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Abstract

The present thesis is devoted to Navier-Stokes equations theory. We de-
scribe a way to study local regularity of a weak solution to the classical
Navier-Stokes equations. Namely, we examine a certain modification of
duality method developed by G. Seregin, which in turn leads to the ob-
taining the Liouville-type theorem. We show the limits of applicability of
the duality method setting the right-hand side of the dual problem to zero
and take non-zero initial data. In this case, we prove the results that are
exactly the same as those in the paper of M. Schonbeck and G. Seregin.
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1. Introduction

1.1. Problem statement and main results. Let X be a Banach space, p ∈ [1,+∞)
and t1 ∈ R, t2 ∈ R ∪ {+∞} such that t1 < t2. By Lp(t1, t2;X) we denote the Banach
space of all Banach-valued measurable functions u : [t1, t2] → X such that

∥u∥pLp(t1,t2;X) =

t2∫
t1

∥u(t)∥pX dt < +∞.

Also, denote by L∞(t1, t2;X) the Banach space of all Banach-valued measurable functions
u : [t1, t2] → X such that

∥u∥L∞(t1,t2;X) = ess sup{∥u(t)∥X | t ∈ (t1, t2)} < +∞.

For simplicity of notation we omit the spatial variable of function by matching them as

u(·, t) 7→ u(t) ∈ Lp(t1, t2;X), a.e. in (t1, t2), 1 ⩽ p ⩽ +∞.

Let Ω be a hypercube in Rn, and |Ω| is the volume of Ω, i.e., its Lebesgue measure.
Denote by BMO(R3) the Banach space of all locally integrable functions whose mean
oscillation is bounded, namely, the following norm if finite:

∥f∥BMO(R3) = sup
Ω⊂Rn

1

|Ω|

∫
Ω

|f(x)− [f ]Ω| dx < +∞,

where [f ]Ω = 1
|Ω|
∫
Ω f(x) dx.

One of the open problems of local regularity of weak solutions to the
Navier-Stokes equations is as follows. Consider so-called suitable weak solution
w ∈ L∞(−1, 0;L2(Br(0)))∩L2(−1, 0;W 1

2 (Br(0))) and g ∈ L 3
2
(Q) to the classical Navier-

Stokes system
∂tw −∆w + (w · ∇)w +∇g = 0, divw = 0

in the unit parabolic space-time ball Q = [−1, 0]× Br(0) ⊂ R× Rn. Here, Br(x) stands
for the ball in Rn of radius r centred at the point x ∈ Rn. For a definition of suitable
weak solutions, we refer to the paper [1]. Let us assume that function w satisfies the
additional restriction:

|w(x, t)| ⩽ c

|x|+
√
−t
, ∀(x, t) ∈ Q, (1.1)

for some constant c > 0. In that case we say that w has a singularity of type I.
The question is to understand whether or not the origin z = (x, t) = (0, 0) ∈ Rn+1 is

a regular point of w, i.e., there exists δ > 0 such that w is essentially bounded in the
parabolic ball Q(δ) = [−δ2, 0]×Bδ(0).

In this thesis we consider only the case of a three-dimensional space Rn, so n = 3.
Denote Q+ = R3 × (0,+∞). We say that the functions u and p are a mild bounded
ancient solution of the backward Navier-Stokes equations, if

u ∈ C∞(Q̄+) ∩ L∞(Q+), p ∈ C∞(Q̄+) ∩ L∞(0,+∞;BMO(R3)),

and these functions u and p obey following equations

(NS) :

{
−∂tu−∆u+ (u · ∇)u+∇p = 0

div u = 0
in Q+.

In [10], it has been shown that if the origin z = 0 is a singular point of w, then there
exists the non-trivial mild bounded ancient solution u and p such that |u(0, 0)| = 1 and

|u| ⩽ 1 in Q+. (1.2)
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Since u is a smooth function let us fix such constant M > 0 that

∥u∥L∞(Q+) + ∥∇u∥L∞(Q+) ⩽M. (1.3)

If w has type I singularity satisfying (1.1) then the mild bounded ancient solution u
corresponding to w also satisfies the condition (1.4):

∃c∗ > 0 : |u(x, t)| ⩽ c∗

|x|+
√
t
, ∀(x, t) ∈ Q+. (1.4)

The duality method has been first developed and exploited by G. Seregin in [7]. This
method allows to prove Liouville type theorems not only for scalar equations, but also
for systems. Soon after that M. Schonbeck and G. Seregin considered the application of
this method to the above-mentioned problem, see e.g., [5]. In particular, the following
dual problem, namely, the Stokes system with a drift u, has been considered:

∂tv −∆v − (u · ∇)v +∇q = −divF, div v = 0, (1.5)

in Q+ and v(x, 0) = 0 for all x ∈ R3. It has been supposed that a tensor-valued field
F ∈ C∞

0 (R3) is smooth and compactly supported in Q+. In addition, it has been assumed
that F is skew symmetric and therefore

div divF = 0.

The following identity takes place:

−
∫
Q+

∇u : F dx dt =

∫
Q+

u · divF dx dt = − lim
T→+∞

∫
R3

u(x, T ) · v(x, T ) dx. (1.6)

If the solution v to the dual problem has a certain decay, the limit on the right hand side
vanishes. This means that the skew symmetric part of ∇u vanishes in Q+. Then one can
easily show that u must be a function of time only. Since u is a divergence free field, u
is a bounded harmonic function. But also u is a bounded mild ancient solution to the
Navier-Stokes equation and thus must be a constant. However, the condition (1.4) means
that u is identically equal to zero. Thus, if we had a statement about the decay of v, we
would immediately obtain a Liouville-type statement.

Therefore, since we know that |u(0, 0)| = 1, this finally would prove that z = 0 is not
a singular point of w and it, in turns, says that the origin is a regular point of w. So, the
problem of local regularity of weak solutions to the Navier-Stokes equations stated in the
beginning is solved under the additional assumption: u has a singularity of type I.

In this paper, our main goal is to investigate the limits of applicability of the duality
method developed by G. Seregin. We examine a certain modification of duality method
letting F = 0 but taking non-zero initial data, and prove results similar to those of M.
Schonbeck and G. Seregin in [5] and [8]. The following theorems are results of the thesis.

Theorem 1.1. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS. Let a ∈ C∞

0 (R3), div a = 0. Then there are unique v and q, such that

v ∈ C∞(Q̄+) ∩ L2,∞(Q+), ∇v ∈ L2(Q+),

q ∈ C∞(Q̄+) ∩ L2,∞(Q+),

and they are solutions of the Stokes system

(Su) :


∂tv −∆v + (u · ∇)v +∇q = 0

div v = 0

v|t=0 = a

in Q+.
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Here L2,∞(Q+) denotes the following Banach space L∞(0,+∞;L2(R3)) and for given
function h on Q+ and A ⊂ R, let h|A denote the restriction of h to a subset R3×A ⊂ Q+.
In case when instead of A we have for a ∈ R the following notion t = a, we denote
h|t=a = h(·, a) and for given function f on R we denote f |t=a = f(a).

