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1 Basic Definitions

A planar graph is a graph that can be drawn on the plane in such a
way that its edges intersect only at their endpoints. Such a drawing is
called a planar embedding. A planar embedding divides the plane into
a set of regions called faces. Face incident to vertices u1, . . . , um, where
m ⩾ 3, we denote by ⟨u1, . . . , um⟩. The face with unbounded area is an
outer face. Other faces are inner. An edge is outer if it belongs to the
outer face, and it is inner otherwise.

Figure 1: Example of a planar graph
(left) and a weak dual graph (right).

An outerplanar graph is a graph that admits an outerplanar drawing,
i.e., a planar drawing in which all vertices are on the outer face. The
weak dual G∗ of a planar graph G is the graph having a node for each
inner face of G, and an edge between two nodes if and only if the two
corresponding faces share an edge. For an outerplanar graph G, its
weak dual G∗ is a tree. Outerpath is a outerplanar graph, whose weak
dual graph G∗ is a path.
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Figure 2: Example of a st-fan.
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Figure 3: Example of an st-outerplanar
graph.

A directed graph G = (V, E), or a digraph, is a graph whose edges
have an orientation. We assume each edge e = (u, v) of G to be
oriented from u to v, and hence denote u and v as the tail and head of
e, respectively. A vertex u of G is a source (resp. a sink) if it is the tail
(resp. the head) of all its incident edges. A directed cycle is a cycle in
directed graph in which each edge is traversed in the same direction.
A directed acyclic graph (DAG) is a digraph that contains no directed
cycle. An st-DAG is a DAG with a single source s and a single sink t.

An outerplanar graph is internally triangulated if it is biconnected
and all inner faces are cycles of length 3. A fan is an internally
triangulated outerpath whose inner edges all share an end-vertex. An
st-outerplanar graph is an st-DAG whose underlying undirected graph
is a outerplanar graph. An st-outerplanar graph is one-sided if the
edge (s, t) is an outer edge. An st-fan is an st-DAG whose underlying
undirected graph is a fan and whose inner edges have s as an end-
vertex. An st-outerpath is an st-DAG whose underlying undirected
graph is an outerpath.

A topological book embedding (TBE) of G is a planar drawing such
that all vertices of G are represented as points of a horizontal line l,
called the spine. All vertices of G are embedded on the spine in some
order v1, v2, . . . , vn, hence we can use the notation vi < vj, if i < j or we
can say that vi is lower than vj. Each of the two half-planes defined by
l is a page. Each edge in a TBE is either in the left page, or completely
in the right page, or it can be on both pages, in which case it crosses
the spine. We assume that in a topological book embedding every
edge is drawn as a sequence of one or more circular arcs, in particular
semi-circles, such that no two consecutive arcs are in the same page.
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Notice that, by using semi-circles, two arcs in the same page cross each
other only if their end-points alternate along the spine (fig. 4).

Figure 4: S-edges.

A monotone topological book embedding is a topological book
embedding such that every edge crosses the spine at most once. An
edge that crosses the spine once is called an S-edge and each of the
two arcs composing it are called sub-edges. A non-S-edge (x, y) is
called free, if there are no edges that cover the edge (x, y), i.e. there
are no vertices u, v, such that u ≤ x < y ≤ v and edges (u, v) and
(x, y) are on the same page (fig. 5). Let γ be a monotone topological
book embedding. TBE γ is nice if there is no pair of S-edges whose
sub-edges cover in the right page.

x x x

y y y

u u

v v

Figure 5: Forbidden cases for free
edges.

2 Motivation and related work

Book embedding. An upward k-page book embedding (for short,
kUBE) ⟨π, σ⟩ of a directed graph G = (V, E) consists of a vertex
ordering π = π(V) and of an edge assignment σ = σ(E) to one
of k sets, called pages, so that for any two edges (a, b) and (c, d) in
the same page, we have neither π(a) < π(c) < π(b) < π(d) nor
π(c) < π(a) < π(d) < π(b). Similar to TBE canonical drawing Γ(π, σ)

of G is a drawing where the k pages correspond to k half-planes sharing
a vertical line, called the spine. The page number of a digraph G (also
called book thickness) is the minimum number k such that G admits
an upward k-page book embedding.

Results on book embeddings of undirected graphs are described in
the paper (5) by Bernhart and Kainen. They prove that only outerplanar
graphs have page number one, and graphs with page number two are
sub-Hamiltonian graphs. This result implies the NP-completeness of
deciding whether a graph admits a 2-page book embedding.

