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Abstract.

In this thesis, we consider a network game in which n-player want to reach the

fixed node with minimal time (cost). It is assumed that the trajectories of players

should (have no common arcs, have no common vertices) i.e. must not intersect. The

last condition complicates the problem, since the sets of strategies turn out to be

mutually dependent. A family of Nash equilibrium is constructed and it is also shown

that the minimum total time (cost) of players is achieved in a strategy profile that is a

Nash equilibrium. A cooperative approach to solving the problem is proposed. Also,

another cooperative mini maximal approach to solving the problem is proposed.

Then we consider the proportional solution and the Shapley value to allocate total

minimal cost between players. Two approaches for constructing the characteristic

function have been developed. In both cases, to construct the characteristic function,

approaches are used that were previously proposed for constructing the Nash equilibrium.

Then we consider players are coalitions and discuss (time consistency problem).

Introduction

Theory games on networks have been growing in recent research. (Mazalov and

Chirkova (2019) [2]) provided a comprehensive disquisition on the topic. Given that

most practical game situations are more dynamic (intertemporal) rather than static,

dynamic network games have become a field that attracts theoretical and technical

developments. One special case of network games is transportation game. The was

considered in the articles by (Petrosyan 2011.[9]) and by (Seryakov 2012.[3]) about

the game theoretic transportation model in the network. In these articles [9] and [3]

a game theoretic approach is considered for n-player which want to reach the fixed

node of the network with minimal time (cost). It is assumed that the trajectories of

the players should (have not common arcs) i.e. must not intersect. The last condition

significantly complicates the problem, since the sets of strategies turn out to be
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mutually dependent. A family of Nash equilibrium is constructed and it is also

shown that the minimum total time (cost) of players is achieved in a strategy profile

is a Nash equilibrium. A cooperative approach to solving the problem is proposed.

We consider the same game theoretic approach (Petrosyan [9]) and suggest

another cooperative mini maximal approach to solving the problem is proposed.

Several algorithms from the book (Ferreira 2014 [1]) had been modified to calculate

for n-player Nash equilibrium (cooperative, non-cooperative) and cooperative mini

maximal under condition the trajectories of the players should have no common

arcs.

Then we consider the same game theoretic approach (Petrosyan [9]), but under

new condition the trajectories of the players should have no common vertices i.e.

must not intersect. The last condition complicates the problem, since as in previous

case the sets of strategies turn out to be mutually dependent. A family of Nash

equilibrium is constructed and it is also shown that the minimum total time (cost)

of players is achieved in a strategy profile that is a Nash equilibrium. A cooperative

approach to solving the problem is proposed. And suggest another cooperative mini

maximal approach to solving the problem is proposed. Several algorithms from the

book (Ferreira 2014 [1]) had been modified to calculate for n-player Nash equilibrium

(non-cooperative) and cooperative mini maximal under condition the trajectories of

the players should have no common vertices.

Coordinating players in a network to minimize their joint cost and distribute the

cooperative gains in a dynamically stable solution is a topic of ongoing research. The

Shapley 1953.[16] value is credited to be one of the best solutions in attributing a fair

gain to each player in a complex situation like a network. However, the determination

of the cost of the subsets of players (characteristic function) in the Shapley value is

not indisputably unique.

We consider cooperative game theoretic transportation model in the network .

Then consider the proportional solution([17]) and The Shapley value [16] to allocate
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total minimal the cost between players. In n-player case.Two approaches for constructing

the characteristic function have been proposed. In both cases, to construct the

characteristic function, approaches are used that were previously proposed for constructing

the Nash equilibrium.

The concept of time consistency and its implementation was initially proposed

in (Petrosyan, 1977,[4]), (Petrosyan and Danilov, 1979,[5]). Some new results about

time consistency can be found in (Petrosyan and Zaccour, 2003,[6]), (Yeung and

Petrosyan, 2005,[7]), and (Gao et al., 2014,[8]). It shown on example that the

characteristic function is not time consistent in game theoretic transportation model

in the network (Petrosyan 2011.[9]).

Then consider new game theoretic transportation model in the network, where

the players are coalitions under the condition the trajectories of the players (coalitions)

should have no common arcs i.e. must not intersect. The trajectories of the players

inside coalition can intersect (have common arcs). A family of Nash equilibrium is

constructed and it is also shown that the minimum total cost of players (coalitions) is

achieved in a strategy profile that is a Nash equilibrium. A cooperative approach to

solving the problem is proposed. Then the proportional solution([17]) to allocate

total minimal cost between coalitions are proposed and The Shapley value [16]

to allocate the costs inside each coalition. Two approaches for constructing the

characteristic function have been developed. In both cases, to construct the characteristic

function, approaches are used that were previously proposed for constructing the

Nash equilibrium. It shown on example that the characteristic function is not time

consistent and the two stage solution concept in game is developed.
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1 Minimization of transportation time in the case

when paths have no common arcs.

1.1 Model

The game takes place on the network G = (X,D), where X is a finite set, called

the vertex set and D− set of pairs of the form (y, z), where y ∈ X, z ∈ X, called

arcs. Points x ∈ X will be called vertices or nodes of the network. On a set of arcs

D a non-negative symmetric real valued function is given γ (x, y) = γ (y, x) ≥ 0,

interpreted for each arc (x, y) ∈ D as the time associated with the transition from

x to y by arc (x, y) .

1.2 Description of transportation game

Define n-player transportation game on network G. The transportation game Γ

is system Γ1 = ⟨G,N, x(N), a⟩, where G− network,N = {1, . . . , n}− is set of

players,a ∈ X - some fixed node of the network G, x(N) ⊂ X - subset of vertices of

network G, x(N) = {1(x), 2(x), . . . , i(x), . . . , n(x)}, indicating the vertices in which

players are located in x(N) at the beginning of the game process (the initial position

of the players). For example i(x) means the vertex x ∈ X, in which the player i is

located at the beginning of the game. The set x(N) may contain coinciding vertices,

i.e. at the beginning of the game, several players can be at the same vertex. In

some cases, in order not to complicate the notation, so by i(x) we will also mean

the vertex in which the player i is located. On a path in the game Γ1, any finite

sequence of arcs of the form h = {(x0, x1) , (x1, x2) , . . . , (xl−1, xl)}, under condition

that the initial vertex in each arc coincides with the final vertex of previous arc is

called a path. Also, we suppose that there is player i ∈ N , x0 = i (x0) ∈ x(N) and

xl = a. Thus, a path is a sequence of arcs connecting the initial positions of the

players in the network to fixed node a. We will say that the paths h′ and h′′ do not
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intersect and write h′ ∩ h′′ = ∅, if they do not have common arcs .

1.3 Minimization of transportation time (n−player in game).

We have n−player located in initial positions (vertices) which want to reach the

fixed node a in network in minimal time, in such way that the corresponding paths

have not contain common arcs. Denote this game as Γ1.

1.4 Strategies in Γ1.

Strategies of player i in the game Γ1 are the paths in which the starting vertex

x0 = i (x0), and the final vertex coincides with a ∈ X. Denote the strategy of player

i as:

hi = {(x0, x1) , (x1, x2) , . . . , (xk, xk+1) , . . . , (xl−1, a)},

A bunch of of all strategies of player i will be denoted by H i = {hi} , i = 1, . . . , n.

1.5 Admissible strategy profiles in Γ1.

The admissible strategy profiles in the game in Γ1(see[9]). Strategy profiles h =

(h1, . . . , hn) , h1 ∈ H1, . . . , hn ∈ Hn are called admissible if the paths hj and hk not

intersect (not contain common arcs). hj∩ hk = ∅, j ̸= k. The set of all admissible

strategy profiles is denoted by H.

1.6 Cost Function in Γ1

In this section we define for each arc (xk, xk+1) the values of cost function γi (xk, xk+1)

as the time necessary to reach the node xk+1 from node xk by player i. For each

strategy profile h = (h1, . . . , hn) ∈ H. Denote the player i time to reach the fixed

node a as Ki(h) (see[9]).

Ki(h) =
l−1∑
k=0

γi (xk, xk+1) = k
(
hi
)

(1)
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Here {(x0, x1) , (x1, x2) , . . . , (xl−1, xl)} = hi. Thus, we see for player i, the timeKi(h)

depends on his strategy hi and depends on the strategies of other players in that

the strategy hi (path of player i ) should not intersect with the strategies of other

players. Therefore, in some cases, when this will not lead to misunderstandings, we

instead Ki(h) will use the notation k (hi), meaning the player i time along the path

hi.

1.7 Nash equilibrium in game Γ1.

In the game Γ1 the strategy profile
(
h̄ = h̄1, . . . , h̄n

)
is called a Nash equilibrium ,

if Ki

(
h ∥ hi

)
≥ Ki

(
h
)

holds for all admissible strategy profiles
(
h ∥ hi

)
∈ H and

i ∈ N .

Let π be some permutation of numbers 1, . . . , n, π = (i1, . . . , in). Consider an

auxiliary transportation problem on the network G for player i1. Find the path in the

network G, minimizing the total time of player i1 to move from vertex i1 (x) ∈ x (N)

to vertex a ∈ X. Denote the path that solves this problem h̄i1 .

k
(
h
i1
)
= min

hi1∈Hi1

k
(
hi1

)
(2)

Denote by G\h̄i1 a subnetwork not containing the path h̄i1 . Consider an auxiliary

transportation problem for player i2 on network G\h̄i1 . Find the path in subnetwork

G\h̄i1 , minimize the player i2 time to reach from vertex i2(x) ∈ x(N) to fixed node

a ∈ X. Denote the path that solves this problem by h̄i2 .

k
(
h
i2
)
= min

hi2∈Hi2

k
(
hi2

)
. (3)

Proceeding further in a similar way, we introduce into consideration the subnetworks

of the network G, that do not contain the paths hi1 , . . . , him−1 . Consider the auxiliary

transportation problem of the player im on the network G \ ∪m−1
l=1 h

il . Find the

subnetwork G \ ∪m−1
l=1 h

il , minimize the player im time where im (x) ∈ x (N) and
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a ∈ X. Denote the path that solves this problem by him .

k
(
h
im
)
= min

him∈Him
k
(
him

)
. (4)

As a result, we get a sequence of paths hi1 , . . . , hin , minimizing the total time of

players i1, i2, . . . , im, . . . , in on subnetworks:

G,G \ hi1 , . . . , G \ ∪m−1
l=1 h

il
, . . . , G \ ∪n−1

l=1 h
il
.

The sequence of paths hi1 , . . . , him , . . . , hin by construction consists of pairwise non-

intersecting paths, and each of them h
il ∈ H il . Therefore the strategy profile

(
h
i1
, . . . , h

im
, . . . , h

in
)
= h (π) ∈ H

is admissible in Γ1(see[9]).

1.8 Equilibrium strategy profile.

Theorem(see[3]): the strategy profile h̄(π) ∈ H is an equilibrium strategy profile

in Γ1 for any permutation π.

Proof : Consider the strategy profile.
[
h̄(π)∥him

]
, where him ̸= h̄im , him ∈H im ,

[
h̄(π)∥him

]
∈

H. By construction h̄im is determined from the condition

k
(
h̄im

)
= min

him∈G\Um−1
l=1 h̄il

k
(
him

)
,

However, the strategy profile
[
h̄(π)∥him

]
is admissible (if him ∈ G\

⋃m−1
l=1 h̄il ) and

therefore k
(
h̄im

)
≤ k (him) = Kim

[
h̄(π)∥him

]
, k

(
h̄im

)
=Kim(h̄(π)), andKim [h̄(π)] ≤

Kim

[
h̄(π)∥him

]
for all

[
h̄(π)∥him

]
∈ H, which proves the theorem.This theorem

indicates a rich family of pure strategy equilibrium profiles in Γ1 depending on

permutation π. Thus, in Γ1 we have at lest n! equilibrium strategy profiles in pure
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strategies (if the initial states of players are different).