Let X be a Banach space and I ⊂ R. Denote by C(I;X) the Banach space of all
Banach-valued continuous functions u : I → X such that

∥u∥C(I;X) = sup{∥u(t)∥X | t ∈ I} < +∞.

The most important statement in the case we are considering is the fact that for
any T > 0 the solution v of the Stokes system Su belongs to the Banach space
C([0, T ];L1(R3)). That is, for any t > 0 we have ∥v(t)∥L1(R3) < +∞. This statement
comes from the following theorem.

Theorem 1.2. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS. Let a ∈ C∞

0 (R3) and div a = 0. Then for any T > 0 there is unique
smooth solution v of the Stokes system Su such that

v ∈ C([0, T ];L∞(R3) ∩ L1(R3)).

The duality method in this case gives the following theorem.

Theorem 1.3. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS and the singularity of type I takes place. Let a ∈ C∞

0 (R3), div a = 0, and
let v be a solution of the Stokes system Su. Then for any T > 0 we have∫

R3

u(·, 0) · a dx =

∫
R3

u(·, T ) · v(·, T ) dx. (1.7)

Theorem 1.4. Let v be a solution of the Stokes system Su and u and p be a mild bounded
ancient solution of the Navier-Stokes equations NS and for c∗ > 0 the singularity of type
I takes place. Then there is a constant ε0 > 0 such that if c∗ < ε0, the following is valid:∫

R3

u(·, t) · v(·, t) dx→ 0 as t→ +∞.

Our main result is the following Liouville-type theorem.

Theorem 1.5. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS and for c∗ > 0 the singularity of type I takes place. Then there is a
constant ε0 > 0 such that if c∗ < ε0, the following is valid:

u(x, 0) = 0, ∀x ∈ R3.

The last Theorem contradicts to the fact that |u(0, 0)| = 1. So, it is a proof of the
statement that the origin z = 0 is a regular point of the weak solution w. Thus, in this
scenario we solve the problem of local regularity of weak solutions to the Navier-Stokes
equations stated above.

In fact, using the last Theorem it is possible to obtain a more precise mode of the
Liouville-type theorem, i.e., there is a constant ε0 > 0 such that if c∗ < ε0, the following
is valid:

u(x, t) = 0, ∀(x, t) ∈ Q+.

In 2002, L. Escuriazo, G. Seregin, V. Šverak [2] proved backward uniqueness under certain
assumptions, namely, that u ≡ 0 on a half-space Rn

+×[0, 1], with R+ = {x ∈ Rn : xn > 0},
see Chapter 5 for details. This is a rather complicated statement, which implies, in
particular, u ≡ 0 on Q+. We discuss this further in Section 8.



7

1.2. Known result. In 2018, M. Schonbek and G. Seregin [5] proved that if we have
the decay assumption (1.4) on the drift u of the Stokes system (1.5), then for any integer
m ⩾ 0 the decay estimates for the solution v are valid:

∥v(·, t)∥L1(R3) ⩽ c(m, c∗, F )
4
√
t3

lnm(t+ e)
, t ⩾ 0,

and

∥v(·, t)∥L2(R3) ⩽
c(m, c∗, F )

lnm(t+ e)
, t ⩾ 0.

Since for the mild bounded ancient solution u of the Navier-Stokes equations the singu-
larity of type I holds, one can easily get that

∥u(·, t)∥L∞(R3) ⩽
c∗√
t
, ∀t > 0.

Therefore, for instance, it is possible to obtain the following estimate:∣∣∣∣∣∣
∫
R3

u(x, t) · v(x, t) dx

∣∣∣∣∣∣ ⩽ ∥u(·, t)∥L∞(R3) ∥v(·, t)∥L1(R3) ⩽ cF · t
1
4 , (1.8)

where cF = c∗·c(0, c∗, F ). Unfortunately, the above estimate does not allow us to conclude

the Liouville-type theorem, since the function t1/4 is an increasing function. Moreover,
no matter how we try to estimate the integral from above, the available estimates for the
function v always yield an estimate by the function t1/4 as above.

However, M. Schonbek and G. Seregin obtained a result directly asserting the vanishing
of the right hand side limit in the (1.6) for sufficiently small constant c∗ > 0, namely,
there is ε > 0 such that if c∗ < ε, then∫

R3

u(x, t) · v(x, t) dx→ 0 as t→ +∞. (1.9)

1.3. Plan of the proof. In this section, we describe the structure of the present thesis.
In Section 2, we prove an auxiliary statement that we use next. In Section 3 we start with
preliminaries and show the existence of the smooth mild solution of the Stokes system Su

with drift u using classical technique, consequently, obtaining the Theorem 1.1.
Then, in Section 4 we prove some auxiliary estimates on the Lp norm of u and v.

This is the most crucial estimates in the thesis, that shows that our results are similar
to those obtained by M. Schonbeck and G. Seregin. For the Liouville-type theorem the
most important section is Section 5, since we prove the Theorem 1.2, namely, the mild
solution v is a smooth function with finite C([0, T ];L1(R3)) norm.

The Theorem 1.3 in Section 6 shows that the duality method in the case we are con-
sidering works in a generally similar way.

In particular, let us to show here how it works in case of smooth u and v with compact
support in QT . Note that, for the sake of economy of space, we will sometimes omit the
time variable t of functions. Thus, for instance, the notation u(t) will be replaced by u.
Also, for positive T denote QT = R3 × (0, T ). Clearly, integration by parts gives us∫
QT

(u ∂tv + v ∂tu) dx dt =

∫
QT

(u(∆v − (u · ∇)v −∇q) + v(−∆u+ (u · ∇)u+∇p)) dx dt =

=

∫
QT

(−∇u · ∇v − u · (u · ∇)v + q · div u+∇v · ∇u+ v · (u · ∇)u− p · div v) dx dt = 0,
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since, ∫
R3

u · (u · ∇)v dx =

∫
R3

uiujvi,j dx

= −
∫
R3

vi(uiuj),j dx

= −
∫
R3

viui,juj dx−
∫
R3

viuiuj,j dx

= −1

2

∫
R3

v · ∇|u|2 dx−
∫
R3

viui div u dx

=
1

2

∫
R3

div v · |u|2 dx = 0

and ∫
R3

v · (u · ∇)u dx =

∫
R3

viujui,j dx

= −
∫
R3

ui(viuj),j dx

= −
∫
R3

uivi,juj dx−
∫
R3

uiviuj,j dx

= −
∫
R3

u · (u · ∇)v dx−
∫
R3

uivi div u dx = 0.

On the other hand we get∫
QT

(u ∂tv + v ∂tu) dx dt =

∫
R3

T∫
0

∂t(uv) dt dx =

∫
R3

(u(·, T ) · v(·, T )− u(·, 0) · v(·, 0)) dx.

Hence we obtain: ∫
R3

u(·, 0) · a dx =

∫
R3

u(·, T ) · v(·, T ) dx.