As for undirected graphs, there are many papers devoted to the study
of upper and lower bounds on the page number of directed graphs.
Heath et al. (16) show that directed trees and unicyclic digraphs have
page number one and two, respectively. Bhore (7) shows that every
st-outerpath have 4-page book embedding and every outerpath have
a 16-page book embedding. Alzohairi and Rival (1), and later Di
Giacomo et al. (14) with an improved linear-time construction, show
that series-parallel digraphs have page number two. Mchedlidze and
Symvonis (19) generalize this result and prove that N-free upward
planar digraphs, which contain series-parallel digraphs, also have page
number two.

About the lower bounds, Nowakowski and Parker (22) give an
example of a planar st-graph that requires three pages for an upward
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book embedding. Pupyrev (23) computes book embeddings of all
maximal planar graphs of size n ⩽ 18 and found no instance that
requires four pages. However Bekos (4) and Yannakakis (24) prove that
there are class of planar graphs with book number four. Later Jungeblut
(17) finds slightly more accurate estimates: every upward planar graph
G on n vertices has page number at most O(n2/3log2/3(n)) and there
is an upward planar graph with page number at least 5. Overall, the
question, whether the page number of upward planar digraphs is
bounded, remains open.

Binucci and others (9) prove that testing if graph has kUBE is NP-
complete if k ⩾ 3. In paper (9), a polynomial algorithm checks whether
the st-outerplanar graph has 2UBE. This algorithm is given for st-
outerpath, whose faces have a special structure. The running time of
this algorithm depends on the branchwidth of the graph.

Planar straight-line embedding. Consider an arbitrary planar
directed graph G and some set of points S on the plane such that
the number of points coincides with the number of vertices in the
graph. Embed all the vertices into points and draw straight-line edges.
If the planarity condition is satisfied and the fact that for each directed
edge from the point (x1, y1) to the point (x2, y2) it is true that y1 < y2,
we say that the graph G has an upward planar straight-line embedding
(UPSE) into a point set S. A set of points is in general position if no
three points lie on the same line. A point set is in convex position no
point is in the convex hull of the others. We call a one-sided convex
point set any convex point set in which the lowest point and the highest
point on the convex hull are neighbors.

UPSE problem.
Input: a planar DAG G, a point set S on the plane in general position.
Output: is there a planar straight-line embedding of the graph G on
point set S.

Cabello (11) prove that the UPSE problem is NP-complete even when
G is a 2-connected and 2-outerplanar. And Arseneva et al. (3) prove
that the UPSE problem, where G is an directed tree with a fixed point,
is NP-complete.

However, if we look at the straight-line embedding problem (UPSE
for undirected graphs), we know that any outerplanar graph can be
embedded in any set of points P in general position. For example, Bose
(10) describes an algorithm that runs in O(n log3(n)), where n is the
number of points P.

According to (8), there are necessary and sufficient conditions for
graphs that can always be embedded in an one-sided convex set.
Therefore, interest fell on solving UPSE problem for st-outerplanar
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graphs in a one-sided convex point set with a condition that the
embedding can be with one bend. The solution of this task for an
one-sided convex point set turned out to be simpler and is formulated
in Theorem 1.

UPSE with 1 bend problem.
Input: a planar DAG G, a point set S on the plane in general position.
Output: is there a planar embedding of the graph G on point set S such
that every directed edge e ∈ E(G) from point (x1, y1) to point (x2, y2)

can have at most one bend at a point (x3, y3) where y1 < y3 < y2.

Theorem 1. Every st-outerplanar graph G admits a 1-bend point-set embedding
on every one-sided convex point set S.

The proof consists of the following two theorems. The first part
was proved jointly with colleagues. The idea of the main proof is
that, first, it is necessary to make a transition from the graph to its
TBE, and then, according to the resulting embedding, embed the graph
on a set of points. Theorem 2 shows that if a graph (not necessarily
st-outerplanar) has a nice TBE, then we can embed the graph with the
necessary conditions. The main proof of this paper is formulated in
Theorem 3 and proved in Section 5.

Theorem 2. Let G = (V, E) be a planar graph. If G admits a nice topological
book embedding γ, then G adimts a 1-bend point-set embedding on every
one-sided convex point set.

Theorem 3. Every st-outerplanar graph G has a nice monotone topological
book embedding.

3 Preliminaries

Figure 6: Example of st-fan
decomposition.

Let G be an internally-triangulated st-outerpath. Let f1, . . . , fh be the
ordered list of faces forming the path G∗. An st-fan decomposition
of an outerpath G is a sequence of siti-fans Fi ⊂ G, with i = 1, 2, . . . , k,
such that:

1. Fi is incrementally maximal, i.e. let Fi = ∪is
j=i1

f j, then:

• or Fi ∪ fis+1 is not an siti-fan;

• or is = h;

2. For any 1 ≤ i < j ≤ k, Fi and Fj share a single edge if j = i + 1,
which we denote by ei, while they do not share any edge otherwise;

3. s1 = s;

4. the tail of ei is si+1;

5. edge ei ̸= (si, ti);

6. ∪k
i=1Fi = G.
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Fact 1. In any fan Fi, the edge ei is an outer edge of Fi and has tail ti. And
the edge ei−1 is an outer edge of Fi and has head si.

