдельных белков, относительное количество которых изменилось, с использованием базы данных Kyoto Encyclopedia of Genes and Genomes (KEGG). Основываясь на этих данных, можно было наблюдать активацию специфических сигнальных путей, изменения в метаболизме сахаров и трикарбоновых кислот, а также усиление биосинтеза и транспорта белка в клетках корней с индуцированной сверхэкспрессией CsRALF34 по сравнению с контрольными корнями (Рисунок 15 и 16).

В дополнение к метаболическим сдвигам, сверхэкспрессия *CsRALF34* привела к выраженному увеличению относительного количества кальций-зависимой протеинкиназы (2.7.11.1), протеинфосфатазы 2С (3.1.3.16) и киназы контрольной точки (2.7.11.1). Данные белки связаны с контролем клеточного цикла и адаптацией к стрессу (Рисунок 15). Кроме того, наблюдалось повышение относительного количества тиоредоксина 1, белков теплового шока Hsp90 и Hsp72, убиквитинкарбоксил-концевой гидролазы 1, универсального белка стресса и глутатионпероксидазы (1.11.1.9), тогда как относительное количество NADH-дегидрогеназы, ядерного антигена пролиферирующих клеток, глутатион

S-трансферазы (2.5.1.18) и аминоциклопропанкарбоксилатоксидазы (1.14.17.4) было снижено (Приложение, Таблица 6).

Блокирование перехода G2/M

Рисунок 15. Схема сигнальных путей, участвующих в регуляции клеточного цикла и реакции на абиотический стресс, вероятно активирующихся при сверхэкспрессии *CsRALF34*. АФК – активные формы кислорода; CDKA – циклинзависимая киназа A; CDPK12 – кальцийзависимая протеинкиназа 12; PP2C – протеинфосфатаза 2C; PYR-PYL – рецепторы абсцизовой кислоты; KRP – белок, связанный с CDK-взаимодеймтвующим белком. Белки, продемонстрировавшие увеличение и уменьшение относительного количества при сверхэкспресии *CsRALF34* выделены зеленым и красным цветом, соответственно.

Другими эффектами сверхэкспрессии CsRALF34 было увеличение относительного количества Rab-белка, ферментов гликолиза, пентозофосфатного пути, метаболизма маннозы и пуринов, биосинтеза валина, лейцина и мелатонина (Рисунок 16). Относительное количество ферментов ЦТК также изменилось под влиянием сверхэкспрессии CsRALF34: изоцитратдегидрогеназа (1.1.1.42) продемонстрировала числе нный прирост, тогда как сукцинил-КоА-синтетаза (6.2.1.5) – убыль (Рисунок 16). Кроме того, было снижено относительное количество аквапорина-7 и олигосахарилтрансферазы (Приложение, Таблица 6).

Рисунок 16. Метаболические пути, изменившиеся под влиянием сверхэкспрессии CsRALF34 в корнях C.sativus (на основе базы данных сигнальных путей KEGG). АМРК – АМФ-активируемая протеинкиназа; ΑΤΦ аденозинтрифосфат; GLUT инсулинозависимый белок-переносчик глюкозы; Rab – член суперсемейства малых G-белков RAS; RALF – малый сигнальный пептид Rapid Alkalinization Factor; TBC1D1 – семейства ломенов TBC1; 5.4.2.8 маннозофосфомутаза; 6.3.3.1 член фосфорибозилформилглицинамидинциклолигаза; 4.3.2.2 – аденилосукцинатлиаза; 2.7.1.11 – 6-фосфофруктокиназа; 2.7.1.90 – дифосфатзависимая фосфофруктокиназа; 2.2.1.1 – трансклетолаза; 2.2.1.6 – ацетолактатсинтаза; 4.2.3.4 – 3-дегидрохинатсинтаза; 1.1.1.42 – изоцитратдегидрогеназа; 6.2.1.5 – сукцинил-КоА-синтетаза. Белки, продемонстрировавшие увеличение и уменьшение относительного количества при сверхэкспресии CsRALF34 выделены зеленым и красным цветом, соответственно.

Другими клеточными процессами, на которые повлияла сверхэкспрессия CsRALF34, были биосинтез белка, транспорт и экзоцитоз (Рисунок 17, Приложение, Таблица 6). В частности, относительное количество РНК-связывающего белка семейства (Y14), белков биосинтеза рибосом (NOP4, белок ядрышка 4 и NMD3, адаптер экспорта рибосом), белков малой и большой субъединиц рибосом (S10, 12, 24, 25, 29, 32, 38, L14, 15, 18, 19 и 35), маннозил-олигосахарид α-1,3-глюкозидазы (GlcII), транспортного белка Sec23/24, бетаингомоцистеин S-метилтрансферазы (1.1.1.5)И 5-метилтетрагидроптероилтриглутаматгомоцистеинметилтрансферазы (2.1.1.14)было увеличено в корнях, сверхэкспрессирующх CsRALF34 (Приложение, Таблица 6). Примечательно, что несколько белков, вовлеченных в протеасомную деградацию (дисульфид-изомераза белка A1, TRAP,

транслокон-ассоциированная белковая субъединица α, Hsp70, белок теплового шока 70 кДа, p97, АТФаза переходного эндоплазматического ретикулума), транспорт белка в литические вакуоли (связанный с везикулами мембранный белок 7, VAMP7) и эндоцитоз (динамин, α-субъединица комплекса AP-2 (AP2), связанный с сортировкой вакуолярного белка белок 4 (VPS4) и связанный с сортировкой вакуолярного белка белок (VTA1) продемонстрировали уменьшение относительного количества в экспериментальных корнях по сравнению с контрольными (Приложение, Таблица 6).

Рисунок 17. Пути биосинтеза и транспорта белка, активируемые сверхэкспрессией *CsRALF34* (на основе базы данных сигнальных путей KEGG). РР2А – серин/треонинпротеинфосфатаза 2A; S10, 12, 24, 25, 29, 32, и 38 - белки малой рибосомной субъединицы; L14, 15, 18, 19 и 35 – белки большой рибосомной субъединицы; GlcII – маннозилолигосахарид а-1,3-глюкозидаза; TRAP – а-субъединица белка, ассоциированного с транслоконом; Hsp70 – белок теплового шока 70 кДа; р97 - переходная АТФаза ЭПР; VAMP7 - мембранный белок, связанный с везикулами 7; Sec23/24 - белок-переносчик от ЭПР к аппарату Гольджи. Белки, продемонстрировавшие увеличение и уменьшение относительного количества при сверхэкспресии *CsRALF34* выделены зеленым и красным цветом, соответственно.

5. Обсуждение

5.1. Функции CsRALF34

5.1.1. Ингибирование роста корней и регуляция пролиферации клеток

На сегодняшний день известно, что у нескольких изученных видов растений, например, *Medicago truncatula* и *Solanum lycopersicum*, основная роль пептида RALF34

заключается в контроле подщелачивания окружающей среды для ингибирования роста путем подавления функций H⁺-ATФазы [39, 93, 94], предотвращающего удлинение клеток. Однако в других исследованиях данный эффект обсуждался как результат молекулярного сигнального каскада, активируемого RALF34. Pearce, Moura, Stratmann и Ryan [39] показали, что экспрессия RALF34 была связана со снижением активности митогенактивируемой протеинкиназы (MAPK), обусловленным ингибированием роста боковых корней.

Результаты анализа протеома, претерпевшего изменения под влиянием сверхэкспрессии *CsRALF34* в корнях *Cucumis sativus*, продемонстрировали уменьшение относительного количества циклин-зависимой киназы A (CDKA) (Рисунок 15), что, в свою очередь, может приводить к блокированию перехода клетки из фазы G2 к митозу [95].

Кроме того, было отмечено снижение относительной численности ядерного антигена пролиферирующих клеток (PCNA, Приложение, Таблица 6), партнера по взаимодействию ДНК-полимераз в контексте репликации ДНК [96, 97]. В сочетании со снижением относительного количества геликаз эти данные подтверждают предположение о том, что сверхэкспрессия *CsRALF34* приводит к блокированию перехода G2/митоз в клетках корня огурца (Рисунок 15).

5.1.2. Влияние CsRALF34 на передачу сигналов АФК и адаптацию к стрессу

Точные механизмы, лежащие в основе действия пептидов RALF в реакциях на стресс и адаптивных реакциях, до сих пор неизвестны. Однако Stegmann и соавторы [51] показали, что несколько AtRALF участвуют в регуляции внутриклеточных уровней A Φ K: AtRALF23 опосредовал увеличение выработки A Φ K, тогда как AtRALF17, напротив, вызывал снижение их уровней содержания. Результаты анализа протеома, претерпевшего изменения под влиянием сверхэкспрессии CsRALF34, подтверждают роль пептидов RALF в качестве регуляторов A Φ K – предполагается, что CsRALF34 модулирует гомеостаз A Φ K. По меньшей мере, CsRALF34 вызывал изменения в функциях дыхательной цепи в сочетании с активацией систем антиоксидантной защиты.

Наблюдалось уменьшение относительного количества NADH-дегидрогеназы, комплекса I дыхательной цепи, и сукцинил-КоА-синтетазы, фермента, превращающего сукцинил-КоА в сукцинат (Приложение, Таблица 6). Известно, что дефицит сукцината подавляет активность сукцинатдегидрогеназы, являющейся одновременно как ферментом ЦТК, так и комплексом II дыхательной цепи митохондрий. Потеря активности данного комплекса приводит к дефициту электронов в дыхательной цепи. Более того, оказывая влияние на NADH-дегидрогеназу, восстанавливающую убихинон до убихинола – субстрата цитохром с-редуктазы, *Cs*RALF34 может отрицательно влиять на активность комплекса III.