1.9 Best Nash equilibrium in Γ1

The strategy profile h̄(π̂) is called a best equilibrium if (see[9])

n∑
i=1

Ki(h̄(π̂)) = min
π

n∑
i=1

Ki(h̄(π)) = W (5)

1.10 Cooperative solution in game Γ1

However, there are other Nash equilibrium in Γ1. Consider the strategy profile ¯̄h,

solving the minimization problem (see[9])

min
h

n∑
i=1

Ki(h) =
n∑

i=1

Ki(
¯̄h) = V (6)

We can simply show that ¯̄h is also a Nash equilibrium strategy profile. Because if

one player change his strategy and other players do not change their strategies his

time under this conditions will be more or equal of his time in case has not change

his strategy. Consider the strategy profile
(
¯̄h = ¯̄h1, . . . ,

¯̄
hi, . . . , ¯̄hn

)
if player i change

his strategy, we get
n∑

i=1

Ki(
¯̄h ∥ hi) ≥

n∑
i=1

Ki(
¯̄h)

,

K(
¯̄
h1)+K(

¯̄
h2)+ ...+K(hi)+ ...+K( ¯̄hn) ≥ K(

¯̄
h1)+K(

¯̄
h2)+ ...+K(

¯̄
hi)+ ...+K( ¯̄hn)

so K(hi) ≥ K(
¯̄
hi). We call the strategy profile ¯̄h a cooperative equilibrium in Γ1. In

some cases V = W , (see the example).
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1.11 Chart of the minimum time algorithm for one player in

Γ1

We use a modification of Dijkstra’s algorithm, Dijkstra’s algorithm is an algorithm

that solves the problem of finding the minimum transportation time for one player

from the initial position to reach the fixed node a (see[1]).

Figure 1:
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1.12 Example for one player in Γ1

Figure 2: one player in game Γ1

In this figure we denote nodes by capital Latin letters , N = {1} the set x (N) =

{A}.The transportation times are written on the network in this figure over the arcs

10



and are equal, respectively to

γ(A,B) = 2, γ(A,F ) = 1, γ(A,D) = 0, γ(B,G) = 1,

v(B,H) = 2, γ(B,C) = 2, γ(C,H) = 4, γ(C, I) = 1,

γ(D,N) = 2, γ(D,E) = 1, γ(D, J) = 1, γ(E,F ) = 0,

γ(E, J) = 3, γ(E,K) = 1, γ(F,G) = 1, γ(F,K) = 1,

γ(F,L) = 1, γ(G,H) = 6, γ(G,L) = 1, γ(H, I) = 2,

γ(H,M) = 1, γ(H,L) = 0, γ(J,N) = 0, γ(J,K) = 0,

γ(J,O) = 2, γ(K,L) = 2, γ(K,O) = 1, γ(L,M) = 1,

γ(L,O) = 1, γ(L, P ) = 7, γ(L,Q) = 1, v(M,R) = 1,

γ(M,S) = 2, γ(M, I) = 1, γ(I, S) = 2, γ(N, T ) = 2,

γ(N,O) = 1, γ(O,P ) = 3, γ(O, T ) = 7, γ(P, T ) = 1,

γ(P,Q) = 6, γQ,R) = 2, γ(T,Q) = 1, γ(T, S) = 2, γ(S,R) = 4.

We find the minimum transportation times from vertex A to all vertices. Making

necessary computation, we get:

11



Figure 3:

1.13 Chart of the minimum time algorithm for n− player case

in Γ1.

We developed Dijkstra’s algorithm to find best Nash equilibrium for any network in

n−player game Γ1 and it is a following chart :

12



Figure 4: Best Nash equilibrium (arc) function
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Figure 5: Best Nash equilibrium (arc)
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We developed Dijkstra’s algorithm to find cooperative solutions for any network

in n−player game Γ1 and it is a following chart :

Figure 6: DFS

15



Figure 7: cooperative solution

1.14 Example, two player case in Γ1

This example shows us best Nash equilibrium and give the same result (time) as

cooperative solution

16



Figure 8: two player in game Γ1

In this figure we denote nodes by capital Latin letters. N = {1, 2} the set x (N) =

{A,D}

The transportation times are written on the network in this figure over the arcs

and are equal, respectively to

17



γ(A,B) = 2, γ(A,F ) = 1, γ(A,D) = 0, γ(B,G) = 1,

γ(B,H) = 2, γ(B,C) = 2, γ(C,H) = 4, γ(C, I) = 1,

γ(D,N) = 2, γ(D,E) = 1, γ(D, J) = 1, γ(E,F ) = 0,

γ(E, J) = 3, γ(E,K) = 1, γ(F,G) = 1, γ(F,K) = 1,

γ(F,L) = 1, γ(G,H) = 6, γ(G,L) = 1, γ(H, I) = 2,

γ(H,M) = 1, γ(H,L) = 0, γ(J,N) = 0, γ(J,K) = 0,

γ(J,O) = 2, γ(K,L) = 2, γ(K,O) = 1, γ(L,M) = 1,

γ(L,O) = 1, γ(L, P ) = 7, γ(L,Q) = 1, γ(M,R) = 1,

γ(M,S) = 2, γ(M, I) = 1, γ(I, S) = 2, γ(N, T ) = 2,

γ(N,O) = 1, γ(O,P ) = 3, γ(O, T ) = 7, γ(P, T ) = 1,

γ(P,Q) = 6, γQ,R) = 2, γ(T,Q) = 1, γ(T, S) = 2, γ(S,R) = 4.

We find the minimal transportation time for two player A,D to reach the fixed

node S under condition (paths have no common arcs). Making necessary computation,

we get the best Nash equilibrium in this game.

Figure 9: Here we get V = 10

Making necessary computation, we get the cooperative solutions in this game.

18



Figure 10: W = 10 thus in this case W = V
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1.15 Another example, two player case in Γ1

This example show that best Nash equilibrium give us different result as cooperative

solution and V < W .

Figure 11: In this case : V < W

In this figure we denote nodes by capital Latin letters . N = {1, 2} the set

x(N) = {A, I}. Two player want to reach the fixed node E under condition (paths

have no common arcs). The transportation times are written in the network in this

figure over the arcs and are equal, respectively to

γ(A,B) = 2, γ(A,F ) = 1, γ(B,C) = 0, γ(B,G) = 0,

γ(C,D) = 2, γ(C,H) = 0, γ(C,G) = 0.7, γ(D,E) = 0,

γ(D,H) = 1, γ(I, F ) = 0, γ(F,G) = 0, γ(F, J) = 2,

γ(J,H) = 1, γ(H,E) = 0,

20



Figure 12: Best Nash equilibrium π(1, 2)

K1(h̄(1, 2)) = 1,K2(h̄(1, 2)) = 4

K1(h̄(1, 2))+K2(h̄(1, 2)) = 5

Figure 13: Best Nash equilibrium π = (2, 1)

K1(h̄(2, 1)) = 5,K2(h̄(2, 1))) = 0

K1(h̄(2, 1))+ K2(h̄(2, 1))) = 5

21



Making necessary computation, we get best Nash equilibrium in this game.

Figure 14: W=5
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Figure 15: First solution

K1(
¯̄h) = 2 , K2(

¯̄h) = 2.7

K1(
¯̄h)+ K2(

¯̄h) = 4.7

Figure 16: Second solution

K1(
¯̄h) = 4 , K2(

¯̄h) = 0.7

K1(
¯̄h)+ K2(

¯̄h) = 4.7
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Making necessary computation, we get cooperative solutions in this game

Figure 17: v =4.7

1.16 Consider cooperative solution in game Γ1 as mini maximal

time

Consider now another approach to define the cooperative solution. For each strategy

profile we define the player i with the maximal time necessary to reach from the i(x0)

to fixed node a,then from all strategies profiles we select such strategy profile for
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which this maximal time is minimal. This strategy profile will shale call cooperative

mini maximal strategy profile ¯̄̄
h(π̂) .

Ki

(
¯̄̄
h(π̂)

)
= min

π

[
max

i

(
h̄i(π)

)]
= R1 (7)

1.17 Chart of the algorithm for cooperative solution in game

Γ1 as min maximal time

We developed Dijkstra’s algorithm to find mini maximal time for any network in

n−player game Γ1 and it is a following chart :

Figure 18: Nash equilibrium (arc)
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Figure 19:
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1.18 Example for cooperative solution in game Γ1 as mini

maximal time

Under conditions of example (1.15). Making necessary computation, we get:

Figure 20:

This example shows that in some cases R1 < V ≤ W . It is interesting to

investigate this property in the general case.

27



1.19 Optimal cooperative trajectory.

Remind the definition of cooperative path (6)

¯̄h = [
{(
x101, x

1
11

)
,
(
x111, x

1
21

)
, . . . ,

(
x1l1−1, a

)}
, . . .

{(
xi0i, x

i
1i

)
,
(
xi1i, x

i
2i

)
, . . . ,

(
xili−1, a

)}
, . . .

{
(xn0n, x

n
1n) , (x

n
1n, x

n
2n) , . . . ,

(
xnln−1, a

)}
], where L = max

1≤i≤n
li.

Denote x̄(k) cooperative trajectories corresponding to cooperative path ¯̄h.

x̄ = (x101, x
1
11, x

1
21, . . . , x

1
l1−1, a), . . . (x

i
0i, x

i
1i, x

i
2i, . . . , x

i
li−1, a), . . . (x

n
0n, x

n
1n, x

n
2n, . . . , x

n
ln−1, a)

The subgame starting from state x̄(k) = (x1k1, . . . , x
i
ki, . . . , x

n
kn),

where xiki = (xi0i, x
i
1i, x

i
2i, . . . , x

i
li−1, a), i = 1, . . . , n, and k stage number for players.

1.20 The proportional Solution in game Γ1

In the cooperative version of the game we suppose that all players jointly minimal

the total costs and this minmize total cost we denote by V (N). The problem in

cooperative game theory how to allocate this total minimal cost between players.

In our sitting we will use as optimality principle the proportional solution.We have

n−player in Γ1 which want to reach the fixed node in network in minimal cost (sum

of the costs necessary to reach the fixed node by all players). In such way that the

corresponding paths do not contain common arcs. The proportional solution defined

as (see [17]):

φ̃i(x0) =
V (i;x0)
n∑

i=1

V (i;x0)

V (N ;x0); i ∈ N

φ̃i(x0): is proportional solution for player i in the his initial vertex (x0).

V (i;x0): is minimal total cost of player i in the his initial vertex (x0).
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The proportional solution in cooperative game is defined in a classical way:

φ̃i(x̄(k), k) =
V (i; x̄(k), k)
n∑

i=1

V (i; x̄(k), k)

V (N ; x̄(k), k); i ∈ N

φ̃i(x̄(k), k):is the proportional solution for player i along his trajectory x̄(k).

V (N, x̄(k), k) : is a minimal total cost for all players jointly (cooperative solution)

along cooperative trajectories x̄(k).

V (i, x̄(k), k) : is a minimal total cost for player i along cooperative trajectory x̄(k).

It is shown on example φ̃i(x̄(0), 0) ̸= φ̃i(x̄(1), 1)+ (one cost out).

1.21 Example of the Proportional Solution in game Γ1

Under the same conditions and the same transportation costs in the example (1.15)

an

Figure 21: Best Nash equilibrium π = (1, 2)
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Figure 22: Best Nash equilibrium π = (2, 1)

Figure 23: Cooperative solution

At k = 0 in case best Nash equilibrium π = (1, 2)

φ̃1(x̄(0), 0) =
V (1, x̄(0), 0)

V (1, x̄(0), 0) + V (2, x̄(0), 0)
V ((1, 2), x̄(0), 0) =

1

5
4.7 = 0.94

φ̃2(x̄(0), 0) =
V (2, x̄(0), 0)

V (1, x̄(0), 0) + V (2, x̄(0), 0)
V ((1, 2), x̄(0), 0) =

4

5
4.7 = 3.76

.

At k = 1 in case best Nash equilibrium π = (1, 2)
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φ̃1(x̄(1), 1) =
V (1, x̄(1), 1)

V (1, x̄(1), 1) + V (2, x̄(1), 1)
V ((1, 2), x̄(1), 1) =

0

4
2.7 = 0

φ̃2(x̄(1), 1) =
V (2, x̄(1), 1)

V (1, x̄(1), 1) + V (2, x̄(1), 1)
V ((1, 2), x̄(1), 1) =

4

4
2.7 = 2.7

Compare the results

In case non-cooperative game π = (1, 2)

φ̃1(x̄(1), 1) + 1 = 1 ̸= φ̃1(x̄(0), 0) = 0.94

φ̃2(x̄(1), 1) + 0 = 2.7 ̸= φ̃2(x̄(0), 0) = 3.76

So φ̃i(x̄(0), 0) ̸= φ̃i(x̄(1), 1)+ (one cost out). The characteristic function of the

proportional solution is not time consistent in Γ1 .