Figure 7: Primary st-outerpath from
st-outerplanar graph.

The extreme faces of an st-outerpath G are the two faces that
correspond to the vertices of G∗ having degree one. An st-outerpath
G is primary if and only if the path forming G∗ has one extreme face
incident to s and one extreme face incident to t. In the proof we utilize
the following results.

Lemma 1 (7). Every primary internally-triangulated st-outerpath G admits
an st-fan decomposition.

Lemma 2. Every internally-triangulated st-outerplanar graph G can be
decomposed into a primary st-outerpath Go and multiple single source and
single sink one-sided outerplanar graphs.

Proof. Consider the weak dual graph G∗ of the graph G. Let fs and ft

be some faces incident to s and t respectively. Since G is an outerplanar
graph, G∗ is a tree. Then, there exists only one path P in G∗ from fs to
ft. The graph Go = ∪ f∈P f is a primary st-outerpath by construction.

Fact 2. Every acyclic directed graph has at least one source and at least one
sink.

To prove the fact, it suffices to consider the vertices that must be
embedded in the highest point and the lowest point of the set. These
vertices are, respectively, a sink and a source.

Each outer edge (u, v) of Go potentially split graph G into two parts:
an outerplanar graph consisting Go and outerplanar graph G′. By Fact
2 graph G′ has at least one sink and at least one source. Consider set
of vertices of G′ expect {u, v}. We call this set V′. Note that when the
graph G is divided, all edges incident to the vertices V′ are preserved.
And since the graph G has only one source and one sink, different from
the vertices from the set V′, none of the vertices from V′ is a source
and a sink of the graph G′. Hence, the candidates for the source and
the sink in the graph G′ are only the vertices u and v. There is also an
edge between the vertices u and v, which is outer in the graph G′. Then
G′ is a single source and single sink one-sided-outerplanar graph with
source u and sink v.

Such one-sided-outerplanar subgraphs we call appendages. The
edge (x, y) we call attachment edge. Di Battista and Tamassia (6)
prove that every upward planar graph G can be augmented, by only
introducing edges, to an upward planar triangulation. Thus, we can
assume that G is internally triangulated.
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Consider some outerplanar graph G. Assume that by Lemma 2 we
split G into primary st-outerpath Go and multiple appendages. In the
proof of Lemma 2, we took arbitrary faces that incident to s and t. It
follows from this that different primary st-outerpaths can be cut from
the same graph G.

s

t1
e1

fs

Figure 8: Building of one-sided F1.

Consider st-fan decomposition F1, . . . , Fk of the graph Go. Consider
fan F1. This fan can potentially have a different number of vertices,
relative to the edge (s1, t1). When constructing Go, we choose a face fs

containing the edges (s1, t1) and e1. Then the edge (s1, t1) for the fan
F1 is outer. Then, for simplicity, we can assume that F1 is one-sided (fig.
8). Similarly, for the fan Fk, we can choose face incident to t so that Fk

is one-sided.

We also often use the following lemma for embedding of appendages
and following fact for proof of Theorem 3.

Fact 3. Edge ei for each i is not an attachment edge.

Lemma 3 (7). Every one-sided-outerplanar graph can be embedded in one
page.

4 Nice topological book embedding

This section is devoted to the proof of Theorem 2. Consider a graph
G = (V, E), where |V| = n. Consider a nice monotone topological book
embedding γ of graph G. Consider also some one-sided convex set of
points S (|S| = n).

Recall that γ can have S-edges that intersect the spine at most
once. Let get dummy vertices of the graph, which correspond to
the intersection of the S-edge and the spine. Let the set of basic vertices
and dummy vertices be denoted by V′ and let |V′| = n′. Let the
vertices V′ be ordered according to the embedding on the spine and
V′ = {v1, . . . , vn′}. We add dummy points to set S so that the new set
of points S′ has size n′ and S′ is still one-sided. Let the points of the set
S′ = {p1, p2, . . . , pn′} be ordered in ascending order of the y-coordinate.
Then each vertex from V′ corresponds to a point from S′. When adding
dummy vertices, we require that the point pi is a dummy if and only if
the vertex vi is the dummy.