In the end, Section 7 shows that the result of M. Schonbeck and G. Seregin shown
in Subsection 1.2 holds, namely, the Theorem 1.4. Finally, in Section 8 we prove the
Liouville-type Theorem 1.5, which is the main result of the present thesis, and discuss
the precise mode of Liouville-type theorem.
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2. Integral identities

In this subsection we prove some auxiliary lemmas on the convective terms. Note that
for any vectors a, b ∈ Rn we denote a⊗ b as n×n matrix such that (a⊗ b)ij = aibj . Also,
the symbol : denotes the scalar product of matrices, that is, for any matrices A,B ∈ Rn×n

we have A : B = AijBij .

Lemma 2.1. Let v ∈W 1
2 (R3) and u ∈ C∞(R3) ∩ L∞(R3) such that div u = 0. Then∫

R3

v ⊗ u : ∇v dx = 0.

Proof. Take ζ = ξ
(
x
R

)
, where ξ ∈ C∞

0 (R3) is such that supp ξ ⊂ B2R(0), 0 ⩽ ξ(x) ⩽ 1

for all x ∈ R3, ξ = 1 in BR(0), and, moreover,

|∇ζ(x)| ⩽ C

R
∀x ∈ R3.

Consider the following integral and then integrating by parts gives us∫
ζ v ⊗ u : ∇v dx =

∫
ζviujvi,j dx

= −
∫
(ζviuj),jvi dx

= −
∫
ζ,jviujvi dx−

∫
ζvi,jujvi dx

−
∫
ζv2i div u dx

= −
∫
ζ,j v

2
i uj dx− 1

2

∫
ζu · ∇|v|2 dx

= −
∫

∇ζ · u(v · v) dx+
1

2

∫
ζ |v|2 div u dx

+
1

2

∫
∇ζ · u |v|2 dx.

Hence, we get the identity∫
ζ v ⊗ u : ∇v dx = −1

2

∫
∇ζ · u |v|2 dx. (2.1)

By Holder inequality we obtain that∣∣∣∣∣∣
∫
R3

∇ζ · u |v|2 dx

∣∣∣∣∣∣ ⩽ C

R
∥u∥L∞(R3) · ∥v∥2L2(R3).

Whence, taking the limit R → +∞ in the identity (2.1) we get the required identity,
since since ζ(x) = ξ

(
x
R

)
→ ξ(0) = 1 as R→ +∞. □
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3. The Stokes problem with a drift

3.1. Existence of unique weak solution. Let H denote the closure of all smooth
free-divergent functions with compact support with respect to the L2(R3) norm, so

H = closL2(R3){f ∈ C∞
0 (R3) | div f = 0}.

Moreover, let H1 denote the following Banach space:

H1 = closW 1
2 (R3){f ∈ C∞

0 (R3) | div f = 0}.

Let the bilinear form

[f, g] =

∫
R3

∇f : ∇g dx, f, g ∈ C∞
0 (R3)

be a scalar product on the Banach space Ḣ1, which is the closure of C∞
0 (R3) with respect

to the norm ∥f∥Ḣ1 =
√
[f, f ], so in other words,

Ḣ1 = clos∥·∥Ḣ1
{f ∈ C∞

0 (R3) | div f = 0}.

The following theorem is the key in proving the existence of the solution of the Stokes
system Su, and its proof basically repeats the technique of O. A. Ladyzhenskaya in book [4]
(see Chapter 4 and Chapter 6). We give a detailed proof of the following Theorem in
view of the specificity of our problem.

Theorem 3.1. Given T > 0. Let u and p be a mild bounded ancient solution of the
Navier-Stokes equations NS. Let a ∈ C∞

0 (R3), div a = 0. Then there is unique v,
such that

v ∈ L2,∞(QT ) ∩ L2(0, T ;H
1), v(0) = a,

and this function satisfies∫
QT

(
−v · ∂tη +∇v : ∇η − v ⊗ u : ∇η

)
dx dt =

∫
R3

a · η(·, 0) dx, (3.1)

for any η ∈ C∞
0 (R3× [0, T )) such that div η = 0. Moreover, the following estimate is met:

∥v∥L2,∞(QT ) + ∥∇v∥L2(QT ) ⩽ 2 ∥a∥L2(R3) .

Proof. Let {φk}k∈N ⊂ H1 be a sequence such that it is an orthonormal basis in H and

its linear span is a complete set in Ḣ1, i.e.,

closḢ1span {φk}k∈N = Ḣ1.

For simplicity we denote the scalar product in L2(R3) as follows:

(f1, f2) =

∫
f1 · f2 dx.

We claim that for any N ∈ N there are unique set of functions {CN
k }Nk=1 ⊂ W 1

2 (0, T )
such that

vN (x, t) =

N∑
k=1

CN
k (t)φk(x), vN ∈W 1,1

2 (QT ),

and, moreover, for any k = 1, . . . , N we have the following identity

(∂tv
N (t), φk) + (∇vN (t),∇φk)− (vN (t)⊗ u(t),∇φk) = 0, (3.2)
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and the initial condition vN (x, 0) = aN (x), a.e. in R3 is valid, where aN is the partial
sum of the Fourier series of a, namely,

aN (x) =
N∑
k=1

(a, φk)φk(x).

Indeed, the last statement is valid, since these functions {CN
k }Nk=1 are the solutions of the

following linear ordinary differential equations:
d

dt
CN
k (t) =

N∑
j=1

(φj ⊗ u(t),∇φk)C
N
j (t)− λkC

N
k (t)

CN
k (0) = (a, φk)

k = 1, . . . , N.

Multiplying each of the equations (3.2) by the corresponding function CN
k and summing

them we get

(∂tv
N (t), vN (t)) +

∥∥∇vN (t)
∥∥2
L2(R3)

− (vN (t)⊗ u(t),∇vN (t)) = 0. (3.3)

The last term equals zero by Lemma 2.1.
Whence, by the Strong Continuity Theorem and definition of Ḣ1 we have

1

2

d

dt

∥∥vN (t)
∥∥2
L2(R3)

+
∥∥vN (t)

∥∥2
Ḣ1 = 0. (3.4)

Clearly,
∥∥vN (t)

∥∥2
Ḣ1 ⩾ 0, so one can omit this term, and integration of the identity above

gives us that for any t > 0 we get∥∥vN (t)
∥∥2
L2(R3)

⩽
∥∥aN∥∥2

L2(R3)
⩽ ∥a∥2L2(R3) ,

and then ∥∥vN∥∥
L2,∞(QT )

= ess sup
{∥∥vN (t)

∥∥
L2(R3)

| 0 < t < T
}
⩽ ∥a∥L2(R3) .

Moreover, from (3.4) one can derive

∥∥vN∥∥2
L2(0,T ;Ḣ1)

=

T∫
0

∥∥vN (t)
∥∥2
Ḣ1 dt

=
1

2

(∥∥aN∥∥2
L2(R3)

−
∥∥vN (T )

∥∥2
L2(R3)

)
⩽

1

2
∥a∥2L2(R3) .