Таким образом, отрицательное воздействие на комплексы I и III приводит к уменьшению потока электронов через всю дыхательную цепь и может опосредовать снижение скорости образования супероксид анион-радикала, т.к. данные комплексы являются его основными генераторами [98, 99].

Уровень содержания H_2O_2 был значительно ниже в корнях, сверхэкспрессирующих *CsRALF34*, по сравнению с контрольными корнями (Рисунок 7Б). Это может быть объяснено ингибированием переноса электронов по дыхательной цепи, описанным выше, поскольку супероксидные анионы преобразуются в H_2O_2 супероксиддисмутазой. С другой стороны, повышение уровня относительного количества тиоредоксина 1, белков теплового шока Hsp90 и Hsp72, убиквитинкарбоксил-концевой гидролазы 1 и универсального белка стресса указывают на усиление антиоксидантной защиты клетки.

В ответ на сверхэкспрессию CsRALF34 наблюдалось повышение уровня относительного количества глутатионпероксидазы, принимающей непосредственное участие в антиоксидантной защите, в частности, в восстановлении гидропероксидов липидов до соответствующих спиртов, а также в восстановлении перекиси водорода до воды [100]. Таким образом, можно заключить, что CsRALF34 критически вовлечен в подавление выработки H₂O₂, а также активацию клеточных антиоксидантных систем. Возможно, данные эффекты опосредованы влиянием CsRALF34 на сигнальные каскады.

В качестве компонентов сигнальных путей, участвующих в RALF34-зависимых реакциях, были идентифицированы протеинфосфатаза 2С (PP2C) и кальций-зависимая протеинкиназа 12 (CDPK12), продемонстрировавшие увеличение относительного количества под влиянием сверхэкспрессии *CsRALF34*. PP2C участвует в передаче сигнала абсцизовой кислоты [102]. Связывание AБК с её PYR/PYL/RCAR приводит к образованию комплекса данных рецепторов с PP2C, что, в свою очередь, приводит к ингибированию данного фермента и активации SnRK2. В отсутствие AБК белки SnRK2 ингибируются PP2C-зависимым дефосфорилированием [101]. Кроме того, известно, что CDPK12 участвует в регуляции экспрессии генов антиоксидантной защиты; следовательно, её активность может влиять на адаптацию растений к стрессу [103]. Таким образом, индуцированное RALF34 повышение относительного количества PP2C может влиять на передачу сигналов АБК и, следовательно, на адаптацию растений к осмотическому стрессу. Возможно, что усиление работы клеточных антиоксидантных путей, снижение продукции АФК и прочие метаболические сдвиги (Рисунок 15, Рисунок 16) могут быть опосредованы увеличением относительного количества PP2C.

Участие АФК в данном процессе было подтверждено анализом биохимических маркеров стресса тканей в контрольных корнях и корнях со сверхэкспрессией *CsRALF34*

(Рисунок 7А,Б). Дополнительно, наблюдали увеличение относительной численности ферментов, детоксифицирующих $A\Phi K$, в корнях, сверхэкспрессирующих CsRALF34. Возможно, именно это стало причиной снижения уровня содержания H_2O_2 . С другой стороны, уровни веществ, реагирующих с ТБК, были повышены у сверхэкспрессоров CsRALF34 по сравнению с корнями дикого типа, что указывает на комплексное воздействие RALF34 на различные аспекты антиоксидантной защиты.

Данное предположение согласуется с работой Song и соавторов [104], продемонстрировавших взаимосвязь мутации в FERONIA (FER), гене рецептора RALF у A.thaliana, с более низкими уровнями образования АФК. Таким образом, представляется вероятным, что RALF может непосредственно влиять на выработку АФК. Поскольку CDPK12 активируется при взаимодействии с Ca²⁺ [105], увеличение относительного количества данной киназы может приводить к повышению чувствительности клеток корня уровню внутриклеточного кальция. При обработке корней природными или к синтетическими пептидами RALF В наномолярных концентрациях уровень цитоплазматического Ca²⁺ достигал максимума в течение 40 с [50]. Этот факт позволяет предположить, что различные пептиды RALF могут действовать согласованно; некоторые пептиды RALF могут связываться со своим рецептором, инициируя высвобождение Ca^{2+} , в то время как другие могут повышать уровень чувствительности к АБК. Важно отметить, что уровни Ca²⁺ могут значительно колебаться в течение коротких периодов времени. Совместное действие динамики уровня кальция с реакциями, опосредованными RALF34, может лежать в основе эффектов RALF34.

5.1.3. Динамика клеточного метаболизма, связанная с RALF34

*Cs*RALF34 влияет на энергетический метаболизм корневой клетки. Как упоминалось выше, сверхэкспрессия *CsRALF34* сопровождалась снижением относительного количества NADH-дегидрогеназы и сукцинил-КоА-синтетазы. Вероятно, действовал компенсаторный механизм выработки АТФ, связанный с усилением работы ЦТК, гликолиза, пентозофосфатного пути и биосинтеза пуринов *de novo* (Рисунок 17).

5.1.4. RALF34 как модулятор фитогормональных реакций

В настоящее время в литературе обсуждается влияние пептидов RALF на гормональную регуляцию [37]. Наиболее полно этот аспект был рассмотрен в исследованиях мутантов *fer* – растений, дефектных по гену рецепторподобной киназы FERONIA, являющейся одним из рецепторов RALF [106]. Данный рецептор участвует в модуляции динамики жасмоновой кислоты, этилена, АБК и брассиностероидов в растениях [106].

Можно ожидать, что повышение относительного количества РРС2 приводит к снижению относительной численности SnRK2. Это, в свою очередь, влияет на реакцию на АБК, этилен, жасмоновую кислоту и на абиотический стресс в целом (Рисунок 15). Данное предположение согласуется с наблюдением, показывающим, что мутанты с потерей функции fer демонстрируют гиперчувствительность как к АБК, так и к абиотическим стрессорам, в частности, высоким концентрациям солей в субстрате, а также низким температурам [66]. В дополнение к эффектам, связанным с сигнальным путем АБК, сверхэкспрессия CsRALF34 была связана с уменьшением относительного количества аминоциклопропанкарбоксилатоксидазы, катализирующей заключительную реакцию биосинтеза этилена [107]. Данный факт может свидетельствовать о снижении уровня содержания этилена в корнях, сверхэкспрессирующих *CsRALF34*. Примечательно, что Мао и соавторы [65] отметили, что мутантные по гену fer растения A.thaliana в сочетании с карликовым фенотипом демонстрируют более высокие уровни содержания этилена в тканях. Опираясь на данный факт, авторы статьи предположили, что рецепторная киназа FERONIA взаимодействует с S-аденозилметионинсинтазами и подавляет биосинтез этилена в ответ на действие стрессовых факторов окружающей среды, а также на экзогенную обработку ауксином и брассиностероидами [65]. Потому вероятно, полученные в этой работе результаты свидетельствуют о том, что после связывания с рецептором, RALF34 подавляет экспрессию аминоциклопропанкарбоксилатсинтазы, что затем, возможно, приводит к уменьшению относительного количества этилена.

5.1.5. Сверхэкспрессия RALF активирует биосинтез белка

Сверхэкспрессия *CsRALF34* приводила к выраженной усиленной регуляции полипептидов, участвующих в биосинтезе и транспорте белков (Рисунок 17). Наблюдалось увеличение относительного количества белков, составляющих малую и большую субъединицы рибосом, белка семейства РНК-связывающих, белка ядрышка 4, адаптера экспорта рибосом, транспортера белка Sec23/24 и других (Рисунок 17, Приложение, Таблица 6). Вероятно, данное явление связано с резким повышением уровня продукции белка клеткой, связанным с явлением искусственной индукции сверхэкспрессии гена интереса.

6. Выводы

 Оценка биохимических маркеров стресса корней растений *Cucumis sativus*, сверхэкспрессирующих *CsRALF34*, и контрольных растений *Cucumis sativus* продемонстрировала увеличение уровня содержания TBARS и снижение количества H₂O₂ в 2 раза;

- Получен препарат тотального белка из корней экспериментальных и контрольных растений *Cucumis sativus*, измерена концентрация белка, проведен его ограниченный протеолиз и хромато-масс-спектрометрический анализ полученных пептидов;
- Выполнен анализ масс-спектрометрических данных, дана количественная оценка и функциональная аннотация идентифицированных белков, которая показала наибольшее количественное изменение белков, участвующих в биосинтезе белка, везикулярном транспорте, белковом гомеостазе и модификации белков;
- 4. При помощи биоинформатических подходов было определено, что, вероятно, RALF34 отрицательно влияет на рост корней путем ингибирования пролифирации клеток, модулирует АФК-сигналинг и адаптацию к абиотическому стрессу, изменяет клеточный метаболизм и активирует биосинтез белка у *Cucumis sativus*.

Список литературы

1. Atkinson, J.A.; Rasmussen, A.; Traini, R.; Voß, U.; Sturrock, C.; Mooney, S.J.; Wells, D.M.; Bennett, M.J. Branching out in Roots: Uncovering, Form, Function, and Regulation. *Plant Physiology* **2014**, 538–550, doi:10.1104/pp.114.245423.