1.22 The Shapely value in cooperative game Γ1

Let V (S);S ⊂ N and V (1), V (2) where V (1) + V (2) ⩾ V (N) and V (S ∪ T ) ⩽

V (S) + V (T ), And n = |N |, S = |S| where S ⊂ N , And S ∩ T = ∅

The Shapely value Sh = {Shi}i∈N in the game Γ1 is a vector, such that(see[16]):

Shi (x̄(k), k) =
∑

i∈S⊂N

(n− s)!(s− 1)!

n!
(V (S, x̄(k), k)− V (S\{i}, x̄(k), k)

V (S, x̄(k), k) : is a minimal total cost for subset of players jointly (cooperative

solution) along cooperative trajectories x̄(k).

V (S\{i}, x̄(k), k) : is a minimal total cost for subset all players jointly (cooperative

solution) without player i along cooperative trajectories x̄(k).
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If we have 2 players the formula of the Shapley value will be:

Sh1 (x̄(k), k) = V (1, x̄(k), k)−

− V (1, x̄(k), k) + V (2, x̄(k), K)− V ((1, 2), x̄(k), k))

2

Sh2 (x̄(k), k) = V (2, x̄(k), k)−

− V (1, x̄(k), k) + V (2, x̄(k), k)− V ((1, 2), x̄(k), k)

2

And we will get

Sh1 (x̄(k), k) + Sh2 (x̄(k), k) = V ((1, 2), x̄(k), k)

How we defined the value of V (S);S ⊂ N in game if N = {1, 2}

Table 1:

Value of V (S); S ∈ N

FIRST CASE (N |S) then S V (1)
The value at
π = (2, 1)

V (2)
The value at
π = (1, 2)

SECOND CASE S then (N |S) V (1)
The value at
π = (1, 2)

V (2)
The value at
π = (2, 1)

It is shown on example the characteristic function of the Shapely value is not

time consistent in Γ1 .

Shi (x̄(0), 0) ̸= Shi (x̄(1), 1) + ( one cost out)

1.23 Example of the shapley value in cooperative game Γ1

Under the same conditions and the same transportation costs in the example (1.15)
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Figure 24: Best Nash equilibrium π = (1, 2)

Figure 25: Best Nash equilibrium π = (2, 1)
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Figure 26: Cooperative solution

At k = 0,π = (1, 2)

Sh1 (x̄(0), 0) = 5− 5 + 4− 4.7

2
= 2.85

Sh2 (x̄(0), 0) = 4− 5 + 4− 4.7

2
= 1.85

At k = 1,π = (1, 2)

Sh1 (x̄(1), 1) = 4− 4 + 4− 2.7

2
= 1.35

Sh2 (x̄(1), 1) = 4− 4 + 4− 2.7

2
= 1.35

Compare the results

Sh1 (x̄(1), 1) + 1 = 1.35 + 1 = 2.35 ̸= 2.85 = Sh1 (x̄(0), 0)

Sh2 (x̄(1), 1) + 1 = 1.35 + 1 = 2.35 ̸= 1.85 = Sh2 (x̄(0), 0)

The characteristic function of the Shapely value is not time consistent in Γ1 .
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2 Minimization of transportation time in the case

when paths have no common vertices

2.1 Model

The game takes place on the network G = (X,D), where X is a finite set, called

the vertex set and D− set of pairs of the form (y, z), where y ∈ X, z ∈ X, called

arcs. points x ∈ X will be called vertices or nodes of the network. On a set of arcs

D a non-negative symmetric real valued function is given γ (x, y) = γ (y, x) ≥ 0,

interpreted for each arc (x, y) ∈ D as the time associated with the transition from

x to y by arc (x, y) .

2.2 Description of transportation game

Define n-player transportation game on network G. The transportation game Γ

is system Γ2 = ⟨G,N, x(N), a⟩, where G− network,N = {1, . . . , n}− is set of

players,a ∈ X - some fixed node of the network G, x(N) ⊂ X - subset of vertices of

network G, x(N) = {1(x), 2(x), . . . , i(x), . . . , n(x)}, indicating the vertices in which

players are located in x(N) at the beginning of the game process (the initial position

of the players). For example i(x) means the vertex x ∈ X, in which the player i is

located at the beginning of the game. The set x(N) may contain coinciding vertices,

i.e. at the beginning of the game, several players can be at the same vertex. In some

cases, in order not to complicate the notation, so by i(x) we will also mean the

vertex in which the player i is located. On a path in the game Γ any finite sequence

of arcs of the form e = {(x0, x1) , (x1, x2) , . . . , (xl−1, xl)}, under condition that the

initial vertex in each arc considers with the final vertex of previous arc is calles

path. Also we suppose that there is player i ∈ N , such that x0 = i (x0) ∈ x(N)

and xl = a. Thus, a path is a sequence of arcs connecting the initial positions of

the players in the network to fixed node a. Denote F as sequence of vertices of the
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form F = {x0, x1, x1, x2, . . . , xl−1, xl} in the path e. We will say that corresponding

sequences of vertices do not intersect and write Fe′ ∩ Fe′′ = ϕ if they do not have

common vertices.

2.3 Minimization of transportation time in (n−player game)

We have n−player located in initial positions (vertices) which want to reach the

fixed node a in network in minimal time, in such way that the corresponding paths

have not contain common vertices. Denote this game as Γ2.

2.4 Strategies in Γ2

Strategies of player i in the game Γ2are the paths in which the starting vertex

x0 = i (x0), and the final vertex coincides with a ∈ X. Denote the strategy of player

i as:

ei = {(x0, x1) , (x1, x2) , . . . , (xk, xk+1) , . . . , (xl−1, a)},

A bunch of all strategies of player i will be denoted by Ei = {ei} , i = 1, . . . , n.

2.5 Admissible strategy profiles in Γ2

The admissible strategy profiles in the game Γ2. The strategy profiles e = (e1, . . . , en) , e1 ∈

E1, . . . , en ∈ En are called admissible if the corresponding sequences of vertices do

not intersect and write Fe′ ∩ Fe′′ = ϕ where F is sequence of vertices of the form

F = {x0, x1, x1, x2, . . . , xl−1, xl} in the path e if they do not have common vertices.

The set of all admissible strategy profiles is denoted by E.

2.6 Cost Function in Γ2

In this suction we define for each arc (xk, xk+1) the values of cost function γi (xk, xk+1)

as time necessary to reach the node xk+1 from node xk by player i. For each strategy

profile e = (e1, . . . , en) ∈ E.
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Denote the player i time is Ki(e) to reach the node a.

Ki(e) =
l−1∑
k=0

γi (xk, xk+1) = k
(
ei
)

(8)

Here {(x0, x1) , (x1, x2) , . . . , (xl−1, xl)} = ei. Thus, F sequence of vertices of the form

Fei = {x0, x1, x1, x2, . . . , xl−1, xl}, we see for the player i time Ki(e) depends on his

strategy ei and on the strategies of other players in that the strategy ei (path of

player i ) should not intersect with the strategies of other players. Therefore, in some

cases, when this will not lead to misunderstandings, we instead Ki(e) will use the

notation k (ei), meaning the player i time along the path ei.

2.7 Nash equilibrium in n−player game Γ2

In the game Γ2 the strategy profile ē = (ē1, . . . , ēn) is called a Nash equilibrium, if

Ki (ē∥ei) ≥ Ki(ē) holds for all admissible strategy profile (ē∥ei) ∈ E and i ∈ N .

Let π be some permutation of numbers 1, . . . , n, π = (i1, . . . , in). Consider an

auxiliary transportation problem on the network G for player i1. Find the path in

the network G, minimizing the time of player i1 to reach from vertex i1(x) ∈ x(N)

to vertex a ∈ X. Denote the path that solves this problem ēi1

k
(
ēi1

)
= min

ei1∈Ei1

k
(
ei1

)
. (9)

Denote byG\Fēi1 a subnetwork not containing Fēi . Consider an auxiliary transportation

problem for player i2 on network G\Fēi . Find the path in subnetwork G\ Fēi1, which

minimizing the player i2 time to reach from vertex i2(x) ∈ x(N) to vertex a ∈ X.

Denote the path that solves this problem ēi2 .

k
(
ēi2

)
= min

ei2∈Ei2

k
(
ei2

)
. (10)

Proceeding further in a similar way, we introduce into consideration the subnetworks
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of the network G, that do not containing vertices which belong to Fēi1 , . . . , Fēim−1 .

Consider the auxiliary transportation problem of the player im on the network

network G\ ∪m−1
l=1 Fēil . Find the subnetwork G\ ∪m−1

l=1 Fēil , minimizing the player

im time where im(x) ∈ x(N) and a ∈ X. Denote the path that solves this problem

ēim .

k
(
ēim

)
= min

eim∈Eim
k
(
eim

)
(11)

As a result, we get a sequence of paths ēi1 , . . . , ēin , minimizing the total time of

players i1, i2, . . . , im, . . . , in on subnetworks:

G,G\Fēi1 , . . . , G\ ∪m−1
l=1 Fēil ,···, . . . , G\ ∪n−1

l=1 Fēil .

The sequence of paths ēi1 , . . . , ēim , . . . , ēin by construction consist of pairwise non-

intersecting vertices, and each of them ēil ∈ Eil . Therfore the strategy profile

(ēi1 , . . . , ēim , . . . , ēin) = ē(π) ∈ E is admissible in Γ2.

2.8 Equilibrium strategy profile/

theorem: The strategy profile ē(π) ∈ E is an equilibrium strategy profile in Γ1 for

any permutation π.

Proof : Consider the strategy profile. [ē(π)∥eim ], where eim ̸= ēim , eim ∈

Eim , [ē(π)∥eim ] ∈ E. By construction ēim is determined from the condition

k
(
ēim

)
= min

eim∈G\Um−1
l=1 ēil

k
(
eim

)
,

However, the strategy profile [ē(π)∥eim ] is admissible (if eim ∈ G\
⋃m−1

l=1 ēil ) and

therefore k (ēim) ≤ k (eim) = Kim [ē(π)∥eim ], However k (ēim) = Kim(ē(π)), and

Kim [ē(π)] ≤ Kim [ē(π)∥eim ] for all [ē(π)∥eim ] ∈ E, which proves the theorem.

This theorem indicates a rich family of pure strategy equilibrium profiles in Γ1

depending on permutation π. Thus in Γ2 we have at lest n! equilibrium strategy

38



profiles in pure strategies,(if the initial states of players are different).

2.9 Best Nash equilibrium in game Γ2

The strategy profile ē(π̂) is called best Nash equilibrium if

n∑
i=1

Ki(ē(π̂)) = min
π

n∑
i=1

Ki(ē(π)) = W2 (12)

2.10 Cooperative solution in game Γ2

However, there are other Nash equilibrium in Γ2 is also of Nash equilibrium. Consider

the strategy profile ē, solving the minimization problem

min
e

n∑
i=1

Ki(e) =
n∑

i=1

Ki(ē) = V2 (13)

We can simply show that ¯̄e is also a Nash equilibrium strategy profile. Because if

one player change his strategy and other players do not change their strategies his

time under this conditions will be more or equal of his time in case has not change

his strategy. Consider the strategy profile
(
¯̄e = ¯̄e1, . . . ,

¯̄
ei, . . . , ¯̄en

)
if player i change

his strategy, we get
n∑

i=1

Ki(¯̄e ∥ ei) ≥
n∑

i=1

Ki(¯̄e)

,

K(
¯̄
e1)+K(

¯̄
e2)+ ...+K(ei)+ ...+K( ¯̄en) ≥ K(

¯̄
e1)+K(

¯̄
e2)+ ...+K(

¯̄
ei)+ ...+K( ¯̄en)

so K(ei) ≥ K(
¯̄
ei). We call the strategy profile ¯̄e cooperative equilibrium in Γ2. In

some cases V2 = W2 , (see the example).
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2.11 Chart of the minimum time algorithm for n- player case

in Γ2

We developed Dijkstra’s algorithm to find best Nash equilibrium for any network in

n−player game Γ2 and it is a following chart :

Figure 27: Best Nash equilibrium (vertex) function
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Figure 28: Best Nash equilibrium (vertex)

41



2.12 Example for two player case in Γ2

This example show us best Nash equilibrium and give the same result (time) as

cooperative solution

Figure 29: two player in game Γ2

In this figure we denote nodes by capital Latin letters. N = {1, 2} the set x (N) =

{A,D}.The transportation times are written in the network in this figure over the

arcs and are equal, respectively to
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γ(A,B) = 2, γ(A,F ) = 1, γ(A,D) = 0, γ(B,G) = 1,

γ(B,H) = 2, γ(B,C) = 2, γ(C,H) = 4, γ(C, I) = 1,

γ(D,N) = 2, γ(D,E) = 1, γ(D, J) = 1, γ(E,F ) = 0,

γ(E, J) = 3, γ(E,K) = 1, γ(F,G) = 1, γ(F,K) = 1,

γ(F,L) = 1, γ(G,H) = 6, γ(G,L) = 1, γ(H, I) = 2,

γ(H,M) = 1, γ(H,L) = 0, γ(J,N) = 0, γ(J,K) = 0,

γ(J,O) = 2, γ(K,L) = 2, γ(K,O) = 1, γ(L,M) = 1,

γ(L,O) = 1, γ(L, P ) = 7, γ(L,Q) = 1, γ(M,R) = 1,

γ(M,S) = 2, γ(M, I) = 1, γ(I, S) = 2, γ(N, T ) = 2,

γ(N,O) = 1, γ(O,P ) = 3, γ(O, T ) = 7, γ(P, T ) = 1,

γ(P,Q) = 6, γQ,R) = 2, γ(T,Q) = 1, γ(T, S) = 2, γ(S,R) = 4.