Now, let the left page, on which it is allowed to cover S sub-edges,
be nested inside the convex hull CH(S′), and the right page behind
the convex hull of the point set S′. Inside CH(S′) all edges are drawn
as straight-line segments. Since the edges did not intersect in TBE,
the edges also do not intersect in the new embedding, since the set of
points S′ is convex. All the edges of the other page behind the convex
hull CH(S′) are embedded with one bend.
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Potentially, it can turn out to be a 2-bend embedding. Suppose we
removed all the dummy points. Then one bend will be outside the
convex hull and one bend may occur in the place where the dummy
point used to be. Let there be a S-edge (u, v) in TBE. Let the bend points
be the points p1 (when the dummy top is removed) and p2 (outside
the convex hull). In order for there to be no bend at the point p1, it is
necessary to have the same slope for the segments (u, p1) and (p1, p2).

Figure 9: 4 steps for embedding of nice
TBE.

Therefore, embedding consists of the following steps (Fig. 9):

1. Embedding the left page inside the convex hull CH(S′) (red).

2. Embedding all S-sub-edges of the right page (blue).

3. Embedding all edges that are located inside some S sub-edge on the
right page (green).

4. Embedding all edges that are not located inside a S sub-edge on the
right page (orange).

Step 1. All edges and sub-edges of the left page embed inside the
convex hull CH(C) as straight segments. Since the vertices of the graph
have the same order on the set S′ as on the spine, the drawn edges do
not intersect.

Figure 10: Step 2: building lines l1 and
l2.

Figure 11: Step 2: building sub-edge
(c, v).

Step 2. Let there be some S-edge (u, v), which is divided into two
sub-edges (u, c) and (c, v). Let the points into which the vertices u, c, v
are embedded are pu, pc, pv, respectively. W. l. o. g., let (u, c) lie on the
left page and have already been drawn in step 1. Let us draw a line l1
containing the segment (pu, pc). We also draw a line l2 containing the
point pv and not intersecting CH(S′). Then the lines intersect outside
the convex hull at some point p. Hence, the sub-edge (c, v) can be
drawn as the union of the segments (pc, p) and (p, pv). The resulting
S-edge has exactly one bend. Moreover, the bend is located at the
point p, which, by construction, satisfies the condition of location in
height: the y-coordinate of the point p is between the y-coordinates of
the points pc and pv.

Since TBE is nice, all sub-edges on the right page do not overlap.
This means that for any two sub-edges (u1, v1) and (u2, v2) constructed
at this step, it is true that either u1 < v1 < u2 < v2 or u2 < v2 < u1 < v1

in order of y-coordinates. This means that no two sub-edges intersect.

Step 3. Consider some sub-edge (u, v) of a S-edge. Let there be
some edges inside it. Consider some edge (a, b) among them. Let
the sub-edge (u, v) on the plane consist of two segments (pu, p) and
(p, pv) with slopes σ1 and σ2 respectively. Then we construct the edge
(pa, pb) as follows. Let us draw a straight line with slope σ1 from
the point pa, and draw a straight line with slope σ2 from the point
pb. The lines intersect outside the convex hull at some point z. The
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edge (pa, pb) is the union of the segments (pa, z) and (z, pb). Let do
a similar construction with all edges inside the sub-edge (u, v). All
constructed edges are not intersect the edge (u, v) and have exactly 1

bend. However, if among these edges there are edges with the same
endpoint, then they intersect in the embedding. It is necessary to fix a
sufficiently small ϵ > 0 and correct the slope of the constructed edges.
That is, slightly rotate the edges by ϵ in the right direction so that they
do not intersect. See fig. 12 and fig. 13.

Figure 12: Step 3, 4: before rotation.

Figure 13: Step 3, 4: after rotation.

Step 4. All remaining edges do not lie under any sub-edge. Consider
σ, the largest absolute value among all the slopes of the edges constructed
at steps 2 and 3. Take the value σ′ > σ. Consider some undrawn edge
(u, v). Let us construct a line from the point pu with slope +σ′ and
a line from the point pv with slope −σ′. The lines intersect at some
point p. Hence, the edge (u, v) can be drawn as the union of (pu, p)
and (p, pv). Let do this for all the remaining edges.

If some of the edges constructed at this step have the same endpoints,
then these edges intersect. However, this can be corrected similarly to
step 3. It is necessary to slightly rotate each edge in the right direction
so that there are no more intersections.

5 Outerplanar st-graph

Let P be a path in G∗ from face incident to s to face incident to t. Denote
Go = ∪ f∈P f . Consider the st-fan decomposition F1, F2, . . . , Fk of the
graph Go. Recall that, by the remarks in section 3, we can choose a
path P such that F1 and Fk are one-sided. Denote by Go

i the union of
the F1, . . . , Fi. If edge (x, y) belongs to fan Fi, we say that corresponding
appendage is located at a height i. By Gj (1 ≤ j ≤ k) denote the union
of Go

j and all appendages at height j. It is true that

∪k
i=1Gj = Gk = G.