2. Péret, B.; Rybel, B.D.; Casimiro, I.; Benková, E.; Swarup, R.; Laplaze, L.; Beeckman, T.; Bennett, M.J. Arabidopsis Lateral Root Development: An Emerging Story. *Trends in Plant Science* **2009**, *14*, 399–408, doi:10.1016/j.tplants.2009.05.002.

3. Lucas, M.; Guédon, Y.; Jay-Allemand, C.; Godin, C.; Laplaze, L. An Auxin Transport-Based Model of Root Branching in Arabidopsis Thaliana. *PLoS One* **2008**, *3*, e3673, doi:10.1371/journal.pone.0003673.

4. De Smet, I.; Tetsumura, T.; De Rybel, B.; Frei dit Frey, N.; Laplaze, L.; Casimiro, I.; Swarup, R.; Naudts, M.; Vanneste, S.; Audenaert, D.; et al. Auxin-Dependent Regulation of Lateral Root Positioning in the Basal Meristem of Arabidopsis. *Development* **2007**, *134*, 681–690, doi:10.1242/dev.02753.

5. Malamy, J.E.; Benfey, P.N. Organization and Cell Differentiation in Lateral Roots of Arabidopsis Thaliana. *Development* **1997**, *124*, 33–44, doi:10.1242/dev.124.1.33.

6. De Smet, I.; Vanneste, S.; Inzé, D.; Beeckman, T. Lateral Root Initiation or the Birth of a New Meristem. *Plant Mol Biol* **2006**, *60*, 871–887, doi:10.1007/s11103-005-4547-2.

7. Hochholdinger, F.; Zimmermann, R. Conserved and Diverse Mechanisms in Root Development. *Curr Opin Plant Biol* **2008**, *11*, 70–74, doi:10.1016/j.pbi.2007.10.002.

8. Chiatante, D.; Beltotto, M.; Onelli, E.; Di Iorio, A.; Montagnoli, A.; Scippa, G. New Branch Roots Produced by Vascular Cambium Derivatives in Woody Parental Roots of Populus Nigra L. *Plant Biosystems* **2010**, *144*, 420–433, doi:10.1080/11263501003718612.

9. Медведев, С.С. *Физиология растений*; ВНV: Санкт-Петербург, 2015; ISBN 978-5-9775-0716-5. 10. Overvoorde, P.; Fukaki, H.; Beeckman, T. Auxin Control of Root Development. *Cold Spring Harb Perspect Biol* **2010**, *2*, a001537, doi:10.1101/cshperspect.a001537.

11. Ilina, E.; Kiryushkin, A.; Tsyganov, V.; Pawlowski, K.; Demchenko, K. Molecular, Genetic and Hormonal Outlook in Root Branching. *Agricultural Biology* **2017**, *52*, 856–868, doi:10.15389/agrobiology.2017.5.856eng.

12. Dubrovsky, J.G.; Sauer, M.; Napsucialy-Mendivil, S.; Ivanchenko, M.G.; Friml, J.; Shishkova, S.; Celenza, J.; Benková, E. Auxin Acts as a Local Morphogenetic Trigger to Specify Lateral Root Founder Cells. *Proc Natl Acad Sci U S A* **2008**, *105*, 8790–8794, doi:10.1073/pnas.0712307105.

13. Du, Y.; Scheres, B. Lateral Root Formation and the Multiple Roles of Auxin. *J Exp Bot* **2018**, *69*, 155–167, doi:10.1093/jxb/erx223.

14. Rogg, L.E.; Lasswell, J.; Bartel, B. A Gain-of-Function Mutation in IAA28 Suppresses Lateral Root Development. *Plant Cell* **2001**, *13*, 465–480.

15. Brady, S.M.; Orlando, D.A.; Lee, J.-Y.; Wang, J.Y.; Koch, J.; Dinneny, J.R.; Mace, D.; Ohler, U.; Benfey, P.N. A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. *Science* **2007**, *318*, 801–806, doi:10.1126/science.1146265.

16. De Rybel, B.; Vassileva, V.; Parizot, B.; Demeulenaere, M.; Grunewald, W.; Audenaert, D.; Van Campenhout, J.; Overvoorde, P.; Jansen, L.; Vanneste, S.; et al. A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. *Curr Biol* **2010**, *20*, 1697–1706, doi:10.1016/j.cub.2010.09.007.

17. Xuan, W.; Audenaert, D.; Parizot, B.; Möller, B.K.; Njo, M.F.; De Rybel, B.; De Rop, G.; Van Isterdael, G.; Mähönen, A.P.; Vanneste, S.; et al. Root Cap-Derived Auxin Pre-Patterns the Longitudinal Axis of the Arabidopsis Root. *Curr Biol* **2015**, *25*, 1381–1388, doi:10.1016/j.cub.2015.03.046.

18. Delay, C.; Imin, N.; Djordjevic, M.A. CEP Genes Regulate Root and Shoot Development in Response to Environmental Cues and Are Specific to Seed Plants. *J Exp Bot* **2013**, *64*, 5383–5394, doi:10.1093/jxb/ert332.

19. Fletcher, J.C. Recent Advances in Arabidopsis CLE Peptide Signaling. *Trends Plant Sci* **2020**, *25*, 1005–1016, doi:10.1016/j.tplants.2020.04.014.

20. Toyokura, K.; Goh, T.; Shinohara, H.; Shinoda, A.; Kondo, Y.; Okamoto, Y.; Uehara, T.; Fujimoto, K.; Okushima, Y.; Ikeyama, Y.; et al. Lateral Inhibition by a Peptide Hormone-Receptor Cascade during Arabidopsis Lateral Root Founder Cell Formation. *Dev Cell* **2019**, *48*, 64-75.e5, doi:10.1016/j.devcel.2018.11.031.

21. Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 Regulate Lateral Root Formation via Direct Activation of LBD/ASL Genes in Arabidopsis. *Plant Cell* **2007**, *19*, 118–130, doi:10.1105/tpc.106.047761.

22. Hirota, A.; Kato, T.; Fukaki, H.; Aida, M.; Tasaka, M. The Auxin-Regulated AP2/EREBP Gene PUCHI Is Required for Morphogenesis in the Early Lateral Root Primordium of Arabidopsis. *Plant Cell* **2007**, *19*, 2156–2168, doi:10.1105/tpc.107.050674.

23. Kang, N.Y.; Lee, H.W.; Kim, J. The AP2/EREBP Gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 Downstream of ARF7 and ARF19 to Regulate Lateral Root Development in Arabidopsis. *Plant Cell Physiol* **2013**, *54*, 1326–1334, doi:10.1093/pcp/pct081.

24. Matsuzaki, Y.; Ogawa-Ohnishi, M.; Mori, A.; Matsubayashi, Y. Secreted Peptide Signals Required for Maintenance of Root Stem Cell Niche in Arabidopsis. *Science* **2010**, *329*, 1065–1067, doi:10.1126/science.1191132.

25. Whitford, R.; Fernandez, A.; Tejos, R.; Pérez, A.C.; Kleine-Vehn, J.; Vanneste, S.; Drozdzecki, A.; Leitner, J.; Abas, L.; Aerts, M.; et al. GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. *Dev Cell* **2012**, *22*, 678–685, doi:10.1016/j.devcel.2012.02.002.

26. Fernandez, A.; Drozdzecki, A.; Hoogewijs, K.; Vassileva, V.; Madder, A.; Beeckman, T.; Hilson, P. The GLV6/RGF8/CLEL2 Peptide Regulates Early Pericycle Divisions during Lateral Root Initiation. *J Exp Bot* **2015**, *66*, 5245–5256, doi:10.1093/jxb/erv329.

27. Tabata, R.; Sumida, K.; Yoshii, T.; Ohyama, K.; Shinohara, H.; Matsubayashi, Y. Perception of Root-Derived Peptides by Shoot LRR-RKs Mediates Systemic N-Demand Signaling. *Science* **2014**, *346*, 343–346, doi:10.1126/science.1257800.

28. Mohd-Radzman, N.A.; Laffont, C.; Ivanovici, A.; Patel, N.; Reid, D.; Stougaard, J.; Frugier, F.; Imin, N.; Djordjevic, M.A. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development1[OPEN]. *Plant Physiol* **2016**, *171*, 2536–2548, doi:10.1104/pp.16.00113.

29. Roberts, I.; Smith, S.; De Rybel, B.; Van Den Broeke, J.; Smet, W.; De Cokere, S.; Mispelaere, M.; De Smet, I.; Beeckman, T. The CEP Family in Land Plants: Evolutionary Analyses, Expression Studies, and Role in Arabidopsis Shoot Development. *J Exp Bot* **2013**, *64*, 5371–5381, doi:10.1093/jxb/ert331.

30. Roberts, I.; Smith, S.; Stes, E.; De Rybel, B.; Staes, A.; van de Cotte, B.; Njo, M.F.; Dedeyne, L.; Demol, H.; Lavenus, J.; et al. CEP5 and XIP1/CEPR1 Regulate Lateral Root Initiation in Arabidopsis. *J Exp Bot* **2016**, *67*, 4889–4899, doi:10.1093/jxb/erw231.

31. Butenko, M.A.; Patterson, S.E.; Grini, P.E.; Stenvik, G.-E.; Amundsen, S.S.; Mandal, A.; Aalen, R.B. Inflorescence Deficient in Abscission Controls Floral Organ Abscission in Arabidopsis and Identifies a Novel Family of Putative Ligands in Plants. *Plant Cell* **2003**, *15*, 2296–2307, doi:10.1105/tpc.014365.