Therefore, clearly, ∥∥vN∥∥
L2,∞(QT )

+
∥∥vN∥∥

L2(0,T ;Ḣ1)
⩽ 2 ∥a∥L2(R3) .

Hence, there is v ∈ L2,∞(QT )∩L2(0, T ; Ḣ
1) such that for the sequence {vN} ⊂W 1,1

2 (QT )
we have the following weak and weak-∗ convergences correspondingly:

vN
w−→ v in L2(0, T ; Ḣ

1), vN
w∗−−→ v in L2,∞(QT ),

from which we obtain the energy inequality:

∥v∥L2,∞(QT ) + ∥∇v∥L2(QT ) = ∥v∥L2,∞(QT ) + ∥v∥L2(0,T ;Ḣ1) ⩽ 2 ∥a∥L2(R3) .

Since embedding L∞(0, T ;L2(R3)) ↪→ L2(QT ) is continuous, the latter implies

v ∈ L2,∞(QT ) ∩ L2(0, T ;H
1).
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Furthermore, by multiplying for each k identities (3.2) by arbitrary functions ξk that
belong to the space

{h ∈W 1
2 (0, T ) : h|t=T = 0},

and, consequently, integrating new obtained identities, we get

T∫
0

(
(∇vN (t),∇φk)− (vN (t)⊗ u(t),∇φk)

)
ξk(t) dt = −

T∫
0

(∂tv
N (t), φk)ξk(t) dt.

Integration by parts of the right-hand side of the identity above gives

T∫
0

(∂tv
N (t), φk)ξk(t) dt =

T∫
0

ξk(t)
d

dt
(vN (t), φk) dt

= (vN (T ), φk) ξk(T )− (aN , φk) ξk(0)

−
T∫
0

(vN (t), φk) ξ
′
k(t) dt,

whence we obtain
T∫
0

(
(∇vN (t),∇φk)− (vN (t)⊗ u(t),∇φk)

)
ξk(t) dt−

T∫
0

(vN (t), φk)ξ
′
k(t) dt = (aN , φk)ξk(0).

This yields that for any ηm(x, t) =
m∑
k=1

ξk(t)φk(x), where ξk ∈ {h ∈W 1
2 (0, T ) : h|t=T = 0}

for each m ∈ N and k = 1, . . . ,m, we have∫
QT

(
−vN · ∂tηm +∇vN : ∇ηm − vN ⊗ u : ∇ηm

)
dx dt =

∫
R3

aN · ηm(·, 0) dx.

Obviously, the sequence {ηm(x, t)}+∞
m=1 is dense in

clos
W 1,1

2 (QT )

{
η ∈ C∞

0 (R3 × [0, T )) : div η = 0
}

with respect to theW 1,1
2 (QT ) norm. From the continuity of the trace operator, we obtain

ηm(0) → η(0) as m → +∞. Then we go to the limit in the equation above, when N
tends to +∞, then when m tends to +∞, and, finally, get∫

QT

(
−v · ∂tη +∇v : ∇η − v ⊗ u : ∇η

)
dx dt =

∫
R3

a · η(·, 0) dx. (3.5)

To sum up, energy inequality entails the uniqueness of the function v. Suppose there
are two different weak solutions v1 and v2, then

∥v1 − v2∥L2,∞(QT ) + ∥∇(v1 − v2)∥L2(QT ) ⩽ 0,

which, in turn, means that v1 − v2 = 0 identically in QT . □
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3.2. Smoothness of solutions to the Stokes problem. Assume that F belongs to
some functional class in which the singular integral is bounded. The pressure field pF ,
which is associated with F , is defined by

pF (x, t) = −1

3
traceF (x, t) + lim

δ→0

∫
R3\Bδ(x)

∇2E(x− y) : F (y, t) dy,

where

E(x) = 1

4π|x|
, x ∈ R3.

Note that for each s ∈ (1,+∞) and for any t ∈ (0,+∞) the following estimate holds:

∥pF (·, t)∥Ls(R3) ⩽ cs ∥F (·, t)∥Ls(R3) .

Note that the function v, that is the solution of the integral identity (3.1) obtained in
Theorem 3.1 is, in fact, the weak solution of the following Cauchy problem:

(Su) :


∂tv −∆v + (u · ∇)v +∇q = 0

div v = 0

v|t=0 = a

in the sense of distributions in QT . Similarly to the Proposition 1.1 from M. Schonbeck
and G. Seregin’s paper (see proof in Appendix A in [5]) we can get the following result.

Proposition 3.2. There exists a unique solution v to Stokes system Su with properties:

∂kt ∇ℓv ∈ L2(Q+)

for integer k, ℓ ⩾ 0 except k + l = 0,

∂kt ∇ℓ+1q ∈ L2(Q+)

for integer k, ℓ ⩾ 0, and, moreover,

v ∈ L2,∞(Q+), q ∈ L2,∞(Q+).

Combining the Proposition 3.2 above and estimates of solutions to the Stokes prob-
lem with lower order terms on Hölder spaces that were obtained by V. A. Solonnikov
in [12] (see Theorem 9.1), we get the further smoothness of v in a standard way by
taking derivatives of a solution with respect to the spatial and time variable, and thus
establish that

v ∈ C∞(Q̄+).

Also, for any T > 0 by Sobolev Embedding Theorem for each integer d > n
2 = 3

2 , we have
that the following embedding is continuous:

W d
2 (QT ) ↪→ C(Q̄T ).

This implies that for certain constant c > 0 we obtain

∥v∥L∞(QT ) ⩽ c ∥v∥W d
2 (QT ).

Hence, we get that the smooth solution v of the Stokes problem Su belongs to L∞(QT )
for any T > 0, and there is a unique smooth pressure field q ∈ L2,∞(Q+), which is
associated with v ⊗ u, and the equations of the Stokes system Su are identities in the
pointwise sense in Q+. Also, since singular integral above is an operator from L∞(R3)
onto BMO(R3), then the pressure field

q ∈ L∞(0,+∞;BMO(R3))

and ∥q∥L2,∞(Q+) ⩽ cu ∥a∥L2(R3) for some constant cu > 0 depending only on u.
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3.3. Solution of the Stokes problem as a mild solution. Define the function

Γ(x, t) =
1

(4πt)
3
2

e−
|x|2
4t , (x, t) ∈ Q+.

Note that Γ is a fundamental solution of the heat equation and for any t > 0 we have

∥Γ(·, t)∥L1(R3) = 1.

The Ozin’s tensor is a fundamental solution to the Stokes problem, for example, see
formulas (39) and (40) in [12]. The Ozin’s tensor (Kij) is defined with the help of the
standard heat kernel in the following way:

Kij(x, t) = Γ(x, t)δij +
∂2Φ

∂xi∂xj
(x, t),

where

∆Φ(x, t) = Γ(x, t), Φ(x, t) =

∫
R3

E(x− y)Γ(y, t) dy.

The tensor K = (Kijk) is obtained from Ozin’s tensor by

Kijk(x, t) =
∂Kij

∂xk
(x, t).