We find the minimal transportation time for two player A,D to reach the fixed

node S under condition (paths have no common vertices).

Making necessary computation, we get best Nash equilibrium in this Γ2:

Figure 30: W2 = 10

Making necessary computation, we get Cooperative solution in this Γ2:
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¯̄e1 = [(A,F ), (F,L)(L,M), (M,S))]

¯̄e2 = [(D, J), (J,N)(N, T ), (T, S)]

K1 (̄̄e) = 5 , K2 (̄̄e) = 5

K1 (̄̄e)+ K2 (̄̄e) = 10 = V2 ,W2 = V2

2.13 Another example for two player in Γ2

This example show that best Nash equilibrium give us different result as cooperative

solution and V2 < W2.

In figure (11), we denote nodes by capital Latin letters.

We have an undirected network and non-negative symmetric real valued functions

N = {1, 2} the set x(N) = {A, I}.

Two player want to reach the fixed node E under condition (paths have no

common vertices ).

The transportation times are written in the network in figure (11), over the arcs

and are equal, respectively to

γ(A,B) = 2, γ(A,F ) = 1, γ(B,C) = 0, γ(B,G) = 0,

γ(C,D) = 2, γ(C,H) = 0, γ(C,G) = 0.7, γ(D,E) = 0,

γ(D,H) = 1, γ(I, F ) = 0, γ(F,G) = 0, γ(F, J) = 2,

γ(J,H) = 1, γ(H,E) = 0,

For permuation : π = {1, 2}

ē1 = [(A,F ), (F,G)(G,B), (B,C)(C,H), (H,E)]

K1(ē(1, 2)) = 1,K2(ē(1, 2)) = ∞

K1(ē(1, 2))+K2(ē(1, 2)) = ∞

For permuation : π = {2, 1}

ē2 = [(I, F ), (F, )(G,B), (B,C)(C,H), (H,E)]

K1(ē(2, 1)) = ∞,K2(ē(2, 1))) = 0 K1(ē(2, 1))+ K2(ē(2, 1))) = ∞

Thus , both equilibrium ē(2, 1) and ē(1, 2) are conditionally cooperative equilibrium
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( best Nash equilibrium) in Γ2 and get W2 = ∞

Cooperative solution

¯̄e1 = [(A,B), (B,C)(C,D), (D,E))]

¯̄e2 = [(I, F ), (F, J)(J,H), (H,E)]

K1 (̄̄e) = 4 , K2 (̄̄e) = 3

K1 (̄̄e)+ K2 (̄̄e) = 7 = V2

We get the result V2 < W2

2.14 Consider cooperative solution in game Γ2 as min maximal

time

Consider now another approach to define the cooperative solution.For each strategy

profile we define the player i with maximal time necessary to reach from the i(x0)

to fixed node a,then from all strategies profiles we select such strategy profile for

which this maximal time is minimal .This strategy profile will shale call cooperative

mini maximal strategy profile ¯̄̄e(π̂) .

Ki

(
¯̄̄e(π̂)

)
= min

π

[
max

i

(
ēi(π)

)]
= R2 (14)

2.15 Chart of the algorithm for cooperative solution in game

Γ2 as mini maximal time

We developed Dijkstra’s algorithm to find mini maximal time for any network in

n−player game Γ2 and it is a following chart :
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Figure 31:

46



Figure 32:
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2.16 Example for cooperative solution in game Γ2 as mini

maximal time

Figure 33: two player in game Γ2

In this figure we denote nodes by capital Latin letters. N = {1, 2} the set x (N) =

{A,C}, The transportation times are written in the network on this figure over the

arcs and are equal, respectively to
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γ(A,B) = 2, γ(A,F ) = 1, γ(A,D) = 0, γ(B,G) = 1,

v(B,H) = 2, γ(B,C) = 2, γ(C,H) = 4, γ(C, I) = 1,

γ(D,N) = 2, γ(D,E) = 1, γ(D, J) = 1, γ(E,F ) = 0,

γ(E, J) = 3, γ(E,K) = 1, γ(F,G) = 1, γ(F,K) = 1,

γ(F,L) = 1, γ(G,H) = 6, γ(G,L) = 1, γ(H, I) = 2,

γ(H,M) = 1, γ(H,L) = 0, γ(J,N) = 0, γ(J,K) = 0,

γ(J,O) = 2, γ(K,L) = 2, γ(K,O) = 1, γ(L,M) = 1,

γ(L,O) = 1, γ(L, P ) = 7, γ(L,Q) = 1, v(M,R) = 1,

γ(M,S) = 2, γ(M, I) = 1, γ(I, S) = 2, γ(N, T ) = 2,

γ(N,O) = 1, γ(O,P ) = 3, γ(O, T ) = 7, γ(P, T ) = 1,

γ(P,Q) = 6, γQ,R) = 2, γ(T,Q) = 1, γ(T, S) = 2, γ(S,R) = 4.

We find the minimal transportation time for two player A,C to reach the fixed

node T under condition (paths have no common vertices). Making necessary computation,

we get cooperative solution in game Γ2 as mini maximal time as

Figure 34:

This example shows that in some cases R2 = V2 = W2. It is interesting to

investigate this property in the general case.
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3 Time consistency problem

3.1 Model

The game takes place on the network G = (X,D), where X is a finite set, called the

vertex set and D− set of pairs of the form (y, z), where y ∈ X, z ∈ X, called arcs.

Points x ∈ X will be called vertices or nodes of the network. On a set of arcsD a non-

negative symmetric real valued function is given γ (x, y) = γ (y, x) ≥ 0, interpreted

for each arc (x, y) ∈ D as the time associated with the transition from x to y by

arc (x, y) . In this section we consider the case when players from coalitions.Suppose

we have p− coalition M1,. . .,Mk,. . . ,Mp this coalitions do not intersect and contains

same vertices from network G.

3.2 Description of transportation game

Define p-player transportation game on network G. The transportation game Γ3 is

system Γ3 = ⟨G,P,M(P ), a⟩, where G− network,P = {1, . . . , p}− is set of players

(coalitions), a ∈X - some fixed node of the network G. M(P ) - subset of coalitions of

network G,M(P ) = {1(M), 2(M), . . . , k(M), . . . , p(M)}, indicating the coalitions in

which players are located in M(P ) at the beginning of the game process (the initial

position of the players(coalitions)). We will say that the paths of players(coalitions)

hM
′ and hM ′′ do not intersect and write hM ′∩hM ′′

= ∅, if they do not have common

arcs. Denoted this game as Γ3.

3.3 Strategies in Γ3.

The set Mk =
{
ik1, . . . , i

k
r, . . . , i

k
rk

}
in network G, we call coalition. The Strategies

of coalition are defined as Mk =
{
ik1, . . . , i

k
r, . . . , i

k
rk

}
as any path connecting his

initial position( initial position of players from Mk) with a fixed node a. The paths

of players inside coalition may intersect.

Denote as hMk =
{
hi

k
1 , . . . , hi

k
r , . . . , hi

k
rk

}
. ,where

{
hi

k
1 , . . . hi

k
r , . . . , hi

k
rk

}
are
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strategies of players
{
ik1, . . . , i

k
r, . . . , i

k
rk

}
in coalition Mk.

hi
k
r =

{(
xk0r, x

k
1r

)
,
(
xk1r, x

k
2r

)
, . . . ,

(
xklr−1, a

)}
, are the strategies of player ikr (inside

coalition Mk) and xk0r is intial postion of player ikr inside coalition Mk.

lr is a number of arc of hikr for player ikr inside coalition Mk . The strategies of

coalition Mk have the form:

hMk = [
{(
xk01, x

k
11

)
,
(
xk11, x

k
21

)
, . . . ,

(
xkl1−1, a

)}
, . . . . . . . . . . . . . . . . . .{(

xk0r, x
k
1r

)
,
(
xk1r, x

k
2r

)
, . . . ,

(
xklr−1, a

)}
, . . . . . . ,{(

xk0rk , x
k
1rk

)
,
(
xk1rk , x

k
2rk

)
, . . . ,

(
xklrk−1, a

)}
].

A bunch of all strategies of Mk we denote by HMk

3.4 Admissible strategy profiles in Γ3

The strategy profiles hM =
(
hM1 , . . . , hMp

)
, hM1 ∈ HM1 , . . . , hMp ∈ HMp are called

admissible if the paths hMki and hMkj not intersect ( not contain common arcs).

hMki ∩ hMkj = ∅, ki ̸= kj. The set of all admissible strategy profiles is denoted by

HM .

3.5 Cost function in Γ3

In this suction we define for each arc (xkfm, xkf+1m) the values of function γi
(
xkfm, x

k
f+1m

)
are equal to the cost which necessary to reach the node xkf+1m from node xkfm by

player Mk (coalitionMk ) is equal to

CMk
(hM) =

rk∑
r=1

lm−1∑
f=0

γi
(
xkfm, x

k
f+1m

)
= C

( ¯hMk

)
(15)

3.6 Nash equilibrium between coalitions M1,. . .,Mk,. . . ,Mp in

Γ3(paths of two different coalitions have no common arcs)

In the game Γ3 the strategy profile
(
h̄M = h̄M1 , . . . , h̄Mp

)
is called a Nash equilibrium,

if CMk

(
hM ∥ hMk

)
≥ CMk

(
hM

)
holds for all admissible strategy profiles

(
hM ∥ hMk

)
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∈ HM and k ∈ P .

Let π be some permutation of numbers 1, . . . , p, π =
(
Mk1 , . . . ,Mkp

)
. Consider an

auxiliary transportation problem on the network G for player(coalition) Mk1 . Find

the path in the network G, minimizing the player (coalition) Mk1 cost to each from

initial postion to fixed node a ∈ X. Denote the path that solves this problem by

¯hMk1

C
(

¯hMk1

)
= min

hMk1∈H
mk1

C
(
hMk1

)
. (16)

Remind that the players inside the coalition may use paths with common arcs.

Denote by G\ ¯hMk1 a subnetwork not containing arcs ¯hMk1 . Consider an auxiliary

transportation problem for player(coalition) Mk2on network G\ ¯hMk1 . Find the path

in subnetwork G\ ¯hMk1 , which minimizing the player (coalition) Mk2 cost to reach

from his intial postion to fixed node a ∈ X. Denote the path that solves this problem

by ¯hMk2

C
(

¯hMk2

)
= min

hMk2∈H
Mk2

C
(
hMk2

)
. (17)

Proceeding further in a similar way, we introduce into consideration the subnetworks

of the network G, that do not containing arcs which belong to strategy path ¯hMk1 ,

. . . , ¯hMkm−1 . Consider the auxiliary transportation problem of the player Mkm on

the network network G\∪m−1
l=1

¯hMkl . Find the subnetwork G\∪m−1
l=1

¯hMkl , minimizing

the player (coalition) Mkm cost to reach the node a ∈ X.Denote the path that solves

this problem by ¯hMkm

C
( ¯hMkm

)
= min

hMkm∈H
Mkm

C
(
hMkm

)
. (18)

As a result, we get a sequence of paths ¯hMk1 , . . . , ¯hMkp , minimizing the players

(coalitions) Mk1 ,Mk2 , . . . ,Mkm , . . . ,Mkp cost on subnetworks:

G,G\ ¯hMk1 , . . . , G\ ∪m−1
l=1

¯hMkm , . . . , G\ ∪m−1
l=1

¯hMkl .
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The sequence of bonages of paths ¯hMk1 , . . . , ¯hMkm , . . . , ¯hMkp by construction consist

of pairwise non-intersecting arcs, and each of them ¯hMkl ∈ ¯HMkl . Therfore the

strategy profile
(

¯hMk1 , . . . , ¯hMkm , . . . , ¯hMkp

)
= h̄M(π) ∈ HM is admissible in Γ3.