The proof is by induction on Gi (1 ≤ i ≤ k). Notice that we first
embedded Go

i and then augment it to Gi. We build sequentially a TBE
for Gi while preserving the following invariants:

ti

ei

s

Gi

Figure 14: Invariant.

(I1) For each Fi, the edge ei that separates Fi and Fi+1 is free in
topological book embedding (fig. 14).

(I2) Let ei = (ui, vi) in topological book embedding of Gi. Then there
are no other edges (u, v) on the same page such that ui ≤ u ≤ v ≤ vi.

(I3) Embedding of Gi is nice on both pages. Moreover, if Fi has
an S-edge that intersects the spine at the point zi, and the edges
ei = (ui, vi), then in the TBE the vertices ui and vi are above the
point zi.
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We also do the following for convenience. Let TBE come from the
previous step of induction. The edge ei−1 can be on the left or right
page. For simplicity, we assume that the edge ei−1 lies on the right
page. If this is not the case, then TBE need to be mirrored. Since we
require that the embedding be nice for both pages, mirroring the TBE
is a legitimate action.

First, consider fans Fi from st-fan decomposition. We have 2 cases
depending on whether ei and ei−1 lie on different sides of (si, ti) or not
and 1 special case.

Case 1: Special case.

ti

si

ei−1

ei

u1

u2

um

um−1

u3

u4

Figure 15: Fi is a triangle.

ti

si
ei−1

ei

u1

u2

um

u3

Figure 16: Fi is a right one-sided fan.

By Fact 1 si is a head of ei−1 and ti is a tail of ei. Also by definition
ei ̸= (si, ti), therefore we have 1 special case, where ei−1 = (si, ti).
Then Fi is a one-sided, since ei−1 is an outer edge of fan. Since fan is
one-sided, there is a path of the outer face of Fi that does not contain
the edge (si, ti). Let si, u1, . . . , um, ti be such path. Since ti is a tail
of ei and ei is an outer edge, ei = (um, ti) (fig. 15). In this case, fan
is a triangle. When the path P passes through ei−1, it arrives a face
⟨si, ti, um⟩. Therefore, this face contains the edge ei. This means that the
path P must immediately exit through the edge ei, since it is impossible
to leave face ⟨si, ti, um⟩, walk along some another faces, and then return
to the face ⟨si, ti, um⟩.

Case 2: Let ei and ei−1 lie on the same side of (si, ti).

In this case Fi is also one-sided. Let si, u1, u2, . . . , um, ti are vertices
on the outer face of Fi. Then ei = (um, ti) and ei−1 = (si, u1). The path
P passes from the previous fan to the current fan along the edge ei−1 to
the face containing the vertices si and u1, that is, to the face ⟨si, u1, u2⟩.
Further, the path P successively passes through all the faces of the
current fan until it arrives the final face ⟨si, ti, um⟩ containing the edge
ei. From the face ⟨si, ti, um⟩ the path P passes to the next fan along the
edge ei. We call this right one-sided fan.

si

ti

u1

u2

um

ei−1

ei

fi1

fi2

fib

v1

v2

vl

u3

Figure 17: Two-sided fan.

Case 3: Let ei and ei−1 lie on the different side of (si, ti).

Let si, u1, u2, . . . , um, ti and si, v1, v2, . . . , vl , ti be two paths in G from
si to ti of the outer face Fi. Consider a non-one-sided fan whose ei

and ei−1 lie on different sides with respect to the edge (si, ti). By the
Fact 1 ei−1 = (si, v1) and ei = (um, ti). Let the fan be divided by the
edge (si, ti) into two halves. Denote by fi1 , . . . , fib the faces of the fan
of the half where the edge ei−1 lies. The dual path P starts from face
⟨si, v1, v2⟩, passes along all faces fi1 , . . . , fib , and then continues in the
second half of fan to the face ⟨si, ti, um⟩. The face ⟨si, ti, um⟩ contains
the edge ei through which the path P goes to the next fan, fig. 17. We
call this two-sided fan.
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Thus, to prove the theorem 4, it is necessary to consider 3 cases of
fans: right one-sided, triangle and two-sided.

Base case.

x1

x2

xm

s

t1 e1

e0

s′

x3

Figure 18: Base case.

As stated in section 3, we can assume that F1 is an one-sided fan. Let
on one side there are vertices x1, . . . , xm. The edge e1 has a sink t1, then
e1 = (xm, t1). By the definition of st-fan decomposition, the fan F1 has
no edge e0. In addition, we define the edge e0 = (s1, x1).

s′

x1

s

s′

s

x1

e0 e0

Figure 19: Base case in TBE.