Theorem 3.3. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS. Let a ∈ C∞

0 (R3) and div a = 0. Then the smooth solution v of the
Stokes system Su is a mild solution, that is, for any i = 1, . . . , 3 and t > 0 we have

vi(x, t) =

∫
R3

Γ(x− y, t)ai(y) dy −
t∫

0

∫
R3

Kijk(x− y, t− τ)vj(y, τ)uk(y, t) dy dt. (3.6)

The proof of this Theorem is written in [9], see formulas (1.4)-(1.7). In short, by
previous Subsection 3.2, we have that the smooth function

v ∈ L∞(QT ), ∀T > 0,

is the solution to the Cauchy problem for the Stokes system

(Su) :


∂tv −∆v +∇q = divF

div v = 0

v|t=0 = a

in QT ,

where F = −v⊗ u. Therefore, the solution of the Cauchy problem for the Stokes system
Su is given with the help of the Ozin’s tensor by formula (3.6). Indeed, since the solution
of the Cauchy problem for the heat equation is represented by the fundamental solution Γ,
one can get that∫

R3

Kij(x− y, t− τ)
∂Fjk

∂yk
(y, τ) dy = −

∫
R3

Kijk(x− y, t− τ)Fjk(y, τ) dy.

From which we obtain the required Theorem.
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4. Upper bounds

In 1964, the following estimates have been obtained by V. A. Solonnikov, see [11]: for
any integer ℓ,m ⩾ 0 there is a constant Cℓ,m > 0 such that for any (x, t) ∈ Q+ we have

|∂ℓt∇mKij(x, t)| ⩽
Cℓ,m

(|x|2 + t)
3
2
+m

2
+ℓ
,

and, as a consequence,

|∂ℓt∇mKijk(x, t)| ⩽
Cℓ,m

(|x|2 + t)2+
m
2
+ℓ
.

So, obviously, for κ = C0,0 we have

|Kijk(x, t)| ⩽
κ

(|x|2 + t)2
, ∀(x, t) ∈ Q+.

Lemma 4.1. For any p ⩾ 1 there is a constant kp > 0 depending only on p such that
for any t > 0 we have

∥K(·, t)∥Lp(R3) ⩽ kp t
3−4p
2p .

Proof. Note that for any t > 0 we have

|Kijk(x, t)|p ⩽
κp

(|x|2 + t)2p
⩽

κp

|x|4p + t2p
, x ∈ R3.

Make the following substitution of variables: x = y
√
t. Then the Jacobian

Jx→y(y) = det

∣∣∣∣√t 0 0
0

√
t 0

0 0
√
t

∣∣∣∣ = t
3
2 ,

Therefore

∥K(·, t)∥p
Lp(R3)

=

∫
R3

|Kijk(x, t)|p dx

⩽ κp
∫
R3

dx

|x|4p + t2p

= κp
∫
R3

t
3
2 dy

t2p(y4p + 1)

= κp t
3
2
−2p

∫
R3

dy

y4p + 1

⩽ (kp)
p t

3−4p
2 ,

where kp = κ
(∫

R3
dy

y4p+1

)1/p
< +∞. Obviously, the required result follows from the

upper bound above. □

As a consequence one can show the following fact.

Lemma 4.2. Given T > 0. The tensor K belongs to the space L1(QT ) and, moreover,
there is a constant c0 > 0 such that

∥K∥L1(QT ) ⩽ c0
√
T .
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Proof. By Lemma 4.1 above we get

∥K∥L1(QT ) =

T∫
0

∥K(·, t)∥L1(R3) dt

⩽ k1

T∫
0

t−1/2 dt = c0
√
T ,

where c0 = 2 k1 is an absolute constant. □

Furthermore, acting analogically, one can find the the upper bound on the norm of
the mild bounded ancient solution u of the Navier-Stokes equations NS that satisfies the
condition (1.4). In that case we also shall say that u has a singularity of type I, that is,
for certain c∗ > 0 we have the following estimate:

|u(x, t)| ⩽ c∗

|x|+
√
t
, (x, t) ∈ Q+.

The following statements will be proved under the assumption that the mild bounded
ancient solution u of the Navier-Stokes equations NS has a type I singularity.

Lemma 4.3. Let p > 3. Then for any t > 0 the function u(·, t) belongs to the space
Lp(R3) and there is a constant Cp > 0 such that

∥u(t)∥Lp(R3) ⩽ Cp t
3−p
2p , t > 0,

where

Cp =

(
c∗

∫
R3

dy

(|y|+ 1)p

) 1
p

< +∞.

Moreover, for any t > 0

∥u(t)∥L∞(R3) ⩽ c∗ t
−1/2.

Proof. Clearly, substituting as before x = y
√
t we get

∥u(t)∥p
Lp(R3)

=

∫
R3

|u(x, t)|p dx

⩽ c∗

∫
R3

dx

(|x|+
√
t)p

= c∗ t
3
2
− p

2

∫
R3

dy

(|y|+ 1)p

= (Cp)
p t

3−p
2 ,

and here, similarly, the integral
∫
R3

dy
(|y|+1)p < +∞. Remark that if p = 3, then Cp = +∞,

since the integral
∫
R3 (|y|+ 1)−3 dy diverges.

It remains to show that ∥u(t)∥L∞(R3) ⩽ c∗ t
−1/2. The singularity of type I obviously

entails the latter. □
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Proposition 4.4. Let 6
5 < p < 2 and a ∈ C∞

0 (R3), div a = 0. Then for any t > 0 the

strong solution v of the Stokes system Su is such that v(·, t) belongs to the space Lp(R3),

and, moreover, there is a constant C̃p > 0 depending only on p such that

∥v(t)∥Lp(R3) ⩽ ∥a∥Lp(R3) + C̃p t
6−3p
4p .

Proof. Consider the function

ṽ(x, t) = −
t∫

0

∫
R3

K(x− y, t− τ) : [v ⊗ u](y, τ) dy dτ,

so by Theorem 3.3 we have that

v(x, t) = ṽ(x, t) +

∫
R3

Γ(x− y, t)a(y) dy.

Then by Holder inequality for p > 1 such that 1
p + 1

p′ = 1, Fubini’s theorem, Lemma 4.1

and Lemma 4.2 we obtain

∥ṽ(t)∥p
Lp(R3)

=

∫
R3

∣∣∣∣∣
t∫

0

∫
R3

K(x− y, t− τ) : [v ⊗ u](y, τ) dy dτ

∣∣∣∣∣
p

dx

⩽
∫
R3

∣∣∣∣∣
t∫

0

∫
R3

|K(x− y, t− τ)|
1
p′+

1
p · |[v ⊗ u](y, τ)| dy dτ

∣∣∣∣∣
p

dx

⩽
∫
R3

∣∣∣∣∣
( t∫

0

∫
R3

|K(x− y, t− τ)|
p′
p′ dy dτ

) 1
p′

·

·

( t∫
0

∫
R3

|K(x− y, t− τ)|
p
p · |[v ⊗ u](y, τ)|p dy dτ

) 1
p
∣∣∣∣∣
p

dx

= ∥K∥
p
p′

L1(Qt)

∫
R3

t∫
0

∫
R3

|K(x− y, t− τ)| · |[v ⊗ u](y, τ)|p dy dτ dx

= ∥K∥p−1
L1(Qt)

t∫
0

∫
R3

|K(x′, t− τ)| dx′
∫
R3

|[v ⊗ u](y, τ)|p dy dτ

⩽ c0 k1 t
p−1
2 ·

t∫
0

(t− τ)−1/2

∫
R3

|[v ⊗ u](y, τ)|p dy dτ.