3.7 Equilibrium strategy profile

Theorem : The strategy profile h̄M(π) ∈ HM is an equilibrium strategy profile in

Γ3 for any permutation π.

Proof : Consider the strategy profile.
[
h̄M(π)∥hMkm

]
, where hMkm ̸= h̄Mkm , hMKm ∈

HMkm ,
[
h̄M(π)∥hMkm

]
∈ HM . By construction h̄Mkm is determined from the condition

C
(
h̄Mkm

)
= min

hMkm∈G\Um−1
l=1 h̄

Mkl

C
(
hMkm

)
,

However, the strategy profile
[
h̄M(π)∥hMkm

]
is admissible (if hMKm ∈ G\

⋃m−1
l=1 h̄Mkl

) and therefore C
(
h̄Mkm

)
≤ C

(
hMkm

)
= CMkm

[
h̄M(π)∥hMkm

]
, C

(
h̄Mkm

)
= CMkm

(h̄M(π)),

and CMkm
[h̄M(π)] ≤ CMkm

[
h̄m(π)∥hMkm

]
for all

[
h̄M(π)∥hMkm

]
∈ HM , which proves

the theorem.

This theorem indicates a rich family of pure strategy equilibrium profiles in Γ3

depending on permutation π. Thus, in Γ3 we have at lest n! equilibrium strategy

profiles in pure strategies. If the initial state of players(coalitions) are different.

3.8 Best Nash equilibrium in Γ3

The strategy profile h̄M(π̂) is called a best equilibrium if

p∑
k=1

CMk
(h̄M(π̂)) = min

π

P∑
k=1

CMk
(h̄M(π)) = W3 (19)
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3.9 Cooperative solution in game Γ3

However, there are other Nash equilibrium profiles in Γ3. Consider the strategy

profile ¯̄
hM , solving the minimization problem

min
hM

P∑
k=1

CMk
(hM) =

P∑
k=1

CMk
(
¯̄
hM) = V3 (20)

We can simply show that ¯̄
hM is also a Nash equilibrium strategy profile. Because

if one player changes his strategy and other players do not change their strategies

his time under this condition will be more than equal of his time in case has not

changed his strategy. Consider the strategy profile
(

¯̄
hM =

¯̄
hM1 , . . . ,

¯̄
hMK , . . . ,

¯̄
hMp

)
if player i change his strategy, we get

∑p
k=1CM(

¯̄
hM ∥ hMk) ≥

∑p
k=1CMk

(
¯̄
hM)

C(
¯̄
hM1)+C(

¯̄
hM2)+...+C(hMk)+...+C(

¯̄
hMp) ≥ C(

¯̄
hM1)+C(

¯̄
hM2)+...+C(

¯̄
hMk)+...+C(

¯̄
hMp)

so C(hMk) ≥ C(
¯̄
hMk). We call the strategy profile ¯̄

hM a cooperative equilibrium in

Γ3. In some cases V3 = W3 , (see the example)

3.10 Optimal cooperative trajectory.

Remind the definition of cooperative path (coalition) (3.9)

¯̄hM = [
{(̄̄
xM1
01 ,̄̄ x

M1
11

)
,
(̄̄
xM1
11 ,̄̄ x

M1
21

)
, . . . ,

(̄̄
xM1
l1−1, a

)}
, . . .

{(̄̄
xMk
0i ,̄̄ x

Mk
1

)
,
(̄̄
xMk
1k ,̄̄ x

Mk
2k

)
, . . . ,

(̄̄
xM1
lk−1, a

)}
, . . .

{(̄̄
x
Mp

0p ,̄̄ x
M1
1p

)
,
(̄̄
x
Mp

1p ,̄̄ x
Mp

2p

)
, . . . ,

(̄̄
x
Mp

lp−1, a
)}

], where L = max
1≤k≤p

lk.

Denote ¯̄̄x(r) cooperative trajectories corresponding to cooperative path ¯̄hM .

¯̄̄x = (¯̄xM1
01 , ¯̄x

M1
11 , ¯̄x

M1
21 , . . . , ¯̄x

M1
l1−1, a), . . . (¯̄x

Mk
0k , ¯̄x

Mk
1k , ¯̄x

Mk
2k , . . . , ¯̄x

Mk
lk−1, a), . . . (¯̄x

Mp

0p , ¯̄x
Mp

1p , ¯̄x
Mp

2p , . . . , ¯̄x
Mp

lp−1, a)

The subgame starting from state ¯̄̄x(r) = (¯̄xM1
r1 , . . . , ¯̄x

Mk
rk , . . . , ¯̄x

Mp
rp ),
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where ¯̄xMk
rk = (¯̄xMk

0k , ¯̄x
Mk
1k , ¯̄x

Mk
2k , . . . , ¯̄x

Mk
lk−1, a), k = 1, . . . , P , and r stage number for

players(coalitions).

3.11 The proportional solution for coalition in game Γ3

In the cooperative version of the game between coalitions we suppose that all players

(coalitions) jointly minmize the total costs and this minimal total cost we denote

by V (P ). As previous section the problem how to allocate this total minimal cost

between players (coalitions). In our sitting we will use as optimality principle the

proportional solution[17].We have p−player (coalitions) in Γ3 want to reach the fixed

node in network in minimal cost (sum of the costs necessary to reach the fixed node

by all players(coalitions)). In such way that the corresponding paths of coalitions

do not contain common arcs. The proportional solution defined as (see [17]): The

proportional solution in cooperative gameγ3 is defined in a classical way:

φ̃Mk
(¯̄̄x(r), r) =

V (Mk; ¯̄̄x(r), r)
p∑

k=1

V (Mk; ¯̄̄x(r), r)

V (P ; ¯̄̄x(r), r); K ∈ P

φ̃Mk
(¯̄̄x(r), r):is the proportional solution for player Mk along his trajectories ¯̄̄x(r).

V (P ; ¯̄̄x(r), r) : is a minimal total cost for all players jointly (cooperative solution)

along cooperative trajectories ¯̄̄x(r).

V (Mk; ¯̄̄x(r), r) : is a minimal total cost for player Mk along cooperative trajectories

¯̄̄x(r).

It is shown on example φ̃Mk
(¯̄̄x(0), 0) ̸= φ̃Mk

(¯̄̄x(1), 1))+ (one cost out).

3.12 The Shapley value in game Γ3

Let we have V (S);S ⊂ P and V (M1), V (M2) where V (M1) + V (M2) ⩾ V (P ) and

V (S ∪ T ) ⩽ V (S) + V (T ), And p = |P |, S = |S| where S ⊂ P , And S ∩ T = ∅

The Shapley value Sh = {ShMk
}k∈N in cooperative game Γ3 is a vector, such
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that(see[16]):

ShMk
(¯̄̄x(r), r) =

∑
Mk∈S⊂P

(p− s)!(s− 1)!

p!

(
V
(
S, ¯̄̄x(r), r

)
− V

(
S\{Mk}, ¯̄̄x(r), r

)
(21)

ShMk
(¯̄̄x(r), r):is the Shapley value for player Mk along his trajectories ¯̄̄x(r).

V (S; ¯̄̄x(r), r) : is a minimal total cost for subset of players jointly (cooperative

solution) along cooperative trajectories ¯̄̄x(r).

V
(
S\{Mk}, ¯̄̄x(r), r

)
: is minimal total cost for all subset of players(coalitions) jointly

(cooperative solution ) without player Mk along his trajectories ¯̄̄x(r).

If we have 2 players(coalitions) the formula of the Shapley value will be:

ShM1(
¯̄̄x(r), r) = V (M1, ¯̄̄x(r), r)−

V (M1, ¯̄̄x(r), r) + V (M2, ¯̄̄x(r), r)− V ((M1,M2), ¯̄̄x(r), r)

2

ShM2(
¯̄̄x(r), r) = V (M2, ¯̄̄x(r), r)−

V (M2, ¯̄̄x(r), r) + V (M1, ¯̄̄x(r), r)− V ((M1,M2), ¯̄̄x(r), r)

2

And we will get ShM1(
¯̄̄x(r), r) + ShM2(

¯̄̄x(r), r) = V ((M1,M2), ¯̄̄x(r), r)

How we defined the value of V (S);S ⊂ P in game if P = {1, 2}

Table 2:

Value of V (S); S ∈ P

FIRST CASE (P |S) then S V T (M1)
The value at
π = (2, 1)

V T (M2)
The value at
π = (1, 2)

SECOND CASE S then (P |S) V T (M1)
The value at
π = (1, 2)

V T (M2)
The value at
π = (2, 1)

It is shown on example the characteristic function of the Shapely value is not

time consistent in Γ3 .

ShMk
(¯̄̄x(0), 0)) ̸= ShMk

(¯̄̄x(1), 1)+ one cost out
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3.13 Two stage solution concept in Γ3

We consider the solution by the following :

First approach:cooperative game between players (coalitions), then find Proportional

solution φ̃Mk
in Γ3.This solution consider as loses of every given coalition , then the

problem how to distribute this loses between members of coalition. For this reason we

compute the Shapley value and it is necessary to define the characteristic function

for players inside the coalition.The characteristic function is defined in following

way : suppose S ⊂ P then V (S) can be taken as the loses of S in some fixed Nash

equilibrium (under fixed permutation) in the game played by (coalitions) S with

other players as individual players( we may suppose that the strategies of players

do not have common arcs ).Denote the Shapley value inside coalition is shi(Mk)

;Mk ⊂ S. We decide to allocate the loses as

ψi(Mk) =
shi(Mk)

pk∑
i=1

shi(Mk)

φ̃Mk
; k ∈ {1, ......, p}. (22)

Second approach: cooperative game between players (coalition), then find

the Shapley value shMk
in Γ3.This solution consider as loses every given coalition

, then the problem how to distribute this loses between members of coalition.

For this reason we compute the proportional solution it is necessary to define the

characteristic function for players inside the coalition.The characteristic function is

defined in following way : suppose S ⊂ P then V (S) can be taken as the loses of

coalition S in some fixed Nash equilibrium (under fixed permutation) in the game

played by (coalitions) S with other players as individual players( we may suppose

that the strategies of players do not have common arcs ).Denote the Proportional

57



solution inside coalition is φ̃i(Mk) ;Mk ⊂ S .We decide to allocate the loses as

θi(Mk) =
φ̃i(Mk)

pk∑
i=1

φ̃i(Mk)

shMk
; k ∈ {1, ......, p}. (23)

3.14 Example (time consistency problem game Γ3):

Figure 35: two player in game Γ3

In this figure we denote nodes by capital Latin letters.P = {1, 2} the coalitions

M = {M1,M2} ; M1 = A,B,M2 = I, F

Two player (coalitions)want to reach the fixed node E under condition (paths

have no common arcs ).