32. Kumpf, R.P.; Shi, C.-L.; Larrieu, A.; Stø, I.M.; Butenko, M.A.; Péret, B.; Riiser, E.S.; Bennett, M.J.; Aalen, R.B. Floral Organ Abscission Peptide IDA and Its HAE/HSL2 Receptors Control Cell Separation during Lateral Root Emergence. *Proc Natl Acad Sci U S A* **2013**, *110*, 5235–5240, doi:10.1073/pnas.1210835110.

33. Zhu, Q.; Shao, Y.; Ge, S.; Zhang, M.; Zhang, T.; Hu, X.; Liu, Y.; Walker, J.; Zhang, S.; Xu, J. A MAPK Cascade Downstream of IDA-HAE/HSL2 Ligand-Receptor Pair in Lateral Root Emergence. *Nat Plants* **2019**, *5*, 414–423, doi:10.1038/s41477-019-0396-x.

34. Cho, S.K.; Larue, C.T.; Chevalier, D.; Wang, H.; Jinn, T.-L.; Zhang, S.; Walker, J.C. Regulation of Floral Organ Abscission in Arabidopsis Thaliana. *Proceedings of the National Academy of Sciences* **2008**, *105*, 15629–15634, doi:10.1073/pnas.0805539105.

35. Meng, X.; Zhou, J.; Tang, J.; Li, B.; de Oliveira, M.V.V.; Chai, J.; He, P.; Shan, L. Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis. *Cell Rep* **2016**, *14*, 1330–1338, doi:10.1016/j.celrep.2016.01.023.

36. Murphy, E.; De Smet, I. Understanding the RALF Family: A Tale of Many Species. *Trends Plant Sci* **2014**, *19*, 664–671, doi:10.1016/j.tplants.2014.06.005.

37. Blackburn, M.R.; Haruta, M.; Moura, D.S. Twenty Years of Progress in Physiological and Biochemical Investigation of RALF Peptides. *Plant Physiol* **2020**, *182*, 1657–1666, doi:10.1104/pp.19.01310.

38. Abarca, A.; Franck, C.M.; Zipfel, C. Family-Wide Evaluation of RAPID ALKALINIZATION FACTOR Peptides. *Plant Physiol* **2021**, *187*, 996–1010, doi:10.1093/plphys/kiab308.

39. Pearce, G.; Moura, D.S.; Stratmann, J.; Ryan, C.A. RALF, a 5-KDa Ubiquitous Polypeptide in Plants, Arrests Root Growth and Development. *Proc Natl Acad Sci U S A* **2001**, *98*, 12843–12847, doi:10.1073/pnas.201416998.

40. Ginanjar, E.F.; Teh, O.-K.; Fujita, T. Characterisation of Rapid Alkalinisation Factors in Physcomitrium Patens Reveals Functional Conservation in Tip Growth. *New Phytol* **2022**, *233*, 2442–2457, doi:10.1111/nph.17942.

41. Srivastava, R.; Liu, J.-X.; Guo, H.; Yin, Y.; Howell, S.H. Regulation and Processing of a Plant Peptide Hormone, AtRALF23, in Arabidopsis. *Plant J* **2009**, *59*, 930–939, doi:10.1111/j.1365-313X.2009.03926.x.

42. Mamaeva, A.; Lyapina, I.; Knyazev, A.; Golub, N.; Mollaev, T.; Chudinova, E.; Elansky, S.; Babenko, V.; Veselovsky, V.; Klimina, K.; et al. RALF Peptides Modulate Immune Response in the Moss Physcomitrium Patens. *Frontiers in Plant Science* **2023**, *14*, 1077301, doi:10.3389/fpls.2023.1077301.

43. Liu, J.-X.; Srivastava, R.; Che, P.; Howell, S.H. Salt Stress Responses in Arabidopsis Utilize a Signal Transduction Pathway Related to Endoplasmic Reticulum Stress Signaling. *Plant J* **2007**, *51*, 897–909, doi:10.1111/j.1365-313X.2007.03195.x.

44. Pearce, G.; Yamaguchi, Y.; Munske, G.; Ryan, C.A. Structure-Activity Studies of RALF, Rapid Alkalinization Factor, Reveal an Essential--YISY--Motif. *Peptides* **2010**, *31*, 1973–1977, doi:10.1016/j.peptides.2010.08.012.

45. Xiao, Y.; Stegmann, M.; Han, Z.; DeFalco, T.A.; Parys, K.; Xu, L.; Belkhadir, Y.; Zipfel, C.; Chai, J. Mechanisms of RALF Peptide Perception by a Heterotypic Receptor Complex. *Nature* **2019**, *572*, 270–274, doi:10.1038/s41586-019-1409-7.

46. Frederick, R.O.; Haruta, M.; Tonelli, M.; Lee, W.; Cornilescu, G.; Cornilescu, C.C.; Sussman, M.R.; Markley, J.L. Function and Solution Structure of the Arabidopsis Thaliana RALF8 Peptide. *Protein Sci* **2019**, *28*, 1115–1126, doi:10.1002/pro.3628.

47. Zhang, H.; Jing, X.; Chen, Y.; Liu, Z.; Xin, Y.; Qiao, Y. The Genome-Wide Analysis of RALF-Like Genes in Strawberry (Wild and Cultivated) and Five Other Plant Species (Rosaceae). *Genes (Basel)* **2020**, *11*, 174, doi:10.3390/genes11020174.

48. Schulze-Muth, P.; Irmler, S.; Schröder, G.; Schröder, J. Novel Type of Receptor-like Protein Kinase from a Higher Plant (Catharanthus Roseus). CDNA, Gene, Intramolecular Autophosphorylation, and Identification of a Threonine Important for Auto- and Substrate Phosphorylation. *J Biol Chem* **1996**, *271*, 26684–26689, doi:10.1074/jbc.271.43.26684.

49. Franck, C.M.; Westermann, J.; Boisson-Dernier, A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. *Annu Rev Plant Biol* **2018**, *69*, 301–328, doi:10.1146/annurev-arplant-042817-040557.

50. Haruta, M.; Sabat, G.; Stecker, K.; Minkoff, B.B.; Sussman, M.R. A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion. *Science* **2014**, *343*, 408–411, doi:10.1126/science.1244454.

51. Stegmann, M.; Monaghan, J.; Smakowska-Luzan, E.; Rovenich, H.; Lehner, A.; Holton, N.; Belkhadir, Y.; Zipfel, C. The Receptor Kinase FER Is a RALF-Regulated Scaffold Controlling Plant Immune Signaling. *Science* **2017**, *355*, 287–289, doi:10.1126/science.aal2541.

52. Zhao, C.; Zayed, O.; Yu, Z.; Jiang, W.; Zhu, P.; Hsu, C.-C.; Zhang, L.; Tao, W.A.; Lozano-Durán, R.; Zhu, J.-K. Leucine-Rich Repeat Extensin Proteins Regulate Plant Salt Tolerance in Arabidopsis. *Proc Natl Acad Sci U S A* **2018**, *115*, 13123–13128, doi:10.1073/pnas.1816991115.

53. Ge, Z.; Bergonci, T.; Zhao, Y.; Zou, Y.; Du, S.; Liu, M.-C.; Luo, X.; Ruan, H.; García-Valencia, L.E.; Zhong, S.; et al. Arabidopsis Pollen Tube Integrity and Sperm Release Are Regulated by RALF-Mediated Signaling. *Science* **2017**, *358*, 1596–1600, doi:10.1126/science.aao3642.

54. Gonneau, M.; Desprez, T.; Martin, M.; Doblas, V.G.; Bacete, L.; Miart, F.; Sormani, R.; Hématy, K.; Renou, J.; Landrein, B.; et al. Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. *Curr Biol* **2018**, *28*, 2452-2458.e4, doi:10.1016/j.cub.2018.05.075.

55. Mecchia, M.A.; Santos-Fernandez, G.; Duss, N.N.; Somoza, S.C.; Boisson-Dernier, A.; Gagliardini, V.; Martínez-Bernardini, A.; Fabrice, T.N.; Ringli, C.; Muschietti, J.P.; et al. RALF4/19 Peptides Interact with LRX Proteins to Control Pollen Tube Growth in Arabidopsis. *Science* **2017**, *358*, 1600–1603, doi:10.1126/science.aao5467.

56. Moussu, S.; Broyart, C.; Santos-Fernandez, G.; Augustin, S.; Wehrle, S.; Grossniklaus, U.; Santiago, J. Structural Basis for Recognition of RALF Peptides by LRX Proteins during Pollen Tube Growth. *Proc Natl Acad Sci U S A* **2020**, *117*, 7494–7503, doi:10.1073/pnas.2000100117.

57. Feng, H.; Liu, C.; Fu, R.; Zhang, M.; Li, H.; Shen, L.; Wei, Q.; Sun, X.; Xu, L.; Ni, B.; et al. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for ANXUR/BUPS Receptor Kinases in Arabidopsis. *Mol Plant* **2019**, *12*, 1612–1623, doi:10.1016/j.molp.2019.09.004.

58. Ge, Z.; Zhao, Y.; Liu, M.-C.; Zhou, L.-Z.; Wang, L.; Zhong, S.; Hou, S.; Jiang, J.; Liu, T.; Huang, Q.; et al. LLG2/3 Are Co-Receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. *Curr Biol* **2019**, *29*, 3256-3265.e5, doi:10.1016/j.cub.2019.08.032.