Then by Holder inequality for parameter 2
p > 1, since

1
2
p

+
1
2

2−p

=
p

2
+

2− p

2
= 1,
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by Lemma 4.3 we get∫
R3

|[v ⊗ u](y, τ)|p dy ⩽

( ∫
R3

|v(y, τ)|2 dy

) p
2

·

( ∫
R3

|u(y, τ)|
2p
2−p dy

) 2−p
2

= ∥u(τ)∥p
L 2p

2−p
(R3)

∥v(τ)∥p
L2(R3)

⩽ c(p) τ
(3− 2p

2−p
) 2−p

4 ∥v∥pL2,∞(Q+)

= c(p) τ
6−5p

4 ∥v∥pL2,∞(Q+),

for 2p
2−p > 3, where c(p) =

(
C 2p

2−p

)p
. Hence, here we have 6

5 < p < 2.

Thus, we obtain

∥ṽ(t)∥p
Lp(R3)

⩽ c0 k1 t
p−1
2

t∫
0

(t− τ)−1/2

∫
R3

|[v ⊗ u](y, τ)|p dy dτ

⩽ c̃(p) t
p−1
2

t∫
0

(t− τ)−1/2τ
6−5p

4 dτ,

where c̃(p) = c0 k1 c(p) ∥v∥pL2,∞(Q+). Now, consider the integral above and calculate it:

t∫
0

(t− τ)−1/2τ
6−5p

4 dτ =

t∫
0

(t− τ)
3−4p

2 τ
6−5p

4 dτ

= t1−
1
2
+ 6−5p

4

t∫
0

(
1− τ

t

)−1/2 (τ
t

) 6−5p
4

d
(τ
t

)

= t
8−5p

4

1∫
0

(
τ ′
) 6−5p

4
(
1− τ ′

)−1/2
dτ ′

= t
8−5p

4 B

(
10− 5p

4
,
1

2

)
.

Here B(a, b) =
∫ 1
0 z

a−1(1 − z)b−1 dz is Beta function for two real arguments a, b > 0.
In our case it means that all calculations above are correct if and only if we choose such
parameters p that p < 10

5 = 2. Hence, clearly, we get

∥ṽ(t)∥p
Lp(R3)

⩽ c̃(p) t
p−1
2 t

8−5p
4 B

(
10− 5p

4
,
1

2

)
.

Whence we obtain the required inequality:

∥v(t)∥Lp(R3) ⩽ ∥a∥Lp(R3) + C̃p t
6−3p
4p ,

since for any t > 0 we have ∥Γ(·, t)∥L1(R3) = 1, where

C̃p = ∥v∥L2,∞(Q+)C 2p
2−p

(
c0 k1 · B

(
10− 5p

4
,
1

2

))1/p

< +∞

and the parameter p is such that 6
5 < p < 2. □
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5. Pikard’s method

5.1. Pikard’s method for the solutions of the Cauchy problem.

Proposition 5.1. Given T > 0. Let u and p be a bounded ancient solution of the
Navier-Stokes equations. Suppose that

c0M
√
T ⩽ δ < 1.

Then for any a ∈ L1(R3), div a = 0, the mild solution v of the problem Su belongs to the
Banach space C([0, T ];L1(R3)).

Proof. Let t ∈ [0, T ]. Define the Pikard’s iterations on the interval [0, T ] in the following
way:

vk+1(x, t) =

∫
R3

Γ(x− y, t)a(y) dy −
t∫

0

∫
R3

K(x− y, t− τ) : [vk ⊗ u](y, τ) dy dτ

and v0(x, t) = a(x). Then, applying Fubini’s theorem and Holder inequality we get

∥vk+1(t)− vk(t)∥L1(R3) ⩽

t∫
0

∫
R3

∫
R3

|K(x− y, t− τ)| · |[(vk − vk−1)⊗ u](y, τ)| dy dx dτ

=

t∫
0

∫
R3

∣∣K(x′, t− τ)
∣∣ dx′ ∫

R3

|[(vk − vk−1)⊗ u](y, τ)| dy dτ

⩽ ∥K∥L1(Qt) sup
τ∈[0,t]

∫
R3

|[(vk − vk−1)⊗ u](y, τ)| dy

⩽ ∥K∥L1(Qt) ∥u∥L∞(Qt)
sup

τ∈[0,t]
∥vk(τ)− vk−1(τ)∥L1(R3),

therefore by Lemma 4.2 and taking supremum for t ∈ [0, T ] it means that we have

∥vk+1 − vk∥C([0,T ];L1(R3)) ⩽ c0
√
T ∥u∥L∞(QT ) ∥v

k − vk−1∥C([0,T ];L1(R3)).

Since ∥u∥L∞(QT ) ⩽M and c0M T 1/2 ⩽ δ, we get

∥vk+1 − vk∥C([0,T ];L1(R3)) ⩽ δ ∥vk − vk−1∥C([0,T ];L1(R3)).

Hence, repeating this estimate iteratively, we obtain

∥vk+1 − vk∥C([0,T ];L1(R3)) ⩽ δk ∥v1 − a∥C([0,T ];L1(R3)).

Thus, the sequence {vk}k∈N is a fundamental Cauchy sequence in C([0, T ];L1(R3)) and
in that Banach space

vk → v ∈ C([0, T ];L1(R3)) as k → +∞,

where the limit v is such that

v(x, t) =

∫
R3

Γ(x− y, t)a(y) dy −
t∫

0

∫
R3

K(x− y, t− τ) : [v ⊗ u](y, τ) dy dτ.

□
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5.2. Extension of the solutions obtained by Pikard’s method.

Theorem 5.2. Let u and p be a bounded ancient solution of the Navier-Stokes equations.
Let a ∈ C∞

0 (R3) and div a = 0. Then for any T > 0 there is unique smooth solution v of
the Stokes system Su such that

v ∈ C([0, T ];L∞(R3) ∩ L1(R3)).

Moreover, this solution v is a classical solution, smooth solution, mild solution, and the
energy estimate holds:

∥v∥C([0,T ];L2(R3)) + ∥∇v∥L2(QT ) ⩽ 2 ∥a∥L2(R3) .

Proof. Fix the following constant

T∗ =

(
δ

c0M

)2

.

Here T∗ is the length of the time interval obtained by the Pikard’s method in Proposition
5.1. Remark that T∗ does not depend on the initial data a. We know that on [0, T∗] there
is a unique mild solution

v ∈ C([0, T∗];L1(R3)).

