
Санкт-Петербургский государственный университет

МАРТЫНОВА Ольга Максимовна

Выпускная квалификационная работа

Minimal strings and graphs accepted by automata

Уровень образования: магистратура
Направление: 01.04.01 «Математика»

Основная образовательная программа: BM.5832.2021 «Современная математика»

Научный руководитель:

Профессор
Факультет математики и компьютерных наук
Санкт-Петербургский государственный университет
Ph.D.
Охотин Александр Сергеевич

Рецензент:

Профессор
Факультет компьютерных наук
Национальный исследовательский университет
«Высшая школа экономики»
к.ф.-м.н.
Вялый Михаил Николаевич

Санкт-Петербург
2023

Аннотация

Для разных известных видов автоматов изучается вопрос, насколько боль-
шим может быть минимальный принимаемый объект. Максимальная дли-
на кратчайшей строки, принимаемой двухсторонним конечным автома-
том, который запоминает направление последнего шага, определяется точ-
но. Для автоматов общего вида доказывается более высокая нижняя оцен-
ка. Максимальное число вершин в минимальном принимаемом дереве для
недетерминированных древесных автоматов определяется точно. Для дре-
воходных автоматов показывается, что максимальный размер минималь-
ного принимаемого дерева — двойной экспоненциальный от числа состо-
яний. Кроме того, доказывается разрешимость задачи пустоты для двух
видов автоматов на графах. Задача непустоты для графоходных автома-
тов, которые ходят по рёбрам графа, оказывается NEXP-полной, а для
замощений графов подграфами-звёздами, оказывается NP-полной.

Abstract

For different classical types of automata, the question, how large the minimal
accepted object can be, is investigated. The maximum length of the shortest
string accepted by a two-way finite automaton that remembers the direction
of the last move is determined precisely. For two-way automata of the general
form, a higher lower bound is proved. The maximum possible number of
nodes in the minimal tree accepted by a nondeterministic tree automaton
is determined precisely. For tree-walking automata, the maximum size of the
minimal accepted tree is proved to be double exponential in the number of
states. Finally, this thesis proves the decidability of the emptiness problem for
two types of automata on graphs. Non-emptiness problem for graph-walking
automata (that move in a graph by following its edges) is proved to be NEXP-
complete, and for tilings of graphs by star subgraphs is proved to be NP-
complete.

1

Contents

1 Introduction 3

2 Shortest accepted strings for two-way finite automata 7
2.1 Two-way finite automata . 7
2.2 Shortest accepted strings for direction-determinate automata 9
2.3 Longer shortest strings for automata of the general form 13
2.4 Calculations . 17

3 Minimal trees accepted by tree automata and tree-walking automata 20
3.1 Tree-walking and tree automata . 20
3.2 Bounds on the size of the minimal accepted tree for a tree automaton . . . 23
3.3 Transformation of a nondeterministic tree-walking automaton to a nonde-

terministic tree automaton . 27
3.4 Upper bound on the size of the smallest tree accepted by a nondeterministic

tree-walking automaton . 33
3.5 Lower bound on the size of the smallest tree accepted by a tree-walking

automaton . 38

4 Complexity of the emptiness problem for graph-walking automata and
for tilings with star subgraphs 47
4.1 Graph-walking and star automata . 48
4.2 The non-emptiness problem for signatures is in NP 50
4.3 Reducing a star automaton to a signature 56
4.4 Reducing a graph-walking automaton to a signature 58
4.5 Computational complexity of emptiness problems 63

5 Conclusion 73

2

Chapter 1

Introduction

A natural question about automata and related models of computation is how large can
be the minimal object an automaton accepts.

The most well-known automata are finite automata that work on strings. A function
mapping the size of such an automaton to the maximum length of the shortest accepted
string, with the maximum taken over all automata of that size, is a certain complexity
measure for a family of automata.

For one-way finite automata, this measure is trivial: the length of the shortest string
accepted by a nondeterministic finite automaton (NFA) with n states is at most n −
1: this is the length of the shortest path to an accepting state. On the other hand,
Ellul et al. [9] proved that the length of shortest strings not accepted by an n-state
NFA is exponential in n. Similar questions were studied for other models and some
variants of the problem. Chistikov et al. [7] investigated the length of shortest strings in
counter automata. The length of shortest strings in formal grammars under intersections
with regular languages was studied by Pierre [23], and recently by Shemetova et al. [25].
Alpoge et al. [1] investigated shortest strings in intersections of deterministic one-way
finite automata (DFA).

The maximum length of shortest strings for deterministic two-way finite automata
(2DFA) has been investigated in two recent papers. First of all, from the well-known
proof of the PSPACE-completeness of the emptiness problem for 2DFA by Kozen [16]
it is understood that the length of the shortest string accepted by an n-state 2DFA can
be exponential in n. There is also an exponential upper bound on this length, given
by transforming a 2DFA to an NFA: the construction by Kapoutsis [15] uses at most(

2n
n+1

)
= Θ(1√

n
4n) states, and hence the length of the shortest string is slightly less than

4n. Overall, the maximum length of the shortest string is exponential, with the base
bounded by 4.

The first attempt to determine the exact base was made by Dobronravov et al. [8],
who constructed a family of n-state 2DFA with shortest strings of length Ω((5

√
10)n) >

Ω(1.584n). The automata they have actually constructed belong to a special class of 2DFA:
the direction-determinate automata. These are 2DFA with the set of states split into states
accessible only by transitions from the right and states accessible only by transitions from
the left: in other words, direction-determinate automata always remember the direction
of the last transition in their state.

Later, Krymski and Okhotin [17] extended the method of Dobronravov et al. [8] to
produce automata of a more general form, with longer shortest accepted strings. They

3

constructed a family of non-direction-determinate 2DFA with shortest strings of length
Ω((4
√

7)n) > Ω(1.626n).
These bounds for two-way finite automata are improved in Chapter 2. First, the

maximum length of the shortest string accepted by n-state direction-determinate 2DFA
is determined precisely as

(
n
bn
2
c

)
− 1 = Θ(1√

n
2n). The upper bound on the length of

the shortest string immediately follows from the complexity of transforming direction-
determinate 2DFA to NFA, see Geffert and Okhotin [12]. A matching lower bound is
proved by a direct construction of a family of n-state automata.

The second result of Chapter 2 is that not remembering the direction helps to ac-
cept longer shortest strings: a family of n-state non-direction-determinate automata with
shortest strings of length 3

4
· 2n − 1 is constructed. This is more than what is possible in

direction-determinate automata.
Automata that work on strings have well-known generalizations to automata that work

on trees with labelled nodes. Deterministic and nondeterministic one-way finite automata
(DFA and NFA) become deterministic bottom-up tree automata (DTA) and nondeter-
ministic tree automata (NTA). These are automata that compute states in nodes of a
given tree from the leaves to the root. A state in a node is determined (deterministically
for DTA and nondeterministically for NTA) by a label of this node and by states already
chosen in the children of this node. If an automaton can choose states in all nodes of a
tree in this way, then the tree is accepted.

Two-way finite automata are generalized to trees in a different way. They become
deterministic and nondeterministic tree-walking automata (DTWA and NTWA). Such an
automaton works on a tree by moving along its edges. At every moment, an automaton is
in some state and stands at some node. It sees only the label of this node. Depending on
its state and on the label of the node, it decides (deterministically or not) to move to one
of the neighbouring nodes and changes its state. It can also decide to accept or reject.

It is known that nondeterministic tree automata are equal in power to deterministic
bottom-up tree automata, like NFA are equal in power to DFA.

However, there are some differences between automata on strings and on trees.
Bojańczyk and Colcombet [5] proved that tree-walking automata are strictly weaker in
power than tree automata, and deterministic tree-walking automata are strictly weaker
than nondeterminic ones [4].

The size of minimal trees accepted by tree and tree-walking automata has not been
studied yet. But it is known, that the emptiness problem for these automata (whether
a given automaton accepts at least one tree) is decidable, and complexity classes for the
emptiness problem were determined precisely for these models of computation. Veanes [27]
proved that the emptiness problem for nondeterministic tree automata is P-complete.
It is proved by Bojańczyk [3] that the emptiness problem for both deterministic and
nondeterministic tree-walking automata is EXP-complete.

The size of minimal accepted trees for tree and tree-walking automata is investigated
in Chapter 3. For nondeterministic tree automata, the maximum possible size of the
minimal accepted tree is determined precisely as the last element in the inductively defined
sequence of numbers. This element can be estimated from above as 2rn, where n is the
number of states in an automaton, and r is the maximum number of children for a node.
If r > 2, then the element can be estimated from below by the rn-th Fibonacci number.
And the witness automata for the precise lower bound are bottom-up deterministic.

Estimating the maximum size of the minimal trees accepted by tree-walking automata

4

is more difficult, because tree-walking automata are a generalization of two-way finite
automata, and the problem about the shortest accepted strings is much harder for two-
way finite automata than for one-way finite automata. The lower and upper bounds
obtained for tree-walking automata in Chapter 3 do not coincide, but are of similar order.
It is proved that for an n-state nondeterministic tree-walking automaton that works on
trees with a maximal degree at most r, the minimal accepted tree has at most 2O(rn·3.572n)

nodes. The lower bound is proved for deterministic tree-walking automata, and it is
2Ω(r·1.618n).

Automata on trees can be generalized further by replacing trees with arbitrary graphs.
Then, deterministic tree-walking automata are generalized to graph-walking automata
(GWA).

A graph-walking automaton is a model of a robot in a maze. It has finitely many
states, and it deterministically walks on graphs with labelled nodes and labelled edge
end-points. The automaton decides by which edge to move depending on the label of the
current node and on its current state. The automaton can also decide to accept or to
reject, and so it defines a graph language: the set of graphs it accepts.

Graph-walking automata were first introduced by Michael Rabin, who stated the con-
jecture that for each graph-walking automaton, even if it is additionally allowed to use
finitely many pebbles, there is a graph that it cannot fully explore. Budach [6] proved this
conjecture for graph-walking automata without pebbles. Later Fraigniaud et al. [10] gave
an easier proof of this fact. Rollik [24] proved that not only pebbles, but even co-operation
of several interacting automata would not help to traverse every graph, thus proving Ra-
bin’s conjecture. Kunc and Okhotin [18] showed that every graph-walking automaton
can be transformed to an automaton which halts on every input, to an automaton which
accepts only at the initial node, and to a reversible automaton, which all accept the same
set of graphs. Later Martynova and Okhotin [20] reduced the number of states needed
for these transformations, and obtained asymptotically tight lower bounds.

For graph-walking automata, not only the maximum size of the minimal accepted
graph has not been studied yet, but it is also not known, whether the emptiness problem
for these automata is decidable.

The main result of Chapter 4 is the decidability of the emptiness problem for graph-
walking automata and its computational complexity. It is proved that the non-emptiness
problem for graph-walking automata is NEXP-complete. Furthermore, Chapter 4 provides
an upper bound m4n(k+1)kk4n−1 on the number of nodes in the smallest accepted graph
for an n-state graph-walking automaton that works on graphs with k labels of edge end-
points and with m node labels. This upper bound is nearly of the same order as a lower
bound for tree-walking automata.

NFA and nondeterministic tree automata are nondeterministic automata that recog-
nize a given object by tiling it with neighbourhoods of states. Tiling models were also
considered for graphs. Thomas [26] introduced graph acceptors : in this model, a graph
is accepted, if it can be covered with tiles (subgraphs) from a fixed finite set, so that
each node is in the inner part of some tile, states in overlapping tiles are the same, and
some further constraints on the number of occurrences of every tile hold. For this general
model, Thomas proved undecidability of the emptiness problem by recognizing the set of
rectangular grids and simulating a Turing machine on the grids. Thomas also considered
elementary acceptors : a special case in which every tile is a star, that is, a node with
all its neighbours. For elementary acceptors, Thomas proved that the language of grids

5

cannot be recognized. However, the decidability of the emptiness problem for elementary
acceptors remains open.

Besides the emptiness problem for graph-walking automata, another problem consid-
ered in Chapter 4, it is the emptiness problem for star automata, that is, for elementary
acceptors of Thomas without additional constraints on the number of occurrences of tiles.
Star automata are at the same time a special case of the model by Thomas, and a gener-
alization of nondeterministic tree automata to graphs.

It is proved in Chapter 4 that non-emptiness problem for star automata is decidable
and NP-complete. Also this chapter gives an upper bound sn2kkn

2−1 on the number of
nodes in the smallest accepted graph for an n-state star automaton with s different stars,
that works on graphs with k labels of edge end-points.

Note that the complexity classes for related problems, such as whether a graph-walking
automaton accepts all graphs over its signature (the universality problem), or whether the
intersection of languages of two automata is empty, can be inferred from the result for the
non-emptiness problem. Indeed, since every graph-walking automaton can be transformed
to an automaton that halts on every input, and the transformation given by Kunc and
Okhotin [18] can be done in polynomial time, the emptiness problem for graph-walking
automata is equivalent to the universality problem. As for the intersection emptiness
problem, Martynova and Okhotin [21] obtained a transformation for the intersection of
two graph-walking automata, which can be done in polynomial time too. Thus, the
universality problem and the intersection emptiness problem for graph-walking automata
are both co-NEXP-complete.

The results of Chapter 2 have been accepted to DCFS 2023 conference and are due to
appear in conference proceedings [22]. The results of Chapter 4 have been submitted for
publication [19].

6

Chapter 2

Shortest accepted strings for
two-way finite automata

In this chapter, the length of shortest strings accepted by two-way finite automata is
investigated. First, two-way finite automata are formally defined in Section 2.1. Sec-
tion 2.2 determines the exact maximum length of the shortest string accepted by direction-
determinate 2DFA. And then even better lower bound is obtained in Section 2.3 for 2DFA
of the general form, proving that it is useful to forget the direction of the last move to have
longer shortest accepted strings. In Section 2.4, a few non-direction-determinate 2DFA
with a small number of states and long shortest accepted strings are presented: these
automata were found by a computer program, and the length of their shortest accepted
strings exceeds the theoretical lower bound proved in Section 2.3.

2.1 Two-way finite automata

Two-way deterministic finite automata (2DFA) are automata equipped with a finite set
of states that move over an input string, scanning one symbol at a time. At every step,
an automaton may move to the right or to the left and may change its state. This is a
well-known model of computation, but some details of the definition, such as acceptance
in the beginning or in the end of a string, may vary; the definition used in this thesis is
given below.

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple A =
(Σ, Q, q0, δ, F), in which:

• Σ is a finite alphabet, which does not contain two special symbols: the left end-
marker (`) and the right end-marker (a);

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• δ : Q× (Σ ∪ {`,a})→ Q× {−1,+1} is a partial transition function;

• F ⊆ Q is the set of accepting states, effective at the right end-marker (a).

7

The transitions on the end-markers must not lead the automaton outside of the string,
that is, δ(q,`) /∈ Q × {−1} and δ(q,a) /∈ Q × {+1} for all q ∈ Q. Also, there are no
transitions in accepting configurations, that is, δ(q,a) is undefined for all q ∈ F .

The automaton A works on a string w = a1 . . . am ∈ Σ∗ as follows. A string w is
written on a tape, delimited by two end-markers: `a1 . . . ama. Let a0 = ` and am+1 = a.

A configuration of the automaton A on a string w is a pair (q, i), where q ∈ Q is a
state, and i ∈ {0, . . . ,m + 1} is a position of the automaton on the tape (here i = 0
corresponds to the left end-marker, and i = m+ 1 to the right end-marker).

A computation of the automaton A on the string w is a sequence of configurations
C0, . . . , CN constructed by induction. The automaton starts in the initial state at the left
end-marker: C0 = (q0, 0). Let a configuration Cj = (q, i) be defined already.

• If the transition is defined as δ(q, ai) = (r, d), then the automaton changes its state
to r and moves in the direction d, and so the next configuration is Cj+1 = (r, i+ d).

• If q ∈ F and i = m+1, then the automaton accepts, and the configuration Cj = CN
is the last one.

• If δ(q, ai) is undefined and the acceptance condition (q ∈ F , i = m + 1) does not
hold, then the automaton rejects the string w, and Cj = CN is the last configuration.

A computation can be an infinite sequence of configuration, with N = ∞, and then the
automaton is said to loop on the string w.

The automaton A defines a language L(A): the set of all strings it accepts.

There are also nondeterministic two-way finite automata (2NFA). They differ from
deterministic ones in having a set of initial states Q0 instead of one initial state q0m and
in having a transition function δ map each pair of a state and a symbol to a set of possible
transitions rather than one transition: δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,+1}. In this case,
several computations of an automaton on a string can be possible, and a string is accepted
if at least one of them is accepting.

This thesis also uses a subclass of 2DFA, in which one can determine the direction of
the previous transition from the current state.

Definition 2 ([18]). A 2DFA is called direction-determinate, if there is a partition of
the set of states Q = Q+ ∪ Q−, with Q+ ∩ Q− = ∅, such that for each transition
δ(q, a) = (r,+1), the state r must belong to Q+, and for each transition δ(q, a) = (r,−1),
the state r is in Q−.

The known upper bounds on the length of the shortest accepted string are different
for direction-determinate 2DFA and for 2DFA of the general form. These bounds are
inferred from the complexity of transforming two-way automata with n states to one-
way NFA: for 2DFA of the general form, as proved by Kapoutsis [15], it is sufficient
and in the worst case necessary to use

(
2n
n+1

)
states in a simulating NFA, whereas for

direction-determinate 2DFA the simulating 2DFA requires
(
n
bn
2
c

)
states in the worst case,

see Geffert and Okhotin [12]. Since the shortest string in a language cannot be longer
than the shortest path to an accepting state in an NFA, the following bounds hold.

8

Theorem 1 (Dobronravov et al. [8]). Let n > 1, and let A be a 2DFA with n states,
which accepts at least one string. Then the length of the shortest string accepted by A is
at most

(
2n
n+1

)
− 1. If the automaton A is direction-determinate, then the length of the

shortest accepted string does not exceed
(
n
bn
2
c

)
− 1.

The first result of this chapter is that this upper bound for direction-determinate
automata is actually precise.

2.2 Shortest accepted strings for direction-

determinate automata

In this section, direction-determinate automata with the maximum possible length
(
n
bn
2
c

)
−

1 of shortest accepted strings, where n is the number of states, will be constructed.
Automata are constructed for every k and `, where k is the number of states reachable

by transitions to the right and ` is the number of states reachable in the left direction.
The following theorem shall be proved.

Theorem 2. For every k > 2 and ` > 0 there exists a direction-determinate 2DFA with
the set of states Q = Q+ ∪Q−, where |Q+| = k and |Q−| = `, such that the length of the
shortest string it accepts is

(
k+`
`+1

)
− 1.

The automaton constructed in the theorem works as follows. While working on its
shortest string, it processes every pair of consecutive symbols by moving back and forth
between them, thus effectively comparing them to each other. Eventually it moves on to
the next pair and processes it in the same way. It cannot come back to the previous pair
anymore, because it has no transitions for that.

The automaton’s motion between two neighbouring symbols begins when it first arrives
from the first symbol to the second in some state from Q+. Then it moves back and forth,
alternating between states from Q+ at the second symbol and states from Q− at the first
symbol, and finally leaves the second symbol to the right. Among the states visited by the
automaton during this back-and-forth motion, the number of states from Q+ is greater
by one than the number of states from Q−. Two such sets of states will be denoted by a
pair (P,R), where P ⊆ Q−, R ⊆ Q+ and |R| = |P |+ 1.

Proposition 1. There are
(
k+`
`+1

)
different pairs (P,R), such that P ⊆ Q−, R ⊆ Q+ and

|R| = |P |+ 1.

Proof. There are as many pairs (P,R) as pairs (Q− \ P,R), where |R| = |P | + 1. The
number of pairs of the latter form is equal to the number of subsets of Q of size ` + 1,
that is,

(
k+`
`+1

)
.

Let the sets Q+ and Q− be linearly ordered. Then one can define an order on the set of
pairs (P,R) as follows. In every such pair, let P = {p1, . . . , pm}, where p1 < . . . < pm, and
R = {r1, . . . , rm+1}, where r1 < . . . < rm+1. There is a corresponding sequence to each
pair, of the form r1, −p1, r2, −p2, . . . , rm, −pm, rm+1, and different pairs are compared
by the lexicographic order on these sequences. In Table 2.1, all pairs (P,R), for k = 4
and ` = 2, are given in increasing order, along with the corresponding sequences.

9

pairs (P,R) sequences
∅, {1} (1)
{2′}, {1, 2} (1,−2′, 2)
{2′}, {1, 3} (1,−2′, 3)
{2′}, {1, 4} (1,−2′, 4)
{1′}, {1, 2} (1,−1′, 2)
{1′, 2′}, {1, 2, 3} (1,−1′, 2,−2′, 3)
{1′, 2′}, {1, 2, 4} (1,−1′, 2,−2′, 4)
{1′}, {1, 3} (1,−1′, 3)
{1′, 2′}, {1, 3, 4} (1,−1′, 3,−2′, 4)
{1′}, {1, 4} (1,−1′, 4)
∅, {2} (2)
{2′}, {2, 3} (2,−2′, 3)
{2′}, {2, 4} (2,−2′, 4)
{1′}, {2, 3} (2,−1′, 3)
{1′, 2′}, {2, 3, 4} (2,−1′, 3,−2′, 4)
{1′}, {2, 4} (2,−1′, 4)
∅, {3} (3)
{2′}, {3, 4} (3,−2′, 4)
{1′}, {3, 4} (3,−1′, 4)
∅, {4} (4)

Table 2.1: All pairs (P,R) for sets of states Q+ = {1, 2, 3, 4} and Q− = {1′, 2′}.

Let N =
(
k+`
`+1

)
be the number of pairs. Then all pairs are enumerated in in-

creasing order as (P (1), R(1)) < . . . < (P (N), R(N)), where P (i) = {p(i)
1 , . . . , p

(i)
mi} and

R(i) = {r(i)
1 , . . . , r

(i)
mi+1}. In particular, the least pair is (P (1), R(1)) = (∅, {minQ+}), be-

cause the corresponding sequence (minQ+) is lexicographically the least. The greatest
pair is (P (N), R(N)) = (∅, {maxQ+}).

The desired direction-determinate automaton A with the shortest accepted string of
length N − 1 is defined over an alphabet Σ = {a1, . . . , aN−1}, and the shortest accepted
string will be w = a1 . . . aN−1. The set of states is defined as Q = Q+ ∪ Q−, where
Q+ = {1, . . . , k} and Q− = {1′, . . . , `′}. The initial state is q0 = 1. The only transition
by the left end-marker (`) leads from the initial state to the least state in R(1).

δ(q0,`) = (r
(1)
1 ,+1) (2.1a)

For each symbol ai, transitions are defined in the states R(i) ∪P (i+1). If the automaton is
at the symbol ai in any state from R(i) (except for the greatest state), then it moves to
the left in the corresponding state from P (i).

δ(r
(i)
j , ai) = (p

(i)
j ,−1) (j ∈ {1, . . . ,mi}) (2.1b)

For the greatest state in R(i), there is no corresponding state in P (i), and so the automaton
moves to the right (and this is the only way to move from Q+ to Q+, and hence the only
way to advance from the symbol ai to the next symbol for the first time).

δ(r
(i)
mi+1, ai) = (r

(i+1)
1 ,+1) (2.1c)

10

а1 а2 а3 а5 а6 а7а4 а9 а10 а11а8 а13 а14 а15а12 а17 а18 а19а16
1
2
3
4
1'
2'

Figure 2.1: The accepting computation of the automaton A on the string w, for k = 4
and ` = 2.

In each state from P (i), the automaton moves to the right in the next available state from
R(i).

δ(p
(i+1)
j , ai) = (r

(i+1)
j+1 ,+1) (j ∈ {1, . . . ,mi+1}) (2.1d)

There are no transitions at the right end-marker, and there is one accepting state: F =
{r(N)

mN+1}.
The computation of the automaton on the string w = a1 . . . aN−1 is illustrated in

Figure 2.1. The automaton gradually advances, and moves between every two subsequent
symbols, ai−1 and ai, according to the sets Pi and Ri. Transitions at ai expect that there
is ai−1 to the left, whereas transitions at ai−1 expect ai to the right. As long as every
symbol is followed by the next symbol in order, these expectations will be fulfilled each
time, and the automaton accepts in the end.

Lemma 1. The automaton A accepts the string w = a1 . . . aN−1.

Proof. It is claimed that the automaton A, executed on the string w, eventually arrives
to each symbol ai in the state r

(i)
mi+1. This is proved by induction on i.

Base case i = 1: the first transition (2.1a) moves the automaton to the state r
(1)
1 . The

first pair (P (1), R(1)) is (∅, {1}), and so r
(1)
1 = r

(1)
m1+1.

Induction step. Assume that the automaton comes to the symbol ai in the state r
(i)
mi+1.

