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Densities of lattices of translates

Arkadiy Aliev

Abstract

Let K be a convex body in R™. Let dy, ,—1(K) be the smallest possible density of a non-
separable lattice of translates of K. In this paper we prove the estimate dg 1 (K) < ”T\/g
for K C R?, with equality if and only if K is an ellipse, which was conjectured by E.
Makai. Also we prove the estimate d32(K) < ﬁ for K C R? using projection bodies.

In the last section we show an easy way to improve E.H. Smith’s packing density

bound in R3 from 0.53835... to 0.54755... .

Organisation of the paper

The paper is organised in the following way. In the first section, we recall the main defi-
nitions; in the second section, we review the literature and formulate our results; in the third
section we list some properties of the support function. The remaining sections are devoted to
proving the results. The fourth and fifth sections contain the proof of the Makai conjecture.
The sixth section refers to its three-dimensional case. The last section refers to the Ulam’s
conjecture and improving E.H. Smith’s estimate.
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1 Preliminaries

A set K C R” is a convex body if it is convex, compact, and its interior int/K is non-
empty. We denote the volume of K by |K|. The difference body of K is defined as K — K :=
{z —y|lz,y € K}. For any A € R we define AK := {Az|x € K}. K is centrally symmetric if
K=-K.

Notation 1.1. Let K, L C R? be two planar convex bodies. We denote their mized volume by
(K, L).

Definition 1.1. If 0 € intK then the polar body of K is
K :={zxeR"\Vy € K (y,z) <1}.

Definition 1.2. If 0 € intK and K is centrally symmetric then the Mahler volume of K 1is
| K[| K.

Proposition 1.1 (Blaschke-Santalé inequality). For a centrally symmetric conver body K C
R™ we have

|K||K°| < |B|?, where B is the unit ball in R™.
Definition 1.3. For a convex body K define the projection body of K by its support function:
huk(u) = |Pr . K| for all u € S™ .
It 1s well-known that the definition is correct and it defines a convex body I1K.

Proposition 1.2 (Petty’s inequality). Let B be the unit ball in R™. Then for a convex body
K we have:

(MK)°[|K[*~" < [(TIB)°]| B|"~".
We will also need some definitions from the geometry of numbers.

Definition 1.4. A C R” is a lattice if N = AZ™ for some A € GL(n,R). We also define
d(A) := |detA|.

Definition 1.5. A lattice A is called K -admissible if AN intK = {0}.
Definition 1.6. For a convexr body K its critical determinant is defined as
A(K) := min{d(A)|A is K-admissible}
Definition 1.7. A lattice A is called K -critical if A is K-admissible and d(A) = A(K).

Definition 1.8. Let A be a lattice, then a lattice of translates of K is defined as

A+ K={r+ylzreAye K}



Definition 1.9. Let A + K be a lattice of translates of K. Then its density is defined as

K]

D(AK) = i)

Definition 1.10. We denote by d.(K) the density of the densest lattice packing in R™ by
translates of K. It is easy to see that for centrally symmetric K we have:

K|
1K) = 58y

Definition 1.11. A lattice of translates of K is non-separable if each affine (n — 1)-subspace
n R™ meets x + K for some x € A.

Definition 1.12. For a convex body K its *critical determinant is defined as
A*(K) := max{d(A)|A + K is non-separable}
Definition 1.13. A lattice A is called K -*critical if A+ K is non-separable and d(A) = A*(K).

Definition 1.14. d,,,,_1(K) = min{d(A, K)|A + K is non-separable} = %

Definition 1.15. Lattice width wg : 2"\ 0 — R is defined as

wi(u) = max {u,z —y).

2 Introduction

The Reinhardt Conjecture is an open long-standing problem about finding a centrally sym-
metric body K C R? with the smallest possible value of §;(K). Reinhardt conjectured that the
unique solution up to an affine transformation is the smoothed octagon (an octagon rounded at
corners by arcs of hyperbolas) and the conjectured minimum of 67 (K) is % ~ 0.902414,
while the best known estimation is 0. (&) > 0.8926... by Tammela [6]. Comprehensive infor-
mation about this conjecture can be found in [5].