Change our graph G: add a dummy vertex s′ and draw the edges
(s′, s) and (s′, x1). We call the new graph Gnew. Note that since the
vertex s in the graph G is source, then the new vertex s′ is a source
in the graph Gnew. Note that if a new face ⟨x1, s, s′⟩ is added to the
graph Go, then the s′t-primary outerpath of the graph Gnew is obtained.
Hence, embedding of the graph Gnew is equivalent to embedding of the
graph G in which the vertex s′ has been removed.

Denote Go
new = Go ∪ ⟨x1, s, s′⟩. Then the s′t-fan decomposition of the

graph Go
new is the st-fan decomposition of the graph G combined with

F0 = ⟨x1, s, s′⟩. Thus, it suffices to prove the base case for F0.

Fan F0 has no appendages and consists of only three edges: (s′, s),
(s′, x1), (s, x1). Let embed these three vertices in the only possible
order: s′, s, x1. Let draw the edge (s′, x1) on the left page, and the edges
(s′, s), (s, x1) on the right page (fig. 19). It is not difficult to verify that
such an embedding satisfies all the invariants (I1, I2, I3).

Induction step.

Fact 4. Consider some appendage H with vertices u0, . . . , um. Let the TBE
already contain vertices u0 and um, and let the edge (u0, um) be drawn. Let
there be no other vertices between the vertices u0 and um. Then in the TBE we
can place the H appendage on one page.

Fact 4 is a refinement of Lemma 3. The idea is that we first draw a
primary outerpath from the graph G containing all attachment edges.
Sometimes there are no other vertices under these attachment edges.
For such cases, we use Fact 4. However, there may be cases where an
attachment edge is drawn, but there are vertices and edges underneath
it. For such cases, we use the following lemma.

u0

bt

um

Figure 20: Lemma 4.

Lemma 4. Consider some appendage H with vertices u0, u1, . . . , um. Let the
TBE γ already contain vertices u0 and um and edge (u0, um). Let there be
other vertices in TBE between vertices u0 and um, which we call B. Let the
vertex um not be connected to any vertex from B. Consider bt, the topmost
vertex of B. Then the appendage H can be embedded so that u1, . . . , um−1 are
above bt. Similarly, if the vertex u0 is not connected to any vertex from B.
Consider bs, the lowest vertex in B. Then the appendage can be embedded so
that u1, . . . , um−1 are below bs.
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Note that the topological book embedding potentially has S-edges.
Since the proof is focused on only one of the two pages, for convenience
we assume that the intersections of the S-edge and spine are also TBE
vertices. We need this clarification in the further analysis of the case
when Fi two-sided fan.

Proof. We only prove the case when the vertex um is not connected to
any vertex from B. The case when the vertex u0 is not connected to any
vertex from B is symmetric. We consider only the page on which the
edge (u0, um) is drawn, the second page does not affect the embedding
of the appendage. If there is no edge from vertex u0 to vertex bt, then
we create a dummy edge (u0, bt) on the same page. Then all the edges,
which connect the set of vertices B ∪ {u0}, lie strictly inside the edge
(u0, bt), since the vertex um is not connected to any vertex from B. It
turns out a funnel in which we put the H appendage.

u0

u1

um
um

u0

u1

bt
B

Figure 21: Proof of lemma 4.

We retract all vertices B ∪ {u0} into one vertex u0. We call the
resulting TBE γr. Then the edge (u0, um) in γr does not contain any
vertices inside. Use the Fact 4 and put the appendage H inside the edge
(u0, um). Let E′ be all new edges and E′

0 be all new edges that incident
to u0. Now, in the original TBE γ, above the vertex bt, we can put the
vertices u1, . . . , um−1, as it is in γr. All edges E′ \ E′

0 are transferred
to the TBE γ. All edges of E′

0 are edges between {u1, . . . , um−1} and
u0. All edges of E′

0 can be transferred to γ, since these edges do not
intersect with any edge lying under the edge (u0, bt).

Embedding of a right one-sided fan.

si

ti

si

ti

ei−1

ei ei

u1

um

v1

vn
u1

um

v1

vn
v2

v2

Figure 22: If Fi is a right one-sided fan.

Let the vertices go in the order si, v1, . . . , vn, ti. The possible attachment
edges are (v1, v2), . . . , (vn−1, vn) and (si, ti). The vertex order si, v1, . . . , vn, ti

is unique because Fi is one-sided. All edges E(Fi) \ ei are drawn on one
page, and ei on the other. It remains only to embed the appendages. The
vertices v1, v2, . . . , vn lie sequentially on the spine, so the corresponding
appendages can be embed under attachment edges according to the
Fact 4. Only the appendage attached to the edge (si, ti) remains. Let
the appendage have vertices si, u1, u2, . . . , um, ti. Vertices si and ti are
already embedded. Consider a page on which (si, ti) is drawn. Vertex
ti is not connected to any other vertex. Hence, this appendage satisfies
the conditions of Lemma 4. We embed the appendage corresponding to
the (si, ti) edge between vn and ti into this page. Then the vertices on
the spine are going in the following order: si, v1, . . . , vp, u1, . . . , um, ti.
See fig. 22.