Then it makes a transition (2.1c) to the right in the state r
(i+1)
1 . Then it executes the

sequence of transitions (2.1b), (2.1d), defined by the pair (Pi+1, Ri+1), moving back and

forth between ai+1 and ai, and passing through the states p
(i+1)
1 , r

(i+1)
2 , p

(i+1)
2 , . . . r

(i+1)
mi+1 ,

p
(i+1)
mi+1 , r

(i+1)
mi+1+1. And so it comes to the symbol ai+1 in the state r

(i+1)
mi+1+1, as shown in

Figure 2.2.
In the end, the automaton comes to the last symbol aN−1 in the state r

(N−1)
mN−1+1. Then

it makes a transition (2.1c) and moves to the right end-marker in the state r
(N)
1 . And this

is the accepting state r
(N)
mN+1, because the last pair (P (N), R(N)) is (∅, {k}). Therefore,

the string w is accepted.

It is claimed that the automaton A cannot accept any shorter string. It cannot accept
the empty string; if it did, then the first transition would lead to the right end-marker in
the state 1, and the automaton would reject, because k 6= 1. Next, it will be shown that
each accepted string begins with the symbol a1 and ends with the symbol aN−1. Finally, it

11

Pi+1

Ri

аi аi+1 аi+2
r1r

(i+1)

rmi+1r (i)
rmi+1+1r (i+1)

Ri+1

r2r
(i+1) Ri+2

. .
.

...

...

p1p (i+1)

pmi+1
p (i+1)

r1r
(i+2)

Figure 2.2: The moves of A between two neighbouring symbols of w.

will be proved that the automaton cannot skip any number, that is, the number of every
next symbol, as compared to the number of the previous symbol, cannot increase by more
than 1. If the number decreases or does not change, this would make the string only
longer; but in order to reach aN−1 from a1 without skipping any number, the automaton
would have to move through all symbols of the alphabet, and therefore an accepted string
cannot be shorter than N − 1 symbols.

Lemma 2. Every string accepted by the automaton A begins with the symbol a1.

Proof. Let the automaton A accept some string that starts from some symbol ai. The
transition from the initial configuration leads the automaton to the state r

(1)
1 at the first

symbol ai. As (P (1), R(1)) = (∅, {1}), the state r
(1)
1 is 1.

Transitions by the symbol ai are defined only in states from R(i) ∪ P (i+1), and hence
1 ∈ R(i), for otherwise the automaton immediately rejects. If there is at least one more
state in R(i), then the transition in the state 1 by ai moves the automaton to the left.
Then the automaton returns to the left end-marker, and then either loops or rejects,
because there is only one transition defined there. Therefore, there are no other states in
R(i) besides 1, and so, (P (i), R(i)) = (∅, {1}) = (P (1), R(1)), which implies i = 1.

Lemma 3. Every string accepted by the automaton A ends with the symbol aN−1.

Proof. Let a string accepted by A end with a symbol ai. To accept, the automaton should
move from ai to the right using the transition (2.1c), and it arrives to the right end-marker

in the state r
(i+1)
1 . As the only accepting state is k, and the automaton rejects at the right

end-marker in all other states, this state must be r
(i+1)
1 = k. Because the state r

(i+1)
1 is

the least in R(i+1), it follows that R(i+1) = {k} and P (i+1) = ∅. Therefore, this is the last
pair, and i = N − 1.

Lemma 4. No string accepted by the automaton A may contain any substring of the form
aiaj, where j > i+ 1.

Proof. The proof is by contradiction. Suppose that A accepts a string that contains a
substring aiaj, with j > i+ 1. In order to accept, the automaton should eventually reach
this symbol aj for the first time, moving to it from the symbol ai. To make this transition,

12

3
2
1

2
1

4
3
2
1

→
 а b → а b а b

←

←#

→
 а b → а b

←

←#

→

→

→

→

→

→
 а b → а b

←

←#

←

←

←

←

←
#

Figure 2.3: Computations of automata A2, A3 and A4 from the proof of Theorem 3 on
their shortest strings w2, w3 and w4.

the automaton should be at ai in some state from Q+ (indeed, if it were in the state from
Q−, then it would have been at aj already at the previous step). Then the automaton
must use the transition (2.1c) to move from ai to aj, and this transition leads to the state

r
(i+1)
1 . For the computation to go onward, this state should lie in R(j). Moreover, the

state r
(i+1)
1 should be the least in R(j), for otherwise the pair (P (j), R(j)) would be less

than the pair (P (i+1), R(i+1)). Also r
(i+1)
1 cannot be the only state in R(j): if not, then

(P (j), R(j)) would either coincide with or be less than (P (i+1), R(i+1)).

It can be concluded that r
(i+1)
1 = r

(j)
1 , and the next transition from this state leads

to the state p
(j)
1 , moving to the symbol ai. For the automaton to have a transition in

the state p
(j)
1 at ai, this state should belong to P (i+1). In addition, it should be the least

among the state in P (i+1), because if there were a lesser state p, then the second term
in the sequence for (P (i+1), R(i+1)) would be −p, and this pair would be greater than

(P (j), R(j)). This leads to the equality p
(j)
1 = p

(i+1)
1 .

By analogous arguments, one can prove that the sequences for (P (j), R(j)) and for
(P (i+1), R(i+1)) must coincide and continue infinitely. This is impossible, because the
numbers of states increase, and there finitely many of them.

Corollary 1 (from Theorem 2). For every n > 2, there is a direction-determinate 2DFA
with n states, such that the length of the shortest string it accepts is

(
n
bn
2
c

)
− 1.

2.3 Longer shortest strings for automata of the gen-

eral form

The main result of this section is the construction of a family of 2DFA with shortest
strings of length 3 · 2n−2 − 1, where n is the number of states in an automaton. This
is more than the maximum possible length of shortest strings for direction-determinate
automata; in other words, forgetting the direction is useful.

Theorem 3. For each n > 2 there exists a 2DFA with n states, such that the shortest
string it accepts is of length 3 · 2n−2 − 1.

13

Proof. The automata and the shortest strings they accept are constructed inductively;
for small values of n they are given in Figure 2.3.

For the inductive proof to work, the following set of properties is ensured for every n.

Claim. For each n > 2 there exists a 2DFA An = (Σn, Qn, δn) with no transitions by end-
markers, no initial state and no accepting states, with the set of states Qn = {1, . . . , n},
and there exists a string wn ∈ Σ∗n of length 3 · 2n−2 − 1, such that the following two
properties hold.

1. If An starts at any symbol of wn in the state n, then it eventually leaves this string
by a transition from its rightmost symbol to the right in the state 1.

2. If for some non-empty string u there exists a position, in which the automaton An
can start in the state n and eventually leave the string u by a transition from its
rightmost symbol to the right in the state 1, then u is at least as long as wn.

The first observation is that Theorem 3 follows from this claim. Let n > 2, and let
An and wn be an automaton and a string that satisfy the conditions in the claim. Then
An is supplemented with an initial state n, a set of accepting states {1} and a single
transition by the left end-marker: from the state n to the state n; no transitions by the
right end-marker are defined. The resulting automaton A′n becomes a valid 2DFA, and it
accepts the string wn as follows: from the initial state at ` it moves to the first symbol of
wn in the state n, then, by the first point of the claim, the automaton eventually leaves
wn to the right in the state 1, and thus arrives to the right end-marker a in an accepting
state.

To see that every string accepted by A′n is of length at least |wn|, let u be any accepted
string. It is not empty, because on the empty string the automaton steps on the right
end-marker in the state n and rejects. Then, after the first step the automaton A′n is at
the first symbol of u in the state n. It cannot return to `, because it has already used
the only transition at this label, and if it ever comes back, it will reject or loop. Also the
automaton cannot come to a in states other than 1. In order to accept, it must arrive to
a in the state 1, and this is the first and the only time when it leaves the string u. Then,
by the second point of the claim, the length of u cannot be less than the length of wn.

It remains to prove the claim, which is done by induction on n.
Base case: n = 2.
The automaton A2 = (Σ2, Q2, δ2) for n = 2 is constructed as follows. The alphabet is

Σ2 = {a, b}, and the set of states is Q2 = {1, 2}. The transition function is defined by

δ2(2, a) = (2,+1),

δ2(2, b) = (1,−1),

δ2(1, a) = (1,+1),

δ2(1, b) = (1,+1).

The string w2 is ab, and the computation of A2 on w2 is presented in Figure 2.3 (top
left). To be precise, computations starting in the state 2 either at a or at b both end
by leaving the string to the right in the state 1, as claimed. There are only two shorter
non-empty strings: a and b. If the automaton starts on the string a in the state 2, then it
moves to the right in the state 2; on b, it moves to the left in the state 1. In either case,

14

#
n+1

n

1

→
 wn

←
 wn

Figure 2.4: Computation of the automaton An+1 on the string wn+1.

it does not go to the right in the state 1. Thus, the second point of the claim is satisfied.
The length of the string is |w2| = 2 = 3 · 20 − 1.

Induction step: n→ n+ 1.
Let an n-state 2DFA An = (Σn, Qn, δn) and a string wn ∈ Σ∗n satisfy the claim.

The (n + 1)-state automaton An+1 satisfying the claim is constructed as follows. Let
An+1 = (Σn+1, Qn+1, δn+1).

• Its alphabet is Σn+1 =
−→
Σn ∪

←−
Σn ∪ {#}, where

−→
Σn = {−→a | a ∈ Σn } and

←−
Σn = {←−a |

a ∈ Σn }

• The set of states is Qn+1 = Qn ∪ {n+ 1} = {1, . . . , n+ 1}.

• The transition function is defined as follows. In the new state n+ 1, the automaton
moves by all symbols with arrows in the directions pointed by the arrows.

δn+1(n+ 1,−→a) = (n+ 1,+1), for a ∈ Σ

δn+1(n+ 1,←−a) = (n+ 1,−1), for a ∈ Σ

In all old states 1, . . . , n, on symbols with arrows, the new automaton works in the
same way as the automaton An on the corresponding symbols without arrows.

δn+1(i,−→a) = δn+1(i,←−a) = δn(i, a), for a ∈ Σ and i ∈ {1, . . . , n}

By the new separator symbol #, only two transitions are defined. In the state n+1,
the automaton moves to the left in the state n, thus starting the automaton An on
the substring to the left.

δn+1(n+ 1,#) = (n,−1)

And if the automaton gets to # in the state 1 (which happens after concluding the
simulation of An on the substring to the left), then the automaton moves to the
right in the state n to start the simulation of An also on the substring to the right
of the separator #.

δn+1(1,#) = (n,+1)

The rest of transitions are undefined.

15

Note that once the automaton An+1 leaves the state n + 1, it never returns to it,

because there are no transitions to n + 1 from any other state. Let h : (
−→
Σn ∪

←−
Σn)∗ → Σ∗n

be a string homomorphism which removes the arrow from the top of every symbol, that
is, h(−→a) = h(←−a) = a for all a ∈ Σn. The automaton An+1 works in the states 1, . . . , n

on symbols from
−→
Σn ∪

←−
Σn as An works on the corresponding symbols from Σn. Then, if

h(w) = wn for some w ∈ (
−→
Σn∪

←−
Σn)∗, it follows that the automaton An+1, having started in

the state n at any symbol of w, eventually leaves the string w by moving to the right in the

state 1. Furthermore, if |w| < |wn| for some string w ∈ (
−→
Σn ∪

←−
Σn)∗, then the automaton

An+1, having started in the state n at any symbol of w, cannot leave the string by moving
to the right in the state 1.

The string wn+1 is defined as −→wn#←−wn, where −−−−−→a1 . . . a` = −→a1 . . .
−→a` and ←−−−−−a1 . . . a` =

←−a1 . . .
←−a` for every string a1 . . . a` ∈ Σ∗n. The length of wn+1 is |wn+1| = 2|wn| + 1 =

2(3 · 2n−2 − 1) + 1 = 3 · 2n−1 − 1, as desired.
First, it is proved that the automaton An+1 works on the string wn+1 as stated in

the first point of the claim. Let An+1 start its computation on the string wn+1 at any
symbol in the state n+ 1, as shown in Figure 2.4. By the symbols in −→wn, the automaton
moves to the right, maintaining the state n + 1; by the symbols in ←−wn, it moves to the
left in n+ 1. Thus, wherever the automaton begins, it eventually arrives to the separator
in the state n + 1. Next, the automaton moves to the last symbol of −→wn in the state
n. Since h(−→wn) = wn, the automaton An+1 operates on −→wn as An on wn, and leaves −→wn
by a transition to the right in the state 1. Then An+1 arrives to the separator # again,
now in the state 1, and moves to the first symbol of ←−wn in the state n. As h(←−wn) = wn,
the automaton An+1 works as An on wn, and leaves ←−wn (and the whole string wn+1) by
moving to the right in the state 1.

Turning to the second point of the claim, it should be proved that computations of a
certain form are impossible on any strings shorter than wn+1. Let w ∈ Σ∗n+1 be a string,
and let there be a position in w, such that the automaton An+1, having started at this
position in the state n + 1, eventually leaves the string w by a transition to the right in
the state 1. It is claimed that |w| > |wn+1|.

Consider the computation of An+1 leading out of w to the right in the state 1. It
begins in the state n + 1, and the automaton maintains the state n + 1 at all symbols
except #. In order to reach the state 1, there should be a moment in the computation on
w when the automaton arrives at some symbol # in the state n+ 1. Let u be the prefix
of w to the left of this #, and let v be the suffix to the right of this #; note that the
substrings u and v may contain more symbols #. It is sufficient to prove that |u| > |wn|
and |v| > |wn|.

Consider first the case of the suffix v. Let v0 be the longest suffix of v that does not
contain the symbol #; then the symbol preceding v0 in w is the separator #, as shown in
Figure 2.5. Once the automaton An+1 steps from the last # in w to the right, it arrives
to the first symbol of v0 in the state n (by the unique transition to the right at #). The
string v0 cannot be empty, because n 6= 1. Once the automaton is inside v0, it cannot
return to # anymore, since it has already used the only transition to the right from #,
and cannot use it again without looping. Therefore, the automaton An+1 starts on the
string v0 ∈ (Σn+1 \ {#})∗ in the state n, and, operating as An, eventually leaves this
string to the right in the state 1. Then |v0| > |wn| by the induction hypothesis, and hence
|v| > |wn|.

16

#
n+1

n

1

 v
 u

v0

Figure 2.5: The partition w = u#v and the suffix v0 of v.

#
n+1

n

1

 u
 v

#

Figure 2.6: The case of computations on u not reaching any separators.

Now consider the prefix u. Once the automaton An+1 comes in the state n+ 1 to the
separator # between u and v, it moves to the last symbol of u in the state n. In order
to leave the string u to the right and proceed further, it must return to the separator #
in the state 1, because there are no transitions by any states {2, . . . , n} at this separator.
If there are no symbols # in u, or if there are some, but the automaton does not reach
them, then the entire computation of An+1 on u takes place on a certain suffix of u that
does not contain #, as illustrated in Figure 2.6. This computation follows a computation
of An on a string from Σ∗n. Then, by the induction hypothesis, this suffix is not shorter
than wn, and therefore |u| > |wn|.

The remaining case is when the automaton comes to some symbol # inside the string
u. Let u0 be the maximal suffix of u not containing any symbols #, as in Figure 2.7. The
automaton An+1 visits the separator # to the left of u0, and then immediately moves from
this separator back to the first symbol of u0 in the state n (the string u0 is non-empty,
because it is followed by #, which has no transitions in the state n). Returning back to
to the left of u0 is not an option, since the unique transition by # to the right has been
used already. Therefore, the automaton leaves u0 by a transition to the right, and comes
to the separator # between u and v. In order to continue the computation, it should
come there in the state 1. By the induction hypothesis for this computation on u0, the
length of u0 is at least |wn|. Then the length of the entire u is also at least |wn|.

This confirms that |w| = |u| + 1 + |v| > |wn| + 1 + |wn| = |wn+1| and completes the
proof.

2.4 Calculations

Bounds on the maximum length of shortest strings for small values of the number of states
n are given in Table 2.2.

17

#
n+1

n

1

 u
 v

u0

Figure 2.7: The case of computations on u reaching a separator # inside u.

n
direction-determinate 2DFA of the general form

2DFA lower bound computed values upper bound(
n
bn/2c

)
− 1 3 · 2n−2 − 1

(
2n
n+1

)
− 1

2 1 2 2 3
3 2 5 6 14
4 5 11 17 55
5 9 23 32 209
6 19 47 791

Table 2.2: The maximum length of shortest accepted strings for n-state 2DFA, for small
n.

In the table, besides the theoretical bounds, there are also some computed values of
the length of shortest strings in some automata. The example for n = 3 was obtained by
exhaustive search, while the examples for n = 4 and n = 5 were found by heuristic search.
Therefore, the maximum length of the shortest string for 3-state automata is now known
precisely, for 4-state automata it is at least 17 and possibly more, and the given length
of strings for 5 states is most likely much less than possible. The computations of the
automata found for n = 3 and n = 4 on their shortest strings are presented in Figure 2.8.

18

а b c аа b

а b c d e f d g d а а h h i f f i

Figure 2.8: Automata found by computer programs, and their shortest strings: (top) 3
states, string of length 6; (bottom) 4 states, string of length 17.

19

Chapter 3

Minimal trees accepted by tree
automata and tree-walking automata

This chapter is devoted to estimating the size of minimal trees accepted by tree automata
and by tree-walking automata. In Section 3.1, these automata are formally defined.
Then the exact maximum size of smallest accepted trees for tree automata is determined
in Section 3.2. To get an upper bound for tree-walking automata, these automata are
transformed into tree automata, and then the bound on their smallest accepted trees is
applied. Bounds on the number of states needed to simulate a tree-walking automaton
by a tree automaton are proved in Section 3.3. An even better upper bound on the size
of minimal trees accepted by tree-walking automata is obtained in Section 3.4 by a more
detailed analysis of the structure of tree automata that simulate tree-walking automata.
A lower bound of a similar order on the maximum size of the smallest accepted tree for
tree-walking automata is proved in Section 3.5 using the witness direction-determinate
2DFA from the lower bound proof in Chapter 2.

3.1 Tree-walking and tree automata

Two-way finite automata can be generalized to trees.
To make a string, it is enough to have an alphabet: a set of symbols. For trees,

this is a bit more complicated, because an automaton standing at some node of a tree
should know where it can move: how many children this node has, is this node a root or
not. All this information needs to be determined from a symbol in a node. Node labels
with information on the position of a node in its neighbourhood form a tree signature, a
generalization of an alphabet.

Definition 3. A tree signature is a quintuple S = (Σ, rank, up, D, (Da)a∈Σ), where

• Σ is a finite set of node labels;

• rank: Σ→ N0 is a function that tells, for each label, how many children must nodes
with this label have. If rank a = 0, then a is a label of leaf.

• up: Σ → −N is a partial function that, for each node label, tells the direction
upwards to the parent (here the direction down to the i-th child is +i, and the
direction up from the i-th child to its parent is −i). If up a is undefined, then a is
a label for a root.

20

• The set of directions for a label a ∈ Σ is defined as Da = {+1, . . . ,+ rank a} ∪
{up a, if a is not a root label}.

• And the set of all possible directions in the signature is D =
⋃
a∈ΣDa.

A tree signature is uniquely defined by its first three components Σ, rank, up, and the
additional components D, (Da)a∈Σ are determined from them.

Next, by analogy with strings over an alphabet, one can define trees over a signature.
In a string, +1 is the direction forward, and −1 is the direction backward, whereas in a
tree, +i is the direction to the i-th child, and −i is the direction from the i-th child up to
its parent. The following definition effectively says that all information on the position of
a node in its neighbourhood written in its label must be true.

Definition 4. A tree over a signature S = (Σ, rank, up, D, (Da)a∈Σ) is a quadruple T =
(V, v0,+, λ), where

• V is a non-empty finite set of nodes,

• v0 ∈ V is the root,

• +: V × D → V is a partial function that, for a node and direction, gives the
neighbouring node in that direction. For each i ∈ D, if v + i is defined, then
(v + i) + (−i) must be defined and be equal to v. Denote v + (−i) by v − i.

• λ : V → Σ is a labelling function that assigns some node label to each node.
The root v0 must get a root node label. For a node v labelled with λ(v) =
a, the function + must be defined precisely for directions from the set Da =
{up a, if a is not a root label} ∪ {+1,+2, . . . ,+ rank a}.

And a tree-walking automaton moves over a tree, choosing where to move at each
step, and in which state, according to the current state and the label of the current node
(just like a two-way finite automaton moves over a string).

Definition 5. A deterministic tree-walking automaton (DTWA) over a signature S =
(Σ, rank, up, D, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q× Σ is a set of acceptance conditions;

• δ : (Q× Σ) \ F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da on
its domain.

A tree-walking automaton A works on a tree just like a two-way automaton works on
a string.

A configuration of a tree-walking automaton A on a tree T is a pair (q, v), where
q ∈ Q is the current state of the automaton, and v ∈ V is the node where the automaton
currently is.

A computation of a deterministic tree-walking automaton A on a tree T is a sequence
of configurations C0, . . . , CN constructed inductively. The automaton starts in the initial
state at the root of the tree: C0 = (q0, v0). For a configuration Cj = (q, v), the next
configuration is defined as follows.

21

• If the transition is defined as δ(q, λ(v)) = (r, d), then the automaton changes its state
to r and moves in the direction d, and the next configuration is Cj+1 = (r, v + d).

• If the automaton gets to an accepting pair (q, λ(v)) ∈ F , then it accepts, and the
configuration Cj = CN is the last one.

• If δ(q, λ(v)) is undefined and the acceptance condition does not hold, then the
automaton rejects, and Cj = CN is the last configuration.

An automaton can accept a tree, reject it or loop (it loops if the computation is infinite,
and N =∞).

A tree-walking automaton defines the language L(A) of all trees that it accepts.

A nondeterministic tree-walking automaton (NTWA) can be defined as well. It can
have several initial states (a set Q0), and several possible transitions in a configuration,
defined by a function δ : (Q × Σ) \ F → 2Q×D. There may be multiple computations on
a tree, and the tree is accepted if at least one of them is accepting.

The above definitions of tree-walking automata (DTWA, NTWA) are essentially equiv-
alent to the definitions used by Bojańczyk and Colcombet [4, 5] even though there are
some differences in the notation: Bojańczyk and Colcombet do not encode the structure
of the tree in node labels, and instead provide them to an automaton in the transition
function, so that the automaton gets the same information.

Tree-walking automata are a generalization of two-way finite automata. Next, another
type of automata on trees, which generalizes one-way nondeterministic finite automata
(NFA), will be defined. First, the definition of NFA is given.

Definition 6. A one-way nondeterministic finite automaton (NFA) is a quintuple A =
(Σ, Q,Q0, δ, F), in which:

• Σ is a finite alphabet;

• Q is a finite set of states;

• Q0 ∈ Q is the set of initial states;

• δ : Q× Σ→ 2Q is a transition function;

• F ⊆ Q is the set of accepting states.

A computation of the automaton A on a string w = a1 . . . am ∈ Σ∗ is a sequence of states
q0, q1, . . . , qm, such that q0 ∈ Q0 is one of the initial states, and qi ∈ δ(qi−1, ai) for each
i = 1, . . . ,m. The computation is accepting if qm ∈ F . A string is accepted if there is at
least one accepting computation on it.

A nondeterministic tree automaton chooses a state in each node, so that each triple
(the state in a node, the label in this node, the vector of states in its children) satisfies
some conditions.

Definition 7. A nondeterministic tree automaton (NTA) over a signature S =
(Σ, rank, up, D, (Da)a∈Σ) is a pair A = (Q, δ), where

• Q is a finite set of states;

22

• δ ⊆
⋃
a∈Σ Q×{a}×Qrank a is a transition function that specifies the set of admissible

triples of a state q ∈ Q in a node, its label a ∈ Σ and a vector of states (q1, . . . , qrank a)
in its children. If rank a = 0, then { q | (q, a, ()) ∈ δ } is the set of admissible states
in a leaf labelled with a.

A nondeterministic tree automaton works on a tree like an NFA works on a string.
It starts in any state in the root, and then, for the state and the label in a node it
nondeterministically chooses the vector of states in the children (which is admissible for
this current state and this label of the current node).

There is an alternative outlook: the automaton computes the states from the leaves
to the root. Once the states in the children of a node are computed, the automaton
nondeterministically chooses the state in this node, so that the triple is admissible.

The first approach (from root to leaves) is called top-down, and it directly generalizes
the definition of an NFA. The second approach is called bottom-up. Both approaches are
equivalent, and the following definition of a computation fits both approaches.

Definition 8. A computation of a nondeterministic tree automaton A = (Q, δ) on a
tree T = (V, v0,+, λ) is an assignment (q(v))v∈V of states to nodes, such that for each
node v ∈ V the triple at this node is admissible, that is, (q(v), λ(v), (q(v + 1), . . . , q(v +
rankλ(v)))) ∈ δ.

A tree automaton accepts a tree if there exists at least one computation on this tree.

In the definition of nondeterministic tree automata, no initial and accepting states are
needed, because all restrictions can be defined by removing some triples from δ.

Computations on subtrees can also be defined. In a tree, the root has a root label
and no edge upwards. The root of a proper subtree has a non-root label and an edge to
its parent. A subtree can be defined independently of the main tree. A subtree over a
signature is an object that satisfies all conditions in the definition of a tree, except the
requirement that its root has a root node label. An edge upwards from the root, if it
exists, leads nowhere and is called an external edge.