59. Li, C.; Yeh, F.-L.; Cheung, A.Y.; Duan, Q.; Kita, D.; Liu, M.-C.; Maman, J.; Luu, E.J.; Wu, B.W.; Gates, L.; et al. Glycosylphosphatidylinositol-Anchored Proteins as Chaperones and Co-Receptors for FERONIA Receptor Kinase Signaling in Arabidopsis. *Elife* **2015**, *4*, e06587, doi:10.7554/eLife.06587.

60. Huck, N.; Moore, J.M.; Federer, M.; Grossniklaus, U. The Arabidopsis Mutant Feronia Disrupts the Female Gametophytic Control of Pollen Tube Reception. *Development* **2003**, *130*, 2149–2159, doi:10.1242/dev.00458.

61. Rotman, N.; Rozier, F.; Boavida, L.; Dumas, C.; Berger, F.; Faure, J.-E. Female Control of Male Gamete Delivery during Fertilization in *Arabidopsis Thaliana*. *Curr Biol* **2003**, *13*, 432–436, doi:10.1016/s0960-9822(03)00093-9.

62. Liu, C.; Shen, L.; Xiao, Y.; Vyshedsky, D.; Peng, C.; Sun, X.; Liu, Z.; Cheng, L.; Zhang, H.; Han, Z.; et al. Pollen PCP-B Peptides Unlock a Stigma Peptide-Receptor Kinase Gating Mechanism for Pollination. *Science* **2021**, *372*, 171–175, doi:10.1126/science.abc6107.

63. Duan, Q.; Kita, D.; Li, C.; Cheung, A.Y.; Wu, H.-M. FERONIA Receptor-like Kinase Regulates RHO GTPase Signaling of Root Hair Development. *Proc Natl Acad Sci U S A* **2010**, *107*, 17821–17826, doi:10.1073/pnas.1005366107.

64. Deslauriers, S.D.; Larsen, P.B. FERONIA Is a Key Modulator of Brassinosteroid and Ethylene Responsiveness in Arabidopsis Hypocotyls. *Mol Plant* **2010**, *3*, 626–640, doi:10.1093/mp/ssq015.

65. Mao, D.; Yu, F.; Li, J.; Van de Poel, B.; Tan, D.; Li, J.; Liu, Y.; Li, X.; Dong, M.; Chen, L.; et al. FERONIA Receptor Kinase Interacts with S-Adenosylmethionine Synthetase and Suppresses S-Adenosylmethionine Production and Ethylene Biosynthesis in Arabidopsis. *Plant Cell Environ* **2015**, *38*, 2566–2574, doi:10.1111/pce.12570.

66. Chen, J.; Yu, F.; Liu, Y.; Du, C.; Li, X.; Zhu, S.; Wang, X.; Lan, W.; Rodriguez, P.L.; Liu, X.; et al. FERONIA Interacts with ABI2-Type Phosphatases to Facilitate Signaling Cross-Talk between Abscisic Acid and RALF Peptide in Arabidopsis. *Proc Natl Acad Sci U S A* **2016**, *113*, E5519-5527, doi:10.1073/pnas.1608449113.

67. Höfte, H. The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling. *Plant Cell Physiol* **2015**, *56*, 224–231, doi:10.1093/pcp/pcu182.

68. Li, C.; Wu, H.-M.; Cheung, A.Y. FERONIA and Her Pals: Functions and Mechanisms1[OPEN]. *Plant Physiol* **2016**, *171*, 2379–2392, doi:10.1104/pp.16.00667.

69. Wolf, S.; Hématy, K.; Höfte, H. Growth Control and Cell Wall Signaling in Plants. *Annu Rev Plant Biol* **2012**, *63*, 381–407, doi:10.1146/annurev-arplant-042811-105449.

70. Chae, L.; Sudat, S.; Dudoit, S.; Zhu, T.; Luan, S. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-like Kinase Gene Family. *Mol Plant* **2009**, *2*, 84–107, doi:10.1093/mp/ssn083.

71. Yu, F.; Qian, L.; Nibau, C.; Duan, Q.; Kita, D.; Levasseur, K.; Li, X.; Lu, C.; Li, H.; Hou, C.; et al. FERONIA Receptor Kinase Pathway Suppresses Abscisic Acid Signaling in Arabidopsis by Activating ABI2 Phosphatase. *Proc Natl Acad Sci U S A* **2012**, *109*, 14693–14698, doi:10.1073/pnas.1212547109.

72. Liao, H.; Tang, R.; Zhang, X.; Luan, S.; Yu, F. FERONIA Receptor Kinase at the Crossroads of Hormone Signaling and Stress Responses. *Plant and Cell Physiology* **2017**, *58*, 1143–1150, doi:10.1093/pcp/pcx048.

73. Haruta, M.; Monshausen, G.; Gilroy, S.; Sussman, M.R. A Cytoplasmic Ca2+ Functional Assay for Identifying and Purifying Endogenous Cell Signaling Peptides in Arabidopsis Seedlings: Identification of AtRALF1 Peptide. *Biochemistry* **2008**, *47*, 6311–6321, doi:10.1021/bi8001488.

74. Murphy, E.; Vu, L.D.; Van den Broeck, L.; Lin, Z.; Ramakrishna, P.; van de Cotte, B.; Gaudinier, A.; Goh, T.; Slane, D.; Beeckman, T.; et al. RALFL34 Regulates Formative Cell Divisions in Arabidopsis Pericycle during Lateral Root Initiation. *EXBOTJ* **2016**, *67*, 4863–4875, doi:10.1093/jxb/erw281.

75. Hirakawa, Y.; Shinohara, H.; Kondo, Y.; Inoue, A.; Nakanomyo, I.; Ogawa, M.; Sawa, S.; Ohashi-Ito, K.; Matsubayashi, Y.; Fukuda, H. Non-Cell-Autonomous Control of Vascular Stem Cell Fate by a CLE Peptide/Receptor System. *Proc Natl Acad Sci U S A* **2008**, *105*, 15208–15213, doi:10.1073/pnas.0808444105.

76. Chevalier, E.; Loubert-Hudon, A.; Matton, D.P. ScRALF3, a Secreted RALF-like Peptide Involved in Cell-Cell Communication between the Sporophyte and the Female Gametophyte in a Solanaceous Species. *Plant J* **2013**, *73*, 1019–1033, doi:10.1111/tpj.12096.

77. Jourquin, J.; Fukaki, H.; Beeckman, T. Peptide-Receptor Signaling Controls Lateral Root Development1[OPEN]. *Plant Physiol* **2020**, *182*, 1645–1656, doi:10.1104/pp.19.01317.

78. Kiryushkin, A.S.; Ilina, E.L.; Guseva, E.D.; Pawlowski, K.; Demchenko, K.N. Lateral Root Initiation in Cucumber (Cucumis Sativus): What Does the Expression Pattern of Rapid Alkalinization Factor 34 (RALF34) Tell Us? *Int J Mol Sci* **2023**, *24*, 8440, doi:10.3390/ijms24098440.

79. Chantseva, V.; Bilova, T.; Smolikova, G.; Frolov, A.; Medvedev, S. 3D-Clinorotation Induces Specific Alterations in Metabolite Profiles of Germinating Brassica NapusL. Seeds. *Biological Communications* **2019**, *64*, 55–74, doi:10.21638/spbu03.2019.107.

80. Soboleva, A.; Frolova, N.; Bureiko, K.; Shumilina, J.; Balcke, G.U.; Zhukov, V.A.; Tikhonovich, I.A.; Frolov, A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. *Int J Mol Sci* **2022**, *23*, 2726, doi:10.3390/ijms23052726.

81. Frolov, A.; Bilova, T.; Paudel, G.; Berger, R.; Balcke, G.U.; Birkemeyer, C.; Wessjohann, L.A. Early Responses of Mature Arabidopsis Thaliana Plants to Reduced Water Potential in the Agar-Based Polyethylene Glycol Infusion Drought Model. *J Plant Physiol* **2017**, *208*, 70–83, doi:10.1016/j.jplph.2016.09.013.

82. Shumilina, J.; Gorbach, D.; Popova, V.; Tsarev, A.; Kuznetsova, A.; Grashina, M.; Dorn, M.; Lukasheva, E.; Osmolovskaya, N.; Romanovskaya, E.; et al. Protein Glycation and Drought Response of Pea (Pisum SativumL.) Root Nodule Proteome: A Proteomics Approach. *Biological Communications* **2021**, *66*, 210–224, doi:10.21638/spbu03.2021.303.

83. Frolov, A.; Didio, A.; Ihling, C.; Chantzeva, V.; Grishina, T.; Hoehenwarter, W.; Sinz, A.; Smolikova, G.; Bilova, T.; Medvedev, S. The Effect of Simulated Microgravity on the Brassica Napus Seedling Proteome. *Funct Plant Biol* **2018**, *45*, 440–452, doi:10.1071/fp16378.

84. Greifenhagen, U.; Frolov, A.; Blüher, M.; Hoffmann, R. Plasma Proteins Modified by Advanced Glycation End Products (AGEs) Reveal Site-Specific Susceptibilities to Glycemic Control in Patients with Type 2 Diabetes. *J Biol Chem* **2016**, *291*, 9610–9616, doi:10.1074/jbc.M115.702860.