The transportation times are written in the network in this figure over the arcs

and are equal, respectively to
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γ(A,B) = 2, γ(A,F ) = 1, γ(B,C) = 0, γ(B,G) = 0,

γ(C,D) = 2, γ(C,H) = 0, γ(C,G) = 0.7, γ(D,E) = 0,

γ(D,H) = 1, γ(I, F ) = 0, γ(F,G) = 0, γ(F, J) = 2,

γ(J,H) = 1, γ(H,E) = 0,

. Non- cooperative solution

For permuation : π = {1, 2}

¯hM1 = [(A,F ), (F,G)(G,B), (B,C)(C,H), (H,E)], [(B,C), (C,H)(H,E)]

CM1(
¯hM) = 1 + 0 = 1

¯hM2 = [(I, F ), (F, J)(J,H), (H,D)(D,E)], [(F, J)(J,H), (H,D)(D,E)]

CM2(h̄
M) = 4 + 4 = 8

For permuation : π = {2, 1}

¯hM2 = [(I, F ), (F,G)(G,B), (B,C)(C,H), (H,E)], [(F,G)(G,B), (B,C)(C,H), (H,E)]

CM2(h̄
M) = 0 + 0 = 0

¯hM1 = [(A,F ), (F, J)(J,H), (H,D)(D,E), (H,E)],

[(B,A), (A,F ), (F, J)(J,H), (H,D)(D,E), (H,E)]

CM1(
¯hM) = 5 + 7 = 12

Thus , both equilibrium h̄M(2, 1) and h̄M(1, 2) are conditionally cooperative equilibrium

( best Nash equilibrium) in Γ3 and get W3 = 9

Cooperative solution

¯̄
hM1 = [(A,B), (B,C)(C,D), (D,E)], [(B,C)(C,D), (D,E)]

CM1(
¯hM) = 4 + 2 = 6

¯̄
hM2 = [(I, F ), (F,G)(G,C), (C,H)(H,E)], [(F,G)(G,C), (C,H)(H,E)]

CM2(h̄
M) = 0.7 + 0.7 = 1.4

CM1(
¯hM) + CM2(

¯hM) = 6 + 1.4 = 7.4 = V3
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We get the result V3 < W3

The proportional solution in game Γ3

At r = 0 ,π = (1, 2)

φ̃M1(
¯̄̄x(0), 0) = (1/9)7.4 = 0.822, φ̃M2(

¯̄̄x(0), 0) = (8/9)7.4 = 6.578

At r = 0 ,π = (2, 1)

φ̃M1(
¯̄̄x(0), 0) = (12/12)7.4 = 7.4, φ̃M2(

¯̄̄x(0), 0) = (0/12)7.4 = 0

At r = 1 ,π = (1, 2)

φ̃M1(
¯̄̄x(1), 1) = (0/6)5.4 = 0, φ̃M2(

¯̄̄x(1), 1) = (6/6)5.4 = 5.4

At r = 1 ,π = (2, 1)

φ̃M1(
¯̄̄x(1), 1) = (9/9)5.4 = 5.4, φ̃M2(

¯̄̄x(0), 0) = (0/12)5.4 = 0

Compare the results

φ̃M1(
¯̄̄x(1), 1) + 1 = 1 ̸= φ̃M1(

¯̄̄x(0), 0) = 0.822

φ̃M2(
¯̄̄x(1), 1) + 2 = 7.4 ̸= φ̃M2(

¯̄̄x(0), 0) = 6.578

φ̃M1(
¯̄̄x(1), 1) + 3 = 8.4 ̸= φ̃M1(

¯̄̄x(0), 0) = 7.4

φ̃M2(
¯̄̄x(1), 1) + 0 = 0 = φ̃M2(

¯̄̄x(0), 0)

The characteristic function of the proportional solution is not time consistent in Γ3

.

The Shapley value in game Γ3
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At r = 0 ,π = (1, 2)

ShM1(
¯̄̄x(0), 0) = 12− 12 + 8− 7.4

2
= 5.7

ShM2(
¯̄̄x(0), 0) = 8− 8 + 12− 7.4

2
= 1.7

At r = 0 ,π = (2, 1)

ShM1(
¯̄̄x(0), 0) = 1− 1 + 0− 7.4

2
= 4.2

ShM2(
¯̄̄x(0), 0) = 0− 0 + 1− 7.4

2
= 3.2

At r = 1 ,π = (1, 2)

ShM1(
¯̄̄x(1), 1) = 9− 9 + 6− 5.7

2
= 2.85

ShM2(
¯̄̄x(1), 1) = 6− 6 + 9− 5.7

2
= 1.35

At r = 1 ,π = (2, 1)

ShM1(
¯̄̄x(1), 1) = 1− 1 + 0− 5.7.4

2
= 3.35

ShM2(
¯̄̄x(1), 1) = 0− 0 + 1− 5.7

2
= 2.35

Compare the results

ShM1(
¯̄̄x(1), 1) + 1 = 2.85 + 1 = 3.85 ̸= 5.7 = ShM1(

¯̄̄x(0), 0)

ShM2(
¯̄̄x(1), 1) + 2 = 1.35 + 2 = 3.35 ̸= 1.7 = ShM2(

¯̄̄x(0), 0)

ShM1(
¯̄̄x(1), 1) + 3 = 3.35 + 3 = 6.35 ̸= 4.2 = ShM1(

¯̄̄x(0), 0)

ShM2(
¯̄̄x(1), 1) + 0 = 2.35 + 0 = 2.35 ̸= 3.2 = ShM1(

¯̄̄x(0), 0)

The characteristic function of the Shapley value is not time consistent in Γ3 .

Two stage solution concept in Γ3

In the case best Nash equilibrium π = (1, 2) we get :
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sh1(M1) = 1, sh2(M1) = 0, sh1(M2) = 4, sh2(M2) = 4,

φ̃M1 = 0.822, φ̃M2 = 6.578

So ψ1(M1) = (0.822)(1) = 0.822, ψ2(M1) = (0.82)(0) = 0

ψ1(M2) = (6.578)(4/8) = 3.289, ψ2(M2) = (6.578)(4/8) = 3.289

φ̃1(M1) = 1, φ̃2(M1) = 0, φ̃3(M2) = 4, φ̃2(M2) = 4,

hM1 = 5.7, shM2 = 1.7

So θ1(M1) = (5.7)(1/1) = 5.7, θ2(M1) = (5.7)(0) = 0

θ1(M2) = (1.7)(4/8) = 0.85, θ2(M2) = (1.7)(4/8) = 0.85
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Appendix A

The minimum time algorithm for one

player in Γ1

1 # −−− Modules −−− #

2 from sys import maxsize

3 from heapq import heapi fy , heappush

4 from json import l oads

5 from os import path

6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

8 FILE_PATH = path . dirname ( path . abspath (__file__ ) )

9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

10

11 # Debugging func t i on

12 de f debug ( current_node , nodes , v i s i t e d , min_heap ) :

13 p r i n t ( f "====>␣Node␣{current_node}␣<====" )

14 for node , data in nodes . i tems ( ) :

15 p r i n t ( f "−−−␣Node␣{node}␣−−−" )

16 for key , va lue in data . i tems ( ) :

17 p r i n t ( f "{key}␣=␣{ value }" )

18 p r in t ( f " v i s i t e d ␣−>␣{ v i s i t e d }" )

19 p r in t ( f "min␣heap␣−>␣{min_heap}" )

20 p r in t ( ’−−−−−−−−−−−−−−−−−−−−−−␣Next␣−−−−−−−−−−−−−−−−−−−−−− ’ )
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21

22 # Print r e s u l t s

23 de f p r i n t_r e su l t s ( r e su l t , source , d e s t i na t i on , N=40):

24

25 sp_cost , sp = r e s u l t

26

27 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

28

29 i f ( sp_cost == maxsize ) :

30 p r i n t ( "Cost␣=␣ i n f i n t y " )

31 p r in t ( "Can ’ t ␣ f i nd ␣path" )

32 p r in t ( "="∗N)

33 else :

34 shortest_path = "␣−>␣" . j o i n ( sp )

35 p r in t ( f "Cost␣=␣{ sp_cost }" )

36 p r in t ( f " Shor t e s t ␣path␣=␣{ shortest_path }" )

37 p r in t ( "="∗N)

38 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

39

40 # MAIN ALGORITHM

41 de f d i j k s t r a ( graph , src , dest , Debug=False ) :

42

43 # Make node data

44 al l_nodes = s e t ( )

45 nodes = {}

46 for node in graph :

47 nodes [ node ] = {" co s t " : maxsize , "pred" : [ ] }

48 al l_nodes . add ( node )

49

50 # Assign co s t for source po int to 0

51 nodes [ s r c ] [ " co s t " ] = 0

52

53 # v i s i t e d nodes

54 v i s i t e d = se t ( )
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55

56 # Assign node to s r c

57 node = s r c

58 for _ in range ( l en ( nodes ) − 1 ) :

59

60 i f ( node not in v i s i t e d ) :

61 v i s i t e d . add ( node )

62

63 # Get cur rent node co s t

64 current_cost = nodes [ node ] [ " co s t " ]

65

66 # Create "Min␣Heap"

67 min_heap = [ ]

68

69 # Check a l l ne ighbors

70 ne ighbors = graph [ node ]

71 for neighbor , d i s t anc e in ne ighbors . i tems ( ) :

72

73 i f ( ne ighbor not in v i s i t e d ) :

74 old_cost = nodes [ ne ighbor ] [ " co s t " ]

75 co s t = current_cost + d i s t anc e

76

77 # Change node co s t

78 i f ( co s t < old_cost ) :

79 nodes [ ne ighbor ] [ " co s t " ] = cos t

80 nodes [ ne ighbor ] [ "pred" ] = nodes [ node ] [ "pred" ] + [ node ]

81

82 heappush (min_heap , ( nodes [ ne ighbor ] [ " co s t " ] , ne ighbor ) )

83

84 # Check i f heap i s empty to push unv i s i t ed nodes to i t

85 i f ( l en (min_heap ) == 0 ) :

86 not_vi s i t ed = l i s t ( a l l_nodes − v i s i t e d )

87 for node in not_vi s i t ed :

88 heappush (min_heap , ( nodes [ node ] [ " co s t " ] , node ) )
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89

90 heap i fy (min_heap)

91

92 # Debug

93 i f Debug :

94 debug ( node , nodes , v i s i t e d , min_heap )

95

96 # Reass ign source node

97 node = min_heap [ 0 ] [ 1 ]

98

99 # −−−−−−−−−−− Return Resu l t s −−−−−−−−−−− #

100 shortest_path_cost = nodes [ des t ] [ " co s t " ]

101 shortest_path = nodes [ des t ] [ "pred" ] + [ des t ]

102

103 return shortest_path_cost , shortest_path

104

105

106 i f (__name__ == "__main__" ) :

107

108 network_f i l e = input ( "Network␣ f i l e : ␣" ) . s t r i p ( )

109 source = input ( "Source : ␣" ) . s t r i p ( ) . t i t l e ( )

110

111 # Input

112 with open ( path . j o i n (FILE_PATH, f "{ network_f i l e } . j son " ) , " r " ) as f :

113 graph = loads ( f . read ( ) )

114

115 d e s t i n a t i o n s = [ d for d in graph ]

116

117 p r in t ( "∗" ∗60)

118

119 # Di jk s t r a

120 for de s t i n a t i on in d e s t i n a t i o n s :

121

122 r e s u l t = d i j k s t r a ( graph , source , d e s t i n a t i on )
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123

124 # pr in t r e s u l t s

125 p r i n t_r e su l t s ( r e su l t , source , d e s t i n a t i on )

126

127

128 input ( " p r e s s ␣any␣key␣ to ␣ e x i t ␣ . . . " )
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Appendix B

The minimum time algorithm for n−

player case in Γ1(best Nash

equilibrium(arcs))

1 # −−− Modules −−− #

2 from sys import maxsize

3 from heapq import heapi fy , heappush

4 from json import l oads

5 from os import path

6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

8 FILE_PATH = path . dirname ( path . abspath (__file__ ) )

9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

10

11 # Debugging func t i on

12 de f debug ( current_node , nodes , v i s i t e d , min_heap ) :

13 p r i n t ( f "====>␣Node␣{current_node}␣<====" )

14 for node , data in nodes . i tems ( ) :

15 p r i n t ( f "−−−␣Node␣{node}␣−−−" )

16 for key , va lue in data . i tems ( ) :

17 p r i n t ( f "{key}␣=␣{ value }" )
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18 p r in t ( f " v i s i t e d ␣−>␣{ v i s i t e d }" )

19 p r in t ( f "min␣heap␣−>␣{min_heap}" )

20 p r in t ( ’−−−−−−−−−−−−−−−−−−−−−−␣Next␣−−−−−−−−−−−−−−−−−−−−−− ’ )

21

22 # Print r e s u l t s

23 de f p r i n t_r e su l t s ( r e su l t , source , d e s t i na t i on , N=40):

24

25 sp_cost , sp = r e s u l t

26

27 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

28

29 i f ( sp_cost == maxsize ) :

30 p r i n t ( "Cost␣=␣ i n f i n i t y " )

31 p r in t ( "Can ’ t ␣ f i nd ␣path" )