It is well known that the dual problem to the Reinhardt conjecture is the question about
upper bounds for dy;(K). This problem was considered by Endre Makai Jr. in [I], [2]. He
conjectured that dy;(K) < %g with equality only for ellipses. In his works Endre Makai Jr.
obtained the following dual property and nearly accurate estimate.

Example 2.1. For the unit ball B in R? we have dy1(B) = %2 and 0(B) = 503 ~ 0.90689.

Example 2.2. For a triangle T we have doy(T) = 3. Let T = (0,0)(1,1/2)(1/2,1). Then Z*
is the *eritical lattice.

The following property was introduced by Ende Makai to show the connection between
non-separable lattices concept and the Mahler volume:
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Proposition 2.1 (Duality condition, [2]). For a convex body K C R™ we have:

_ KK = K)/2)°|
476 (((K = K)/2)°)

Proposition 2.2. [1] For a convex body K C R* we have ds1(K) < 0.6910....

Conjecture 2.1 (Endre Makai Jr., [1]). max{ds;(K)|K C R? is a convex body} = %ﬁ =
0.68017..., with equality possible only for ellipses.

dn,nfl (K>

From Proposition we get the idea of using estimation of 07 (K) to get upper bounds for
dy1(K). But unfortunately, accurate estimates in R? cannot be obtained in that way and the
main reason is that the optimal body for §; optimisation is not an ellipse. Nevertheless, the
estimate obtained in [I] is very close to the conjectured value.

This paper will provide a proof of Conjecture [2.1]

Theorem 2.1.

max{dy;(K)|K C R? is a convex body} = %\/g = 0.68017....

In addition, if da(K) = %g, then K is an ellipse.

Corollary 2.1. For each centrally symmetric convex body K C R? we have

1
o.(K) > ——|K||K°|,
LK) 2 KK

with equality if and only if K is an ellipse.

The Ulam’s packing conjecture states that for a centrally symmetric convex body K C R3

we have 0.,(K) > \/Lfg' If this statement holds, then by using duality we could obtain the
sharp estimate dso(K) < ﬁi’ with equality only for ellipsoids. Nevertheless, the best known

estimate for a packing constant in R? is 07, (K) > 0.53835... by E.H. Smith [7]. Therefore we

can use duality to get the estimate:

KRS ()
6497 (K°) — 64 -0.53835...

This paper provides an idea of using projection bodies to improve dso estimates without
using known bounds for d;,. We prove the following theorem.

Theorem 2.2.

= 0.509251...

dng(K)

max{ds o (K)|K C R? is a convezx body} < :% = 0.453449....

Example 2.3. For the unit ball B C R* we have d3»(B) = 55 = 0.37024....
In the last section we prove the following theorem.
Theorem 2.3. For a centrally symmetric conver body K C R® we have

S1(K) > 0.54755...
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3 Calculations

Notation 3.1. In this section we assume that K C R? is strongly convex and has C™ boundary.
Notation 3.2. The support function of K h : S' — R is defined as h(0) = max,cx ((cosd,sin6), ).

Notation 3.3. Let a = (ay,a3),b = (by,b2). Then we denote

a2
det(a,b) := det( b by )

The following statements are well-known.
Proposition 3.1. Parameterization in terms of the support function: consider
([ cos(x) —sin(x) h(zx)
v(w) = ( sin(z)  cos(x) ) ( b (z) )
Then

e y(z) e K

((cosz,sinx),y(z)) = max,ecx((cos z,sin x),y)
7' (x) = (h(z) + 1" (z))(=sin(z), cos(x))
det(y(x),~'(x)) = h(z)(h(z) + h"(z))
det(v'(z),7"(x)) = (h(z) + h"(z))?

Proposition 3.2. We list some properties of the support function:

e h+h">0
o |[K|=1["h>+hh"=1[h>— 0"
o |K°| =3 027r%

Proposition 3.3. Let T'(t) = ~(t) + l(t)%, where v : R — R? and [ : R — R are smooth

periodic functions with period 2w. We also assume that || > 0. Then

1 21 1 21 1 27 l2
—/ det(I',T") — —/ det(v,7') = —/ edet(v', ).
2 Jo 2 Jo 2Jo ]



Proof.