A computation on a subtree has the same definition as a computation on a tree: this
is a mapping from nodes to states (q(v))v∈V , in which the state in every node satisfies
the admissibility condition involving the vector of states in its children and the label of
this node.

Languages of trees recognized by nondeterministic tree automata are called regular
tree languages.

3.2 Bounds on the size of the minimal accepted tree

for a tree automaton

For a nondeterministic tree automaton, the following bound on the size of the smallest
accepted tree is proved.

Theorem 4. Let S = (Σ, rank, up, D, (Da)a∈Σ) be a tree signature, and let r =
max{ rank a | a ∈ Σ } be the maximum possible number of children in a node. Let
A = (Q, δ) be a nondeterministic tree automaton over the signature S, with |Q| = n
states, that accepts at least one tree. Let m0, . . . ,mrn be a sequence of integers of length

23

rn + 1 defined as follows: mj = 2j for all j = 0, . . . , r − 1, and mj = 1 +
∑j−1

i=j−rmi for
all j = r, . . . , rn.

Then the minimal tree accepted by A has at most mrn 6 2rn nodes.

Proof. Under certain conditions, a subtree in an accepted tree can replaced by another
subtree, so that the tree is still accepted. Let T be a tree accepted by A, let (q(v))v∈V
be a computation on this tree, and let t1 be a subtree rooted at some node v. If t2 is a
subtree that has a computation with the state q(v) in the root of t2, and the direction
of the external edge of t2 is the same as in t1, then the subtree t1 in the tree T can be
replaced with t2, and the new tree will be accepted as well. Indeed, the computation on
the new tree can be obtained by merging the computation on T in the old nodes with the
computation on t2 on the nodes of t2.

Let T be a minimal accepted tree, let (q(v))v∈V be an accepting computation on this
tree. Then, for every node v ∈ V , the subtree rooted at v must the minimal subtree that
has a computation with the state q(v) in the root, and with the same direction of the
external edge as in v.

For each state q ∈ Q and for each number of child i ∈ {1, . . . , r}, fix Tq,i as one of the
minimal subtrees that have an external edge in the direction −i, and a computation that
produces the state q in the root of the subtree. If there are no such subtrees, then Tq,i is
undefined. For a subtree Tq,i, fix a computation Cq,i on it that has q in the root of the
subtree. Let f : Q × {1, . . . , r} → N be a partial function that, for a state q ∈ Q and a
child number i ∈ {1, . . . , r}, gives the number of nodes in the subtree Tq,i.

Now, all pairs (q, i), on which the function is defined, are sorted in the order of
increasing value of f(q, i). Let the values of the function f on these sorted pairs be
m′0 6 m′1 6 . . . 6 m′N . Here N is less than rn, because there are rn distinct pairs (q, i),
with q ∈ Q and i ∈ {1, . . . , r}.

For each pair (q, i), on which f is defined, there is a subtree Tq,i with a computation
Cq,i, in which the state q is reached at the root of the subtree, and the external edge
from the root goes in the direction −i. Let r′ be the number of children of the root
of Tq,i, then 0 6 r′ 6 r. Let q1, . . . , qr′ be the states in the children of the root in
the computation Cq,i. Since the subtree Tq,i is minimal, the subtrees in the children on
the root cannot be replaced with smaller subtrees, and hence have as many nodes as the
subtrees Tq1,1, . . . , Tqr′ ,r′ . Then f(q, i) = 1+f(q1, 1)+. . .+f(qr′ , r

′). The numbers f(q1, 1),
. . . , f(qr′ , r

′) are smaller than f(q, i), and therefore the pairs (q1, 1), . . . , (qr′ , r
′) occur in

the sorted list of pairs earlier than the pair (q, i); the pairs (qj, j) are pairwise distinct,
because they have different directions −j. It can be concluded that every next number
in the sequence m′0,m

′
1, . . . ,m

′
N is a sum of 1 and at most r numbers previous occurring

in the sequence, with pairwise distinct indices.
Each number m′j, with j = 0, . . . , N , is bounded by the sum r preceding numbers

in the sequence (if there are at least r of them) plus one, or the sum of all preceding
numbers (if there fewer than r of them) plus one. Then, for j = 0, . . . , r − 1, the upper
bound m′j 6 2j = mj is obtained by induction. Every next number is bounded by

m′j 6 1 +
∑j−1

i=j−rm
′
i 6 mj, for all j = r, . . . , N . The root of a minimal accepted tree T

has at most r children with different directions up, and the number of nodes m′N+1 in the
whole tree does not exceed 1 +m′N−r+1 + . . .+m′N 6 mN+1 6 mrn (the latter inequality
holds because N + 1 6 rn).

If, instead of these sums of at most r previous elements of the sequence, one always

24

summed up all previous elements, then powers of two would be obtained. This gives an
upper bound on mj of the form mj 6 2j, for all j = 0, . . . , rn, and hence, mrn 6 2rn.

The upper bound from Theorem 4 is actually precise: in the next theorem, an example
of an automaton is given, which has minimal accepted tree of the same size. Furthermore,
the lower bound is given already for a deterministic bottom-up tree automaton. (in this
automaton, δ is a partial function that maps a label a ∈ Σ and a vector of states in the
children (q1, . . . , qrank a) to a state in a node).

Theorem 5. For every r > 1 there is a signature Sr, with maximum rank of a label r,
and with 2r+1 node labels, such that for every n > 1 there exists an n-state deterministic
bottom-up tree automaton A over the signature Sr, such that the minimal tree accepted by
A has exactly mrn nodes, where mj = 2j for j = 0, . . . , r − 1, and mj = 1 +

∑j−1
i=j−rmi

for j = r, . . . , rn.

Proof. The goal is to define a signature and an automaton, so that the automaton accepts
exactly one tree, and that tree has the desired number of nodes.

Such a deterministic bottom-up tree automaton is defined as A = (Q, δ), where Q =
{1, . . . , n} is the set of states. For each state q ∈ Q and for each direction i ∈ {1, . . . , r},
it is planned that there is a unique subtree Tq,i with an external edge −i, on which the
(uniquely defined) bottom-up computation ends with the state q in the root.

The signature Sr = (Σ, rank, up, D, (Da)a∈Σ) is defined as follows.

• Node labels are: Σ = {a0, . . . , ar−1} ∪ {b−1, . . . , b−r} ∪ {c}.

• Each node label ai, with i = 0, . . . , r − 1, has rank i. The rest of the node labels
have rank r.

• Each label ai, with i = 0, . . . , r − 1, has direction upward up ai = −(i + 1). The
direction upward for b−i, with i = 1, . . . , r, is up b−i = −i. The label c is a root
label, its direction upward is undefined.

Let ((qj, ij))j∈0,...,rn−1 be the ordered set of all pairs (q, i), with q ∈ Q and i = 1, . . . , r.
These pairs are compared first by q in the increasing order, and then by i.

For each pair (qj, ij), with j = 0, . . . , rn − 1, the transition function δ will have a
unique transition involving a node label with upward direction −ij, which produces the
state qj. The corresponding subtrees Tqj ,ij with external edge in the direction −ij and
with the automaton producing the state qj in the root will be constructed along with
defining such transitions inductively on j, as shown in Figure 3.1.

For j = 0, . . . , r − 1, the state is qj = 1 and direction −ij equals −(j + 1). Then the
transition is δ(1, . . . , 1, aj) = 1 (where the number of arguments 1 is j). The corresponding
subtree Tqj ,ij = T1,j+1 has the label aj in the root, with upward direction −(j + 1), and
with attached subtrees T1,1, T1,2, . . . , T1,j. The computation on each of the latter subtrees
produces state 1, and by the above transition the computation on T1,j+1 also produces
state 1.

For each j ∈ {r, . . . , rn − 1}, the corresponding subtree Tqj ,ij is comprised of a root
with label b−ij and with upward direction −ij, and of r attached subtrees. The attached
subtrees are the preceding subtrees in the sequence, which have already been constructed
by the induction hypothesis: Tqj−r,ij−r

, . . . , Tqj−1,ij−1
. The sequence (qj, ij)

rn−1
j=0 is sorted

25

T1,1

T2,2

T1,2

T1,3

T2,1

T1,3T2,1

T2,3T2,1 T2,2

T1,3 T1,3

T1,1

T1,2

T2,1T1,3

T1,1

T1,2
T1,1

Figure 3.1: Inductive definition of subtrees Tqj ,ij , for n = 2 and r = 3.

lexicographically (first by qj, then by ij), and hence the sequence of directions (ij)
rn−1
j=0 is

periodic with period r, that is, ij = (j mod r) + 1, for all j ∈ {0, . . . , rn− 1}. Therefore,
the requested previous r subtrees for Tqj ,ij have distinct directions upwards, and can be
attached to the new root, because its label b−ij has all possible directions down. Each
subtree has to be attached in its proper direction, and so the subtrees Tqj−r,ij−r

, . . . ,
Tqj−1,ij−1

are attached to the node b−ij cyclically shifted, starting with the one with upward
direction −1. Let s ∈ {1, . . . , r} be the number with ij−s = 1. Then a new transition
δ(qj−s, . . . , qj−1, qj−r, . . . , qj−s−1, b−ij) = qj is defined, and by this transition the state qj
is computed in the root of the subtree Tqj ,ij .

Thus, the subtrees Tqj ,ij have been constructed for all j = 0, . . . , rn− 1.

Claim 1. For every state q ∈ Q and for every direction i ∈ {1, . . . , r}, the subtree Tq,i is
the unique subtree with direction −i upwards, and with the state q computed in its root.

Proof. Let j be the index of the pair (q, i) in the sequence: (q, i) = (qj, ij). The proof is
by induction on j.

Let T be any subtree with upward direction −i, on which the automaton computes
the state q. By the construction of δ, there is a unique transition by a label with upward
direction −i, by which the state q is computed. Only this transition can be used in the
root of T . This transition defines the label in root of T , the number of its children and
the state in each child (the same as for the root of Tqj ,ij).

By the construction of the transition function, all pairs (state, direction upwards) for
the children of the root of Tqj ,ij are listed in the ordered sequence just before (qj, ij):

26

these are the pairs {(qj−1, ij−1), . . . , (qj−t, ij−t)}, with t = min{r, j}. By the induction
hypothesis, the subtrees for these pairs are unique, and therefore the root of T has the
same attached subtrees as the root of Tqj ,ij . Hence, T and Tqj ,ij coincide.

Claim 2. Each subtree Tqj ,ij , with j ∈ {r, . . . , rn− 1}, has exactly mj nodes.

Proof. Induction on j. For j = 0, . . . , r − 1, the subtree Tqj ,ij consists of the root and all

previous subtrees, and so it has 1 +
∑j−1

t=0 mt = 1 +
∑j−1

t=0 2t = 2j = mj nodes.
Every next subtree Tqj ,ij , with j ∈ {r, . . . , rn− 1}, consists of its root and r previous

subtrees. Hence, it has 1 +
∑j−1

t=j−rmt = mj nodes, as claimed.

Only a node labelled with c can be the root of the entire tree. For this label, a unique
transition δ(n, n, . . . , n, c) = n is defined, with r arguments n. This transition requires
r last subtrees in the sequence, Tn,1, . . . , Tn,r, to be attached to the root. Therefore, a
unique tree is accepted, and it has exactly mrn = 1 +mrn−1 + . . .+mrn−r nodes.

3.3 Transformation of a nondeterministic tree-

walking automaton to a nondeterministic tree au-

tomaton

It is known that if a 2DFA with n states accepts at least one string, then it accepts
some string of length at most

(
2n
n+1

)
− 1 = O(1√

n
4n). This bound is proved by first

transforming an n-state 2DFA to an NFA with m =
(

2n
n+1

)
states (see Kapoutsis [15]), and

then observing that an m-state NFA recognizing a non-empty language must accept some
string of length at most m− 1. The currently best lower bound on the maximum length
of the shortest accepted string for an n-state 2DFA is 3

4
· 2n − 1, proved in Chapter 2.

For the generalization of 2DFA to trees, the deterministic tree-walking automata
(DTWA), the size of the minimal accepted tree has not previously been studied. However,
an upper bound can be obtained by extending the method of Kapoutsis to trees. As a
generalization of NFA to trees, one can take a nondeterministic tree automaton (NTA).
Then, in order to apply the method of Kapoutsis, one should prove an upper bound for
the transformation of DTWA to NTA and then apply an upper bound in Theorem 4 on
the size of the minimal tree accepted by a nondeterministic tree automaton, proved in
Section 3.2.

In this section, bounds on the number of states needed for the transformation of DTWA
to NTA are proved. An upper bound for this transformation applies to nondeterministic
tree-walking automata.

Theorem 6. Let S = (Σ, rank, up, D, (Da)a∈Σ) be a tree signature, and let A =
(Q,Q0, F, δ) be a nondeterministic tree-walking automaton (NTWA) with n states. Then
there exists a nondeterministic tree automaton (NTA) A′ = (Q′, δ′) over S with

(
2n+1
n+1

)
−

1 = O(1√
n
4n) states, which accepts the same set of trees as A.

Proof. The construction is similar to the 2NFA→NFA transformation by Kapoutsis [15].
The states of the tree automaton are:

Q′ = { (P,R) | P,R ⊆ Q, (P,R) 6= (Q,Q), and either |R| = |P |+ 1, or |R| = |P | }

27

+1

–1

–i

R1

a

(P1,R1) (Pk,Rk)

(P,R)
P1

Rk

Pk

R

P

–k

+k

+i

Figure 3.2: Simulation of NTWA by NTA transition ((P,R), a, ((P1, R1), . . . , (Pk, Rk))) ∈
δ′.

First, the number of states is determined. A pair (P,R) ∈ Q′ ∪ {(Q,Q)} is chosen
by selecting any |R| + |Q \ P | elements from two columns of height n, and letting R be
the elements selected from the first column, and P be the elements not selected from
the second column, Then, for one of the equalities |R| = |P | + 1 or |R| = |P | to hold,
|R|+ |Q\P | must be either n or n+1, and accordingly |Q′| =

(
2n
n

)
+
(

2n
n+1

)
−1 =

(
2n+1
n+1

)
−1,

as claimed in the theorem. The growth rate of this binomial coefficient is known:
(

2n+1
n+1

)
=

O(1√
n
4n).

The nondeterministic tree-walking automaton A can be assumed to have a unique
initial state. If it has several, then one can choose any q0 ∈ Q0 as the initial state, and
define transitions in q0 at root node labels to simulate the transitions of other initial
states.

The idea is that if the tree automaton comes to the state (P,R) at a node v, this
means that A, in its accepting computation, arrives to v from the parent of v in all states
from R, and rises from v up to its parent in all states from P . In the construction by
Kaputsis [15] for the case of 2NFA on strings, the only option is |R| = |P | + 1, because
a 2NFA accepts only at the right end-marker. But a tree-walking automaton may accept
anywhere, and hence, if it does not accept in the subtree of v, then |R| = |P |.

The transition function δ′ of the tree automaton A′ will be defined so that it may
encode any accepting computation of A without cycles, and possibly some cycles from
the graph of all computations of A that are disjoint with the accepting path.

Note that the missing state (Q,Q) /∈ Q′ is not needed to encode an accepting compu-
tation without cycles, because if the automaton goes up from a node in every state, then,
in particular, it goes up in the same state which it has earlier used on the way down. This
yields a cycle in the computation.

The transition function δ′ of the automaton A′ is defined as follows (see Figure 3.2).
Let a node v have label a ∈ Σ, with rank a = k and up a = −i (i is undefined if a a is a
root label). Let the states in its children be (P1, R1), . . . , (Pk, Rk). Can the node v have a
given state (P,R)? There is a possible transition ((P,R), a, ((P1, R1), . . . , (Pk, Rk))) ∈ δ′
if and only if the following conditions are met.

1. The sets P1, . . . , Pk and R must be pairwise disjoint. If a is a root label, then {q0}

28

also must be disjoint with these sets.

2. Let Q1 = P1∪ . . .∪Pk∪R∪{ q0 | if a is a root label } be the set of all states encoded
in the node v. Let M = (P × {−i}) ∪ (R1 × {+1}) ∪ . . . ∪ (Rk × {+k}) be the set

of all encoded transitions from the node v. Let Q̂1 = { q ∈ Q1 | (q, a) /∈ F } be all
states from Q1 that are not accepting at label a.

Then each of the transitions from M must be executed exactly once, in different
states from Q̂1, and all these states must be used. That is, there should exist a
bijection f : Q̂1 →M , such that f(q) ∈ δ(q, a) for all q ∈ Q̂1.

3. If a is a root label, then (P,R) must be (∅,∅), because the automaton cannot walk
over a non-existent edge upwards.

A nondeterministic tree automaton A′ has been defined, and it remains to prove that
the automata A and A′ accept the same set of trees.

Let the tree-walking automaton A accept a tree T . Then there is an accepting compu-
tation C of A on the tree T without cycles. Let C ′ be a computation of the tree automaton
A′ on the tree T , defined as follows: the state at a node v is q(v) = (P,R), where P is
the set of all states in which the automaton A in the computation C arrives to the parent
of v from v, and R is the set of all states in which A in the computation C moves down
to v from its parent. Then C ′ satisfies all conditions in the definition of δ′ in each node
v, and is indeed a computation, which confirms that A′ accepts the tree T .

Now let the tree automaton A′ accept a tree T = (V, v0,+, λ). It has to be proved
that A also accepts it. Let C ′ be any computation of A′ on T . Denote the state at every
node v ∈ V in the computation C ′ by (Pv, Rv).

For every node v, denote by Q1,v, Q̂1,v and Mv the sets Q1, Q̂1 and M in the definition

of δ′ for v and the computation C ′. Fix any bijection fv : Q̂1,v → Mv as in the definition

of δ′; then fv(q) ∈ δ(q, λ(v)) for every q ∈ Q̂1,v.
Denote the set of configurations of A encoded in a node v by Xv = Q1,v × {v} and

let X̂v = Q̂1,v × {v} be the subset of non-accepting configurations of Xv. The set of all
configurations entered by the automaton A after applying transitions from Mv at the node
v is denoted by Yv. If k is the number of children of v, and −i is the direction upwards
(undefined for the root), then Yv = (Pv×{v−i})∪(Rv+1×{v+1})∪ . . .∪(Rv+k×{v+k}).
In the new notation, the bijection fv gives rise to another bijection gv : X̂v → Yv, such
that, for every x ∈ X̂v, the configuration gv(x) is one of the possible next configurations
of the automaton A for the configuration x.

The sets of configurations Xv are pairwise disjoint for different v ∈ V , because each
Xv contains only configurations at v. It is claimed that the sets Yv for different v ∈ V
are also disjoint, that is, no configuration (q, v), with q ∈ Q and v ∈ V , may occur in
two such sets. Let v have k children and upward direction −i. A configuration with the
node v may lie in Yu only if u is a neighbour of v. In the set Yv−i, configurations with
v are those in Rv × {v}; in the sets Yv+1, . . . , Yv+k, the sets of configurations with v are
Pv+1×{v}, . . . , Pv+k×{v}. By the condition in the definition of the function δ′, the sets
Rv, Pv+1, . . . , Pv+k are disjoint, and hence the configuration (q, v) may occur in at most
one set Yu with u ∈ V .

Then, let X =
⋃
v∈V Xv be the set of all encoded configurations, and let the set

X̂ contain all non-accepting configurations from X. Let Y =
⋃
v∈V Yv be the set of

29

all configurations reached by encoded transitions. Since all sets Xv, with v ∈ V , are
pairwise disjoint, and all set Yv are pairwise disjoint as well, the bijections (gv)v∈V can be

combined into one big bijection g : X̂ → Y . The function g maps each configuration in
X̂ to a possible next configuration.

The plan is to take the initial configuration and to apply g iteratively to produce an
accepting computation of A. For these configurations to form a sequence, it has to be
shown that all configurations from Y lie in X. A stronger claim is established below: it is
also shown that each non-initial encoded configuration is a next configuration to another
encoded configuration.

Claim 3. Y = X \ {(q0, v0)}.

Proof. By the definition of Yv, the set Y is of the following form.

Y =
⋃
v∈V

Yv =
⋃
v∈V

(Pv×{v+upλ(v)})∪(Rv+1×{v+1})∪. . .∪(Rv+rankλ(v)×{v+rankλ(v)})

Next, the pairs are regrouped according to the nodes in the second components: if
upλ(v) = −i and u = v − i, then the set of pairs Pv × {v − i} equals Pu+i × {u} in
the new notation. At the same time, the sets of pairs Rv+j × {v + j} are represented as
Ru × {u}, for all u. The following equality holds as a result.⋃

v∈V

(Pv × {v + upλ(v)}) ∪ (Rv+1 × {v + 1}) ∪ . . . ∪ (Rv+rankλ(v) × {v + rankλ(v)}) =

=
⋃
u∈V

(
(Pu+1 ∪ . . . ∪ Pu+rankλ(u) ∪Ru)× {u}

)
(an extra expression Rv0×{v0} for the root of the tree occurs in the second part; however,
it does not affect the resulting value, because Rv0 = ∅ by one of the conditions in the
definition of δ′)

This is the union of all Xu without the initial configuration.⋃
u∈V

(
(Pu+1 ∪ . . . ∪ Pu+rankλ(u) ∪Ru)× {u}

)
=
⋃
u∈V

(
Xu \ {(q0, v0)}

)
= X \ {(q0, v0)}

Since the function g : X̂ → X \ {(q0, v0)} is a bijection, there is exactly one accepting
configuration in X. For each configuration except the accepting one, g provides one of the
successor configurations of the nondeterministic automaton A. All these next configura-
tions are distinct, and the initial configuration is not a g-successor to any configuration in
X. Therefore, all configurations in X are split into a path from the initial configuration
to the accepting one, and possibly several disconnected cycles. This path from initial to
accepting configuration is the desired accepting computation of the automaton A on the
tree T .

As in the transformation by Kapoutsis [15] for automata on strings, it will be proved
that the number of states used in the above transformation of NTWA to NTA cannot
be reduced in the worst case already for deterministic tree-walking automata. The lower
bound argument will use signatures with exponentially many node labels, just as in the

30

Kapoutsis’s proof for automata on strings, where an alphabet of exponential size was
actually necessary to achieve the precise bound, see Geffert and Okhotin [12].

The upper bound
(

2n+1
n+1

)
−1 in Theorem 6 is not much greater than the

(
2n
n+1

)
bound for

the 2NFA→NFA transformation by Kapoutsis [15]. It turns out that this small increase is
not due to the branching in the trees, but only because tree-walking automata may accept
anywhere, whereas 2NFA accept only at the right end-marker. A precise lower bound to
Theorem 6 will be proved already in the case of strings, that is, for the transformation of
2NFA accepting anywhere to one-way NFA.

The proof uses the standard lower bound method for one-way NFA: the fooling sets.

Lemma 5 (Birget [2]; Glaister and Shallit [11]). Let L ⊆ Σ∗ be a language, and let
{(u1, v1), . . . , (uN , vN)} be a set of pairs of strings over Σ, such that

• for each i = 1, . . . , N the concatenation uivi is in L,

• for all i, j = 1, . . . , N , with i 6= j, at least one of the strings uivj and ujvi is not in
L

(such a set of pairs is called a fooling set). Then every NFA recognizing the language L
must have at least N states.

This method is used in the proof of the following lower bound.

Lemma 6. Let n > 1. Then there exists a 2DFA Bn with n states that may accept in the
middle of a string using a set F ⊆ Q × Σ of accepting pairs, such that every NFA that
recognizes the language L(Bn) must have at least N =

(
2n+1
n+1

)
− 1 states.

Proof. The desired automaton is defined as Bn = (Σ, Q, q0, F, δ), where

• the set of states is Q = {1, 2, . . . , n},

• the alphabet Σ = { f | f : Q → (Q× {+1,−1}) ∪ {accept, reject} } is the set of all
possible transition functions and acceptance conditions on a single symbol,

• the initial state is q0 = 1,

• the set of acceptance conditions F consists of all pairs (q, f), with q ∈ Q and f ∈ Σ,
such that f(q) = accept,

• the transition function sets one transition δ(1,`) = (1,+1) on the end-markers, and
all transitions δ(q, f) = f(q), for q ∈ Q and f ∈ Σ with f(q) ∈ Q× {+1,−1}.

The proof is by constructing a fooling set of size N =
(

2n+1
n+1

)
−1 for the language L(Bn).

Let X = { (P,R) | P,R ⊆ Q, (P,R) 6= (Q,Q), and either |R| = |P | + 1, or |R| = |P | }.
There are exactly N pairs of subsets (P,R) in the set X (as shown in the beginning of
the proof of Theorem 6.

Let (P,R) be a pair of subsets in X, and let P = {p1, . . . , ps} and R = {r1, . . . , rt},
where p1 < p2 < . . . < ps and r1 < r2 < . . . < rt, and t = s + 1 or t = s. For each pair
(P,R), the corresponding strings uP,R and vP,R are constructed as follows.