32 p r in t ( "="∗N)

33 else :

34 shortest_path = "␣−>␣" . j o i n ( sp )

35 p r in t ( f "Cost␣=␣{ sp_cost }" )

36 p r in t ( f " Shor t e s t ␣path␣=␣{ shortest_path }" )

37 p r in t ( "="∗N)

38 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

39

40 # MAIN ALGORITHM

41 de f d i j k s t r a ( graph , src , dest , Debug=False ) :

42

43 # Make node data

44 al l_nodes = s e t ( )

45 nodes = {}

46 for node in graph :

47 nodes [ node ] = {" co s t " : maxsize , "pred" : [ ] }

48 al l_nodes . add ( node )

49

50 # Assign co s t for source po int to 0

51 nodes [ s r c ] [ " co s t " ] = 0
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52

53 # v i s i t e d nodes

54 v i s i t e d = se t ( )

55

56 # Assign node to s r c

57 node = s r c

58 for _ in range ( l en ( nodes ) − 1 ) :

59

60 i f ( node not in v i s i t e d ) :

61 v i s i t e d . add ( node )

62

63 # Get cur rent node co s t

64 current_cost = nodes [ node ] [ " co s t " ]

65

66 # Create "Min␣Heap"

67 min_heap = [ ]

68

69 # Check a l l ne ighbors

70 ne ighbors = graph [ node ]

71 for neighbor , d i s t ance in ne ighbors . i tems ( ) :

72

73 i f ( ne ighbor not in v i s i t e d ) :

74 old_cost = nodes [ ne ighbor ] [ " co s t " ]

75 co s t = current_cost + d i s t anc e

76

77 # Change node co s t

78 i f ( co s t < old_cost ) :

79 nodes [ ne ighbor ] [ " co s t " ] = cos t

80 nodes [ ne ighbor ] [ "pred" ] = nodes [ node ] [ "pred" ] + [ node ]

81

82 heappush (min_heap , ( nodes [ ne ighbor ] [ " co s t " ] , ne ighbor ) )

83

84 # Check i f heap i s empty to push unv i s i t ed nodes to i t

85 i f ( l en (min_heap ) == 0 ) :
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86 not_vi s i t ed = l i s t ( a l l_nodes − v i s i t e d )

87 for node in not_vi s i t ed :

88 heappush (min_heap , ( nodes [ node ] [ " co s t " ] , node ) )

89

90 heap i fy (min_heap )

91

92 # Debug

93 i f Debug :

94 debug ( node , nodes , v i s i t e d , min_heap )

95

96 # Reass ign source node

97 node = min_heap [ 0 ] [ 1 ]

98

99 # −−−−−−−−−−− Return Resu l t s −−−−−−−−−−− #

100 shortest_path_cost = nodes [ des t ] [ " co s t " ]

101 shortest_path = nodes [ des t ] [ "pred" ] + [ dest ]

102

103 return shortest_path_cost , shortest_path

104

105

106 i f (__name__ == "__main__" ) :

107

108 network_f i l e = input ( "Network␣ f i l e : ␣" ) . s t r i p ( )

109 source = input ( "Source : ␣" ) . s t r i p ( ) . t i t l e ( )

110

111 # Input

112 with open ( path . j o i n (FILE_PATH, f "{ network_f i l e } . j son " ) , " r " ) as f :

113 graph = loads ( f . read ( ) )

114

115 d e s t i n a t i o n s = [ d for d in graph ]

116

117 p r in t ( "∗" ∗60)

118

119 # Di jk s t r a
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120 for de s t i n a t i on in d e s t i n a t i o n s :

121

122 r e s u l t = d i j k s t r a ( graph , source , d e s t i n a t i on )

123

124 # pr in t r e s u l t s

125 p r i n t_r e su l t s ( r e su l t , source , d e s t i n a t i on )

126

127

128 input ( " p r e s s ␣any␣key␣ to ␣ e x i t ␣ . . . " )
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Appendix C

The minimum time algorithm for n−

player case in Γ1( cooperative

solution (arcs))

1 # −− Modules −− #

2 from heapq import heappush , heapi fy , n sma l l e s t

3

4 from os import path

5 from json import l oads

6

7 from d i j k s t r a import d i j k s t r a

8

9 from i t e r t o o l s import permutat ions

10 # ====================================================================== #

11 FILE_PATH = path . dirname (__file__)

12 # ====================================================================== #

13

14 # −− FUNCTIONS −− #

15 de f i n t e r c e p t ( path1 , path2 ) :

16 for p1 in path1 :

17 for p2 in path2 :
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18 i f ( so r t ed ( p1 ) == sor t ed ( p2 ) ) :

19 return True

20 return False

21

22 de f get_valid_paths ( path1 , path2 ) :

23 r e s u l t = [ ]

24 for i , p1 in enumerate ( path1 ) :

25 for j , p2 in enumerate ( path2 ) :

26 i f not i n t e r c e p t ( p1 [ 1 ] , p2 [ 1 ] ) :

27 r e s = (p1 [ 0 ] + p2 [ 0 ] , ( i , j ) )

28 heappush ( r e su l t , r e s )

29 heap i fy ( r e s u l t )

30

31 return r e s u l t

32

33 de f pa th i f y ( path , r e v e r s e=False ) :

34 r e s u l t = [ ]

35 i f not r e v e r s e :

36 for i in range ( l en ( path ) − 1 ) :

37 r e s u l t . append ( ( path [ i ] , path [ i +1]))

38

39 else :

40 for p in path :

41 r e s u l t . append (p [ 0 ] )

42 r e s u l t . append ( path [ −1] [ −1])

43

44 return r e s u l t

45

46 de f resu l t_next ( paths , source1 , source2 , r e s u l t s ) :

47 r_next = [ ]

48 for r e s u l t in r e s u l t s :

49 co s t = r e s u l t [ 0 ]

50 i 1 = r e s u l t [ 1 ] [ 0 ]

51 i 2 = r e s u l t [ 1 ] [ 1 ]
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52

53 p = ( cost , paths [ source1 ] [ i 1 ] [ 1 ] + paths [ source2 ] [ i 2 ] [ 1 ] )

54

55 r_next . append (p)

56

57 return r_next

58

59 de f p r i n t_re su l t ( path , source , de s t i na t i on , N=40):

60 co s t = path [ 0 ]

61 path = path i f y ( path [ 1 ] , r e v e r s e=True )

62

63 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

64

65 shortest_path = "␣−>␣" . j o i n ( path )

66 p r in t ( f "Cost␣=␣{ co s t }" )

67 p r in t ( f " Shor t e s t ␣path␣=␣{ shortest_path }" )

68 p r in t ( "="∗N)

69

70 de f d i j k s t ra_he lp ( graph , sources , d e s t i n a t i on ) :

71

72 ca s e s = l i s t ( permutat ions ( sources , source_points ) )

73

74 # F i l l empty co s t d i c t i ona ry

75 c o s t s = d i c t ( )

76 for num in range (1 , l en ( ca s e s ) + 1 ) :

77 c o s t s [ f "Case␣{num}" ] = l i s t ( )

78

79 for num, case in enumerate ( cases , s t a r t =1):

80

81 prev_path = [ ]

82 for source in case :

83

84 deleted_nodes = [ n for n in case i f n != source ]

85
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86 r e s u l t = d i j k s t r a ( graph , source , de s t i na t i on , deleted_nodes , prev_path )

87 c o s t s [ f "Case␣{num}" ] . append ( r e s u l t [ 0 ] )

88

89 # Next s tep

90 prev_path += [ None ] + r e s u l t [ 1 ]

91

92 c o s t s [ f "Case␣{num}" ] = sum( co s t s [ f "Case␣{num}" ] )

93

94 f i n a l_co s t s = [ ]

95 for _, co s t in c o s t s . i tems ( ) :

96 f i n a l_co s t s . append ( co s t )

97

98 return min( f i n a l_co s t s )

99

100 # DFS Algorithm

101 de f a l l_poss ib l e_paths ( graph , src , dest , min_cost ) :

102

103 r e s u l t = [ ]

104 de f d f s ( path , cost , s r c ) :

105

106 # check i f reached d i s t anc e

107 i f s r c == dest :

108 f ina l_path = path i f y ( path + [ s r c ] )

109 heappush ( r e su l t , ( cost , f ina l_path ) )

110

111 else :

112 for neighbour , n_cost in graph [ s r c ] . i tems ( ) :

113 current_cost = n_cost + cos t

114 i f ( neighbour not in path ) and ( current_cost <= min_cost ) :

115 d f s ( path + [ s r c ] , current_cost , neighbour )

116

117 d f s ( [ ] , 0 , s r c )

118

119 heap i fy ( r e s u l t )
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120 return r e s u l t

121

122

123 i f __name__ == ’__main__ ’ :

124

125 # −− input −− #

126 network_f i l e = input ( "Network : ␣" ) . s t r i p ( )

127

128 with open ( path . j o i n (FILE_PATH, f ’ { network_f i l e } . j son ’ ) , " r " ) as f :

129 graph = loads ( f . read ( ) )

130

131

132 source_points = int ( input ( "Source ␣ po in t s ␣number : ␣" ) . s t r i p ( ) )

133 sourc e s = [ ]

134 for s in range ( source_points ) :

135 source = input ( f " Source ␣ ({ s +1}): ␣" ) . s t r i p ( ) . t i t l e ( )

136 sourc e s . append ( source )

137

138 d e s t i n a t i on = input ( "Des t inat i on : ␣" ) . s t r i p ( ) . t i t l e ( )

139

140 p r in t ( "∗" ∗60)

141

142 # Get D i s j k s t r a minimum cos t

143 min_cost = d i jk s t ra_he lp ( graph , sources , d e s t i n a t i on )

144

145 # Get a l l p o s s i b l e paths

146 paths = d i c t ( )

147 for source in sourc e s :

148 paths [ f "{ source }" ] = a l l_poss ib l e_paths ( graph , source , d e s t i na t i on , min_cost )

149

150 # Get a l l non i n t e r c ep t ed paths

151 r e s u l t = paths [ s ou r c e s [ 0 ] ]

152 result_next_paths = r e s u l t

153 for i in range ( source_points − 1 ) :
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154 r e s u l t = get_valid_paths ( result_next_paths , paths [ s ou r c e s [ i +1 ] ] )

155

156 # i f not in f i n a l loop , check path with next source

157 i f ( i != source_points − 2 ) :

158 result_next_paths = resu l t_next ( paths , s ou r c e s [ i ] , s ou r c e s [ i +1] , r e s u l t )

159

160

161 # Get minimum co s t s

162 i f ( l en ( r e s u l t ) == 0 ) :

163 p r in t ( "␣ couldn ’ t ␣ f i nd ␣a␣ coope ra t i v e ␣path␣ : ( " )

164 input ( "\ npres s ␣any␣key␣ to ␣ e x i t ␣ . . . " )

165 e x i t ( )

166

167 min_cost = nsma l l e s t (1 , r e s u l t ) [ 0 ]

168 indexes = [ min_cost [ 1 ] ]

169 for r in r e s u l t :

170 i f ( r != min_cost ) and ( r [ 0 ] == min_cost [ 0 ] ) :

171 indexes . append ( tup l e ( r [ 1 ] ) )

172

173 # Print r e s u l t s

174 for index in indexes :

175 for num, source in enumerate ( sour c e s ) :

176 p r in t_re su l t ( paths [ source ] [ index [num ] ] , source , d e s t i n a t i on )

177 i f ( index != indexes [ −1 ] ) :

178 p r in t ( "−" ∗25 , "OR" , "−" ∗25)

179

180

181 f i n a l_co s t = min_cost [ 0 ]

182 p r in t ( f "\n␣−␣ Fina l ␣Cost␣=␣{ f i n a l_co s t }" )

183

184

185 input ( "\ npres s ␣any␣key␣ to ␣ e x i t ␣ . . . " )
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Appendix D

The algorithm for n− player case in

Γ1( cooperative solution as mini

maximal time (arcs))

1 # −−− Modules −−− #

2 from sys import maxsize

3 from heapq import heapi fy , heappush

4 from json import l oads

5 from os import path

6

7 from i t e r t o o l s import permutat ions

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

9 FILE_PATH = path . dirname ( path . abspath (__file__ ) )

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

11

12 de f get_conn ( node , prev_path ) :

13

14 i f node not in prev_path :

15 return [ ]