85. Spiller, S.; Frolov, A.; Hoffmann, R. Quantification of Specific Glycation Sites in Human Serum Albumin as Prospective Type 2 Diabetes Mellitus Biomarkers. *Protein & Peptide Letters* 24, 887–896.

86. Li, Z.; Zhang, Z.; Yan, P.; Huang, S.; Fei, Z.; Lin, K. RNA-Seq Improves Annotation of Protein-Coding Genes in the Cucumber Genome. *BMC Genomics* **2011**, *12*, 540, doi:10.1186/1471-2164-12-540.

87. Eng, J.K.; McCormack, A.L.; Yates, J.R. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. *J Am Soc Mass Spectrom* **1994**, *5*, 976–989, doi:10.1016/1044-0305(94)80016-2.

88. Eng, J.K.; Fischer, B.; Grossmann, J.; Maccoss, M.J. A Fast SEQUEST Cross Correlation Algorithm. *J Proteome Res* **2008**, *7*, 4598–4602, doi:10.1021/pr800420s.

89. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. *Nucleic Acids Res* **2015**, *43*, e47, doi:10.1093/nar/gkv007.

90. Lohse, M.; Nagel, A.; Herter, T.; May, P.; Schroda, M.; Zrenner, R.; Tohge, T.; Fernie, A.R.; Stitt, M.; Usadel, B. Mercator: A Fast and Simple Web Server for Genome Scale Functional Annotation of Plant Sequence Data. *Plant Cell Environ* **2014**, *37*, 1250–1258, doi:10.1111/pce.12231.

91. Schwacke, R.; Ponce-Soto, G.Y.; Krause, K.; Bolger, A.M.; Arsova, B.; Hallab, A.; Gruden, K.; Stitt, M.; Bolger, M.E.; Usadel, B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. *Molecular Plant* **2019**, *12*, 879–892, doi:10.1016/j.molp.2019.01.003.

92. Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein Localization Predictor. *Nucleic Acids Res* **2007**, *35*, W585-587, doi:10.1093/nar/gkm259.

93. Combier, J.-P.; Küster, H.; Journet, E.-P.; Hohnjec, N.; Gamas, P.; Niebel, A. Evidence for the Involvement in Nodulation of the Two Small Putative Regulatory Peptide-Encoding Genes MtRALFL1 and MtDVL1. *MPMI* **2008**, *21*, 1118–1127, doi:10.1094/MPMI-21-8-1118.

94. Haruta, M.; Constabel, C.P. Rapid Alkalinization Factors in Poplar Cell Cultures. Peptide Isolation, CDNA Cloning, and Differential Expression in Leaves and Methyl Jasmonate-Treated Cells. *Plant Physiology* **2003**, *131*, 814–823, doi:10.1104/pp.014597.

95. Shimotohno, A.; Aki, S.S.; Takahashi, N.; Umeda, M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. *Annual Review of Plant Biology* **2021**, *72*, 273–296, doi:10.1146/annurev-arplant-080720-103739.

96. Strzalka, W.; Ziemienowicz, A. Proliferating Cell Nuclear Antigen (PCNA): A Key Factor in DNA Replication and Cell Cycle Regulation. *Annals of Botany* **2011**, *107*, 1127–1140, doi:10.1093/aob/mcq243.

97. Moldovan, G.-L.; Pfander, B.; Jentsch, S. PCNA, the Maestro of the Replication Fork. *Cell* **2007**, *129*, 665–679, doi:10.1016/j.cell.2007.05.003.

98. Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. *Biochem J* **2009**, *417*, 1–13, doi:10.1042/BJ20081386.

99. Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. *Int J Mol Sci* **2018**, *19*, 4089, doi:10.3390/ijms19124089.

100. Muthukumar, K.; Rajakumar, S.; Sarkar, M.N.; Nachiappan, V. Glutathione Peroxidase3 of Saccharomyces Cerevisiae Protects Phospholipids during Cadmium-Induced Oxidative Stress. *Antonie Van Leeuwenhoek* **2011**, *99*, 761–771, doi:10.1007/s10482-011-9550-9.

101. Umezawa, T.; Sugiyama, N.; Mizoguchi, M.; Hayashi, S.; Myouga, F.; Yamaguchi-Shinozaki, K.; Ishihama, Y.; Hirayama, T.; Shinozaki, K. Type 2C Protein Phosphatases Directly Regulate Abscisic Acid-Activated Protein Kinases in Arabidopsis. *Proc Natl Acad Sci U S A* **2009**, *106*, 17588–17593, doi:10.1073/pnas.0907095106.

102. Lim, J.; Lim, C.W.; Lee, S.C. Core Components of Abscisic Acid Signaling and Their Post-Translational Modification. *Front Plant Sci* **2022**, *13*, 895698, doi:10.3389/fpls.2022.895698.

103. Asano, T.; Hayashi, N.; Kobayashi, M.; Aoki, N.; Miyao, A.; Mitsuhara, I.; Ichikawa, H.; Komatsu, S.; Hirochika, H.; Kikuchi, S.; et al. A Rice Calcium-Dependent Protein Kinase OsCPK12 Oppositely Modulates Salt-Stress Tolerance and Blast Disease Resistance. *Plant J* **2012**, *69*, 26–36, doi:10.1111/j.1365-313X.2011.04766.x.

104. Song, Y.; Wilson, A.J.; Zhang, X.-C.; Thoms, D.; Sohrabi, R.; Song, S.; Geissmann, Q.; Liu, Y.; Walgren, L.; He, S.Y.; et al. FERONIA Restricts Pseudomonas in the Rhizosphere Microbiome via Regulation of Reactive Oxygen Species. *Nat Plants* **2021**, *7*, 644–654, doi:10.1038/s41477-021-00914-0.

105. Shi, S.; Li, S.; Asim, M.; Mao, J.; Xu, D.; Ullah, Z.; Liu, G.; Wang, Q.; Liu, H. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. *International Journal of Molecular Sciences* **2018**, *19*, 1900, doi:10.3390/ijms19071900.

106. Zhu, S.; Fu, Q.; Xu, F.; Zheng, H.; Yu, F. New Paradigms in Cell Adaptation: Decades of Discoveries on the CrRLK1L Receptor Kinase Signalling Network. *New Phytologist* **2021**, *232*, 1168–1183, doi:10.1111/nph.17683.

107. Pirrung, M.C. Ethylene Biosynthesis from 1-Aminocyclopropanecarboxylic Acid. Acc. Chem. Res. **1999**, *32*, 711–718, doi:10.1021/ar960003+.

Таблица 6. Список белков, продемонстрировавших количественные изменения

под влиянием сверхэкспрессии CsRALF34 в корнях C.satvus

Название белка	Направленность изменения относительного количества	logFC	Функциональны й класс	Предсказание субклеточной локализации
Тиоредоксин	Up	-17.827	Redox-гомеостаз	Цитозоль
CHP-богатый белок, подобный цинковым пальцам	Up	-17.201	Неопределенная функция	Цитозоль
Глутатионпероксидаза	Up	-17.163	Redox-гомеостаз	Цитозоль, митохондрия
Рибосомный белок L19	Up	-17.026	Биосинтез белка	Цитозоль
Белок S24 40S рибосомы	Up	-16.696	Биосинтез белка	Цитозоль
Карнитиновый оперонный белок CaiE	Up	-16.568	Клеточное дыхание	Митохондрия
Белок ранения/стресса	Up	-16.523	Неопределенная функция	ЭПР
Порин/белок потенциал-зависимого анион-селективного канала	Up	-16.462	Транспорт растворенных веществ	Митохондрия
Белок L18a 60S рибосомы	Up	-16.422	Биосинтез белка	Цитозоль
Виллин 2	Up	-16.340	Организация цитоскелета	Ядро
Субъединица С эукариотического фактора инициации трансляции 3	Up	-16.305	Биосинтез белка	Ядро
3-оксоацил-[ацилпереносящий белок]- синтаза 3	Up	-16.286	Метаболизм липидов	Пластида

Член семейства А, содержащий домен, гомологичный плекстриновому	Up	-16.272	Метаболизм липидов	Плазматическая мембрана
РНК-связывающий белок 8А	Up	-16.085	Процессинг РНК	Ядро
Белок 1 системы расщепления глицина Н	Up	-16.013	Фотосинтез	Цитозоль
Фосфофруктокиназа	Up	-15.994	Клеточное дыхание	Цитозоль
Кислая эндохитиназа	Up	-15.750	Неопределенная функция	Внеклеточное пространство
Фосфоманномутаза	Up	-15.747	Redox-гомеостаз	Цитозоль
Белок L35 60S рибосомы	Up	-15.745	Биосинтез белка	Цитозоль
Белок, содержащий домен ТВСС	Up	-15.704	Неопределенная функция	Цитозоль
Трипептидил пептидаза II	Up	-15.642	Гомеостаз белка	Цитозоль
Белок S29 40S рибосомы	Up	-15.619	Биосинтез белка	Цитозоль
Белок S12 40S рибосомы	Up	-15.518	Биосинтез белка	Цитозоль
Субъединица комплекса ТНО	Up	-15.495	Процессинг РНК	Ядро
Рибосомный белок L15	Up	-15.455	Биосинтез белка	Цитозоль
Субъединица у-2 комплекса АР-1	Up	-15.414	Везикулярный транспорт	Аппарат Гольджи
3-дегидрохинатсинтаза	Up	-15.388	Метаболизм аминокислот	Пластида
Рибосомный белок 37S	Up	-15.386	Биосинтез белка	Митохондрия
Экспортирующий липид А АТФ- связывающий/пермеаза, белок MsbA	Up	-15.331	Транспорт растворенных веществ	Плазматическая мембрана
Протеинфосфатаза 2С	Up	-15.319	Модификация белка	Плазматическая мембрана
Трансмембарнный белок, член суперсемейства 9	Up	-15.315	Неопределенная функция	Плазматическая мембрана