Let i = min(Q \ P); since s 6= n due to (P,R) 6= (Q,Q), such a state i exists.
Define uP,R = fg. Here f(1) = (i,+1), and f rejects in all other states. The function

31

g maps the states i, p1, . . . , pt−1 forward to the states r1, . . . , rt, that is, g(i) = (r1,+1),
g(p1) = (r2,+1), . . . , g(pt−1) = (rt,+1). If s = t > 0, then there is one extra state left in
P , which is mapped to acceptance: g(ps) = accept. If s = t = 0, then g(i) = accept. The
function g rejects in all other states.

Define the matching string as vP,R = h, where h(ri) = (pi,−1) for each i = 1, . . . , s.
If t = s+ 1, then h(rt) = accept. In all other states, h rejects.

It remains to prove that { (uP,R, vP,R) | (P,R) ∈ X } is a fooling set.

• For each pair (P,R) ∈ X, the string uP,RvP,R is in L(Bn).

Indeed, consider the computation of the 2DFA Bn on this string. Let P =
{p1, . . . , ps} and R = {r1, . . . , rt}, where p1 < p2 < . . . < ps and r1 < r2 < . . . < rt.
Let uP,RvP,R = fgh. The automaton starts at the left end-marker ` in the state 1,
and moves in the state 1 to the first symbol f . From there it moves to the second
symbol g in the state i = min(Q\P). If s = t = 0, then the automaton accepts here.
Otherwise, it moves forward to h in the state r1. Then, according to the transition
functions by the symbols g and h, the automaton moves back and forth between
these two symbols, assuming states p1, r2, p2, r3, p3, If s = t, then the automaton
finally accepts at the symbol g in the state ps, and otherwise the automaton accepts
at h in the state rt.

• Let (P,R) 6= (P ′, R′) be two different pairs in X. It is claimed that the automaton
Bn rejects at least one of the strings uP,RvP ′,R′ and uP ′,R′vP,R.

Consider the computations of the automaton Bn on these strings. Let P =
{p1, . . . , ps}, R = {r1, . . . , rt}, P ′ = {p′1, . . . , p′s′} and R′ = {r′1, . . . , r′t′}, where
p1 < p2 < . . . < ps, r1 < r2 < . . . < rt, p

′
1 < p′2 < . . . < p′s′ and r′1 < r′2 < . . . < r′t′ .

Let uP,RvP,R = fgh and uP ′,R′vP ′,R′ = f ′g′h′. Consider the earliest difference be-
tween the computations of Bn on the strings fgh and f ′g′h′.

1. The first case is when there exists a number k, with 0 6 k 6 min{s, s′}, such
that rj = r′j and pj = p′j for all j = 1, . . . , k, and either rk+1 6= r′k+1, or one of
rk+1 and r′k+1 does not exist.

Assume, without loss of generality, that either rk+1 < r′k+1, or r′k+1 does not
exist. Consider the computation of the automaton Bn on the string uP,RvP ′,R′ =
fgh′. Until the automaton reaches the state pk, it works on fgh′ as on fgh or
f ′g′h′. Eventually it comes to g in the last common state pk (if k = 0, then let
p0 = i = min(Q \ P)). Since rk+1 exists, by the definition of g, the automaton
moves to h′ in the state rk+1 > rk = r′k. If r′k+1 does not exist, then the
automaton rejects since it has come to a state with a larger number than any
states with transitions on h′ defined. If r′k+1 exists, then r′k = rk < rk+1 < r′k+1,
and the state rk+1 is enclosed between two neighbouring states with a transition
defined, and the automaton rejects.

2. The second case is when there is a number k, with 1 6 k 6 min{t, t′}, such
that pj = p′j for each j = 1, . . . , k − 1, and rj = r′j for each j = 1, . . . , k, and
either pk 6= p′k, or one of pk and p′k does not exist.

Without loss of generality, assume that either pk > p′k, or pk does not exist.
Consider the computation of Bn on the string uP,RvP ′,R′ = fgh′. Eventually
the automaton arrives at h′ in the last common state rk = r′k. Then it steps

32

backwards in the state p′k. If the state pk does not exist, then the automaton
comes to g in a state p′k > p′k−1 = pk−1, that is, in a state not in P . This means
that it either rejects, or, if p′k = min(Q \P), moves forward in r1 and loops. If
pk exists, then pk−1 = p′k−1 < p′k < pk. The automaton is thus at g in a state
not in P , and hence either rejects or loops.

Therefore, { (uP,R, vP,R) | (P,R) ∈ X } is a fooling set, and every NFA recognizing the
language L(Bn) has at least N =

(
2n+1
n+1

)
− 1 states.

Now a precise lower bound on the state complexity of the DTWA→NTA transfor-
mation is established by adapting the string languages in Lemma 6 to the formalism of
tree signatures. The left end-marker becomes the root of a tree, the right end-marker
becomes a leaf, and all symbols of the alphabet become node labels of rank 1. Then
2DFA accepting in the middle are equivalent to DTWA over this signature, whereas NTA
are equivalent to NFA operating on strings with end-markers. But NFA with end-markers
are easily seen to be equivalent to NFA without end-markers, and so applying Lemma 6
gives the next theorem.

Theorem 7. For every n > 1 there exists a signature Sn and a deterministic tree-walking
automaton An over it, such that every nondeterministic tree automaton A′ recognizing the
same set of trees as An has at least N =

(
2n+1
n+1

)
− 1 states.

3.4 Upper bound on the size of the smallest tree

accepted by a nondeterministic tree-walking au-

tomaton

The upper bound on the size of minimal accepted tree for tree automata obtained in
Section 3.2 can be combined with the upper bound for the transformation of tree-walking
automata to tree automata from Section 3.3 to prove an upper bound on the size of
minimal accepted tree for tree-walking automata.

Theorem 8. Let S = (Σ, rank, up, D, (Da)a∈Σ) be a tree signature, and let r =
max{ rank a | a ∈ Σ } be the maximum number of children in a node. Let A = (Q,Q0, F, δ)
be a nondeterministic tree-walking automaton (NTWA) over S with |Q| = n states that
accepts at least one tree. Then the minimal tree accepted by this automaton has at most
2r4

n
nodes.

Proof. First, a nondeterministic tree automaton A′ = (Q′, δ′) with |Q′| =
(

2n+1
n+1

)
−1 states

that recognizes the same language L(A) is constructed by Theorem 6. The number of
states |Q′| is estimated as follows.

|Q′| =
(

2n+ 1

n+ 1

)
− 1 6

(
2n+ 1

n

)
6

n∑
k=0

(
2n+ 1

k

)
=

1

2

2n+1∑
k=0

(
2n+ 1

k

)
=

1

2
22n+1 = 4n.

Then, by Theorem 4, the minimal tree accepted by A′, and hence by A, has at most
2r|Q

′| 6 2r4
n

nodes.

33

The constant 4 in the upper bound 2r4
n

on the size of minimal trees accepted by
NTWA is the same constant 4 as in the upper bound O(1√

n
4n) on the length of shortest

strings accepted by 2DFA (which comes from the optimal 2DFA to NFA transformation
by Kapoutsis [15]). The lower bound on the length of the shortest strings have been
improved several times, with the current bound being Ω(2n). The constant 4 in the upper
bound has not yet been improved.

In the case of strings, the bound O(1√
n
4n) is the number of different pairs of sets of

states (P,R), with |R| = |P | + 1, in which an n-state automaton moves back and forth
over an edge. In a minimal accepted string, such pairs of sets on edges never occur twice,
for otherwise the substring between two equal pairs can be cut out of the string, and
the string will still be accepted. Let pairs (P,R) will |R| > n

2
+ 1 be called heavy pairs,

and accordingly edges in the string, over which the automaton moves forward at least
n
2

+ 1 times are called heavy edges. The rest of the pairs (P,R) are light pairs, and the
rest of the edges are light edges. Then, there cannot be two heavy edges in a row in an
accepted string, because if two subsequent pairs (P1, R1) and (P2, R2) are both heavy,
then the automaton comes to the node between the two edges |R1| + |P2| times, but
|R1|+ |P2| > n

2
+ 1 + n

2
> n, and hence the automaton comes to the same node more than

n times, and loops. However, the number of heavy pairs does not exceed the number of
light pairs, and all pairs (P,R) ∈ 2Q × 2Q with |R| = |P | + 1 can be arranged in order
so that no two heavy pairs are next to each other. Therefore, this division into light and
heavy pairs would not improve the upper bound O(1√

n
4n) on the length of the shortest

accepted string for 2DFA.
What happens in the case of trees? At least three edges meet in each node with

branching. Now an edge is said to be heavy if the automaton with n states moves upward
by this edge at least n

3
+1 times (|P | > n

3
+1). The rest of the edges are light. Then there

are at most two heavy edges in each node, and each node with branching has at least one
adjacent light edge. The overall number of such light pairs (P,R) is no longer half of all
pairs, but substantially lower. Then the idea of dividing into light and heavy pairs will
be used to improve constant 4 in the case of trees.

Theorem 9. Let S = (Σ, rank, up, D, (Da)a∈Σ) be a tree signature, and let r be the
maximum number of children in a node. Let A = (Q,Q0, F, δ) be a nondeterministic
tree-walking automaton (NTWA) over S, with |Q| = n states, which accepts at least one
tree. Then the minimal accepted tree has at most 2O(rn·3.572n) nodes.

Proof. First a nondeterministic tree automaton A′ = (Q′, δ′) that recognizes the same
language as A is constructed by Theorem 6. The goal is to give an upper bound on the
number of nodes in the minimal tree accepted by A′.

The proof uses some details in the construction of the automaton A′ from the proof
of Theorem 6. The states of A′ are pairs of subsets of the set of states of A.

Q′ = { (P,R) | P,R ⊆ Q, (P,R) 6= (Q,Q), and either |R| = |P |+ 1, or |R| = |P | }

Let a node v in some accepted tree have k children, and let some computation of the
automaton A′ on this tree have state (P,R) at the node v, and states (P1, R1), . . . , (Pk, Rk)
at the children of v. Then, by the construction of function δ′ in the proof of Theorem 6,
the sets R,P1, . . . , Pk are pairwise disjoint. This means that there cannot be many large
sets among these k+1 sets. The pairs in Q′ are divided into heavy and light by the number

34

of states in their first components: a pair (P,R) ∈ Q′ is called heavy, if |P | > n
3

+ 1, and
light otherwise. Then there cannot be more than two heavy pairs among the states at a
node v and at its children.

For a nondeterministic tree automaton A′ of this particular form, in which states are
divided into light and heavy pairs, and in which no node with its children may have more
than two heavy pairs, one can obtain a better upper bound on the size of the minimal
accepted tree than for NTA of a general form. For this purpose, the proof of Theorem 4
shall be elaborated using the additional constraints on the tree automaton.

Let T = (V, v0,+, λ) be a minimal tree accepted by the automaton A′, and let (q(v))v∈V
be a computation of A′ on it. As shown in the proof of Theorem 4, for each internal node
v, with state q = q(v) and upward direction −i = upλ(v), the subtree rooted at v is
minimal in the number of nodes among all possible subtrees with upward direction −i
and with a computation that results in the state q in the root. Hence, the tree T and the
computation on it can be modified so that for each pair (q, i), all nodes v with the state
q = q(v) and upward direction −i have identical subtrees with the same computations on
them (such a replacement preserves the validity of the computation and the minimality
of the tree). The resulting tree and computation are fixed until the end of the proof. For
each state q and upward direction −i, denote the subtree used in all nodes with q and −i
by Tq,i (it is undefined, if T has no such subtrees).

Next, all pairs (q, i), with q ∈ Q′, i ∈ {1, . . . , r}, for which the subtree Tq,i is defined,
are arranged in the increasing order of the number of nodes in Tq,i, and are enumerated
from (q0, i0) to (qk−1, ik−1), where k < r · |Q′|. Let mj be the number of nodes in Tqj ,ij ,
for j ∈ {0, . . . , k − 1}. Then m0 6 m1 6 . . . 6 mk−1.

Indices j ∈ {0, . . . , k − 1} corresponding to pairs (qj, ij) ∈ Q′ × {1, . . . , r}, in which
qj ∈ Q′ is a light pair, will be called light indices, and the rest of them, heavy indices.

The number of nodes in the entire tree T is a sum of the sizes of the attached subtrees,
plus one for the root. Thus, one more index k representing T is added to the sequence,
and it is light, because the state in the root is (∅,∅). The goal is to prove an upper
bound on the number mk of nodes in T .

Let j ∈ {0, . . . , k − 1} be an arbitrary index. It has a corresponding pair (qj, ij) and
a subtree Tqj ,ij . Let v be the root of Tqj ,ij . There are exactly mj nodes in the subtree
Tqj ,ij , and this number is represented as mj = 1 +mj1 + . . .+mjt , where t is the number
of children of v, and j1, . . . , jt are indices of pairs corresponding to these children. These
indices are pairwise distinct, because the children of v have different directions up. Each
s-th subtree Tqjs ,ijs has fewer nodes than Tqj ,ij , and hence the subtrees of the children of
v correspond to earlier indices than j. Furthermore, since the computation in the entire
tree has state qj in the node v, and states qj1 , . . . , qjt it its children, there are at most
two heavy indices among j, j1, . . . , jt.

Then, for every j = 0, . . . , k, if the index j is light, then mj is bounded by the sum of
mt for all light indices t < j, plus mj′ for the two last heavy indices before j, and plus one
for the root of this subtree. If the index j is heavy, then mj is not greater that the sum
of number for all previous light indices, plus the number for the last heavy index before
j, plus one for the root. For every index j ∈ {0, . . . , k}, let aj and bj be the last and the
second last heavy indices before j. If there are fewer than two heavy indices before j,
then aj or bj may not exist; in this case it is assumed that maj or mbj are equal to 0.

Then the sequence m0, . . . ,mk is elementwise bounded by another sequence x0, . . . , xk,
constructed as follows.

35

• x0 = 1,

• if j is light, then xj = 1 + xaj + xbj +
∑

t<j, t is light xt,

• if j is heavy, then xj = 1 + xaj +
∑

t<j, t is light xt.

If aj or bj are undefined, then xaj or xbj are equal to zero.
It is sufficient to give an upper bound on the number xk. To this end, several inequal-

ities bounding the growth of the sequence (xj)j=0,...,k will be proved.

Claim 4. Let j ∈ {1, . . . , k} be an index. Then xj 6 2xj−1.

Proof. There are two cases.

• The index j − 1 is light.

Then aj = aj−1 and bj = bj−1, and regardless of whether j is light or heavy, the
following inequality holds.

xj 6 1 + xaj + xbj +
∑

t<j, t is light

xt = 1 + xaj−1
+ xbj−1

+ xj−1 +
∑

t<j−1, t is light

xt = 2xj−1

• The index j − 1 is heavy.

In this case, aj = j − 1 and bj = aj−1, and the inequality holds.

xj 6 1 + xaj + xbj +
∑

t<j, t is light

xt = 1 + xj−1 + xaj−1
+

∑
t<j−1, t is light

xt = 2xj−1.

Thus, the elements of the sequence are at most doubled at each step. But when a
chain of subsequent heavy indices occurs in the sequence (xj)j∈{0,...,k}, the growth will be
proved to be substantially slower.

Claim 5. If indices i, i + 1, . . . , j ∈ {0, . . . , k}, with i < j, are all heavy, then xj 6
(j − i+ 1)xi.

Proof. Note that
∑

t<j, t is light xt =
∑

t<i, t is light xt. At the same time, aj = j − 1, aj−1 =
j − 2, . . . , ai+1 = i. Then xj can be bounded as follows.

xj = xj−1 + 1 +
∑

t<i, t is light

xt = xj−2 + 2(1 +
∑

t<i, t is light

xt) = . . . =

= xi + (j − i)(1 +
∑

t<i, t is light

xt) 6 (j − i+ 1)xi

According to Claims 4 and 5, the sequence x0, . . . , xk is elementwise bounded by yet
another sequence y0, . . . , yk, defined as follows.

• y0 = 1,

• if j is light or j − 1 is light, then yj = 2yj−1,

36

• if j and j−1 are both heavy, then yj = (j− i+ 1)yi, where i is the least index, such
that all indices from i to j are heavy.

In order to prove an upper bound on yk, let cj =
yj
yj−1

, for all j = 1, . . . , k. Then

yk =
∏k

j=1 cj. The coefficient cj is 2 for light indices j and for heavy j after light. For

a heavy index j ∈ {1, . . . , k} preceded by exactly t > 0 heavy indices, cj = t+1
t

. In
each chain of heavy indices, the coefficients cj do not increase, and therefore yk may only
increase if a heavy index is moved from a longer chain to a shorter one. Then, the more
there are sequences of heavy indices, and the less is the difference between their lengths,
the greater will be yk. In addition, the coefficient at every light index is no less than at
any heavy index, and the more light indices are there in the sequence, the greater can be
yk.

Let there be exactly ` light indices, including k. Then there are at most ` chains of
heavy indices. The number of heavy indices is bounded by the length of the sequence k,
which does not exceed r|Q′| 6 r4n. The value yk is the greatest if the heavy indices are
distributed between the ` chains as evenly as possible. Each sequence of heavy indices of
length t (unless it starts at index 0) contributes a factor 22

1
3
2
. . . t

t−1
= 2t to yk; if it starts

it 0, then it contributes 2
1

3
2
. . . t

t−1
= t.

Then yk can be bounded as follows.

yk =
k∏
j=1

cj =
(∏
j is light

cj

)(∏
j is heavy

cj

)
6 2`

(
2
⌈r4n
`

⌉)`
The first case to consider is when ` is less than r. Then ` = r

c
for some number c > 1,

and yk is bounded like this.

yk 6 2`
(

2
⌈r4n
`

⌉)`
6

(
4
⌈r4n
`

⌉)`
6
(

4
r4n

`
+ 4
)`

6
(
c4n+1 + 4

) r
c 6

6
(
c4n+2

) r
c = 4(n+2+log4 c)

r
c 6 4O(nr)

The theorem holds in this case.
Let ` > r. Then there is a following bound on yk.

yk 6 2`
(

2
⌈r4n
`

⌉)`
6 2`(2 · 4n)` 6 (4n+1)`

It remains to bound the number of light indices, and to substitute the result for `.
Light indices correspond to pairs ((P,R), i), where i ∈ {1, . . . , r}, and P and R are subsets
of Q, such that |R| = |P | + 1 or |R| = |P |, with |P | 6 dn

3
e. Then the number of light

indices is not greater than the product of the number of directions by the number of ways
to choose P and then R. The light index for the root that concludes the sequence has a
corresponding pair (P,R) = (∅,∅), which cannot occur inside the tree.

` 6 r ·
dn
3
e∑

t=0

(
n

t

)((
n

t

)
+

(
n

t+ 1

))
6 r ·

(⌈n
3

⌉
+ 1

)(
n

dn
3
e

)(
n+ 1

dn
3
e+ 1

)
By Stirling’s approximation,(

3m

m

)
= O

(
1√
m

(3m)3m

(2m)2mmm

)
= O

(
1√
m

(27

4

)m)
37

Then the number of light indices is bounded by

` 6 r ·
(⌈n

3

⌉
+ 1

)(
n

dn
3
e

)(
n+ 1

dn
3
e+ 1

)
6 O

(
rn

(
1√
n
·
(27

4

)n
3

)2
)

=

= O

(
r
(9

3
√

16

)n)
= O(r · 3.572n)

Therefore, the minimal number of nodes in an accepted tree is at most

yk 6 4(n+1)O(r·3.572n) 6 2O(rn·3.572n).

3.5 Lower bound on the size of the smallest tree ac-

cepted by a tree-walking automaton

In Section 3.4, an upper bound 2O(rn·3.572n) on the number of nodes in a minimal tree
accepted by a nondeterministic tree-walking automaton was obtained, where n is the
number of states, and r is the maximum number of children in a node. The number of
nodes in this bound is double exponential in the number of states and exponential in the
maximum degree of a node. Can there truly be that many nodes in a minimal accepted
tree? The goal of this section is to obtain a lower bound of the form 2Ω(r·cn), where
c > 1 is a constant and r > 2. The proof is by constructing a deterministic tree-walking
automaton with a minimal accepted tree of this size.

The case of binary trees (r = 2) will be considered first. The construction will use two-
way finite automata with long shortest accepted strings: an n-state 2DFA with shortest
accepted strings of length 3

4
2n−1 was constructed in Chapter 2, whereas the upper bound

is O(4n).
Unlike strings, trees may branch, and the number of nodes in a tree can be exponential

in its height. Can another exponent be added to this bound in the case of binary trees?
One can take a 2DFA with n states over an alphabet Σ with exponentially long shortest
accepted string, and try to construct a deterministic tree-walking automaton with O(n)
states that works on binary trees with symbols from Σ in its nodes, and checks whether
the string on each path from root to leaf is accepted by the 2DFA. Then, in each accepted
tree, the depth of every leaf will be exponential in n, and the number of nodes in the
minimal accepted tree will be double exponential in n.

However, not every 2DFA with a long shortest accepted string is suitable for such a
construction. A tree-walking automaton will need to continue simulating a computation
from the same moment in all paths in the current subtree. To do this, the automaton,
after simulating the computation on one branch, will have to roll it back to the branching
point before continuing the simulation in another subtree. There is also an issue with
the original 2DFA moving far backwards: as the simulating tree-walking automaton goes
far up, it will forget from which node it has ascended, as there are many nodes at the
same height. Hence, the tree-walking automaton will forget, on which path it currently
simulates the 2DFA.

It turns out that there is a suitable 2DFA, which never makes two step backwards
in a row, and whose computation can be effectively rolled back in order to continue

38

the simulation on the next branch. The length of the shortest accepted string for this
automaton is only

√
n times less than the maximum known. This is the 2DFA from

Chapter 2 that gives a precise lower bound on the maximum length of a shortest accepted
string in the class of automata that remember the direction of the last move in their state.

Theorem 10 (more precise statement of Theorem 2). For every k > 2 and ` > 0
there exists a direction-determinate 2DFA Ak,` = (Σ, Q, q0, δ, F) with the set of states
Q = Q+ ∪Q−, where |Q+| = k and |Q−| = `, such that the length of the shortest string it
accepts is

(
k+`
`+1

)
− 1, and with the following additional properties:

• the initial state q0 is in Q+, the accepting state qacc is unique and is in Q+ as well,

• all transitions in states in Q− lead to states in Q+,

• for every symbol a ∈ Σ, there exists a unique state q(a) ∈ Q+, such that the tran-
sition from this state by the symbol a moves the head to the right. The unique
transition to the right by the left end-marker is from the initial state. Let q(`) = q0

and q(a) = qacc.

The above additional properties were not explicitly stated in Theorem 2, but the actual
automata constructed therein have these properties.

In the rest of this section, let Ak,` be the 2DFA constructed in Theorem 10.
In the next theorem, a tree-walking automaton is constructed based on 2DFA Ak,`

that, given a binary tree, checks, for each path from root to leaf, that the string written
along this path is accepted by Ak,`.

Theorem 11. Let k > 2 and ` > 0, and let the 2DFA Ak,` = (Σ, Q, q0, δ, F) with the
set of states Q = Q+ ∪ Q−, where |Q+| = k and |Q−| = `, be as in Theorem 10. Let
S = (Σ′, rank, up, D, (Da)a∈Σ′) be a binary tree signature with node labels Σ′ = {`1}∪{ ai |
a ∈ Σ ∪ {a}, i ∈ {1, 2} }. Here `1 is the root label, a1 and a2 are labels for left and right
leaves, and { a1 | a ∈ Σ } and { a2 | a ∈ Σ } are labels for left and right children, with
symbols from Σ. Each node except the leaves must have two children.

Then there exists a deterministic tree-walking automaton B with k+ 2`+ 2 states that
accepts a tree if and only if, for each path from root to leaf, the string of symbols from Σ
written on this path is accepted by Ak,`.

Proof. The tree-walking automaton B = (Q′, q′0, δ
′, F ′) over the signature S works as

follows. It gets a tree T over a signature S as an input, and it should check that the
automaton Ak,` accepts all strings, written along all paths from root to leaf. To do this,
the tree-walking automaton will come to all leaves one by one, from left to right, and
verify that the string from the root to the current leaf is accepted by the 2DFA Ak,`.

The computation of the automaton B constructed for the two-way automaton A2,1 is
illustrated in Figure 3.3. The tree in the figure has the shortest string accepted by A2,1

written along each path.
The set of states of B is Q′ = Q+ ∪ Q−1 ∪ Q−2 ∪ {s1, s2}, where Q−1 = { q1 | q ∈ Q− }

and Q−2 = { q2 | q ∈ Q− }. Altogether there are k + 2`+ 2 states in Q′.
The states Q+ ∪Q−1 ∪Q−2 will be used to simulate the automaton Ak,` on the leftmost

path from an arbitrary node. The transitions of B on Q+ ∪ Q−1 ∪ Q−2 should be defined
so that the next claim holds.

39

1

b

a

q

q

p

p

p

r

s1

s2+2

+1

q

q q 21

b2

–2–1

s1r2

p

s1

s2+2

+1

q

q q 21

b1

–2–1

p

s2a2p r1

s1

s2p

+1

–1

+2

–2

s1

s2+2

+1

q

q q 21

b2
–2–1

s1r2

p

s1

s2+2

+1

q

q 21

b1

–2–1

p

s2a1p r1

+1

–1

+2

–2

+1

–1

+2

–2

q

Figure 3.3: (left) 2DFA A2,1 works on its shortest accepted string; (right) tree-walking
automaton B traverses a tree checking that the string on each path from root to leaf is
accepted by A2,1.