AN o [ fy/(t) ! Vl(t) /
det(F,F)—/O det((0) + 0) 5 () + (l(”w ))
v'(t

- / detly, )+ / dety, (1) |31§i§|)'> ! / dett o (10 7’(t)|)/)
- /027r det(v,~') — /027r det(+',1(t) () )+ /027r idezt(’y’m”)

1V (t)] bdE

2 27 l2
:/ det(’y,y’)—i—/ —lzdet(v',y”)
0 0 |7 |

[en]

4  Proof of the Theorem 2.1 (inequality part)

Lemma 4.1. [/

max{dy 1 (K)|K C R? is a convex body} =
max{dy 1 (K)|K C R?s a centrally symmetric convex body}

Therefore, we can assume that K is centrally-symmetric.
Notation 4.1. A triangle is a central triangle if its barycenter is in the origin.

Lemma 4.2. Let K be a centrally symmetric convex body and suppose that there exists a central
triangle T° whose vertices belong to OK°, such that |K||T°| < %gﬂ. Then dy1(K) < %.

Figure 1: Non-separable lattice for a convex body K.

Proof. (T°)° =T = ABC'is a central triangle circumscribed to K. |T||T°| = 2L, hence % <
8

5.5 Further, we can generate a non-separable lattice A with d(A) = 8T by Vi = 2(C — A)
and V5 = 2(B — A) as in Figure .
[



Uz +7/2)

Figure 2: The outer body is K°, the inner body is ¢K; the point P is v(x + 7/2), LR is the
tangent line to ¢K at the point P, hence we have |LP| = l(z + 7/2), |PR| = r(x + 7/2).

Lemma 4.3. Assume that K is centrally symmetric, strictly convex and C'*° boundary and let

the minimal area of a central triangle inscribed in K° be equal to 3. Then we have 32| K°| > |K|.

Proof. For each central triangle 7" inscribed in K° consider an inscribed affine regular hexagon

conv(T'U —T) and let A;..Ag be one of them. We put A; = = Ay — As.

From the minimum area condition we have |A;A;0] > 1 hence the distance d(O, Ay A3) >
T As] . Further, let A be the intersection of all 1nscr1bed in K° affine regular hexagons.
JThen we have iK C AC K°, where iK is 3-rotated K.

Let v parametrize iK in terms of the support function and let L(z) be the tangent line
to tK at the point y(z). Further, define I(z) and r(z) as lengths of left and right parts of
|L(z) N K°| with respect to y(x). Since iK C A and since K° is centrally symmetric we have

r(z)+1l(z) > m Then using Proposition we get:

1 2 1 2
K= K| =K = ik =5 [ =5 [
2 Jo 2 /o



Therefore:

I R R L
2/ =1, VEA), h—nj22 20

Thus we have 3|K°| > |K]. O
Lemma 4.4. Let K C R? be a centrally symmetric convex body and let the minimal area of a
central triangle inscribed in K° be equal to % Then we have |K| < @, with equality if and

only if K is an ellipse.

Proof. Consider the approximation of K by smooth and strongly convex centrally symmetric
bodies K. — K and let the minimal area of a central triangle inscribed in K, be e] ual to S,.

Then it is obvious that S, — % Further, ,/%SEK . satisfies the condition of Lemma 4.3, hence

we have 2|(y/25.K.)°| > [{/2S.K.|. Since the volume is continuous, we have 3|K°| > |K]|.

Finally, using the Blaschke-Santal6 inequality we get 272 > 3|K°||K| > |K|*, with equality
only for an ellipse. O]

Proof of Theorem (inequality part). Obviously follows from Lemma , Lemma and
Lemma (4.4 O

5 The equality case

The following Lemmas are well-known.
Lemma 5.1. [J|| K + Z" is non-separable if and only if wi(u) > 1 for all u € Z™ \ 0.

Lemma 5.2. Let K be a centrally-symmetric convex body. Then 7™ + K is non-separable if
and only if Z™ is %Ko—admissible.

Proof. Obviously follows from Lemma [5.1] n
Lemma 5.3. Z" is *critical for K if and only if Z™ is critical for %KO.

Proof. Let A = AZ? be a 1 K°-admissible lattice with d(A) < 1, that is, |detA| < 1. Therefore
Z? is 3 A~ K°-admissible, hence we have that (A*) "' Z*+ K is non-separable, but det(A*)~! > 1,
a contradiction.