Изоцитрат дегидрогеназа [НАДФ]	Up	-15.267	Классификация ферментов	Пластида
Предшественник поверхностного антигена (D15)	Up	-15.254	Транслокация белков	Пластида
Эукариотический фактор инициации трансляции 5А	Up	-15.246	Биосинтез белка	Цитозоль
Трнаскетолаза	Up	-15.228	Фотосинтез	Пластида
Гистон Н2А	Up	-15.194	Организация хроматина	Ядро
Фосфорибозилформилглицинамидин циклолигаза	Up	-15.188	Метаболизм нуклеотидов	Пластида
5-метилтетрагидроптероилтриглутамат- гомоцистеин метилтрнасфераза	Up	-15.187	Метаболизм аминокислот	Цитозоль
eta-глюкозидаза	Up	-15.176	Классификация ферментов	Внеклеточное пространство
Пероксидаза	Up	-15.139	Неопределенная функция	Внеклеточное пространство
Эндо-1,3-1,4 <i>-β</i> -D-глюконаза	Up	-15.124	Неопределенная функция	Внеклеточное пространство
Кальмодулин-связывающий активатор транскрипции	Up	-15.101	Биосинтез РНК	Ядро
НАДФ-зависимая <i>D</i> -сорбитол-6-фосфат дегидрогеназа	Up	-15.099	Метаболизм углеводов	Цитозоль
Белок семейства нонсенс- опосредованного распада мРНК, NMD3	Up	-15.003	Биосинтез белка	Ядро
УДФ-гликозилтрансфераза 1	Up	-14.996	Классификация ферментов	Пластида

Белок семейства тиоредоксинов	Up	-14.990	Метаболизм коферментов	Ядро
α-галактозидаза 1	Up	-14.943	Метаболизм углеводов	Клеточная стенка
Белок, содержащий доменя связывания ацил-КоА	Up	-14.933	Метаболизм липидов	Цитозоль
Рецептор сортировки вакуолей 7	Up	-14.912	Везикулярный транспорт	Аппарат Гольджи
АТФ-связывающая кассета	Up	-14.909	Ответ на внешние стимулы	Плазматическая мембрана
Компонент комплекса экзоцисты	Up	-14.897	Везикулярный транспорт	Везикула
Аденилосукцинатлиаза	Up	-14.896	Метаболизм нуклеотидов	Цитозоль
Фермент, высвобождающий ациламинокислоты	Up	-14.875	Классификация ферментов	Ядро
Малая субъединица ацетолактатсинтазы	Up	-14.851	Метаболизм аминокислот	Цитозоль
Белок 2, активирующий ГТФазу Ran	Up	-14.837	Транслокация белков	Ядро
Субъединица 3В фактора сплайсинга	Up	-14.748	Процессинг РНК	Ядро
Белок L14 60S рибосомы	Up	-14.672	Биосинтез белка	Цитозоль
Прорезилин	Up	-14.666	Неопределенная функция	Ядро
Метилтрансфераза	Up	-14.651	Неопределенная функция	Цитозоль
Серин/треониновая протеинкиназа	Up	-14.599	Модификация белка	Плазматическая мембрана
Мембранный белок перокисомы 11-1	Up	-14.586	Организация клеточного цикла	Пероксисома

RuvB-подобная геликаза	Up	-14.568	Организация хроматина	Ядро
Кальций-зависимая протеинкиназа 12	Up	-14.524	Модификация белка	ЭПР
SRP 72 кДа	Up	-14.511	Транслокация белков	Цитозоль
Гистидиндекарбоксилаза	Up	-14.473	Метаболизм липидов	Цитозоль
Бифункциональный белок folD	Up	-14.411	Метаболизм коферментов	Цитозоль
РНК-связывающий ядерный белок	Up	-14.381	Процессинг РНК	Ядро
Алленоксидциклаза 3	Up	-14.320	Действие фитогормонов	Пластида
Бифункциональный белок folD	Up	-14.235	Метаболизм коферментов	Пластида
Аладин	Up	-14.041	Транслокация белков	Ядро
Белок S25 40S рибосомы	Up	-13.980	Биосинтез белка	Цитозоль
Регуляторная субъединица серин/треониновой протеинфосфатазы 2А	Up	-13.820	Модификация белка	Цитозоль
Компонент комплекса экзоцисты 4	Up	-13.807	Везикулярный транспорт	Ядро
SMP-30/Глюконолаконаза/белок семейства LRE-подобных	Up	-13.789	Неопределенная функция	Пластида
Дигидрооротат дегидрогеназа (хинон)	Up	-13.779	Классификация ферментов	Митохондрия
Глютамин-фруктозо-6-фосфат аминотрансфераза 2 [изомеризующаяся]	Up	-13.730	Метаболизм углеводов	Цитозоль
Фосфомевалонаткиназа	Up	-13.618	Вторичный метаболизм	Пероксисома

Белок транспорта белка SEC23	Up	-13.612	Неопределенная функция	ЭПР
Белок, ассоциированный с малым ядерным рибонуклеопротеином	Up	-13.434	Процессинг РНК	Пластида
Маннансинтаза	Up	-13.399	Организация клеточной стенки	Аппарат Гольджи
Главный фактор везикулярного трнасопрта p115	Up	-13.129	Везикулярный транспорт	Аппарат Гольджи
β-субъединица глюкозидазы II	Up	-13.041	Модификация белка	ЭПР
АТФ-завсиимая РНК геликаза	Up	-12.961	Процессинг РНК	Пластида
Белок раннего ответа на обезвоживание	Up	-12.920	Транспорт растворенных веществ	Плазматическая мембрана
Содержащий домены LETM1 и EF-руки митохондриальный белок 1	Up	-12.768	Биосинтез белка	Митохондрия
Белок, содержащий мотив узнавания РНК	Up	-4.239	Неопределенная функция	Ядро, плазматическая мембрана
Белок GEF, ингибированный брефельдином А	Up	-2.074	Везикулярный транспорт	Плазматическая мембрана
Белок семейства шаперонов htpG	Up	-2.010	Гомеостаз белка	Пластида
Активатор трансляции GCN1	Up	-1.933	Биосинтез белка	Ядро
Белок семейства факторов АДФ- рибозилирования	Up	-1.874	Везикулярный транспорт	Цитозоль
Ras-белок Rab-2-В	Up	-1.872	Везикулярный транспорт	Цитозоль
3.1.2 инозитол монофосфатаза	Up	-1.861	Redox-гомеостаз	Цитозоль
Белок теплового шока 70 кДа	Down	21.144	Гомеостаз белка	Цитозоль

Фосфатаза, содержащая убиквитинподобный СТD-домен	Down	18.696	Модификация белка	Ядро
Флоэмный лектин	Down	18.212	Неопределенная функция	Пластида
Тепсин, вспомогательная субъединица комплекса АР-4	Down	17.647	Везикулярный транспорт	Аппарат Гольджи
Шаперонин 10 кДа	Down	17.580	Гомеостаз белка	Пластида
Белок, содержащий пентатрикопептидный повтор	Down	17.517	Неопределенная функция	Пластида
Субтилизин-подобная сериновая протеаза	Down	17.420	Гомеостаз белка	Вакуоль
Белок L32 60S рибосомы	Down	17.330	Биосинтез белка	Цитозоль
Белок МЕМО1	Down	17.238	Неопределенная функция	Митохондрия
Аргинин/серин-богатый фактор сплайсинга	Down	16.986	Процессинг РНК	Ядро
Субъединица 13 субкомплекса 1-α НАДН-дегидрогеназы	Down	16.852	Клеточное дыхание	Митохондрия
α-субъединица TRAP-белка	Down	16.685	Неопределенная функция	Плазматическая мембрана
Ядерный антиген пролиферирующих клеток, PCNA	Down	16.569	Организация клеточного цикла	Ядро
Субъединица U2af 38 кДа фактора сплайсинга	Down	16.556	Процессинг РНК	Ядро
[АДФ-формирующая] β-субъединица сукциниол-КоА лигазы	Down	16.504	Метаболизм углеводов	Цитозоль
Изомераза ксилозы	Down	16.342	Классификация ферментов	Внеклеточное пространство
Прогестерон 5- <i>β</i> -редуктаза	Down	16.200	Неопределенная функция	Пластида

Аденилаткиназа	Down	16.193	Метаболизм нуклеотидов	Цитозоль
Субъединица Clp АТФ-связывающей протеазы	Down	16.169	Гомеостаз белка	Пластида
Гистидинолфосфатаминотрансфераза	Down	16.017	Метаболизм аминокислот	Пластида
ГТФ-связывающий белок 2, регулируемый в процессе развития	Down	16.013	Неопределенная функция	Цитозоль
Глицилпептид N- тетрадеканоилтрансфераза	Down	15.960	Модификация белка	Ядро
Глутатион-S-трансфераза	Down	15.949	Redox-гомеостаз	Цитозоль
Вакуолярный белок 27, ассоциированный с сортировкой	Down	15.927	Везикулярный транспорт	Цитозоль
Митохондриальный разобщающий белок	Down	15.850	Клеточное дыхание	Митохондрия
Лизин/гистидиновый транспортер	Down	15.767	Транспорт растворенных веществ	Плазматическая мембрана
Белок семейства ретикулонов	Down	15.766	Организация клеточного цикла	ЭПР
Субъединица В эукариотиечского фактора инициации трансляции 3	Down	15.763	Биосинтез белка	Цитозоль
Субъединица U2AF фактора сплайсинга	Down	15.745	Процессинг РНК	Ядро
Пататин-подобный белок	Down	15.720	Метаболизм липидов	Цитозоль
Белок L38 60S рибосомы	Down	15.668	Биосинтез белка	Цитозоль
Аквапорин	Down	15.594	Транспорт растворенных веществ	Плазматическая мембрана