Claim 6. Let x be the leftmost leaf in the subtree of a node v, and let the automaton
Ak,` assume the state q at the node v in its computation on the string from the root to x.
Then, if the automaton B is started at the node v in the state q (if q ∈ Q+) or in the
state q1 (if q ∈ Q−), it completes the simulation of Ak,` on the string on the path from
root to x: that is, if the automaton Ak,` rejects or loops on this string, then so does B,
and if Ak,` accepts this string, then B comes to the leaf x in the state qacc.

Let x and v be fixed. Since all transitions of Ak,` in the states from Q− lead to states
in Q+, the automaton Ak,` cannot make two steps backwards in a row, and hence its
simulation along the path from root to x may go up from the node v at most by one edge.
If the simulation never goes up from v, then the automaton B can work as if on string
using states from Q+ and Q−1 to simulate Ak,` in states from Q+ and Q−, always moving
by left edges and ignoring right edges. All edges on the path from v to x are left (that is,
in directions ±1). But sometimes the automaton B will need to go from v to its parent,
and this edge may be right. In this case, the automaton B needs to remember that it has
to descend from the parent of v to the right, not to the left as in all other cases. To do
this, B, as it goes upwards, will remember in the choice of a state from Q−1 or from Q−2
whether it has come from the left or from the right child. In order for B to work like this,
the transitions used to simulate Ak,` are defined as follows.

40

–iq(a)

r
r

qacc

s2

s2

s1

a +2

–2–1

+1

+2

+2
–2

–2

+1
+2+1

+1
–1

–1

v

x y

v1 v2

Figure 3.4: The automaton B moves from the state qacc at the leaf x to the computation
of Ak,` on the path from root to the next leaf y.

For q ∈ Q+ and a ∈ Σ ∪ {`,a}:

δ′(q, aj) = (r,+1), if δ(q, a) = (r,+1), and j ∈ {1, 2}
δ′(q, aj) = (rj,−j), if δ(q, a) = (r,−1), and j ∈ {1, 2}

For q ∈ Q− and a ∈ Σ ∪ {`}:

δ′(qj, ai) = (r,+j), if δ(q, a) = (r,+1), and i, j ∈ {1, 2}

These transitions are enough for B to work as in Claim 6.
Now all remaining transitions of δ′ will be defined, so that the automaton B checks

that the strings on all paths from the root to all leaves are accepted by Ak,`.
The initial state of B is q0 ∈ Q+. The automaton B starts in this state at the root,

and, by Claim 6, it simulates Ak,` on the leftmost path in the tree. If the string on this
path is not accepted by Ak,`, then B rejects or loops. If the string is accepted, then B
comes to the leftmost leaf in the state qacc.

Let B come to some leaf x in the state qacc, as in Figure 3.4. Then it has already
checked that the strings on the paths from the root to all leaves to the left of x and to x
itself are accepted by Ak,`. Let x be not the rightmost leaf in the whole tree. Then there
is the next leaf y. Now the automaton B needs to determine whether the string on the
path from the root to y is accepted, and if it does, then come to y in the state qacc. The
automaton B does this as follows. First it goes up, remembering whether the last step
was from the left child or from the right child, and does so until it makes the first step
up from a left child. To do this, B uses states s1 and s2 and the following transitions.

δ′(qacc,aj) = (sj,−j), where j ∈ {1, 2}
δ′(s2, aj) = (sj,−j), where a ∈ Σ, j ∈ {1, 2}

41

As a result, the automaton makes zero or more steps up from a right child, and finally
one step from the left child, and emerges at a certain node v in the state s1. Let v1 and
v2 be the left and the right children of v. Then the leaf x is on the rightmost path in the
subtree of v1, whereas the leaf y is on the leftmost path in the subtree of v2.

It is known that the computation on the path from the root to the leaf x is accepting.
Could one use this fact to continue this computation from the node v as a computation
from the root to the next leaf y? Let a ∈ Σ∪{`} be the symbol in v. Consider the moment
when the automaton Ak,`, simulated on the path from root to x, first goes down from v
to v1. At this moment, Ak,` makes a transition forward from a state in Q+ by a. For each
symbol there is only one transition forward from a state in Q+. Hence, this transition
can be made only in the state q(a). The same moment exists in the computation on the
path from root to y, because the strings to x and to y are the same up to v. Thus, in the
computation on the string from root to y, the automaton Ak,` comes to the node v in the
state q(a), and the next step is descending to v2 in such a state r that δ(q(a), a) = (r,+1).

In order to turn to this simulation towards the leaf y, the automaton B, when it comes
to v in the state s1 should continue by a transition down to v2 in the state r ∈ Q+. Then,
since y is the leftmost leaf in the subtree of v2, by Claim 6, the automaton B will complete
the simulation of Ak,` on the path from root to y. This turn to the next simulation is
made by the following transition.

δ′(s1, aj) = (r,+2), if aj ∈ Σ′ \ {a1,a2}, δ(q(a), a) = (r,+1)

Therefore, if the string on the path from root to y is not accepted, then the automaton
B rejects or loops. If the string is accepted, then B completes the simulation, arriving to
the leaf y in the state qacc.

Thus the automaton will move from y to the next leaf, etc., until it either encounters
a string on path from root to leaf that is not accepted (in this case B rejects or loops),
or until it comes to the rightmost leaf in the state qacc.

Let the strings on all paths be accepted. Then the automaton B comes to the righmost
leaf in the state qacc. Next, the transition by qacc in the leaf leads it up in the state s2,
because the leaf is right. The automaton continues ascending from right children in the
state s2, until it comes to the root of the tree. If the automaton comes to the root in
the state s2, it means that it has already checked all leaves, and in this case B accepts:
F ′ = {(s2,`1)}.

How can one use Theorem 11 to get a big minimal accepted tree? If the number of
states is n = k + 2`+ 2, then, by Theorem 11, one can make an automaton that accepts
a binary tree, if every path from root to leaf contains a string accepted by Ak,`, delimited
by left and right end-markers. The shortest string accepted by Ak,` is of length

(
k+`
`+1

)
− 1.

With the end-markers attached, the length becomes
(
k+`
`+1

)
+ 1. The minimal accepted

tree, in which that shortest string is written on every path, is a balanced binary tree with(
k+`
`+1

)
+ 1 levels. At level 0 there is just the root, and every next level has twice as many

nodes as the previous level. Overall, the number of nodes in the minimal accepted tree is

(k+`
`+1)∑
j=0

2j = 2(k+`
`+1)+1 − 1.

For a given number of states n, one should find an optimal partition n = k + 2`+ 2 that
maximizes the binomial coefficient

(
k+`
`+1

)
=
(
n−`−2
`+1

)
.

42

Claim 7. For each n > 3, the number
(
n−`−2
`+1

)
is maximal for ` =

⌊
5n−8−

√
5n2+4

10

⌋
.

Proof. Denote C` =
(
n−`−2
`+1

)
for all ` ∈ {0, . . . , bn−2

2
c} (larger values ` > bn−2

2
c would give

n − ` − 2 < ` + 1). If the binomial coefficient C` is maximal, then it should not be less
than the neighbouring coefficients C`−1 and C`+1, if they exist. Consider the ratio of two
subsequent binomial coefficients C`

C`+1
, for all ` ∈ {0, . . . , bn−2

2
c − 1}.

C`
C`+1

=

(
n−`−2
`+1

)(
n−`−3
`+2

) =
(n− `− 2)!(`+ 2)!(n− 2`− 5)!

(`+ 1)!(n− 2`− 3)!(n− `− 3)!
=

(`+ 2)(n− `− 2)

(n− 2`− 3)(n− 2`− 4)

The equation (`+2)(n−`−2)
(n−2`−3)(n−2`−4)

= 1 is a quadratic equation with unknown ` and with

parameter n, its roots are `1 = 5n−18−
√

5n2+4
10

and `2 = 5n−18+
√

5n2+4
10

. This equation

defines a parabola that opens downwards, hence the ratio C`

C`+1
is greater than 1 between

the roots of the equation, and less than 1 outside. The root `2 is greater than bn−2
2
c − 1.

Hence, while ` is less than or equal to `1, the ratio C`

C`+1
is at most 1, and it is profitable

to increase `; after `1, the value C` decreases. Therefore, the maximum is reached for ` =
b`1c+ 1 = b5n−8−

√
5n2+4

10
c. This is a valid value for `, because 0 6 b5n−8−

√
5n2+4

10
c 6 bn−2

2
c

for all n > 3.

The next claim shows the growth rate of the binomial coefficient
(
n−`−2
`+1

)
for the optimal

value of `.

Claim 8. The binomial coefficient
(
n−`−2
`+1

)
, where ` = `(n) =

⌊
5n−8−

√
5n2+4

10

⌋
, has asymp-

totics Θ(1√
n
Cn), where C =

(
cc

(c−1)c−1

) 1
c+1 and c = 10

5−
√

5
− 1. The stated value of C is

within the bounds 1.618 < C < 1.619.

Proof. First, both arguments of the binomial coefficient
(
n−`−2
`+1

)
are approximated as n

multiplied by a constant.

n−`−2 = n−
⌊5n− 8−

√
5n2 + 4

10

⌋
−2 = n

(
1− 5−

√
5

10

)
+Θ(1) = n· 5 +

√
5

10
+Θ(1), and

`+ 1 =
⌊5n− 8−

√
5n2 + 4

10

⌋
+ 1 = n

(5−
√

5

10

)
+ Θ(1).

Let m = n· 5−
√

5
10

, then `+1 = m+Θ(1), and n−`−2 = n· 5+
√

5
10

+Θ(1) = m· 5+
√

5
5−
√

5
+Θ(1) =

m · (10
5−
√

5
− 1) + Θ(1) = cm+ Θ(1). By Stirling’s approximation,

(
n− `− 2

`+ 1

)
=

(
cm+ Θ(1)

m+ Θ(1)

)
= Θ

((
cm

m

))
= Θ

(
1√
m
· (cm)cm

((c− 1)m)(c−1)m ·mm

)
=

= Θ

(
1√
m

(cc

(c− 1)c−1

)m)
= Θ

(
1√
n

(cc

(c− 1)c−1

) 5−
√
5

10
·n
)

= Θ
(1√

n
Cn
)
.

Thus, for binary trees, the following lower bound on the maximum number of nodes
in a minimal accepted tree is obtained.

43

Theorem 12. For every n > 1, there exist a tree signature Sn with all node labels of rank
0 or 2, and an n-state deterministic tree-walking automaton Bn over Sn, such that the
automaton accepts at least one tree, and the minimal accepted tree has at least 2Ω(1.618n)

nodes.

Now let the maximum number of children in a node be r > 4. How can one use the
extra directions to obtain a higher lower bound? This will be done inductively on even
r, with binary trees as the base case. In the induction step, the directions {+1,+2} and
{+3, . . . ,+r} are treated differently. Theorem 12 gives an automaton B that traverses
binary trees and has minimal accepted tree with at least 2c·1.618n leaves, where c is some
constant. The induction hypothesis gives an automaton Br−2 that traverses trees with
at most r − 2 children in a node. Trees for Br−2 are adapted for the signature of a new
automaton Br by rewriting them in directions {+3, . . . ,+r}, with anything in directions
{+1,+2}. Then, trees for Br are trees for B, with each leaf replaced with a tree for Br−2

adapted as above.
The new automaton Br operating on such trees acts on the part for B as B, moving

only in directions {±1,±2}. When Br visits a leaf for B, it will traverse the attached
subtree for Br−2 by simulating Br−2 and moving only in directions {±3, . . . ,±r}. Then
the automaton Br always knows whether it simulates B on the top part of the tree or
Br−2 on one of the attached subtrees, by observing whether the direction upwards is in
{±1,±2} or not.

This allows the number of nodes in the minimal trees to be multiplied by 2c·1.618n in
the transition from Br−2 to Br, and ultimately gives a lower bound 2Ω(r·1.618n) for trees of
rank at most r. This is formally proved in the theorem below.

Theorem 13. For all r > 2 and n > 1, there exist a tree signature Sn,r with maximum
rank r and an n-state deterministic tree-walking automaton Bn,r over this signature, such
that the automaton accepts at least one tree, and the minimal accepted tree has at least
2Ω(r·1.618n) nodes.

Proof. The number r is assumed to be even (for odd r, the bound for r− 1 can be used).
Also assume that n > 4 (the case of small n will be treated in the end of the proof).

By Theorem 12, there is a sequence of automata Bn,2 over signatures Sn,2, such that,
for every n, the minimal tree accepted by Bn,2 has at least 2c·1.618n leaves, where c is a

constant. Such automata Bn,2 are constructed using Theorem 11, for ` =
⌊

5n−8−
√

5n2+4
10

⌋
and k = n− 2`− 2. The following additional properties can be inferred from the proof of
Theorem 11.

• All states of the automaton Bn,2 are split into two disjoint sets: states in P+ are
entered after moving downwards, and states in P− are entered after a move upwards.

• The automaton Bn,2 accepts only at the root.

• If the automaton accepts, then it visits each leaf of the tree in the state qacc ∈ P+.

Let n be fixed. Automata Bn,r with n states are constructed inductively on even r,
along with their signatures Sn,r. The states of each Bn,r are split into the same sets P+

and P−, as in Bn,2, and the minimal tree accepted by Bn,r must have at least 2
r
2
c·1.618n

nodes, and Bn,r must accept only in the root. The signature Sn,r has a unique label for
the root, which is not a leaf.

44

Base case: r = 2, the automaton Bn,2 has all the required properties.
Induction step: r → r + 2. Let the automaton Bn,r be constructed, the task is to

construct Bn,r+2.
An intermediate automaton Cn,r is constructed first: this is a copy of the automaton

Bn,r, operating on directions {±3, . . . ,±(r+2)}. For this, the signature Sn,r is transformed
into a new signature S ′n,r by shifting it by two directions: two more children are added to
each node label, and its direction upwards is increased by two; furthermore, all node labels
from the signature Sn,2 are added to S ′n,r. Only labels from Sn,2 have upward directions
−1 or −2. Now every tree over the signature S ′n,r is either a tree over Sn,2, or a copy of a
tree over Sn,r written in directions {±3, . . . ,±(r+ 2)} instead of {±1, . . . ,±r}, and with
each direction +1 and +2 closed by some subtree over Sn,2.

At all node labels from Sn,2, the automaton Cn,r rejects right away. The automaton
Cn,r implements the transitions of Bn,r by moving in a direction +(i+2) instead of +i, and
in a direction −(i + 2) instead of −i, for all i ∈ {1, . . . , r}. Then Cn,r accepts only trees
obtained from trees accepted by Bn,r by rewriting them in directions {±3, . . . ,±(r+ 2)}.
The automaton Cn,r, like Bn,r, accepts only in the root; its states are partitioned into P+

and P−, as in Bn,r; and the minimal tree accepted by Cn,r has at least 2
r
2
c·1.618n nodes.

The automaton Bn,r+2 is based on both the automaton Bn,2, which works in directions
{±1,±2}, and the automaton Cn,r, working in directions {±3, . . . ,±(r + 2)}. The plan
is that the automaton Bn,r+2 recognizes the trees accepted by Bn,2, in which every leaf is
replaced with a tree accepted by Cn,r.

First, new node labels are added to the signature S ′n,r. These are all labels of the form
(a, b), where a is a leaf label for Bn,2, and b is a root label for Cn,r. Each label (a, b) has
upward direction up a and the same rank as b. All new labels (a, b) have upward direction
−1 or −2, and hence they may not occur on paths from the root that use only directions
{±3, . . . ,±(r + 2)}. Since the automaton Cn,r never moves in directions {±1,±2}, it
cannot reach the nodes with new labels, and the properties of Cn,r remain unchanged:
accepting at least one tree, acceptance only in the root, partition of states into P+ and
P−, and having at least 2

r
2
c·1.618n nodes in the minimal accepted tree. The number of

nodes in the minimal accepted tree will not decrease, because every new label can be
replaced with a leaf without affecting the computation of Cn,r.

The signature Sn,r+2 is obtained from S ′n,r by removing all root labels except the root
for Bn,2.

Every tree over the signature Sn,r+2 has a root with a label from Sn,2, which has
2 children. All node labels in Sn,r+2 with upward directions −1 and −2 are either in
the signature Sn,2 or are of the form (a, b). Hence, on every path from the root in the
directions +1,+2, the first label not in Sn,2 can only be a label of the form (a, b), where
a is a leaf label for Bn,2, and b is a root label for Cn,r. The subtree rooted at a node with
label (a, b), is always a tree over S ′n,r, in which its original root b has been replaced with
(a, b). Then each tree over the signature Sn,r+2 is a tree over Sn,2, in which some leaves
are replaced with trees over the signature S ′n,r.

The automaton Bn,r+2 is constructed as follows. First, Bn,2 is taken and augmented
with transitions for each new node label (a, b) as if for a leaf labelled with a, whereas
the old transitions at the leaves are removed. So far, the automaton accepts exactly the
trees accepted by Bn,2, in which each leaf is replaced by some tree over the signature S ′n,r
(which the automaton never descends into). The accepting computation of Bn,r+2 follows
the accepting computation of Bn,2 on the upper part of the tree, and hence visits every

45

former leaf in the state qacc, and finally accepts in the root. It remains to check that
all trees that were substituted for leaves are accepted by Cn,r. To do this, the transition
from qacc at labels of the form (a, b) is changed: the automaton Bn,r+2 will make the
same transition as Cn,r would do at a root labelled with b. Then, the automaton Bn,r+2

simulates Cn,r, treating the node labelled with (a, b) at the top of the subtree as a root. If
the subtree is accepted by Cn,r, then Bn,r+2 comes to the root of the subtree labelled with
(a, b) in an accepting configuration of Cn,r. At this moment it makes the same transition
as Bn,2 makes at a leaf a in the state qacc, and then continues the simulation of Bn,2 on
the upper part of the tree.

It remains to explain how the automaton Bn,r+2 simulates two different automata that
share the same set of states, and does so without extra states. At each moment, it needs
to determine, which of the two automata it simulates: Bn,2 or Cn,r. If the label of the
current node is not of the form (a, b), this can be understood from the upward direction:
if it is −1 or −2, then Bn,2 is being simulated, and if the upward direction is one of
{−3, . . . ,−(r + 2)}, then the simulated automaton is Cn,r. In a node with label of the
form (a, b), the automaton being simulated is determined from the state: if the state is
from P+, then Bn,r+2 has got here from above, and hence this is a simulation of Bn,2; and
if the state is in P−, then the automaton has come here from below, and Cn,r is being
simulated.

Such an automaton Bn,r+2 may accept only at the root, has the same partition of
states into P+ and P−, and accepts at least one tree, because Bn,2 and Cn,r each accept
some trees. Each tree accepted by Bn,2 has at least 2c·1.618n leaves, and every tree accepted
by Bn,r+2 has each of these leaves replaced with a tree accepted by Cn,r. Each tree that
Cn,r accepts has at least 2

r
2
c·1.618n nodes. Therefore, every tree accepted by Bn,r+2 has at

least 2c·1.618n · 2 r
2
c·1.618n = 2

r+2
2
c·1.618n nodes. The induction step has been proved.

It is left to consider the case of n ∈ {1, 2, 3}. By Theorem 5, there is a tree automaton
with 1 state, over a signature with maximum rank r, such that the minimal tree it accepts
has 2r nodes. Then, all node labels, on which the transition of the automaton is undefined,
are removed from the signature. Now the automaton accepts all trees and may be replaced
with a 1-state tree-walking automaton that accepts immediately. Thus, for small n, if the
constant in Ω-notation is less than 1.618−3, then one can take these signatures and an
immediately accepting automaton.

46

Chapter 4

Complexity of the emptiness
problem for graph-walking automata
and for tilings with star subgraphs

This chapter is about two kinds of automata on graphs. Graph-walking automata walk
over an input graph by following its edges. Star automata accept a graph by tiling it with
star subgraphs that assign states to nodes.

The basic definitions of automata are given in Section 4.1. Graph-walking automata
and star automata are defined over a signature, which is an alphabet for graphs. A
signature defines finite sets of possible node labels and possible labels of edge end-points
(called directions). Also, for each node label, there is a set of directions used in all nodes
with this label.

The decidability of the emptiness problem and upper bounds on its complexity are
obtained for graph-walking automata and for star automata using generally the same
method. A simpler problem called signature non-emptiness is considered first: does there
exist at least one graph over a given signature? Its decidability is proved in Section 4.2
by reducing it to finding a non-negative integer solution to a certain system of linear
Diophantine equations. From this, it is inferred that the non-emptiness problem for
signatures can be solved in NP. Furthermore, if a signature is non-empty, that is, if there
is at least one graph over this signature, then the number of nodes in the smallest such
graph does not exceed 2mrmin{rr, k2r−2}, where m is the number of node labels in the
signature, 2r is the number of directions, and k is the maximum degree of a node.

It turns out that both checking non-emptiness of a graph-walking automaton and
checking non-emptiness of a star automaton can be reduced to checking non-emptiness of
a certain signature, which is constructed for a given automaton.

For star automata, such a reduction is presented in Section 4.3. It gives a proof that
the non-emptiness problem for star automata is in NP. Also it gives an upper bound
sn2kkn

2−1 on the number of nodes in the smallest accepted graph, where n is the number
of states in the star automaton, s is the number of stars, and k is the number of directions
in the signature.

In Section 4.4, a graph-walking automaton is reduced to a signature. The reduction
proves that its non-emptiness problem is in NEXP, as well as gives an upper bound
m4n(k+1)kk4n−1 on the number of nodes in the smallest accepted graph, where n is the
number of states, k is the number of directions, and m is the number of node labels.

47

In Section 4.5, all the above non-emptiness problems are proved to be hard in their
complexity classes. NP-hardness of the signature non-emptiness problem is obtained by
reducing 3-colourability to this problem. This also gives NP-hardness for non-emptiness
of star automata. To prove NEXP-hardness of non-emptiness of graph-walking automata,
it is shown that a graph-walking automaton can recognize the set of graphs containing
a rectangular grid of exponential size in the number of its states. On this grid, the
computation of a nondeterministic Turing machine is then simulated.

4.1 Graph-walking and star automata

In this section, graph-walking automata and star automata that generalize automata
on strings and trees to graphs are formally defined. All definitions for graph-walking
automata are inherited from the paper by Kunc and Okhotin [18]. Star automata are a
generalization of nondeterministic tree automata and a variant of elementary acceptors
by Thomas [26] without constraints on the number of tiles. Star automata are given in a
different notation for uniformity with graph-walking automata.

Graph-walking automata are defined over a signature. A signature specifies the sets of
labels of nodes and edge end-points in the graphs, and thus defines the set of all labelled
graphs that can be used as inputs for a graph-walking automaton.

Definition 9 ([18]). A signature S is a quintuple S = (D,−,Σ,Σ0, (Da)a∈Σ), where:

• D is a finite set of directions, which are labels attached to edge end-points;

• a bijection − : D → D provides an opposite direction, with −(−d) = d for all d ∈ D;

• Σ is a finite set of node labels;

• Σ0 ⊆ Σ is a subset of possible labels of the initial node;

• Da ⊆ D, for every a ∈ Σ, is the set of directions used in nodes labelled with a.

Graphs are defined over a signature like strings are defined over an alphabet.

Definition 10. A graph over a signature S = (D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple
(V, v0,+, λ), where:

• V is a finite set of nodes;

• v0 ∈ V is the initial node;

• edges are defined by a partial function +: V ×D → V , such that if v+ d is defined,
then (v + d) + (−d) is defined and equals v; also denote v − d = v + (−d);

• node labels are assigned by a total mapping λ : V → Σ, such that

i. v + d is defined if and only if d ∈ Dλ(v), and

ii. λ(v) ∈ Σ0 if and only if v = v0.

The set of all graphs over the signature S is denoted by L(S).

48

The function + defines the edges of the graph. If u+d = v, then the nodes u and v in
the graph are connected with an edge with its end-points labelled with directions d (on
the side of u) and −d (on the side of v). Multiple edges and loops are possible: if v+d = v
and d 6= −d, then it is a loop at the node v with two ends labelled with directions d and
−d. If v + d = v and d = −d, then it is a loop at the node v with one end, labelled with
d.

A graph-walking automaton is defined similarly to a 2DFA and a DTWA, with an
input graph instead of an input string or an input tree.

Definition 11. A (deterministic) graph-walking automaton (GWA) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q× Σ is a set of acceptance conditions;

• δ : (Q× Σ) \ F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da for
all q and a where δ is defined.

When an automaton operates on a graph, at every moment it knows its current state
and sees only the label of the current node. The transition function gives the new state
and the direction to one of the neighbouring nodes, in which the automaton moves. If
the current pair of a state and a node label is in F , then the automaton accepts. If the
pair is not in F and no transition is defined for it, then the automaton rejects. It may
also continue walking indefinitely, it this case it is said to loop.