Proof in the opposite direction is similar. O]

Lemma 5.4. If K # —K, than dp,,—1(K) < dy n—1(K — K).

Proof. From The Brunn—Minkowski inequality we have the estimation |K| < |[(K — K)/2|.
Also it is obvious that dy;(K — K) = do1((K — K)/2) and that wx = wk_k)/2. Therefore
from Lemmal5.1]it follows that for any lattice A the lattice of translates K + A is non-separable
if and only if (K — K)/2 + A is non-separable. O



Lemma 5.5. [J] Let A be K-critical for a centrally-symmetric K C R?, and let C' be the
boundary of K. Then one can find three pairs of points £pi, £po, £p3 of the lattice on C.
Moreover these three points can be chosen such that py + py = p3 and any two vectors among
P1, P2, p3 form a basis of A.

Conversely, if p1,p2, ps satisfying p1 + p2 = p3 are on C, then the lattice generated by p,
and py 18 K-admissible
Proof of Theorem (the equality case). Suppose that ds(K) = %g‘ It follows from Lemma
that K has to be a centrally symmetric body. Let Z? be a critical lattice for K°, so
|K| = @ Then, from Lemma we conclude that the minimal area of a central triangle
inscribed in K° is equal to % Hence there is an equality in Lemma . Thus K is an ellipse. [

6 Proof of the Theorem 2.2

Proof of Theorem [2.3. Since d3»(K) < d3o(K—K), it suffices to consider the case of a centrally
symmetric K. We also assume that K is strongly convex and has C'*° boundary.

Let us construct a lattice packing for K°. For h € S? let the critical lattice for K° N h*
corresponds to an affine regular hexagon A;..Ag inscribed in K° N ht. The horizontal part of
of the lattice to be constructed will be generated by the vectors 2A4; and 2A45. Denote

Ay :={2A1m + 2A4sn|n,m € Z}.

It is easy to see that for any w € A, we have int(K°) Nint(K° + w) = 0. Further,
define the third generating vector v := h - 2max,cgo(x, h). Thus we constructed the lattice
A :={vn+ Ayi|n € Z} and K° + A is obviously a lattice packing of K°.

Let 5L|I((Iz|°) — 8@. Then d(A) > 8@, thus we have

1 1 1 1
§d(A> = Zd(AhJ_>§"U| = A(K° N h*H)d, > @, where dj, := 5\1}]

It is well-known that for h € S? we have K° N h* = (Pr,. K)°. Therefore by Lemma
we get A(K° N AY)|Pr K| < @, so dy > |Pry. K|. Therefore IIK C K° and K C TI°K.
Then by using Petty’s inequality we obtain the estimate:

4 3
KP < |I°K|[KP < (5) |

Thus

_ IK|K°| _3vt

d35(K) = .
w2) = 505,k = 6 13
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7 Proof of the Theorem 2.3

Lemma 7.1. Let H C R? be a convex centrally symmetric hexagon or a parallelogram. Then
for a centrally symmetric convex body C C R? we have:

(C.H)> VIOV

5.(C

Proof. Let H = A;..Ag and let H' = A’.. A} be the centrally symmetric hexagon circumscribing
C, which satisfies the condition: AJA! , || A iAipr fori=1,2,3. Then it is easy to observe that

(C,H) = (H', H). Further, since §,(H') = 1 and C C H' we have 1 ‘H, < 0.(C). Therefore

VICIVIH].

C.H H'[\/|H| >
(C,H) = |H'|\/|H| = L(C)

]

Proof of Theorem[2.3. We use the notation and the construction from [7]. Let d be a chord in
K of maximum length. C := K Nd+. Let A C R? be a lattice such that C' + A is the densest

lattice packing of translates of C, detA = |P|, Eg} = 0.(C). Hg is a centrally symmetric

hexagon with |Hg| > %. We may assume that |Hg| = %. h is the distance between two
layers in the lattice packing of translates of K. Then as shown in [7] we have:

|Hi|(d — h)

K| >
3

h
+ g(\Cl +(C,Hg) + |Hk]l).

Therefore since 0., (K) > % and 6.,(C) > 0.89265... we have:

o (K) >

?‘I&.

1
12

1 (C, Hy 1 ( 1)
Z )+ = \/ > 0.89265... + = 0.54755...
3( '/|C«/|HK> 12 2
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