Consider the function
a1 = v(·, T∗) ∈ L1(R3)

as new initial data. Then on the interval [T∗, 2T∗] there also exists a unique mild solution

v ∈ C([T∗, 2T∗];L1(R3)).

We also call it as v since it is an extension of the v|[0,T∗] on the [T∗, 2T∗]. Then again,
consider the function

a2 = v(·, 2T∗) ∈ L1(R3)

as new initial data and extend this solution on the interval [2T∗, 3T∗] and etc.
For the finite number steps of these algorithm we extend solution v on the interval [0, T ]

for any T > 0, and, finally, it proves that the mild solution v of the problem Su belongs
to the Banach space C([0, T ];L1(R3)). Taking into account results of the Subsection 3.2
we obtain the required Theorem. □

Note that in the proof we do not use the type I singularity of u.
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6. Duality method

Theorem 6.1. Let u and p be a mild bounded ancient solution of the Navier-Stokes
equations NS and the singularity of type I takes place. Let a ∈ C∞

0 (R3), div a = 0, and
let v be a solution of the Stokes system Su. Then for any T ⩾ 0 we have∫

R3

u(·, 0) · a dx =

∫
R3

u(·, T ) · v(·, T ) dx. (6.1)

Proof. Pick ζ ∈ C∞
0 (R3) and multiply equations Su by ζu in the sense of the scalar

product in L2(R3). So, since div u = 0, for any t > 0 we get

(ζ∂tv, u) + (ζ∇v,∇u) + (∇v, u∇ζ) + ((u · ∇)v, ζu)− (q, u · ∇ζ) = 0.

On the other hand, multiplying NS equations by ζv, since div v = 0, we get

−(ζ∂tu, v) + (ζ∇u,∇v) + (∇u, v∇ζ) + ((u · ∇)u, ζv)− (p, v · ∇ζ) = 0.

Now we subtract from the first equation the second equation, then according to the rules
for differentiating an integral that depends on a parameter we obtain:

d

dt
(ζu(t), v(t)) + (ujvj,k − vjuj,k, ζ,k) + (ζuj , vk,juk − uk,jvk)− (quj − pvj , ζ,j) = 0. (6.2)

Clearly, since we have

(u · v,∆ζ) = −(ujvj,k + vjuj,k, ζ,k)

we get that

(ujvj,k − vjuj,k, ζ,k) = −(u · v,∆ζ)− 2(uj,kvj , ζ,k).

Also, since we know that div u = 0, we get

(ζuj , vk,juk + uk,jvk) = (ζujuk, vk,j) + (ζujvk, uk,j)

= −(ζ,jujuk, vk)− (ζ div u, u · v)
−(ζujuk,j , vk) + (ζujvk, uk,j)

= −(∇ζ · u, v · u)

Thus, equation (6.2) turns into

d

dt
(ζu(t), v(t)) = (u · v,∆ζ) + 2(uj,kvj , ζ,k) + (∇ζ · u, v · u) + (qu− pv,∇ζ).

Integrate the latter by t ∈ (0, T ), hence we get the crucial identity:∫
R3

ζ u(T ) · v(T ) dx−
∫
R3

ζ u(0) · v(0) dx =

=

∫
QT

(2v∇u∇ζ + u · v∆ζ +∇ζ · u(u · v) + (qu− pv) · ∇ζ) dx dt. (6.3)

Take ζ = ζR, where ζR(x) = ξ
(
x
R

)
, and ξ ∈ C∞

0 (R3) is such that supp ξ ⊂ B2R(0),

0 ⩽ ξ(x) ⩽ 1 for all x ∈ R3, ξ = 1 in BR(0), and, moreover,

|∇ζR(x)| ⩽
C

R
, |∇2ζR(x)| ⩽

C

R2
, ∀x ∈ R3.
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Then by Holder inequality and by condition (1.3) we obtain∫
QT

|v∇u∇ζR| dx dt ⩽
C

R

T∫
0

∥v(t)∇u(t)∥L1(R3) dt

⩽
C

R

T∫
0

∥v(t)∥L1(R3) ∥∇u(t)∥L∞(R3) dt

⩽
C

R
∥v∥C([0,T ];L1(R3))

T∫
0

∥∇u(t)∥L∞(R3) dt

⩽
CMT

R
∥v∥C([0,T ];L1(R3)).

Analogically we get ∫
QT

|u · v∆ζR| dx dt ⩽
CMT

R2
∥v∥C([0,T ];L1(R3))

and ∫
QT

|∇ζR · u(u · v)| dx dt ⩽ CM2T

R
∥v∥C([0,T ];L1(R3)).

Note that conditions (1.2) and (1.4) imply that there is M∗ > 0 such that

|u(x, t)| ⩽M∗ min

{
1,

1

|x|

}
, x ∈ R3, t ∈ [0, 1].

So, Lemma 4.3 and the latter yield that u ∈ L∞(0, T ;Ls(R3)) = Ls,∞(QT ) for any s > 3.
Therefore we get that the pressure field p associated with u ⊗ u belongs to the space
L2,∞(QT ), since by Holder inequality for any t > 0 we have ∥p(t)∥2L2(R3) ⩽ c ∥u(t)∥4L4(R3).

Hence, we obtain∫
QT

|pv · ∇ζR| dx dt ⩽
C

R

T∫
0

∥p(t)∥L2(R3) ∥v(t)∥L2(R3) dt

⩽
CT

R
∥p∥L2,∞(QT ) ∥v∥L2,∞(QT ).

Since u ∈ L5,∞(QT ) and v ∈ L2,∞(QT ), then v ⊗ u ∈ L 10
7
,∞(QT ), because

∥[v ⊗ u](t)∥L 10
7
(R3) ⩽ ∥u10/7(t)∥L 7

2
(R3) ∥v10/7(t)∥L 7

5
(R3) = ∥u(t)∥L5(R3) ∥v(t)∥L2(R3).

Then, obviously, the pressure field q associated with v⊗u belongs to the space L 10
7
,∞(QT ),

because we have

∥q(t)∥L 10
7
(R3) ⩽ c ∥[v ⊗ u](t)∥L 10

7
(R3).

Hence, since u ∈ L 10
3
,∞(QT ), by Holder inequality with parameters 10

7 and 10
3 we analog-

ically obtain ∫
QT

|qu · ∇ζR| dx dt ⩽
CT

R
∥q∥L 10

7 ,∞(QT ) ∥u∥L 10
3 ,∞(QT )
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Thus, taking the limit R→ +∞ in the identity (6.3) we finally obtain∫
R3

u(0) · a dx =

∫
R3

u(T ) · v(T ) dx,

since ζR(x) = ξ
(
x
R

)
→ ξ(0) = 1 as R→ +∞. □

7. Decreasing in time for sufficiently small singularity

Theorem 7.1. Let v be a solution of the Stokes system Su and u and p be a mild bounded
ancient solution of the Navier-Stokes equations NS and for c∗ > 0 the singularity of type
I takes place. There is a constant ε0 > 0 such that if c∗ < ε0, then the following is valid:

lim
t→+∞

∫
R3

u(·, t) · v(·, t) dx = 0.