Formally, an automaton’s configuration on a graph G = (V, v0,+, λ) is a pair (q, v),
with q ∈ Q and v ∈ V . A computation of an automaton A on a graph G is the following
uniquely defined sequence of configurations. The computation starts in the initial config-
uration (q0, v0). For every configuration (q, v) in the computation, if δ(q, λ(v)) is defined
and equals (q′, d), then the next configuration after (q, v) is (q′, v+d). Otherwise, the con-
figuration (q, v) is the last one in the computation; if (q, λ(v)) ∈ F , then the automaton
accepts in the configuration (q, v), otherwise it rejects. If the computation is an infinite
sequence, then the automaton is said to loop.

A graph-walking automaton A defines the language L(A), this is the set of graphs it
accepts.

The methods used in this chapter to prove the decidability of the emptiness problem
for graph-walking automata and to determine its computational complexity can also be
applied to another related model. These are star automata, which are defined as follows.

Definition 12. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature and let some linear order
be fixed on the set of directions D. A star automaton A∗ over the signature S is a pair
(Q, T), where

• Q is a finite set of states;

• T is a finite set of stars, where a star is a sequence of the form (a, q, q1, . . . , q|Da|),
where a is a node label, q is used for the state in the current node, q1, . . . , qDa are
used for states in the neighbours of the current node in all directions from Da.

49

A graph G is accepted by the star automaton A∗, if there is a choice of states (q(v))v∈V
in all nodes such that the following condition holds for each node v ∈ V . Let a be the
label of the node v, let d1, . . . , dDa be the directions from Da listed in the order. Then, the
star in the node v is the sequence s(v) = (a, q(v), q(v + d1), . . . , q(v + d|Da|)). And every
such star should belong to the set of automaton’s stars T . Such a sequence (q(v))v∈V is
called a computation of the star automaton A∗ on the graph G. There can be several
computations.

4.2 The non-emptiness problem for signatures is in

NP

In this section, the decidability of the non-emptiness problem for signatures is proved;
more precisely, an NP-algorithm that solves this problem is constructed. Furthermore,
for non-empty signatures, an upper bound on the number of nodes in the minimal graph
over a given signature is obtained.

It turns out that to prove that a signature is non-empty it is not necessary to find an
actual graph. It is sufficient to find only a collection of nodes without the edge structure
of the graph; such a collection is described by a vector with every coordinate giving the
number of nodes with a certain label. A vector can be turned into a graph if it satisfies
a few conditions.

Definition 13. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature. A vector of non-negative
integers (xa)a∈Σ, where xa is the number of nodes with the label a, is called balanced, if
it satisfies the following two balance conditions:

1. an initial node exists and is unique:
∑

a0∈Σ0
xa0 = 1,

2. for each direction d ∈ D, such that d 6= −d, all nodes together need the same
number of edges by d and by −d:∑

a∈Σ: d∈Da

xa =
∑

a∈Σ: −d∈Da

xa.

The next lemma shows that every balanced vector gives rise to a graph, and hence
one can work with balanced vectors instead of graphs.

Lemma 7. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature. Let xa, for each node label
a ∈ Σ, be a non-negative integer.

A graph over the signature S with exactly xa nodes labelled with a, for all a ∈ Σ, exists
if and only if the vector (xa)a∈Σ is balanced.

Furthermore, there is an algorithm that, given a signature S and a balanced vector
(xa)a∈Σ, constructs a graph over S with exactly xa nodes with each label a ∈ Σ, and does
so in time linear in the sum of sizes of the signature and of the constructed graph.

Proof. For every graph G over S, let (xa)a∈Σ be the vector of quantities of nodes for all
labels. It is claimed that the vector (xa)a∈Σ is balanced. The first balance condition holds,
because every graph has exactly one initial node. Now to the second condition. Let d ∈ D
be one of the directions, with d 6= −d. Then, every edge v + d = u in the graph links the

50

two edge end-points: in the direction d at the node v, and in the direction −d at the node
u. Thus, the total number

∑
a∈Σ: d∈Da

xa of edge end-points labelled with d in the graph
equals the number

∑
a∈Σ: −d∈Da

xa of edge end-points labelled with −d, and the second
balance condition holds.

Conversely, let (xa)a∈Σ be a balanced vector. A graph G = (V, v0,+, λ) with exactly
xa nodes for each node label a is constructed by the following algorithm.

• First, the set of nodes V and the labelling function λ are defined: for each node
label a ∈ Σ in the signature, xa new nodes labelled with a are added to the set V .

• The initial node is the node with a label from the set Σ0, the first balance condition
states that such a node exists and is unique.

• Now the edges shall be defined so, that each node v labelled with a will have edges
exactly in the directions from Da. For each direction d ∈ D, let Id be the set of all
nodes v with d ∈ Dλ(v).

For such directions d ∈ D, that d = −d, the algorithm makes loops: for every node
v ∈ Id it adds a loop v + d = v.

For each pair of opposite directions d 6= −d, the algorithm takes nodes from Id
and I−d, and links them with (d,−d)-edges. By the second balance condition,
|Id| = |I−d|, thus, every node gets all the edges it needs.

Now, to check whether a signature is non-empty, that is, whether there is at least one
graph over this signature, one can just check whether there is at least one balanced vector
for this signature.

For a signature S = (D,−,Σ,Σ0, (Da)a∈Σ), balanced vectors (xa)a∈Σ with the minimal
possible sum of coordinates will be called minimal balanced vectors.

How large could be the sum of the coordinates of a minimal balanced vector? The
next theorem gives an upper bound on this sum, that is, on the minimal number of nodes
in the graph over a signature.

Theorem 14. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a non-empty signature, and assume
that |D| > 2 and that Da is non-empty for all a ∈ Σ. Let r = 1

2
|D|, m = |Σ| and

k = maxa∈Σ |Da|.
Then, there is a graph over the signature S with at most 2mrmin{rr, k2r−2} nodes.

Note that the bound 2mrk2r−2 can be useful for signatures with many directions, but
with a small maximum degree of nodes. Later on, such signatures will be produced by the
reductions of the emptiness problems for graph-walking automata and for star automata
to the emptiness problem for signatures.

First, the conditions and the claims of Theorem 14 are reformulated in the language
of linear algebra.

By Lemma 7, to prove Theorem 14 it is sufficient to prove that there is such a balanced
vector (xa)a∈Σ that

∑
a∈Σ xa 6 2mrmin{rr, k2r−2}.

Let n be the number of pairs of opposite directions {d,−d}, with d,−d ∈ D and
d 6= −d, in the signature S. It is convenient to rewrite n linear equations in the second

51

balance condition as one vector equation. Let {d1,−d1, . . . , dn,−dn} be all such directions
in D that d 6= −d, here the directions di and −di are opposite, for i = 1, . . . , n.

For each node label a ∈ Σ, the contribution of one node labelled with a to the balance
of directions in a graph is given by a column vector va of height n. The i-th element of
the vector va, for i ∈ {1, . . . , n}, is defined as follows:

va,i =


1 if di ∈ Da,−di /∈ Da

−1 if − di ∈ Da, di /∈ Da

0 if di /∈ Da,−di /∈ Da or di ∈ Da,−di ∈ Da

(4.1)

Thus, the i-th element of the vector va is the contribution of an a-labelled node to the
difference of the number of directions di and −di in a graph.

Then, the second balance condition for the vector of quantities of labels (xa)a∈Σ can
be written in the following form: ∑

a∈Σ

xava = 0

If n = 0, then all directions are of the form d = −d, and one initial node with the
loops is a correct graph. Let n > 1. As n 6 r, it is sufficient to prove an upper bound
2mnmin{nn, k2n−2}. Let (xa)a∈Σ be a balanced vector with the minimal possible sum
of the coordinates. Among the initial node labels, only one has a non-zero coefficient.
Fix this initial label a0 and let the vector −va0 be denoted by b. Then, the coefficients
for other initial labels are zeros and

∑
a∈(Σ\Σ0) xa =

(∑
a∈Σ xa

)
− 1. Then, to prove the

theorem, it is sufficient to find such a non-negative integer solution (xa)a∈(Σ\Σ0) to the
equation

∑
a∈(Σ\Σ0) xava = b, that

∑
a∈(Σ\Σ0) xa 6 2mnmin{nn, k2n−2} − 1.

Some vectors va for different non-initial labels can coincide. Let v1, . . . , v` be all vectors
from the set { va | a ∈ (Σ \ Σ0) } without repetitions and without a zero vector. Note
that ` < m. Then, it is sufficient to find a non-negative integer solution (xi)

`
i=1 to the

equation
∑`

i=1 xivi = b, with
∑`

i=1 xi 6 2`nmin{nn, k2n−2}.
What is known about vectors v1, . . . , v`? These are column vectors of height n, with

all elements in {0, 1,−1}. Each vector has at most k non-zero elements, since each node
label a ∈ Σ has at most k directions in Da. To apply the methods of linear algebra,
these vectors are considered over the field of real numbers: v1, . . . , v` ∈ Rn. Therefore,
Theorem 14 is reduced to the following lemma.

Lemma 8. Let v1, . . . , v` ∈ {0, 1,−1}n be distinct non-zero column vectors of height n,
where n > 1; let b ∈ {0, 1,−1}n be a column vector. Let k be the maximum number of
non-zero elements in the vector. Then, if the linear equation

∑`
i=1 xivi = b has at least

one non-negative integer solution, then there exists such a non-negative integer solution
(xi)

`
i=1, that

∑`
i=1 xi 6 2`nmin{nn, k2n−2}.

The proof of Lemma 8 will use a classical bound on matrix determinants, proved by
Hadamard [13].

Theorem A (Hadamard [13]). Let n > 1 be an integer and let A be an n × n matrix,
with all elements real and not exceeding 1 in absolute value. Then, |detA| 6 n

n
2 .

Hadamard also proved that if n is a power of 2, then the bound n
n
2 is achieved on

some matrices.
Also, I will use the following trivial upper bound for matrices with a small number of

non-zeros in columns.

52

Claim 9. Let n > 1 be an integer and let A be an n × n matrix, with all elements real
and not exceeding 1 in absolute value. Let k > 1 be such an integer, that each column in
the matrix A, maybe except one, has at most k non-zero elements. Then |detA| 6 kn−1.

The upper bounds on determinants are used to estimate the coefficients in linear
equations.

Lemma 9. Let n > 1 be an integer, let v1, . . . , vt ∈ {0, 1,−1}n, with t > 1, be column
vectors of height n, which are linearly independent in Rn. Let k be the maximum number
of non-zero elements in a vector, and let N = min{nn

2 , kn−1}. Let some vector u ∈ Rn,
with the maximum absolute value of its elements c, be represented as a linear combination:
α1v1 + . . .+ αtvt = u.

Then, |αi| 6 cN, for all i ∈ {1, . . . , t}. Furthermore, if all elements in the vector u
are integers, then all coefficients αi, for i ∈ {1, . . . , t}, are rational, and after multiplying
the equation by their least common denominator one obtains the equation β1v1 + . . . +
βtvt + βt+1u = 0, with all coefficients βi, for i ∈ {1, . . . , t+ 1}, integer and not exceeding
cN in absolute value.

Proof. If u is a zero vector, then all coefficients in the linear combination are zeros. Now
let u be not a zero vector. The vectors v1, . . . , vt are linearly independent, so the system
of equations x1v1 + . . .+xtvt = u has at most one solution. Thus, the solution (α1, . . . , αt)
is unique. To solve this system of equations using Cramer’s rule, one needs the matrix of
coefficients V = (v1, . . . , vt) to be square.

Since the vectors v1, . . . , vt are linearly independent, t 6 n. First, consider the case of
t < n. The matrix (v1, . . . , vt, u) has the column rank t, because the columns v1, . . . , vt
are linearly independent, and the column u is their linear combination. It is known that
the column rank equals the row rank, so there are t linearly independent rows in the
matrix (V, u), all other rows are their linear combinations. That is, in the system of
equations x1v1 + . . . + xtvt = u, all equations are linear combinations of some t linearly
independent equations. Taking only these t linearly independent equations one obtains a
system x1v

′
1 + . . . + xtv

′
t = u′, with all vectors of height t. The set of solutions has not

changed, so (α1, . . . , αt) remains the only solution. Let V ′ = (v′1, . . . , v
′
t) be the matrix of

coefficients of the new system of equations, it is a non-degenerate square matrix. If t = n,
then the matrix V is already square and non-degenerate; in this case let V ′ = V , u′ = u.

Now the new system of equations can be solved by Cramer’s rule. Let V ′i =
(v′1, . . . , v

′
i−1, u

′, v′i+1, . . . , v
′
t) be the matrix, obtained from V ′ by replacing of the i-th

column with the column vector u′, for each i = 1, . . . , t. Then, Cramer’s rule claims that

the unique solution to the system is αi =
detV ′i
detV ′

, for i = 1, . . . , t.
Now one needs to estimate the determinants of the matrices V ′ and V ′i , for i = 1, . . . , t.

The matrix V ′ has all its elements in {0, 1,−1}. Also, each column of V ′ has at most
k non-zeros. So Theorem A and Claim 9 give |detV ′| 6 min{nn

2 , kn−1} = N . Since all
elements of V ′ are integers and the matrix is non-degenerate, detV ′ is a non-zero integer.
Now consider the matrix V ′i , for some i = 1, . . . , t. Let V ′′i be the matrix obtained from
V ′i by dividing the i-th column, which equals u, by c. Then, all elements of V ′′i are not
greater than 1 in absolute value. And each column has at most k non-zero elements,
maybe, except the i-th column. Then, by Theorem A and by Claim 9, the determinant
of V ′′i is estimated as follows: |detV ′′i | 6 min{nn

2 , kn−1} = N . Thus, the determinant of
the matrix V ′i , which has one column multiplied by c, is bounded like this: |detV ′i | 6 cN .

53

So, |αi| = |detV ′i
detV ′
| 6 |detV ′i | 6 cN , for all i = 1, . . . , t. If all elements of the vector u are

integers, then all the determinants detV ′i are integers as well. Then all αi, for i = 1, . . . , t,
are rational. And after muliplying the equation by their least common denominator,
which is not greater than |detV ′| in absolute value, one gets all new coefficients βi, for
i = 1, . . . , t + 1, not greater in absolute value than max{|detV ′1 |, . . . , |detV ′t |, |detV ′|} 6
cN .

Now it is time to prove the lemma, to which Theorem 14 has been reduced.

Proof of Lemma 8. Let N = min{nn
2 , kn−1} be the minimum of the upper bounds from

Theorem A and from Claim 9 on determinants of n × n matrices with real elements not
exceeding 1 in absolute value, and with at most k non-zero elements in each column,
maybe, except one.

Let (x1, . . . , x`) be a non-negative integer solution to the system of linear equa-
tions

∑`
i=1 xivi = b, with the minimum sum

∑`
i=1 xi, and among these, with the min-

imum number of coordinates greater than N . The goal is to prove, that
∑`

i=1 xi 6
2`nmin{nn, k2n−2}.

Step 1 is to prove that all vectors vi, for i = 1, . . . , `, with xi > N , are linearly
independent over the field R.

For the sake of a contradiction, suppose that these vectors are linearly dependent.
Then a linear dependence involving the least number of vectors is chosen. The vectors
v1, . . . , v` are rearranged, so that the vectors from the dependence go in the beginning: let
v1, . . . , vt+1 be the vectors from this minimal linear dependence. It is known that t > 2,
because all vectors v1, . . . , v` are distinct and there is no zero vector among them.

The vectors v1, . . . , vt are linearly independent, whereas v1, . . . , vt+1 are linearly de-
pendent. Then, the vector vt+1 is uniquely represented as a linear combination of the
others: vt+1 = α1v1 + . . .+ αtvt, where α1, . . . , αt ∈ R.

The vector vt+1 has all its elements integer and the maximum absolute value of its
elements is 1; the vectors v1, . . . , vt satisfy all conditions of Lemma 9. Thus, by Lemma 9,
all coefficients α1, . . . , αt are rational, and after multiplying the linear combination by their
least common denominator one gets the new linear combination β1v1 + . . .+βt+1vt+1 = 0,
with all coefficients integer and not exceeding N in absolute value.

Since the chosen linear dependence has the minimal number of vectors, βi 6= 0, for all
i = 1, . . . , t + 1. If

∑t+1
i=1 βi < 0, then the dependence β1v1 + . . . + βt+1vt+1 = 0 can be

multiplied by −1, so one can assume, that
∑t+1

i=1 βi > 0.
Consider the case when

∑t+1
i=1 βi > 0. Then, let (y1, . . . , y`) be a vector defined by

yi = xi−βi, for i = 1, . . . , t+1, and yi = xi, for i = t+2, . . . , `. Then,
∑`

i=1 yivi = b, that is,
(y1, . . . , y`) is another solution to the system of equations. All yi are non-negative integers,
because x1, . . . , xt+1 are greater than N , and β1, . . . , βt+1 are integer and not greater than
N in absolute value. And,

∑`
i=1 yi <

∑`
i=1 xi. This contradicts the minimality of the sum

of the coordinates in the solution (x1, . . . , x`).
Now let

∑t+1
i=1 βi = 0. Then one can similarly subtract (β1, . . . , βt+1) from (x1, . . . , xt+1)

several times until some coefficient among the first t + 1 becomes not greater than N .
Such subtractions will not break the equation, will not make any coordinate negative, will
not change the sum of the coordinates in the solution, but will decrease the number of
coordinates which are greater than N . This contradicts the minimality of the number of
such coordinates among the solutions with the minimal sum of the coordinates.

54

Step 1 is done. Now it is known that all vectors among v1, . . . , v` which have the corre-
sponding coefficients in the solution (x1, . . . , x`) greater than N are linearly independent.
Let these vectors be put first, so that they are v1, . . . , vt.

Step 2 is to prove that x is the desired solution, that is, that
∑`

i=1 xi 6
2`nmin{nn, k2n−2}.

The sum to be estimated is:
∑`

i=1 xi =
∑t

i=1 xi +
∑`

i=t+1 xi. The second sum is

bounded by
∑`

i=t+1 xi 6 (`− t)N , as it has all coefficients not greater than N . If the first
sum is non-empty (t > 0), then the first t variables are bounded as follows. The system of
equations is rewritten in the following way: x1v1 + . . .+ xtvt = b− (xt+1vt+1 + . . .+ x`v`).
Here the vectors v1, . . . , vt are linearly independent, whereas the sum on the right-hand
side is a column vector of height n, with all elements not greater than `N in absolute value
(if t > 0, then

∑`
i=t+1 xi < `N). By applying Lemma 9, with u = b−(xt+1vt+1+. . .+x`v`),

one obtains |xi| 6 `N2, for all i = 1, . . . , t. As t 6 n,

∑̀
i=1

xi =
t∑
i=1

xi +
∑̀
i=t+1

xi 6 t`N2 + (`− t)N 6 n`N2 + `N 6

6 2`nN2 = 2`nmin{nn, k2n−2}.

Theorem 14, which has just been proved, gives the upper bound 2mrmin{rr, k2r−2}
on the number of nodes in the minimal graph over a non-empty signature, which depends
on its parameters: on the number of node labels m = |Σ|, on the number of directions
2r = |D| and on the maximum possible degree of a node k = max{ |Da| | a ∈ Σ }.
This bound, and also Lemma 7, that allows one to work with balanced vectors instead
of graphs, help to construct an NP-algorithm, that solves the non-emptiness problem for
signatures.

Theorem 15. There is an NP-algorithm that takes a signature as an input and determines
whether there is at least one graph over this signature or not.

Proof. The size of an input S = (D,−,Σ,Σ0, (Da)a∈Σ) is not less than |Σ| + |D|. In the
degenerate case of |D| 6 1, it is sufficient to check for one-node graphs. Any initial labels
a0 with Da0 empty form correct graphs; any such non-initial labels can be omitted.

With the trivial cases removed, by Theorem 14, if a graph over the signature S exists,
then there is a graph with at most exponentially many nodes in |D| and |Σ|. Then, by
Theorem 14 and by Lemma 7, the signature is non-empty if and only if there exists a
balanced vector (xa)a∈Σ, with the sum of coordinates not greater than this exponential
upper bound.

Thus, the nondeterministic algorithm guesses a vector (xa)a∈Σ, with sum of the coor-
dinates not greater than exponential, and writes it down in polynomial time. It remains
to check whether the guessed vector is balanced: that is, whether only one label among
the initial node labels has a non-zero coefficient, and whether for each pair of opposite
directions (d,−d) ∈ D, with d 6= −d, the following equation holds:∑

a∈Σ: d∈Da

xa =
∑

a∈Σ: −d∈Da

xa.

55

This can all be checked in polynomial time, because the number of terms in these sums
is polynomial, and each term is not greater than exponential.

If the algorithm guessed the vector, which is balanced, then the signature is non-empty
and the algorithm answers “yes”. Otherwise, it answers “no”.

In fact, the non-emptiness problem for signatures is NP-complete, this is shown later
in Section 4.5.

4.3 Reducing a star automaton to a signature

This section proves the decidability of the emptiness problem for star automata. An
NP-algorithm is constructed, which, for a given star automaton, determines whether it
accepts at least one graph. Moreover, an upper bound on the number of nodes in the
smallest accepted graph is proved in this section.

It turns out that the emptiness problem for star automata can be reduced in polyno-
mial time to the emptiness problem for signatures, which was proved to be in NP.

Theorem 16. There exists a polynomial-time algorithm that takes as an input a signature
S = (D,−,Σ,Σ0, (Da)a∈Σ) with k directions and a star automaton A∗ = (Q, T) over S
with n states and s stars, and computes a signature S ′ = (D′,−,Σ′,Σ′0, (D′a′)a′∈Σ′) with
kn2 directions and with s node labels, with the following property. There exists a bijective
function f that maps a graph G over S and a computation C = (q(v))v∈V of the automaton
A∗ on this graph to a graph G′ = f(G,C) over the signature S ′, which has the same set
of nodes and the same edge structure as the graph G (the only difference between G and
G′ is in node labels and in directions).

Proof. Node labels and directions of the new signature S ′ will contain information on
old node labels and directions, and also some additional information that encodes the
computation of the star automaton A∗ on a graph. More precisely, node labels will
additionally encode stars in nodes that appear in the computation, whereas directions
will encode the states of the star automaton at the two ends of an edge.

The new signature S ′ is constructed as follows.

• Node labels are all the stars of the automaton A∗, that is, Σ′ = T .

• Initial node labels are all the stars of A∗, in which the first component is an initial
node label from the old signature, that is, Σ′0 = { (a, q, q1, . . . , q|Da|) ∈ T | a ∈ Σ0 }.

• The set of directions is D′ = D ×Q×Q, where the direction (d, q1, q2) means that
in the old graph the direction d was here, and in the encoded computation the state
at the current node is q1 and the state at the opposite end of the edge is q2.

• The relation of the opposite direction is: −(d, q1, q2) = (−d, q2, q1), for all (d, q1, q2) ∈
D′.

• For each star t = (a, q, q1, . . . , q|Da|) ∈ Σ′, where d1, . . . , d|Da| are ordered directions
from Da, the set of directions for the node label t is defined by D′t = { (di, q, qi) |
i = 1, . . . , |Da| }.

56

v0

–d1

ba

a
d1 –d1

d1

d1 –d1

а0 q

d2

–d2

p

q

p

a, p, p, q

a, q, p, p

(–d1,p,p)(d1,p,p)

a0, q, p

(d2,p,q)

(–d2,q,p)

(–d1,p,q)

(d1,q,p) (–d1,q,p)

(d1,p,q)

b, p, q, p, q

Figure 4.1: Left: computation of a star automaton A∗ on a graph G. Right: augmented
graph G′ that encodes both G and this computation.

Such a signature S ′ can be computed from S and A∗ in polynomial time. There are
exactly kn2 directions and exactly s node labels in the signature S ′.

It will be proved now, that there is a one-to-one correspondence between graphs over S ′

and pairs (G,C) of a graph over S and a computation of A∗ on this graph. An example
of such a correspondence is shown in Figure 4.1. For a star automaton A∗ with stars
(a, q, p, p), (a, p, p, q), (b, p, q, p, q), (a0, q, p), its computation on a graph G is given on the
left. On the right, there is a graph G′ that encodes stars in node labels and states at the
two ends of an edge in directions.

Let G = (V, v0,+, λ) be a graph over S, and let C = (q(v))v∈V be a computation of the
star automaton A∗ on this graph. Then the graph f(G,C) = G′ = (V ′, v′0,+, λ

′) over the
signature S ′ that encodes the graph G and the computation C is constructed as follows.

• The set of nodes and the initial node are the same: V ′ = V , v′0 = v0.

• The edges in the graph G′ connect the same nodes as in G, but all the directions
are augmented with the states at the ends of an edge. If v + d = u in the graph G,
then v+ (d, q(v), q(u)) = u in the graph G′, and these are all edges in G′. Then, the
ends of each edge are labelled with opposite directions.

• The node labels in G′ are stars in nodes. For each node v ∈ V with some label
λ(v) = a, the node label in the graph G′ is λ′(v) = (a, q(v), q(v+d1), . . . , q(v+d|Da|)),
where d1, . . . , d|Da| are ordered directions from Da. Then, λ′(v) ∈ T = Σ′, because
(q(v))v∈V is a computation. And the directions in G′, used at the node v, are all
the directions from Dλ′(v). And only the initial node has an initial label.