In this case, ei = (vn, ti) is a free edge (I1), since other edges on
the same page can only be from Go

i−1 and they are located only below
the vertex v1 (v1 is the top in Go

i−1), which is below the vertex vn. It
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should be noted that all drawn edges of Fi with appendages at a height
i (except ei) are on the page where the edge (si, ti) is located. Then
by construction, on the opposite page there is an edge ei = (vn, ti)

satisfying the condition (I2). It is worth noting that ei and ei−1 are
on different pages and there are no S-edges. Hence, the niceness of
embedding Gi−1 implies the niceness of embedding Gi (I3).

Embedding of a two-sided fan.

ei−1

ei

si

ti

u1

u2

um
vn

um−1

x1

x2

xp

u3

Figure 23: When Fi is a two-sided fan in
G.

Fan is divided into two halves of vertices with respect to the edge
(si, ti). The half containing the edge ei−1 can have multiple vertices. Let
the vertices of this half be in the order x1, x2, . . . , xp. The second half
containing the edge ei has a single vertex um. Then possible attachment
edges are (x1, x2), (x2, x3), . . . , (xp−1, xp), (xp, ti) and (si, um) (fig. 23).

ei−1

ei

si

ti

ti

si

ei
um

um

x1

x2

xp

x1

xp

Figure 24: Embedding of a two-sided
fan.

We embed such a fan as follows (see fig. 24). Vertex order is
si, x1, . . . , xp, um, ti. All edges from si to other vertices of fan x1, x2, . . . , xp

(except ti) are on the same page as the edge ei−1. The edges of the
outer face (x1, v2), (x2, x3), . . . , (xp−1, xp) and the edge ei = (um, ti) are
connected on the same page. The edge (xp, ti) on the second page. The
edge (si, ti) is drawn as an S-edge that intersects the spine between the
vertices xp and um. Moreover, the bottom sub-edge of (si, ti) (which
ends with si) is located on the same page as the edge ei−1, and the
upper sub-edge of (si, ti) is on a page other than the page of edge ei.

Edges (ti, x1), (x1, x2), . . . , (xp−1, xp) potentially attachment. However,
the vertices ti, x1, . . . , xp are consecutive on the spine. Hence, under the
given attachment edges, one can embed the corresponding appendages
according to Fact 4. Complexity arises only with attachment edges
(si, u) and (xp, ti). Let these edges correspond to the appendages H1

and H2.

ti

si

ei

um

u1

vn

x1

x2

xp

Figure 25: Embedding of a two-sided
fan Fi in TBE.

Let S-edge (si, ti) intersect the spine at some point z in Fi embedding.
There is an appendage H1 with vertices si = u0, u1, . . . , um such that si

and um are already embedded in TBE, and only two edges are drawn
from the vertex um: (si, um) and (um, ti). Then this appendage satisfies
the conditions of Lemma 4. Then H1 can be embedded in TBE so that
the vertices go in the following order: z, u1, . . . , um.

There is an appendage H2 attached to the edge (xp, ti) with vertices
xp = v0, v1, v2, ..., vn, ti. Vertices xp and ti are already embedded in
TBE. There are only one edge that have head xp. Then appendage H2

satisfies the condition of Lemma 4, then H2 can be embedded in TBE
so that the vertices go in the following order: xp, v1, . . . , vn, z.

The edge ei = (um, ti) is free because the edge (xp, ti), corresponding
to this edge H2 and S-sub-edge (z, ti) are on the opposite page by
Lemma 4. All other vertices of this fan are located strictly lower than
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the vertex um, therefore, the edge between these vertices also does not
cover the edge ei (I1). Also, the vertices um and ti are consecutive, so
this case also satisfies the second invariant (I2).

ti

si

ei−1

ei

u1

u2

um

um−1

u3

u4

Figure 26: Appendage of a triangle.

ei−1

ei

ei−1

ti ti

si si

u

Figure 27: Embedding of Fi in TBE of G.