Фермент биосинтеза 4-метил-5(В- гидроксиэтил)-тиазолмонофосфата	Down	15.590	Неопределенная функция	Пластида
Белок ABRACL семейства costars	Down	15.585	Неопределенная функция	Цитозоль
Вакуолярный белок, ассоциированный с сортировкой	Down	15.569	Везикулярный транспорт	Цитозоль
Субъединица долихилдифосфоолигосахарид-протеин гликозилтрансферазы	Down	15.445	Модификация белка	Плазматическая мембрана
Мембранная инсертаза YidC	Down	15.444	Клеточное дыхание	Митохондрия
Малый ядерный рибонуклеопротеин Е	Down	15.413	Процессинг РНК	Ядро
Фактороподобный белок процессинга пре-мРНК	Down	15.400	Процессинг РНК	Ядро
Азотрегулирующий белок PII	Down	15.337	Неопределенная функция	Пластида
Субъединица ζ-1 коатомера	Down	15.318	Везикулярный транспорт	Цитозоль
Каталаза	Down	15.317	Redox-гомеостаз	Пероксисома
Белок теплового шока 70 кДа	Down	15.274	Гомеостаз белка	ЭПР
1-пирролин-5-карбоксилат дегидрогеназа	Down	15.273	Метаболизм аминокислот	Митохондрия
Протеинкиназа	Down	15.198	Модификация белка	Ядро
Ферредоксин	Down	15.182	Клеточное дыхание	Митохондрия
Белок семейства ассоциированных с везикулами белков	Down	15.172	Везикулярный транспорт	Плазматическая мембрана
Циклин-зависимая киназа А	Down	15.157	Организация клеточного цикла	Цитозоль

Куллин-1	Down	15.155	Гомеостаз белка	Ядро
Эндо-1,4- <i>β</i> -глюконаза	Down	15.134	Организация клеточной стенки	Клеточная стенка
Деоксиуридин 5'-трифосфат нуклеотидгидролаза	Down	15.102	Метаболизм нуклеотидов	Пластида
УДФ-гликозилтрансфераза 1	Down	15.095	Классификация ферментов	Пластида
Белок, содержащий домен суперсемейства главных фасилитаторов	Down	15.083	Транспорт растворенных веществ	Плазматическая мембрана
Субъединица 2 сигнального пептидазного комплекса	Down	15.070	Модификация белка	ЭПР
НАДФ-зависимая декарбоксилирующая малатдегидрогеназа	Down	15.044	Клеточное дыхание	Митохондрия
Транслин	Down	14.993	Неопределенная функция	Ядро
Моноглицеридлипаза	Down	14.964	Организация клеточной стенки	Плазматическая мембрана
Транспортер сахаров	Down	14.958	Транспорт растворенных веществ	Плазматическая мембрана
НАДФ-зависимая- <i>D</i> -сорбитол-6- фосфатдегидрогеназа	Down	14.933	Метаболизм углеводов	Цитозоль
Ацил-КоА-дегидрогеназа	Down	14.894	Метаболизм липидов	Пероксисома
Убиквитиновый белок лигаза 4	Down	14.894	Гомеостаз белка	Ядро
Белок, содержащий анкириновый повтор	Down	14.843	Неопределенная функция	Цитозоль

eta-глюкозидаза	Down	14.842	Классификация ферментов	Клеточная стенка
НАДН-цитохром Р450 редуктаза	Down	14.837	Организация клеточной стенки	ЭПР
5-оксопролиназа	Down	14.809	Redox-гомеостаз	Цитозоль
GDSL эастераза/липаза	Down	14.804	Неопределенная функция	ЭПР
1-аминоциклопропан-1- карбоксилатоксидаза	Down	14.782	Действие фитогормонов	Не определено
АТФ-фосфорибозилтрансфераза	Down	14.780	Метаболизм аминокислот	Пластида
Липоксигеназа	Down	14.756	Классификация ферментов	Цитозоль
Белок L1 50S рибосомы	Down	14.753	Биосинтез белка	Цитозоль
α-субъединица пролил-4-гидролаза	Down	14.753	Модификация белка	ЭПР
РНК-зависимая РНК-полимераза 1b	Down	14.739	Неопределенная функция	Ядро
Уридинкиназа	Down	14.690	Метаболизм нуклеотидов	Пластида
Закупоривающий белок 2 ситовидных элементов	Down	14.556	Неопределенная функция	ЭПР
3,4-дигидрокси-2-бутанон-4- фосфатсинтаза	Down	14.478	Метаболизм коферментов	Пластида
Ацетил-КоА синтетаза	Down	14.410	Метаболизм липидов	Пластида
АМФ-деаминаза	Down	14.398	Метаболизм нуклеотидов	Цитозоль
Аргининосукцинатлиаза	Down	14.390	Метаболизм аминокислот	Пластида
SRP 19 кДа	Down	14.389	Транслокация белков	Цитозоль

Белок, содержащий пентатрикопептидный повтор	Down	14.342	Процессинг РНК	Пластида
ATRAD3	Down	14.327	Неопределенная функция	Аппарат Гольджи
Фитохром	Down	14.312	Ответ на внешние стимулы	Ядро
Липоксигеназа	Down	14.299	Классификация ферментов	Цитозоль
Белок 5 F-бокса ауксина	Down	14.261	Действие фитогормонов	Ядро
НАДН-хинон-оксидоредуктаза	Down	14.235	Неопределенная функция	Пластида
Динамин	Down	14.232	Организация клеточного цикла	Цитозоль
Пероксидаза	Down	14.135	Метаболизм липидов	Масляное тельце
eta-галактозидаза	Down	14.123	Классификация ферментов	Клеточная стенка
Белок, содержащий домен тиоредоксина	Down	14.081	Неопределенная функция	Ядро
3,4-дигидрокси-2-бутанон-4-фосфат синтаза	Down	13.993	Метаболизм коферментов	Пластида
Инозитол-тетракисфосфат-1-киназа	Down	13.991	Multi-process regulation	Цитозоль
Убиквитинкарбоксил-концевая гидролаза	Down	13.793	Ответ на повреждение ДНК	Ядро
Лейкотриен А4 гидролаза/аминопептидаза	Down	13.753	Гомеостаз белка	Цитозоль
Субъединица β-1 комплекса AP-2	Down	13.704	Везикулярный транспорт	Цитозоль

Цистатионин-у-синтаза	Down	13.701	Метаболизм аминокислот	Пластида
УДФ-гликозилтрансфераза 74 F1	Down	13.651	Классификация ферментов	Пластида
НАДФ-зависимая декарбоксилирующая малатдегидрогеназа	Down	13.615	Метаболизм липидов	Пластида
Цитохром Р450	Down	13.613	Классификация ферментов	ЭПР
AT5g06970	Down	13.576	Неопределенная функция	Пластида
Фосфатидилинозитол-4-киназа	Down	13.413	Неопределенная функция	Цитозоль
Укладка по Россману НАД-связывающей оксидорелуктазы	Down	13.388	Неопределенная функция	Пластида
Белок семейства armadillo/β-катенинов	Down	13.133	Гомеостаз белка	Цитозоль
Гексокиназа 1	Down	13.057	Метаболизм углеводов	Цитозоль
Кинезин-4	Down	13.012	Организация цитоскелета	Цитоскелет
Белок семейств факторов АДФ- рибозилирования	Down	12.928	Везикулярный транспорт	Цитозоль
Тетратрикопептидный повтор	Down	12.864	Неопределенная функция	ЭПР
Пероксидаза	Down	12.863	Метаболизм липидов	Масляное тельце
Компонент протеасомы ЕСМ29	Down	12.859	Гомеостаз белка	Ядро
УДФ-гликозилтрансфераза 1	Down	12.507	Классификация ферментов	Пластида

β-изоформа регуляторной субъединицы В' 57 кДа серин/треониновой протеинфосфатазы 2А	Down	12.279	Модификация белка	Цитозоль
Фосфорилаза	Down	12.172	Метаболизм углеводов	Цитозоль
Миозин-6	Down	3.669	Неопределенная функция	Пластида
АТФаза переходного ЭПР	Down	2.072	Гомеостаз белка	Ядро, цитозоль
2-оксоглутарат-зависимая диоксигеназа	Down	1.956	Классификация ферментов	Цитозоль
Субтилизин-подобная сериновая протеаза	Down	1.790	Гомеостаз белка	Цитозоль
УДФ-гликозилтрансфераза 1	Down	1.611	Классификация ферментов	Цитозоль

Up – увеличение относительного количества белка под влиянием сверхэкспресии *CsRALF34*; **down** – уменьшение относительного количества белка под влиянием сверхэкспресии *CsRALF34*, **logFC** – логарифм числа кратности изменения относительного количества белка.