This transformation maps different pairs (G,C) to different graphs G′, because no
information is lost. Conversely, for each graph G′ over the signature S ′ there is a unique
corresponding pre-image (G,C), where G is obtained by dropping some information from

57

all labels, and node labels explicitly give states and stars in a computation. Each edge in
G′ checks that the states at the nodes it connects are consistent with the stars.

Now the results proved for signatures in the previous section will be transferred to
star automata.

Corollary 2. The non-emptiness problem for star automata, that is, whether a given star
automaton accepts at least one graph or not, can be solved in NP.

Proof. By Theorem 16, for a star automaton A∗ that works over some signature S, one
can construct in polynomial time such a signature S ′ of polynomial size, that graphs over
S ′ are bijectively mapped to the computations of A∗ on graphs over S.

A graph is accepted by the star automaton A∗ if there exists at least one computation
of A∗ on it. Thus, to check whether the star automaton is non-empty, one can just
check whether the signature S ′ is non-empty. By Theorem 15, the latter can be done in
nondeterministic polynomial time.

The upper bound on the number of nodes in the minimal graph over a signature
(Theorem 14) can be transferred to star automata as well.

Corollary 3. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature with k > 2 directions, and
with |Da| > 1 for all a ∈ Σ. Let A∗ = (Q, T) be a star automaton with n states and with
s stars over this signature. If A∗ accepts at least one graph, then the accepted graph with
the minimal number of nodes has at most sn2kkn

2−1 nodes.

Proof. Let A∗ accept at least one graph. The signature S ′ is constructed from the signa-
ture S and from the star automaton A∗ by Theorem 16. The graphs over S ′ correspond
to the computations of A∗ on graphs over S with the same number of nodes.

Then, the number of nodes in the minimal accepted graph for A∗ equals the number
of nodes in the minimal graph over the signature S ′. This signature has kn2 directions
and s node labels, the maximum degree of a node does not exceed k (because the func-
tion f from Theorem 16 does not change the edge structure of a graph). Then, Theo-
rem 14 gives the following upper bound on the number of nodes in the minimal graph:

2s1
2
kn2 min{(1

2
kn2)

1
2
kn2

, kkn
2−2}. It can be bounded by a simpler expression:

2s
1

2
kn2 min

{
(
1

2
kn2)

1
2
kn2

, kkn
2−2
}
6 skn2kkn

2−2 = sn2kkn
2−1.

4.4 Reducing a graph-walking automaton to a signa-

ture

In Section 4.3, the emptiness problem for star automata was reduced to the emptiness
problem for signatures. In this section such a reduction is made for the emptiness problem
for graph-walking automata.

Note that whereas a computation of a star automaton is a way to choose states in
nodes, and the graph is accepted by a star automaton if there is at least one computation

58

on this graph, graph-walking automata are different. In a graph-walking automaton, the
computation on a graph is a sequence of configurations (q, v) of the automaton on a
graph, where q is the current state, and v is the node which the automaton visits at the
moment. This sequence in defined uniquely for each graph. The graph is accepted if the
computation is accepting, that is, ends with an accepting configuration.

One way to reduce a graph-walking automaton to a signature is to simulate it by a
star automaton. The next theorem shows that if some set of graphs is recognized by a
graph-walking automaton, then this set of graphs can be defined by some star automaton.
There is an analogous result for trees: star automata on trees are nondeterministic tree
automata, graph-walking automata on trees are deterministic tree-walking automata, and,
as noted by Bojańczyk and Colcombet [4], the inclusion of the class of languages defined
even by nondeterministic tree-walking automata into the class defined by tree automata
is a folklore result.

Theorem 17. For every n-state graph-walking automaton A = (Q, q0, F, δ) over some
signature S = (D,−,Σ,Σ0, (Da)a∈Σ) with k directions and m node labels, there exists
a star automaton A∗ = (P, T) with (k + 1)n states and at most m(k + 1)n(k+1) stars,
defined over the same signature S, which accepts exactly the same graphs as A. The star
automaton A∗ has size exponential in the size of A and is constructed in exponential time.

This theorem is given without a proof, because the next theorem gives a direct reduc-
tion of a graph-walking automaton to a signature that provides a better upper bound on
the number of nodes in the minimal accepted graph.

Theorem 18. There exists an algorithm that takes as an input some n-state graph-walking
automaton A = (Q, q0, F, δ) over some signature S = (D,−,Σ,Σ0, (Da)a∈Σ) with k di-
rections and m node labels, and computes such a signature S ′ = (D′,−,Σ′,Σ′0, (D′a′)a′∈Σ′)
with k4n directions and with not more than m4nk node labels, that the following condition
holds.

There exist two functions f and g. The function f : L(A) → L(S ′) injectively
maps graphs over S, accepted by the automaton A, to graphs over S ′, and the function
g : L(S ′) → L(A) is a surjection, such that g(f(G)) = G. If G′ = f(G) or G = g(G′),
then the graphs G and G′ have the same sets of nodes and the same edge structure, only
node labels and directions are different.

The size of the resulting signature is exponential in the size of the input, and the
algorithm works in time exponential in the size of the input.

Proof. New node labels and directions of the signature S ′ encode node labels and di-
rections of the signature S and some additional information about the behavior of the
automaton A in the vicinity of the node or edge end-point.

The new directions are D′ = D × 2Q × 2Q = { (d,Qin, Qout) | d ∈ D; Qin, Qout ⊆ Q }.
Every new direction (d,Qin, Qout) is an old direction d with two sets of states attached:
Qin encodes the states in which the automaton came in its computation on a graph to
the current edge end-point moving in the direction −d, whereas Qout consists of states, in
which the automaton comes to the opposite end of the edge, moving in the direction d.

The opposite direction is −(d,Qin, Qout) = (−d,Qout, Qin), for each (d,Qin, Qout) ∈ D′.
Each node label in S ′ contains an old node label and all information about the new

directions in the node. But not every combination of new directions at a node makes a

59

v0
b, { (d1,{p},{q0,q}),

(–d1,{q0},{p}),
(d2,{q},Ø) }

a0, { (–d2,Ø,{q}) }

a, { (d1,Ø,Ø),
(–d1,{q0,q},{p}) }

(d1,Ø,Ø)

(–d1,Ø,Ø)

(–d1,{q0,q},{p})

(d1,{p},{q0})

(–d1,{q0},{p})

(d1,{p},{q0,q})

(d2,{q},Ø)

(–d2,Ø,{q})

–d1

ba

a
d1 –d1

d1

d1 –d1

а0 q0

q
p

q

p

q0

q0

d2

–d2

a, { (d1,{p},{q0}),
(–d1,Ø,Ø) }

Figure 4.2: Left: the accepting computation of some graph-walking automaton A on some
graph G over the signature S. Right: the graph G′ over the signature S ′ that encodes the
graph and the accepting computation.

new label. The goal is to ensure that each graph over S ′ encodes a graph over S that is
accepted by A, along with an accepting computation of A on this graph. For this, some
combinations that cannot appear in accepting computations of the automaton A will be
left out.

The set of node labels Σ′ is a subset of

Σ̂′ = { (a,E) | a ∈ Σ, E = {(d,Qin,d, Qout,d)}d∈Da , where Qin,d, Qout,d ⊆ Q for all d ∈ Da }.

It will be specified later, which elements of the set Σ̂′ are in Σ′ and which are not.
The set of directions of a new node label (a,E) is D′(a,E) = E. The label (a,E) is

initial if and only if the label a is initial. Note that for each node label a ∈ Σ, there is only
one direction (d,Qin,d, Qout,d) with the first component d in the set E, for each direction
d ∈ Da.

Figure 4.2 gives an example of how a graph G over S accepted by the automaton A
can be converted to a graph G′ over the signature S ′ by adding to each direction the
information on the states in which the automaton crosses the edge, and by adding to each
node label the information contained in all new directions at the node.

To complete the definition of the signature S ′, it remains to say, which pairs (a,E)

from the set Σ̂′ are in the set Σ′, that is, are node labels of S ′. Some pairs (a,E), which
represent situations that cannot occur in any accepting computations of A, will be left
out, and leaving them out will ensure that every graph over the signature S ′ encodes some
graph G and an accepting computation of A on G.

A pair (a,E) is in Σ′ if and only if the following conditions hold.

1. The sets Qin,d and Qin,e cannot intersect for directions d 6= e, where d, e ∈ Da. If
the label a is initial, then for each d ∈ Da it is prohibited to have q0 ∈ Qin,d.

60

Indeed, the automaton A cannot come to the node in the state q twice in the
accepting computation, otherwise it will repeat a configuration and loop. By similar
reasons the automaton cannot return to the initial node in the state q0 in the
accepting computation.

Denote by Qin the set of all states in which the automaton A visits the node,
according to the information in the node label (a,E). If a /∈ Σ0, then Qin =
(
⋃
d∈Da

Qin,d), if a ∈ Σ0, then Qin = (
⋃
d∈Da

Qin,d) ∪ {q0}.

2. For each state q1 ∈ Qin, either a transition δ(q1, a) or acceptance (q1, a) ∈ F should
be defined. If the transition δ(q1, a) = (q2, d) for some q2 and d is defined, then this
transition should be encoded, that is q2 ∈ Qout,d should hold.

Indeed, if the automaton A in the accepting computation visits some node in the
state q1, then it either accepts, or makes a transition, it cannot reject.

3. For each d ∈ Da and for each state q2 ∈ Qout,d, there must be a way to move from
the current node in the state q2 in the direction d. That is, there should exist a
state q1 ∈ Qin, with δ(q1, a) = (q2, d).

4. For every two distinct states p1, q1 ∈ Q1, with the transitions at the label a defined,
the transitions should be distinct: δ(p1, a) 6= δ(q1, a).

Indeed, the automaton in the accepting computation cannot come to the same
configuration twice, otherwise it loops.

The signature S ′ has k4n directions. There are at most m4kn node labels, as in a label
(a,E) there are m ways to choose an old label a, and 4n ways to choose sets Qin,d and
Qout,d for each direction d ∈ Da.

All the directions with their opposite directions, and all the labels from Σ̂′ with their
sets of directions can be written down in time linear in their length, that is, exponential
in the length of the input. Checking whether a label (a,E) ∈ Σ̂′ satisfies all conditions,
can be done in linear time in the length of the label.

The signature S ′ has been constructed, and it remains to prove the correspondence
between the graphs over S accepted by the automaton A, and all the graphs over S ′, and
to construct the functions f and g which define this correspondence.

Let the automaton A accept some graph G = (V, v0,+, λ) over the signature S. Then,
the graph f(G) = G′ = (V ′, v′0,+, λ

′) over the signature S ′ is constructed as follows.

• The set of nodes and the initial node are the same: V ′ = V , v′0 = v0.

• The edges in G′ are the same as in G, but with additional information encoded in
the directions. Let some edge e with directions (d,−d) connect the nodes u and v
in the graph G, that is, u+ d = v in G. Let Qin ⊆ Q be a set of states in which the
automaton A in its computation comes to the node u from the node v by the edge
e, let Qout ⊆ Q be a set of states, in which the automaton A arrives to the node v
from the node u by the edge e. Then, the corresponding edge in G′ is defined by
u+ (d,Qin, Qout) = v and v + (−d,Qout, Qin) = u. These are all edges in G′.

• The node labels in G′ are the node labels from G, but with added information on the
new directions. Let a node v in G have label a, and accordingly edges in directions

61

from Da. These directions in the graph G′ are augmented with the information
about the automaton’s moves, forming the set E of new directions. Then the node
label of the node v in the graph G′ is (a,E). The label (a,E) is in Σ′, because it
encodes the moves of the automaton in the accepting computation (and only labels
encoding situations impossible in accepting computations were not included in Σ′).
The node v has edges in directions from E = D′(a,E). And only the initial node has
an initial label, because the new labels’ being initial depends only on the component
a of (a,E).

Now it remains to check, that each graph over S ′ corresponds to some graph over S
that is accepted by A.

What is the general form of a graph G′ over S ′? In the first components of directions
and node labels, it encodes some graph g(G′) = G over S (and this is a definition of g).
Then g(f(G)) = G by definition. The other components of directions and node labels
encode some information about moves of the automaton. It will be shown that all moves
from the computation of the automaton A on a graphGmust be encoded, and that looping
or rejecting cannot be encoded. Then, for each graph G′ over S ′, the corresponding graph
G = g(G′) must be accepted by the automaton A. Note that, besides all moves from the
accepting computation, the graph G′ may additionally encode some cycles of transitions
that do not intersect with the accepting computation. So an accepted graph G over S
may have several pre-images G′, such that g(G′) = G.

It remains to prove that each graph G′ over the signature S ′ must encode all moves
the automaton A makes in its computation on the graph G = g(G′), and possibly some
moves not in this computation, and that the computation of A on G must be accepting.

Fix a graph G′ over the signature S ′, let G = g(G′), and let C = C0, C1, . . . , CN be the
computation of the automaton A on the graph G, where CN is the last configuration, or
N = ∞ if the automaton loops. It should be proved that C is accepting and is encoded
in G′.

This is proved by induction on i that either the configuration Ci is accepting, or the
next configuration Ci+1 exists and it is different from all previous configurations, and the
move from configuration Ci to Ci+1 is encoded in G′.

Let i ∈ {0, 1, 2, . . . , N}, and let the claim be proved for all j < i.
Denote the i-th configuration by (q, v). Let (a,E) be the label of the node v in G′.

Then, one can define Qin for the label (a,E) as in the conditions on Σ′. If i = 0, then
a ∈ Σ0 and q = q0 ∈ Qin. Otherwise, the move from Ci−1 to Ci is encoded in G′,
and q ∈ Qin as well. Then, by the second condition, as q ∈ Qin, either (q, a) ∈ F , or
δ(q, a) = (r, d), for some r ∈ Q, d ∈ D, and the transition is encoded as r ∈ Qout,d. In the
latter case r will be in Qin,−d for the node v + d. It remains to check that Ci is different
from all previous configurations. If i = 0, then this is true. Now, let (p, u) be the previous
configuration, with δ(p, λ(u)) = (q, d) and with u + d = v. Then q ∈ Qin,−d for the label
(a,E) of the node v. The first condition gives that the automaton could not have entered
the node v in the state q from another direction earlier in the computation, and that (q, v)
cannot be the initial configuration. And if the previous direction is the same, then the
4-th condition prohibits entering (q, v) earlier from a previous state other than p. Then,
only (p, u) can be the previous configuration for (q, v), and, by the induction hypothesis,
(p, u) is unique in C0, . . . , Ci−1. Then, (q, v) is unique in C0, . . . , Ci.

Thus, the computation of A on G is encoded in G′, this computation cannot loop,

62

cannot reject, so it is accepting.

Using Theorem 18 that reduces graph-walking automata to signatures, one can solve
the non-emptiness problem for graph-walking automata in nondeterministic exponential
time.

Corollary 4. The problem of whether a given graph-walking automaton accepts at least
one graph is in NEXP.

Proof. First, the algorithm from Theorem 18 is applied to a given signature S and to a
given graph-walking automaton A over this signature, and it constructs a signature S ′,
such that there exist functions f : L(A) → L(S ′) and g : L(S ′) → L(A). Then, L(A) is
non-empty if and only if L(S ′) is non-empty. The size of the signature S ′ is exponential
in the size of S and A, and this signature is constructed in exponential time. Checking
whether L(S ′) is non-empty can be done in nondeterministic polynomial time in the size
of S ′, that is, in nondeterministic exponential time in the sum of sizes of S and A.

Actually, the non-emptiness problem for graph-walking automata is NEXP-complete,
that will be proved in Section 4.5.

An upper bound on the number of nodes in the minimal graph accepted by a graph-
walking automaton can be derived from the analogous bound for signatures.

Corollary 5. Let S = (D,−,Σ,Σ0, (Da)a∈Σ) be a signature with k > 2 directions, with
m node labels, and with |Da| > 1 for each a ∈ Σ. Let A = (Q, q0, F, δ) be a graph-walking
automaton over S with n states. Then, if A accepts at least one graph, then the number
of nodes in the smallest accepted graph is at most m4n(k+1)kk4n−1.

Proof. Let A accept at least one graph. By Theorem 18, there is a signature S ′, and
functions f : L(A) → L(S ′) and g : L(S ′) → L(A) that do not change the number of
nodes in a graph. So the minimal number of nodes for graphs over S accepted by A is
equal to the minimal number of nodes in graphs over S ′.

The signature S ′ has k4n directions, at most m4kn node labels, and the maximum
degree of a node at most k. The latter is because f preserves edge structure of graphs.
Then, by Theorem 14, the minimal graph over the signature S ′ has the number of nodes
at most

m4nkk4n min
{(1

2
k4n
) k4n

2 , kk4n−2
}
6 m4nkk4nkk4n−2 = m4n(k+1)kk4n−1.

4.5 Computational complexity of emptiness prob-

lems

It has been proved that the non-emptiness problems for signatures and for star automata
are both in NP, and that the non-emptiness problem for graph-walking automata is in
NEXP. In this section, all these problems are proved to be complete in their complexity
classes.

NP-hardness of the non-emptiness problem for signatures is proved by a reduction of
graph 3-colourability to this problem.

63

+(u,●,v) –(u,●,v) –(v,●,u) +(v,●,u)u, v,●,●u,● v,●

u v

● ●

Figure 4.3: From 3-colourability to signature non-emptiness: mapping a graph with a
colouring to a graph over a signature.

Theorem 19. The problem of whether there is at least one graph over a given signature
is NP-hard.

Proof. The 3-colourability problem for a connected graph G = (V,E) is to check whether
its nodes can be coloured in {1, 2, 3}, so that every edge connects differently coloured
nodes.

For an input graph G, one should construct such a signature SG in polynomial time,
that there exists a graph over SG if and only if the graph G can be coloured correctly.

The signature SG will be constructed so, that graphs over it correspond to correct
colourings of the graph G = (V,E).

Nodes of G can have any of the three colours, and for each node and for each colour
there is a corresponding node label. Furthermore, for every edge with two distinct colours
on its ends, there is a separate node label representing this edge with these colours, that
is, an unordered pair of two coloured nodes.

Σ =
{

(v, i)
∣∣ v ∈ V, i = 1, 2, 3

}
∪
{
{(u, i), (v, j)}

∣∣ (u, v) ∈ E, i, j ∈ {1, 2, 3}, i 6= j
}
.

The condition of the colouring to be correct is checked by not having labels of the form
{(u, i), (v, i)}, representing edges with the same colour at both ends.

Fix any node v0 ∈ V , and let all labels (v0, i), with i = 1, 2, 3, be initial.
The set of directions is organized so that for every edge (u, v) in the graph G, node

labels (u, i) and (v, j), which correspond to the nodes u and v in the graph G, would
require a connection through an intermediate node that corresponds to the edge (u, v) in
G, and which gathers information on the colours of the nodes u and v.

D = {±(u, i, v) | u, v ∈ V, (u, v) ∈ E, i = 1, 2, 3 }.

The opposite direction to +(u, i, v) is given by −(u, i, v), for all u, v ∈ V with (u, v) ∈
E, and for all i = 1, 2, 3.

Each node of a graph over this signature which represents one of the nodes of G should
be connected with the nodes representing all the edges coming out of this node.

D(u,i) = {+(u, i, v) | v ∈ V, (u, v) ∈ E }, for all u ∈ V, i = 1, 2, 3.

D{(u,i), (v,j)} = {−(u, i, v),−(v, j, u)}, for all u, v ∈ V, (u, v) ∈ E, i, j ∈ {1, 2, 3}, i 6= j

It remains to prove that the signature SG is as desired, that is, there is a graph over
SG if and only if there is a correct 3-colouring of G.

64

First of all, if a coloring c : V → {1, 2, 3} exists, then a graph Gc over SG representing
this colouring is constructed with the set of nodes V ∪E, where each node v ∈ V has label
(v, c(v)), each node (u, v) ∈ E has label {(u, c(u)), (v, c(v))}. For every edge (u, v) ∈ E
in the graph G, the graph Gc has edges from u to (u, v) and from (u, v) to v, with the
appropriate directions, as illustrated in Figure 4.3.

Conversely, let Ĝ be any graph over the signature SG. It is claimed that in this case
there exists a correct 3-colouring of G, and moreover, Ĝ = Gc for some correct 3-colouring
c of G.

First, it is proved that for each node v ∈ V of the graph G, there is exactly one node
in Ĝ with a label of the form (v, i), for some i. Consider the shortest simple path from
v0 to v in G (it exists because G is connected); the proof is by induction on the length
of this path. The base case is a path of length 0: here the node corresponding to v0

exists because Ĝ must have an initial node, and it is unique because the initial node is
unique. For the induction step, let u be the next to the last node on the path, with
(u, v) ∈ E. By the induction hypothesis, in Ĝ, there is a unique node of the form (u, i),
for some i. This node emits a unique edge in the direction +(u, i, v), which must lead to
a node labelled with {(u, i), (v, j)}, for some j, which in turn emits a unique edge in the
direction −(v, j, u) that ends in a node labelled with (v, j)—so this node exists. If there

were another node in Ĝ labelled with (v, k), for any k, then, by the same reasoning, it
would be connected to some node labelled with (u, `) through some intermediate node;
this node must be the same as the above node labelled with (u, i), because such a node
is unique. However, there is a unique path simulating the edge (u, v), hence this node
labelled with (v, k) must coincide with the above node labelled with (v, j).

Therefore, Ĝ has the set of nodes V ∪ E, which replicates the structure of G, with
every edge split by an intermediate node. Then, it must be Gc for some colouring c. This
colouring is correct, because each intermediate node checks that the colours at both ends
of the corresponding edge are distinct. Then, correct colourings of the graph G correspond
to graphs over SG.

Note that the intermediate nodes that split the edges of G are necessary, because node
labels cannot accumulate information on the colours of all the neighbours of a node, as
this would require an exponential number of node labels.

The non-emptiness problem for star automata is NP-complete as well. Its membership
in NP was established above, and its NP-hardness follows from the NP-hardness of non-
emptiness of signatures.

Theorem 20. The problem of checking whether a given star automaton accepts at least
one graph is NP-hard.

Proof. Non-emptiness for signatures was proved in Theorem 19 to be NP-hard. Now the
NP-hardness of the non-emptiness problem for star automata is proved by reducing the
non-emptiness problem for signatures to it, as follows.

Let S be a given signature. Consider the automaton A∗ over it, that has one state,
and, for each node label, has a star with this state at the centre and with this state at
all rays. This star automaton accepts all graphs, so its non-emptiness is equivalent to
non-emptiness of the signature S. And this automaton A∗ has size polynomial in the size
of S.

65

Now it is time to prove the NEXP-completeness of the non-emptiness problem for
graph-walking automata. It was proved in Corollary 4, that this problem is in NEXP. For
NEXP-hardness it will be proved that a signature and a graph-walking automaton can
define a set of graphs containing a square grid of size exponential in the number of states
of the automaton and in the size of the signature. And then a nondeterministic Turing
machine working in exponential time will be simulated on such grids.

Theorem 21. The problem of whether there is at least one graph accepted by a given
graph-walking automaton is NEXP-hard.

Proof. Fix some NEXP-complete problem and some nondeterministic Turing machine M
that solves this problem in exponential time. It can be assumed that the Turing machine
is one-tape with the tape infinite to the right, and that the machine never moves to the
left from the first position of the tape, in which an input string begins. The number of
states, the number of transitions in the transition function, the sizes of the input aphabet
and of the work alphabet are constant, as the Turing machine M is fixed.

The problem whether a given string w over the input alphabet is accepted by the
Turing machine M is NEXP-complete. So to prove the theorem it is enough to reduce in
polynomial time this problem about M to the non-emptiness problem for a graph-walking
automaton. That is, such a deterministic polynomial-time algorithm is needed, that for
a given string w it constructs a signature Sw and a graph-walking automaton Aw so that
a graph accepted by Aw will exist if and only if there exists an accepting computation of
the machine M on the string w.

Let f : N → N be a polynomial-time computable function that, for each length ` of
an input string, gives a number f(`), bounded by a polynomial in `, such that f(`) >
max{`, 2}, and that the Turing machine M halts on every string of length at most ` in
not more than 2f(`) − 1 steps. Then, each computation of M on each string of length at
most ` can be written on a grid of length 2f(`) × 2f(`).

The signature Sw = (D,−,Σ,Σ0, (Da)a∈Σ) depends only on the length of w and is
constructed as follows.

Let n = f(|w|), so that each computation of M on a string w can be written on a
grid of size 2n × 2n; the number n = f(|w|) can be computed in polynomial time and is
polynomial in the length of w.

The signature Sw is composed of three parts: D = D1∪D2∪D3, Σ = Σ1∪Σ2∪Σ3, all
sets here are disjoint. And for each node label a ∈ Σi, it should hold that Da ⊆ Di, for
i ∈ {1, 2, 3}. In every graph over Sw all nodes are divided into three sets: V = V1∪V2∪V3,
where Vi consists of the nodes with labels in Σi, for i = 1, 2, 3. There are two special pairs
of opposite directions: +d ∈ D1 and −d ∈ D2, and +d′ ∈ D2 and −d′ ∈ D3. For every
other direction, the opposite direction lies in the same set. Thus, nodes in V1 and nodes
in V2 can be connected only by (+d,−d)-edges; similarly, nodes in V2 and nodes in V3 can
be connected only by (+d′,−d′)-edges. A node from V1 and a node from V3 cannot be
connected with an edge.