Proof. Consider the function

ṽ(x, t) = −
t∫

0

∫
R3

K(x− y, t− τ) : [v ⊗ u](y, τ) dy dτ,

so by Theorem 3.3 we have that

v(x, t) = ṽ(x, t) +

∫
R3

Γ(x− y, t)a(y) dy.

Therefore, by Fubini’s theorem, Lemma 4.1 and Lemma 4.3 we obtain

∥ṽ(t)∥L1(R3) ⩽

t∫
0

∫
R3

|K(x′, t− τ)| dx′
∫
R3

|[v ⊗ u](y, τ)| dy dτ

⩽ c0 k1

t∫
0

(t− τ)−1/2

∫
R3

|[v ⊗ u](y, τ)| dy dτ

⩽ c0 k1

t∫
0

(t− τ)−1/2 ∥v(τ)∥L1(R3) ∥u(τ)∥L∞(R3) dτ

⩽ c0 k1 c∗

t∫
0

(τ(t− τ))−1/2 ∥v(τ)∥L1(R3) dτ

⩽ c0 k1 c∗ π ∥v∥C([0,t];L1(R3)) .

Therefore, since
t∫
0

(τ(t− τ))−1/2 dτ = π for any t > 0, we get for c = c0 k1 π that

∥v∥C([0,T ];L1(R3)) ⩽ c c∗ ∥v∥C([0,T ];L1(R3)) + ∥a∥L1(R3) .

Further, if 1− c c∗ > 0 then this entails that for any 0 < t < T we have

∥v(t)∥L1(R3) ⩽
1

1− c c∗
∥a∥L1(R3) = ca. (7.1)
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Finally, by Holder inequality and also Lemma 4.3 we get∣∣∣∣∣∣
∫
R3

u(t) · v(t) dx

∣∣∣∣∣∣ ⩽ ∥u(t)∥L∞(R3) ∥v(t)∥L1(R3) ⩽
c∗ ca√
t

→ 0

as t→ +∞. And, furthermore, since 1− c c∗ > 0, there is an upper bound on c∗, namely,

c∗ <
1

c
=

1

π c0 k1
= ε0.

□

Note that if we have 1− c c∗ < 0, then upper bound (7.1) turns into

∥v(t)∥L1(R3) ⩾ 0 >
1

1− c c∗
∥a∥L1(R3)

and it is absolutely unhelpful. Therefore, the condition that c∗ < ε0 is vital in this proof.

8. Proof of the main result. Concluding remarks

8.1. Proof of the Liouville-type theorem. Recall that we want to prove that for mild
bounded ancient solution u and p of the Navier-Stokes equations NS such that for c∗ > 0
the singularity of type I takes place there is a constant ε0 > 0 such that if c∗ < ε0, then

u(x, 0) = 0, ∀x ∈ R3.

Proof. By Theorem 6.1 and Theorem 7 we obtain∫
R3

u(0) · a dx = lim
t→+∞

∫
R3

u(t) · v(t) dx = 0

for any a ∈ C∞
0 (R3) such that div a = 0. This yields that Helmholtz–Leray decomposition

implies u(0) ∈ L2(R3) and that there is ψ ∈ W 1
2 (R3) such that u(0) = ∇ψ almost

everywhere in R3. Since div u = 0, therefore u(0) ∈ H, and, also, by Helmholtz–Leray
decomposition we have ∫

R3

u(0) · η dx = 0, ∀η ∈ H.

Thereby, by Dubois-Reymond Lemma we immediately get that u(0) = 0 in R3 and the
Theorem is proved. □

Note that to prove the regularity of the weak solution w in the origin z = 0 it is
sufficient to know that

u(x, 0) = 0, ∀x ∈ R3,

since these fact already contradicts to the statement that |u(0, 0)| = 1.

However, our goal is to show that the Liouville-type theorem holds. Since we are
interested only in the possibility of obtaining a Liouville-type theorem by applying the
duality method to our special case, therefore, as we mentioned in Subsection 1.1, using
backward uniqueness theorem proved in the paper of L. Escuriazo, G. Seregin, V. Šverak
(see [2]) one can prove that

u(x, t) ≡ 0, ∀(x, t) ∈ Q+.

More about Liouville-type theorems could be found in the G. Seregin’s book (see e.g.,
Chapter 6.4 and Appendix A.3 in [6]) and the paper of G. Koch, N. Nadirashvili, G.
Seregin and V. Šverak, [3].
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8.2. Concluding remarks. In this section, we describe how the Theorem 7.1 could be
proved for any constant c∗ > 0, that is, without assuming that c∗ < ε0 for some ε0 > 0.
Unfortunately, we show that this theorem can not be proved under such assumptions.
What is interesting here is that we come to exactly the same estimate as M. Schonbeck
and G. Seregin came to in paper [5]. Moreover, we come to some conclusions about the
duality method.

Let p, q ⩾ 1 be such that 1
p + 1

q = 1. Applying Holder inequality by Proposition 4.4

and Lemma 4.3 for p ∈
(
6
5 , 2
)
and q > 3 we get∣∣∣∣∣∣

∫
R3

u(t) · v(t) dx

∣∣∣∣∣∣ ⩽ ∥u(t)∥Lq(R3) ∥v(t)∥Lp(R3)

⩽ Cq t
3−q
2q

(
∥a∥Lp(R3) + C̃p t

6−3p
4p

)
= Cq ∥a∥Lp(R3) t

3−q
2q + CqC̃p t

3−q
2q

+ 6−3p
4p .

Since q = p
p−1 , we have q ∈ (3, 6) and therefore p ∈ (65 ,

3
2). Obviously,

3− q

2q
< 0,

which entails that t
3−q
2q → 0 as t tends to +∞. However, regarding the second summand

term index in the estimate we obtained above, we have

3− q

2q
+

6− 3p

4p
=

3− p
p−1

2p
p−1

+
6− 3p

4p
=

2(3p− 3− p) + 6− 3p

4p
=

1

4
.

Hence, while t tends to +∞ we obtain∣∣∣∣∣∣
∫
R3

u(t) · v(t) dx

∣∣∣∣∣∣→ CqC̃p t
1
4 → +∞.

These result is similar to one obtained by M. Schonbeck and G. Seregin, namely, the
estimate (1.8) (see Subsection 1.2).

This allows us to conclude that the duality method is applicable under different as-
sumptions and is indeed a method rather than a special case of solving the problem of
local regularity of a weak solution of the Navier-Stokes equations. As we mentioned in
Section 1.1, our main goal is to investigate the limits of applicability of the duality method
developed by G. Seregin. We examined a modification fo duality method expecting that
we could obtain results similar to those obtained by M. Schonbeck and G. Seregin in [5].
Since all of our results, both positive and negative, are exactly the same as those of M.
Schonbeck and G. Seregin, we finally conclude that the duality method requires the search
for further applications in the theory of the Navier-Stokes equations.
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