Let us prove that niceness of the Gi. Since Go
i−1 satisfies the invariant

(I3), it suffices to check that the S-edge (si, ti) does not cover a possible
S-edge below. Let the S-edge of the fan Fi intersect the spine at the
point zi. Let Fi−1 have an S-edge (ui−1, vi−1). Then, since ei−1 = (si, x1),
the S-edge intersects the spine at the point zi−1 lying below the vertex
si. It is obvious that S-sub-edge (ui−1, zi−1) lies strictly below the S-
edge of Fi, and hence does not cover any S-sub-edge of the Fi−1 fan
and vice versa, no S-sub-edge of the Fi−1 fan covers the S-sub-edge
(ui−1, zi−1). Since Fi satisfies the (I1) invariant, no edge covers ei−1,
hence the S-sub-edge is located on the opposite side of ei−1 page. Hence
S-sub-edges (ui−1, zi−1) and (si, zi) are on opposite pages (and cannot
cover), and S-sub-edges (ui−1, zi−1) and (zi, ti) on the same page. But
by the construction of zi−1 ≤ si ≤ zi, these S-sub-edges do not cover.

Embedding of a triangle.

Let si, ti and u are vertices of Fi. On the spine, these vertices must
be embedded in the order si, u, ti. Edges ei−1 = (si, ti) and ei = (u, ti)

are not attachment. The third edge (u, ti) can potentially be attachment
(fig. 26). We embedd the edge ei = (u, ti) so that the vertices u and ti

are consecutive.

ei−1

ti

si

ei
ti

si
ei−1

Figure 28: Fi is a triangle: simple case.

The idea of the triangle case is to be able to flip the edge ei−1 to the
opposite page. We consider two cases: when the vertices of the ei−1

edge are consecutive in the embedding Gi−1 (simple case) and when
the vertices are not consecutive (hard case). Note that the simple case
includes options if Fi−1 is a triangle or a one-sided fan. The hard case
is if Fi−1 is a two-sided fan.

Simple case. When Fi is a triangle and Fi−1 is a two-sided fan or a
triangle: the idea of turning the edge ei−1 to the second page work
without problems. Let ei−1 = (si, ti), si and ti are consecutive. We
rotate the edge ei−1 to the second page, and draw the other two edges
ei and (si, u) in sequence on the page where the edge ei−1 used to be
(fig. 27). Now we need to look carefully on embedding of appendage.
If Fi is a triangle the only appendage is attached to the edge (si, u).
After the embedding Go

i , the vertices si and u are consecutive. Hence,
by Fact 4, the appendage with vertices u1, u2, um = u can be embedded
under the edge (si, u) (fig. 28). The I2 invariant is obviously preserved,
since in this case the vertices of Go

i are V(Go
i1
) ∪ {u}, therefore, there

are no other vertices and edges between the vertices u and ti. Also, the
edge ei is not covered by any other edge, because the edge ei−1 is not
covered by any other edge in Go

i−1 (I1). There are no S-edges, then (I3)
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invariant is also preserved.

Hard case. Case where Fi is a triangle and Fi−1 is a right one-sided
fan is difficult in that it is impossible to rotate the edge of ei−1: from
right one-sided fan Fi−1 there could be an appendage H′. Let H′ has
vertices v1, . . . , vn.

ei−1

si−1

v1

vn

ti−1 ti−1

v1

vn

u1

um

si si

si−1

Figure 29: Fi is a triangle, Fi−1 is a one-
sided fan: Step 1.

Step 1. Consider an appendage H with vertices si, u1, . . . , um, which is
attached to the attachment edge (si, um). Vertex um is not yet embedded
in TBE. Place it anywhere above vn. Since there is an invariant (I2),
there are no edges under the edge ei−1 on the same page. Therefore,
the appendage H satisfies the condition of Lemma 4. Now we can
embedd the H appendage. Since vn < u1, the H′ appendage is located
strictly below the H appendage, so there is a gap between them. Strictly
speaking, each appendage is located in its own funnel, and there is a
distance between the funnels.

ti−1

v1

vn
u1

um

si

ei

ti−1

v1

vn
u1

um

si

Figure 30: Fi is a triangle, Fi−1 is a one-
sided fan: Step 2.

Step 2. Take a point q in this gap. Delete the old edge ei−1 and redraw
it as an S-edge that intersects the spine at the point q. It remains only
to embedd the edges (si, um) and (um, ti). Vertices si, um, ti are already
in TBE. Also, the S-edge has a point of intersection below the vertex
um. Therefore, these edges can be drawn on the same page where the
ei−1 edge used to be (fig. 30). Then the edge ei is also free, similar to
the case where Fi−1 is a triangle or a two-sided fan (I1). And also the
vertices um and ti are consecutive. Then this case satisfies the condition
(I2).

In this case, an S-edge (si, ti−1) is formed. Use the fact that Fi−1 is
a one-sided fan. When constructing Fi−1, no S-edge was formed. But
it could have been formed during the construction of Fi−2. Then the
S-edge of Fi−2 can have tail at si = ti−2 or lower. This means that the
old S-edges do not intersect with the new S-edge.
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