The idea is that nodes with labels in Σ2 form a grid on which the Turing machine
working on w will be simulated. Each node label from Σ2 will have both directions −d
and +d′. Labels from Σ1 will allow the nodes in V1 to form only a full binary tree of
height 2n that emits exactly 22n edges in the direction +d from its leaves, thus ensuring
that in every graph the number of nodes in V2 is exactly 22n. Labels from Σ3 will be used
to attach a chain of length 2n to every node with label in Σ2, with the chain consisting

66

of zeros and ones. The automaton Aw will check that nodes in V2 form a 2n × 2n grid,
and that chains attached to these nodes correctly encode the row number and the column
number in the grid for each node. Next, the automaton Aw will check that some accepting
computation of the Turing machine M on the string w is encoded on the grid. Figure 4.4
shows a graph over some signature Sw with n = 2, that defines a correct grid on nodes
with labels in Σ2.

The only initial node label in the signature Sw is a0 ∈ Σ1. The first part
Σ1 and D1 should be defined so that the nodes with labels in Σ1 can form only
one graph: a full binary tree of height 2n with 22n leaves. The set of node
labels is Σ1 = {a0, a1, b1, a2, b2, . . . , a2n, b2n}, and the set of directions is D1 =
{±`1,±r1,±`2,±r2, . . . ,±`2n,±r2n} ∪ {+d}. Here the label a0 is initial, it is used for
the root of a tree (level 0), the labels ai and bi are used for left and right children of the
i-th level. The node label a0 has the set of directions Da0 = {+`1,+r1}, that is, the root
has two edges to the two nodes of level 1. Labels ai and bi, for i ∈ {1, . . . , 2n− 1}, have
the sets of directions Dai = {−`i,+`i+1,+ri+1} and Dbi = {−ri,+`i+1,+ri+1}. So the i-th
level generates twice as many nodes on level i+1. The node labels of the last level 2n (for
the leaves of the tree) have sets of directions Da2n = {−`2n,+d} and Db2n = {−r2n,+d},
that is, each leaf emits one edge in the direction +d, which is used for connection with
nodes in V2.

Thus, in every graph over the signature S the initial node is labelled with a0 ∈ Σ1 and
all nodes in V1 form a full binary tree with 22n leaves and each leaf emits an edge in the
direction +d.

The part Σ3, D3 is constructed to allow only chains of nodes of length 2n with one
direction −d′ in each chain, with zeros and ones in nodes. This part of the signature
is defined by Σ3 = {01, . . . , 02n} ∪ {11, . . . , 12n}, D3 = {±d1, . . . ,±d2n−1} ∪ {−d′}. And
D01 = D11 = {−d′,+d1}; D0i = D1i = {−di−1,+di}, for i ∈ {1, . . . , 2n − 1}; and
D02n = D12n = {−d2n−1}.

Then, each node in V2 has a chain attached to it in the direction +d′. Every such chain
consists of nodes with labels in Σ3, has length 2n and encodes a number from 0 to 22n− 1
in a sequence of zeros and ones in nodes. Let some node v in a graph have a label in Σ2.
Then, the coordinates of v are the pair of numbers (iv, jv), for iv, jv ∈ {0, . . . , 2n − 1},
where the number iv is defined by the first n bits in the chain of nodes in V3 attached to
v, and the number jv is defined by the second n bits. The number iv is meant to be the
number of the row in the grid where v is located, and jv is meant to be the number of the
column. Note that the coordinates of the node v are by definition just a pair of numbers,
encoded in a chain, even if these numbers do not correspond to the actual position of the
node v in a grid.

Now to the main part of the signature: Σ2 and D2. There are 6 directions in D2: two
of them, −d and +d′, are used for connection with V1 and V3, and 4 directions are used
for a grid: ±1 are horizontal (+1 is right, −1 is left), and ±2 are vertical (+2 is up, −2 is
down), so D2 = {±1,±2}∪{−d,+d′}. The set of node labels is Σ2 = Pos×Alph×Head,
that is, each node label in Σ2 is of the form (pos , alph, head). The first component pos
gives the type of a position of a node in a grid: in one of 4 corners, on the side or in the

67

11

12

03

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

02

03

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

+d'

01

12

03

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

02

03

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

12

03

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

02

03

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

12

03

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

02

03

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

12

13

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

02

13

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

12

13

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

02

13

04

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

12

13

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

02

13

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

01

12

13

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

11

02

13

14

+d1
–d1

–d'

+d2
–d2

+d3
–d3

–r3

+r3
– 3

+ 3
а2

а0

а1

а3

а4 b4

–r4

+r4– 4
+ 4

а4 b4

–r4

+r4– 4
+ 4

b3

–r3

+r3
– 3

+ 3

а3

а4 b4

–r4

+r4– 4
+ 4

а4 b4

–r4

+r4– 4
+ 4

b3

b2

–r2

+r2

– 2

+ 2

–r3

+r3
– 3

+ 3
а2

а3

а4 b4

–r4

+r4– 4
+ 4

а4 b4

–r4

+r4– 4
+ 4

b3

–r3

+r3
– 3

+ 3

а3

а4 b4

–r4

+r4– 4
+ 4

а4 b4

–r4

+r4– 4
+ 4

b3

b2

–r2

+r2

– 2

+ 2 b1

v0

–r1

+r1

– 1

+ 1

+d

–d

+d

–d
–1+1 –1+1 –1+1

–1+1 –1+1 –1+1

–1+1 –1+1 –1+1

–1+1 –1+1 –1+1

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

+2
–2

Figure 4.4: A graph that defines a correct 2n × 2n grid, for n = 2. The graph has three
levels: the tree on the nodes in V1 at the top, the grid on the nodes in V2 in the middle,
and chains on nodes in V3 at the bottom, which encode the coordinates of nodes in the
grid (the upper two bits encode the row number, and the lower two bits encode the column
number).

68

centre. So there are 9 variants of the first component of a node label:

Pos = {LU,CU,RU,

LC,CC,RC,

LD,CD,RD},

where the first letter of pos gives the type of horizontal position (L, C or R), and the
second letter gives the type of vertical position (D, C or U). The set of directions Da for
each node label a ∈ Σ2 depends only on the component pos of the label a: the directions
−d and +d′ are always in Da; the direction +1 is in Da if the node is not at the right
border of a grid, that is, if pos /∈ {RU,RC,RD}; the direction −1 is in Da if and only if
pos /∈ {LU,LC,LD}; similarly +2 ∈ Da if and only if pos /∈ {LU,CU,RU}; and −2 ∈ Da

if and only if pos /∈ {LD,CD,RD}.
The components alph and head of node labels in Σ2 will be used for simulating con-

figurations of the Turing machine M on rows of a grid. Let Γ be the work alphabet of M ,
it contains the input alphabet, the new blank symbol and maybe some other symbols; let
Q be a finite set of states of the Turing machine. Then, Alph = Γ, that is, the component
alph gives one of the symbols in the work alphabet of M , and Head = Q ∪ {0}, where
0 /∈ Q, that is, the component head gives either a state of the Turing machine M if the
head is simulated at the current position, or head = 0 if there is no head in this position.

This signature Sw is constructed in time linear in n.
Now a graph-walking automaton Aw over the signature Sw should be constructed, so

that it accepts only graphs, in which nodes in V2 form a correct grid, and the components
alph and head of the labels in these nodes encode a correct accepting computation of the
Turing machine M on the string w. The work of the automaton Aw on a graph is divided
into two phases: checking the grid and checking the encoding of the Turing machine’s
computation on that grid.

In the first phase the automaton does not distinguish the components alph and head
in labels in Σ2, its actions on a node labelled with (pos , alph, head) ∈ Σ2 depend only on
the component pos.

The goal of the first phase is to check that nodes with labels in Σ2 form a 2n × 2n

grid on directions ±1 and ±2, and that the coordinates (iv, jv) of each node v in V2 are
numbers of its row and its column in a grid. For convenience, the automaton also checks
that the leftmost path in the tree on nodes in V1 leads to a node in V2 with coordinates
(0, 0). If all these conditions hold for a graph, then this graph is said to define a correct
grid.

The automaton checks whether a graph defines a correct grid as follows.

1. At the beginning, the automaton checks that the leftmost path in the tree on nodes
with labels in Σ1 leads to a node with a label in Σ2 that has coordinates (0, 0). The
automaton starts at the initial node at the root of the tree, then it moves to the left
child until it comes to a node with label in Σ2. Then it checks that all nodes in the
attached chain contain zeros. This can be done with a constant number of states.

2. The automaton checks, for each node v with label in Σ2, that the component pos of
the label agrees with coordinates (iv, jv) given in the chain of nodes from V3 attached

69

to the node v. For that, it should be checked that pos = XY , where

X =


L if jv = 0

C if 0 < jv < 2n − 1

R if jv = 2n − 1

Y =


D if iv = 0

C if 0 < iv < 2n − 1

U if iv = 2n − 1

.

When the automaton visits some node v ∈ V2, it can check this condition for the
node v using a constant number of states and return to the node. Indeed, it needs
just to check several conditions of the form that all bits of the first or the second n
bits of a chain are all zeros or are all ones.

To do such a check for each node in V2, the automaton needs to visit somehow all
nodes in V2. This can be done by traversing the tree on nodes in V1. This tree can
be traversed with a constant number of states. The leaves in this tree correspond to
nodes in V2, each leaf is connected by a (+d,−d) edge to some node in V2, and each
node in V2 is connected to some leaf. Thus, the automaton checks for each leaf in
a tree that its neighbour in V2 has the component pos agree with the coordinates.
This can be done using a constant number of states.

3. Then the automaton checks that directions ±1,±2 in the grid lead to correct nodes.
That is, for each node v in V2 with coordinates (iv, jv), the following conditions
must hold. If an edge in the direction −1 exists (jv > 0), then it should lead to a
node with coordinates (iv, jv − 1). If an edge by +1 exists (jv < 2n − 1), then it
should lead to a node with coordinates (iv, jv + 1). Similarly, the direction +2 must
increase the coordinate iv, and the direction −2 must decrease it.

When the automaton visits some node v in V2, it can check these conditions using
O(n) states and return to the node v. Indeed, to check the equality of two vec-
tors of length n contaning 0s and 1s, the automaton can compare them bit by bit
remembering only the position of the current bit in a vector and the value of this
bit. To check that the number encoded in the first vector is greater by 1 than the
number encoded in the second vector, the automaton can check that the binary
representations of the vectors are of the form x10i and x01i, with x ∈ {0, 1}∗ and
i > 0, and this can be checked bit by bit.

To make these checks for all nodes in V2 the automaton traverses the tree on the
nodes in V1 as at the previous step.

4. If the automaton did not reject at the previous steps, then it returns to the node
with coordinates (0, 0) and starts the second phase.

If the automaton rejects at the first phase, then the graph does not define a correct
grid. It is claimed that the checks the automaton makes are sufficient, that is, that if
the automaton starts the second phase, then the graph defines a correct grid. Let the
automaton start the second phase on some graph G.

First, it is shown that all nodes with labels in Σ2 have distinct coordinates and that
every pair of coordinates (i, j), for i, j ∈ {0, . . . , 2n − 1}, occurs somewhere.

The node with coordinates (0, 0) exists because such a node is on the leftmost path.
For each node with some coordinates (i, j), the automaton has checked that its neighbours

70

in directions ±1,±2 exist and have coordinates (i, j+ 1), (i, j− 1), (i+ 1, j), (i− 1, j), as
long as these coordinates are between 0 and 2n − 1. Then, for all i, j ∈ {0, . . . , 2n − 1},
there is a node in V2 with coordinates (i, j). As the tree on nodes in V1 is defined uniquely,
|V2| = 22n in every graph. So the node with each pair of coordinates is unique.

Note that the automaton has no way to distinguish a node from its copy locally, so it
is important that counting arguments give uniqueness to each pair of coordinates.

Then, as a node with each pair of coordinates exists and is unique, and coordinates
increase or decrease along the directions in the grid, the graph defines a correct grid.

The states and transitions used by the automaton in the first phase can be written
down in time quadratic in n, as both the number of states and the number of node labels
in the signature are linear in n.

In the second phase, the automaton checks that some accepting computation of the
Turing machine M on the string w is encoded in the grid.

The automaton should check that the initial row encodes the initial configuration of
the Turing machine M on the string w, that the next row encodes one of possible next
configurations, and so on, up to an accepting configuration. Rows after the accepting
configuration are allowed to contain anything.

How are configurations encoded in rows? The Turing machine M works in exponential
time, and the number n was chosen so that every computation on w contains at most
2n−1 steps, and that |w| 6 n. Thus, the head of the Turing machine never visits positions
beyond 2n − 1 on the tape, and during the computation the symbols at these positions
are blank symbols. So the tape contents in a configuration can be thought of as a string
of length 2n. This string is encoded in the nodes of a row in the components alph of node
labels, one symbol of the string per node. The position of the head is encoded by having
the component head non-zero only in one node; in this node, the component head encodes
a state of the Turing machine.

The automaton works in the second phase as follows.

1. The automaton Aw starts the second phase on a graph at the node with coordinates
(0, 0), and the graph is known to define a correct grid of size 2n × 2n.

2. First, the automaton checks the encoding of the initial configuration. It goes through
the first |w| nodes in the first row remembering in a state the number of moves j it
made, and for each node it checks that the component alph of the node label is the
j-th symbol of w. Then it continues moving to the right using one state for that,
and checking that the components alph in all other nodes in the first row contain
blank symbols. While moving from (0, 0) to (0, 2n − 1) the automaton additionally
checks that in the node (0, 0) the component head contains one of the initial states
of the Turing machine, and that in all other nodes of the first row the component
head of the label is 0.

3. For each row i ∈ {0, . . . , 2n− 1}, starting from the row i = 0, the automaton makes
the following two actions.

First, the automaton checks whether the current configuration is accepting. It finds
the node in which the head is encoded, and if (head , alph) is an accepting pair of
M , then the automaton immediately accepts.

If the configuration encoded in the i-th row is not accepting, then the automaton
checks that the next row encodes one of the possible next configurations. This check

71

can be done using a constant number of states as follows. In the neighbourhood of
the head in the i-th row, the automaton checks that a transition is correctly made;
elsewhere, the automaton checks that the tape symbols are unchanged, and no extra
heads appear. Once the check is complete, the automaton moves to the next row.

Working as described above, the automaton accepts a graph in the second phase if and
only if one of the accepting computations of M on w is encoded on the grid, and otherwise
it rejects. The automaton Aw can be constructed in time polynomial in n, and the NEXP-
complete problem of whether the Turing machine M accepts a given string w or not is
reduced to the problem of whether the graph-walking automaton Aw over Sw accepts at
least one graph. Thus, non-emptiness for graph-walking automata is NEXP-hard.

72

Chapter 5

Conclusion

In Chapter 2 the maximum length of the shortest accepted string for direction-determinate
2DFA has been determined precisely, whereas for 2DFA of the general form, a lower bound
of the order 2n has been established. The known upper bound on this length is of the
order 4n. It should be noted that the computed values reported in Section 2.4 exceed the
theoretical lower bound 3

4
·2n−1 proved in Section 2.3, and are much less than the known

upper bound
(

2n
n+1

)
− 1. Thus, the bounds for 2DFA of the general form are still in need

of improvement.
Another parameter to be refined is the size of the alphabet of the construction. Both

constructions in Chapter 2 use an alphabet of exponential size. For a fixed alphabet,
the maximum known length of shortest strings is Ω(1.275n) [17]. Would it be possible
to encode the construction in this thesis over a fixed alphabet to surpass this bound?
What is the exact maximum length of shortest strings accepted by n-state 2DFAs over
an m-symbol alphabet?

The maximum size of smallest accepted trees for tree automata was determined pre-
cisely in Chapter 3. But there is a gap between a lower bound 2Ω(r·1.618n) and an upper
bound 2O(rn·3.572n) on the maximum number of nodes in the smallest accepted trees for
tree-walking automata with n states, that work on trees with degree of a node at most r.
What is an actual constant c in a bound like 2Θ(r·cn) for tree-walking automata?

In Chapter 4, it has been shown that emptiness problems for star automata and
for graph-walking automata are decidable. And the computational complexity classes
for these problems were determined: the non-emptiness problem for star automata is
NP-complete, whereas the non-emptiness problem for graph-walking automata is NEXP-
complete. Table 5.1 compares these new results about automata on graphs with the
previous results for similar automata on strings and on trees.

strings trees graphs
walking (2DFA) (DTWA) (DGWA)

PSPACE-complete [16] EXP-complete [3] NEXP-complete (Cor 4, Thm 21)

tilings by (NFA) (tree automata) (star automata)
edges/stars NL-complete [14] P-complete [27] NP-complete (Cor 2, Thm 20)

Table 5.1: Complexity of the non-emptiness problem for different families of automata.

In Chapter 4, several upper bounds on the number of nodes in minimal accepted
graphs have been obtained. Upper bounds have been proved for graph-walking automata

73

(Corollary 5), and for star automata (Corollary 3). Lower bounds proved for tree-walking
and for tree automata in Chapter 3 also apply to graphs. Perhaps it would be possible
to prove some better lower bounds using more complicated graphs than trees. Also the
upper bounds given in Chapter 4 could be improved.

Star automata in this thesis are a special case of elementary acceptors of Thomas [26],
they are elementary acceptors without conditions on the number of occurrences of each
star. Is the emptiness problem for elementary acceptors of Thomas also decidable?

74

Bibliography

[1] L. Alpoge, Th. Ang, L. Schaeffer, J. Shallit, “Decidability and shortest strings in for-
mal languages”, Descriptional Complexity of Formal Systems (DCFS 2011, Limburg,
Germany, 25–27 July 2011), LNCS 6808, 55–67.

[2] J.-C. Birget, “Intersection and union of regular languages and state complexity”,
Information Processing Letters, 43 (1992), 185–190.

[3] M. Bojańczyk, “Tree-walking automata”, LATA 2008, LNCS 5196, 1–
2. Extended version available at https://www.mimuw.edu.pl/~bojan/upload/

conflataBojanczyk08.pdf.

[4] M. Bojańczyk, T. Colcombet, “Tree-walking automata cannot be determinized”,
Theoretical Computer Science, 350:2–3 (2006), 164–173.

[5] M. Bojańczyk, T. Colcombet, “Tree-walking automata do not recognize all regular
languages”, SIAM Journal on Computing, 38:2 (2008), 658–701.

[6] L. Budach, “Automata and labyrinths”, Mathematische Nachrichten, 86:1 (1978),
195–282.

[7] D. Chistikov, W. Czerwinski, P. Hofman, M. Pilipczuk, M. Wehar, “Shortest paths
in one-counter systems”, FoSSaCS 2016: Foundations of Software Science and Com-
putation Structures, LNCS 9634, 462–478.

[8] E. Dobronravov, N. Dobronravov, A. Okhotin, “On the length of shortest strings
accepted by two-way finite automata”, Fundamenta Informaticae, 180:4 (2021), 315–
331.

[9] K. Ellul, B. Krawetz, J. Shallit, M.-w. Wang, “Regular expressions: new results and
open problems”, Journal of Automata, Languages and Combinatorics, 10:4 (2005),
407–437.

[10] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, “Graph exploration by a finite
automaton”, Theoretical Computer Science, 345:2–3 (2005), 331–344.

[11] I. Glaister, J. Shallit, “A lower bound technique for the size of nondeterministic finite
automata”, Information Processing Letters, 59 (1996), 75–77.

[12] V. Geffert, A. Okhotin, “One-way simulation of two-way finite automata over small
alphabets”, NCMA 2013 (Ume̊a, Sweden, 13–14 August 2013).

75

http://dx.doi.org/10.1007/978-3-642-22600-7_5
http://dx.doi.org/10.1007/978-3-642-22600-7_5
http://dx.doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1007/978-3-540-88282-4_1
https://www.mimuw.edu.pl/~bojan/upload/conflataBojanczyk08.pdf
https://www.mimuw.edu.pl/~bojan/upload/conflataBojanczyk08.pdf
http://dx.doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1137/050645427
https://doi.org/10.1137/050645427
http://dx.doi.org/10.1002/mana.19780860120
https://doi.org/10.1007/978-3-662-49630-5_27
https://doi.org/10.1007/978-3-662-49630-5_27
http://doi.org/10.3233/FI-2021-2044
http://doi.org/10.3233/FI-2021-2044
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
http://dx.doi.org/10.1016/j.tcs.2005.07.014
http://dx.doi.org/10.1016/j.tcs.2005.07.014
http://dx.doi.org/10.1016/0020-0190(96)00095-6
http://dx.doi.org/10.1016/0020-0190(96)00095-6

[13] J. Hadamard, “Résolution d’une question relative aux déterminants”, Bulletin des
Sciences Mathématiques, 17 (1893), 240–246.

[14] N. D. Jones, “Space bounded reducibility among combinatorial problems”, Journal
of Computer and System Sciences, 11:1 (1975), 68–85.

[15] C. A. Kapoutsis, “Removing bidirectionality from nondeterministic finite automata”,
Mathematical Foundations of Computer Science (MFCS 2005, Gdansk, Poland, 29
August–2 September 2005), LNCS 3618, 544–555.

[16] D. Kozen, “Lower bounds for natural proof systems”, FOCS 1977, 254–266.

[17] S. Krymski, A. Okhotin, “Longer shortest strings in two-way finite automata”, In: G.
Jirásková, G. Pighizzini (Eds.), Descriptional Complexity of Formal Systems, LNCS
12442, 2020, 104–116.

[18] M. Kunc, A. Okhotin, “Reversibility of computations in graph-walking automata”,
Information and Computation, 275 (2020), article 104631.

[19] O. Martynova, “Complexity of the emptiness problem for graph-walking automata
and for tilings with star subgraphs” arXiv:2212.02380 [cs.FL] (2022), submitted for
publication.

[20] O. Martynova, A. Okhotin, “Lower bounds for graph-walking automata”, 38th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 2021,
Saarbrücken, Germany, 16–19 March 2021), LIPIcs 187, 52:1–52:13.

[21] O. Martynova, A. Okhotin, “State complexity of union and intersection on graph-
walking automata”, Descriptional Complexity of Formal Systems 2021, LNCS 13037,
125–136.

[22] O. Martynova, A. Okhotin, “Shortest accepted strings for two-way finite automata:
approaching the 2n lower bound”, Descriptional Complexity of Formal Systems
(DCFS 2023, Potsdam, Germany, 4–6 July 2023), LNCS 13918, to appear.

[23] L. Pierre, “Rational indexes of generators of the cone of context-free languages”,
Theoretical Computer Science, 95:2 (1992), 279–305.

[24] H. A. Rollik, “Automaten in planaren Graphen”, Acta Informatica, 13:3 (1980),
287–298.

[25] E. N. Shemetova, A. Okhotin, S. V. Grigorev, “Rational index of languages with
bounded dimension of parse trees”, DLT 2022, 263–273.

[26] W. Thomas, “On logics, tilings, and automata”, Automata, Languages and Program-
ming (ICALP 1991, Madrid, Spain, 8–12 July 1991), LNCS 510, 441–454.

[27] M. Veanes, “On computational complexity of basic decision problems of finite tree
automata”, Technical Report 133, Uppsala University, Computing Science Depart-
ment, 1997.

76

http://dx.doi.org/10.1016/S0022-0000(75)80050-X
http://dx.doi.org/10.1007/11549345_47
http://dx.doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/978-3-030-62536-8_9
https://doi.org/10.1016/j.ic.2020.104631
https://arxiv.org/abs/2212.02380
https://arxiv.org/abs/2212.02380
https://doi.org/10.4230/LIPIcs.STACS.2021.52
https://doi.org/10.1007/978-3-030-93489-7_11
https://doi.org/10.1007/978-3-030-93489-7_11
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1007/BF00288647
https://doi.org/10.1007/978-3-031-05578-2_21
https://doi.org/10.1007/978-3-031-05578-2_21
http://dx.doi.org/10.1007/3-540-54233-7_154

	Introduction
	Shortest accepted strings for two-way finite automata
	Two-way finite automata
	Shortest accepted strings for direction-determinate automata
	Longer shortest strings for automata of the general form
	Calculations

	Minimal trees accepted by tree automata and tree-walking automata
	Tree-walking and tree automata
	Bounds on the size of the minimal accepted tree for a tree automaton
	Transformation of a nondeterministic tree-walking automaton to a nondeterministic tree automaton
	Upper bound on the size of the smallest tree accepted by a nondeterministic tree-walking automaton
	Lower bound on the size of the smallest tree accepted by a tree-walking automaton

	Complexity of the emptiness problem for graph-walking automata and for tilings with star subgraphs
	Graph-walking and star automata
	The non-emptiness problem for signatures is in NP
	Reducing a star automaton to a signature
	Reducing a graph-walking automaton to a signature
	Computational complexity of emptiness problems

	Conclusion