16

17 max_index = len ( prev_path ) − 1
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18 min_index = 0

19 node_index = prev_path . index ( node )

20

21 i f ( node_index == min_index ) :

22 return [ prev_path [ node_index + 1 ] ]

23 e l i f ( node_index == max_index ) :

24 return [ prev_path [ node_index − 1 ] ]

25 else :

26 return [ prev_path [ node_index − 1 ] , prev_path [ node_index + 1 ] ]

27

28 # Debugging func t i on

29 de f debug ( current_node , nodes , v i s i t e d , min_heap ) :

30 p r i n t ( f "====>␣Node␣{current_node}␣<====" )

31 for node , data in nodes . i tems ( ) :

32 p r i n t ( f "−−−␣Node␣{node}␣−−−" )

33 for key , va lue in data . i tems ( ) :

34 p r i n t ( f "{key}␣=␣{ value }" )

35 p r in t ( f " v i s i t e d ␣−>␣{ v i s i t e d }" )

36 p r in t ( f "min␣heap␣−>␣{min_heap}" )

37 p r in t ( ’−−−−−−−−−−−−−−−−−−−−−−␣Next␣−−−−−−−−−−−−−−−−−−−−−− ’ )

38

39 # Print r e s u l t s

40 de f p r i n t_r e su l t s ( r e su l t , source , d e s t i na t i on , N=40):

41

42 sp_cost , sp = r e s u l t

43

44 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

45

46 i f ( sp_cost == maxsize ) :

47 p r i n t ( "Time␣=␣ i n f i n t y " )

48 p r in t ( "Can ’ t ␣ f i nd ␣path" )

49 p r in t ( "="∗N)

50 else :

51 shortest_path = "␣−>␣" . j o i n ( sp )
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52 p r in t ( f "Time␣=␣{ sp_cost }" )

53 p r in t ( f " Shor t e s t ␣path␣=␣{ shortest_path }" )

54 p r in t ( "="∗N)

55

56 de f get_case ( case ) :

57 case = map( st r , case )

58 case = " , ␣" . j o i n ( case )

59 return f "{{{ case }}}"

60

61 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

62

63 # MAIN ALGORITHM

64 de f d i j k s t r a ( graph , src , dest , deleted_nodes =[ ] , prev_path =[ ] , Debug=False ) :

65

66 # Make node data

67 al l_nodes = s e t ( )

68 nodes = {}

69 for node in graph :

70 nodes [ node ] = {" co s t " : maxsize , "pred" : [ ] }

71 al l_nodes . add ( node )

72

73 # Assign co s t for source po int to 0

74 nodes [ s r c ] [ " co s t " ] = 0

75

76 # v i s i t e d nodes

77 i f deleted_nodes :

78 v i s i t e d = se t ( deleted_nodes )

79 else :

80 v i s i t e d = se t ( )

81

82 # Assign node to s r c

83 node = s r c

84 for _ in range ( l en ( nodes ) − l en ( deleted_nodes ) − 1 ) :

85
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86 i f ( node not in v i s i t e d ) :

87 v i s i t e d . add ( node )

88

89 # Get cur rent node co s t

90 current_cost = nodes [ node ] [ " co s t " ]

91

92 # Create "Min␣Heap"

93 min_heap = [ ]

94

95 # check in prev ious path

96 paths = get_conn ( node , prev_path )

97

98 # Check a l l ne ighbors

99 ne ighbors = graph [ node ]

100 for neighbor , d i s t ance in ne ighbors . i tems ( ) :

101

102 i f ( ne ighbor not in v i s i t e d ) and ( ne ighbor not in paths ) :

103 old_cost = nodes [ ne ighbor ] [ " co s t " ]

104 co s t = current_cost + d i s t anc e

105

106 # Change node co s t

107 i f ( co s t < old_cost ) :

108 nodes [ ne ighbor ] [ " co s t " ] = cos t

109 nodes [ ne ighbor ] [ "pred" ] = nodes [ node ] [ "pred" ] + [ node ]

110

111 heappush (min_heap , ( nodes [ ne ighbor ] [ " co s t " ] , ne ighbor ) )

112

113 # Check i f heap i s empty to push unv i s i t ed nodes to i t

114 i f ( l en (min_heap ) == 0 ) :

115 not_vi s i t ed = l i s t ( a l l_nodes − v i s i t e d )

116 for node in not_vi s i t ed :

117 heappush (min_heap , ( nodes [ node ] [ " co s t " ] , node ) )

118

119 heap i fy (min_heap )
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120

121 # Debug

122 i f Debug :

123 debug ( node , nodes , v i s i t e d , min_heap )

124

125 # Reass ign source node

126 node = min_heap [ 0 ] [ 1 ]

127

128 # −−−−−−−−−−− Return Resu l t s −−−−−−−−−−− #

129 shortest_path_cost = nodes [ des t ] [ " co s t " ]

130 shortest_path = nodes [ des t ] [ "pred" ] + [ dest ]

131

132 return shortest_path_cost , shortest_path

133

134

135 i f (__name__ == "__main__" ) :

136

137 # −− input −− #

138

139 network_f i l e = input ( "Network␣ f i l e : ␣" ) . s t r i p ( )

140

141 source_points = int ( input ( ’ P layers ␣number : ␣ ’ ) . s t r i p ( ) )

142 sour c e s = [ ]

143 for s in range ( source_points ) :

144 source = input ( f "Player ␣ ({ s +1}): ␣" ) . s t r i p ( ) . t i t l e ( )

145 sour c e s . append ( source )

146

147 # source = input ( f " Source : ␣" ) . s t r i p ( ) . t i t l e ( )

148 d e s t i n a t i on = input ( "Fixed␣ ver tex : ␣" ) . s t r i p ( ) . t i t l e ( )

149

150 # open network f i l e

151 with open ( path . j o i n (FILE_PATH, f "{ network_f i l e } . j son " ) , " r " ) as f :

152 graph = loads ( f . read ( ) )

153
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154 p r in t ( "∗" ∗60)

155

156 # −− Di jk s t r a −− #

157

158 ca s e s = l i s t ( permutat ions ( sources , source_points ) )

159 cases_num = l i s t ( permutat ions ( range (1 , source_points + 1) , source_points ) )

160

161 # F i l l empty co s t d i c t i ona ry

162 c o s t s = d i c t ( )

163 for num in range (1 , l en ( ca s e s ) + 1 ) :

164 c o s t s [ f "Case␣{num}" ] = l i s t ( )

165

166 for num, case in enumerate ( cases , s t a r t =1):

167

168 p r in t ( ’− ’ ∗26)

169

170 prev_path = [ ]

171 for source in case :

172

173 deleted_nodes = [ n for n in case i f n != source ]

174

175 r e s u l t = d i j k s t r a ( graph , source , de s t i na t i on , deleted_nodes , prev_path )

176 c o s t s [ f "Case␣{num}" ] . append ( r e s u l t [ 0 ] )

177

178 # pr in t r e s u l t s

179 p r i n t_r e su l t s ( r e su l t , source , d e s t i n a t i on )

180

181 # Next s tep

182 prev_path += [ None ] + r e s u l t [ 1 ]

183

184

185 # Get f i n a l co s t

186 f i n a l_co s t = min ( [max( co s t ) for _, co s t in c o s t s . i tems ( ) ] )

187 i f ( f i n a l_co s t == maxsize ) :
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188 f i n a l_co s t = " i n f i n t y "

189 p r in t ( f "\n␣−␣ Fina l ␣Time␣=␣{ f i n a l_co s t }" )

190

191 input ( ’ \ npres s ␣any␣key␣ to ␣ e x i t ␣ . . . ’ )
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Appendix E

The minimum time algorithm for n−

player case in Γ1( best Nash

equilibrium (vertices))

1 # −−− Modules −−− #

2 from sys import maxsize

3 from heapq import heapi fy , heappush

4 from json import l oads

5 from os import path

6

7 from i t e r t o o l s import permutat ions

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

9 FILE_PATH = path . dirname ( path . abspath (__file__ ) )

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

11

12 de f get_conn ( node , prev_path ) :

13

14 i f node not in prev_path :

15 return [ ]

16

17 max_index = len ( prev_path ) − 1
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18 min_index = 0

19 node_index = prev_path . index ( node )

20

21 i f ( node_index == min_index ) :

22 return [ prev_path [ node_index + 1 ] ]

23 e l i f ( node_index == max_index ) :

24 return [ prev_path [ node_index − 1 ] ]

25 else :

26 return [ prev_path [ node_index − 1 ] , prev_path [ node_index + 1 ] ]

27

28 # Debugging func t i on

29 de f debug ( current_node , nodes , v i s i t e d , min_heap ) :

30 p r i n t ( f "====>␣Node␣{current_node}␣<====" )

31 for node , data in nodes . i tems ( ) :

32 p r i n t ( f "−−−␣Node␣{node}␣−−−" )

33 for key , va lue in data . i tems ( ) :

34 p r i n t ( f "{key}␣=␣{ value }" )

35 p r in t ( f " v i s i t e d ␣−>␣{ v i s i t e d }" )

36 p r in t ( f "min␣heap␣−>␣{min_heap}" )

37 p r in t ( ’−−−−−−−−−−−−−−−−−−−−−−␣Next␣−−−−−−−−−−−−−−−−−−−−−− ’ )

38

39 # Print r e s u l t s

40 de f p r i n t_r e su l t s ( r e su l t , source , d e s t i na t i on , N=40):

41

42 sp_cost , sp = r e s u l t

43

44 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

45

46 i f ( sp_cost == maxsize ) :

47 p r i n t ( "Time␣=␣ i n f i n i t y " )

48 p r in t ( "Can ’ t ␣ f i nd ␣path" )

49 p r in t ( "="∗N)

50 else :

51 shortest_path = "␣−>␣" . j o i n ( sp )
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52 p r in t ( f "minimum␣time␣=␣{ sp_cost }" )

53 p r in t ( f "␣path␣=␣{ shortest_path }" )

54 p r in t ( "="∗N)

55

56 de f get_case ( case ) :

57 case = map( st r , case )

58 case = " , ␣" . j o i n ( case )

59 return f "{{{ case }}}"

60 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

61

62 # MAIN ALGORITHM

63 de f d i j k s t r a ( graph , src , dest , deleted_nodes =[ ] , Debug=False ) :

64

65 # Make node data

66 al l_nodes = s e t ( )

67 nodes = {}

68 for node in graph :

69 nodes [ node ] = {" co s t " : maxsize , "pred" : [ ] }

70 al l_nodes . add ( node )

71

72 # Assign co s t for source po int to 0

73 nodes [ s r c ] [ " co s t " ] = 0

74

75 # v i s i t e d nodes

76 i f deleted_nodes :

77 v i s i t e d = se t ( deleted_nodes )

78 else :

79 v i s i t e d = se t ( )

80

81 # Assign node to s r c

82 node = s r c

83 for _ in range ( l en ( nodes ) − l en ( deleted_nodes ) − 1 ) :

84

85 i f ( node not in v i s i t e d ) :

91



86 v i s i t e d . add ( node )

87

88 # Get cur rent node co s t

89 current_cost = nodes [ node ] [ " co s t " ]

90

91 # Create "Min␣Heap"

92 min_heap = [ ]

93

94 # Check a l l ne ighbors

95 ne ighbors = graph [ node ]

96 for neighbor , d i s t ance in ne ighbors . i tems ( ) :

97

98 i f ( ne ighbor not in v i s i t e d ) :

99 old_cost = nodes [ ne ighbor ] [ " co s t " ]

100 co s t = current_cost + d i s t anc e

101

102 # Change node co s t

103 i f ( co s t < old_cost ) :

104 nodes [ ne ighbor ] [ " co s t " ] = cos t

105 nodes [ ne ighbor ] [ "pred" ] = nodes [ node ] [ "pred" ] + [ node ]

106

107 heappush (min_heap , ( nodes [ ne ighbor ] [ " co s t " ] , ne ighbor ) )

108

109 # Check i f heap i s empty to push unv i s i t ed nodes to i t

110 i f ( l en (min_heap ) == 0 ) :

111 not_vi s i t ed = l i s t ( a l l_nodes − v i s i t e d )

112 for node in not_vi s i t ed :

113 heappush (min_heap , ( nodes [ node ] [ " co s t " ] , node ) )

114

115 heap i fy (min_heap )

116

117 # Debug

118 i f Debug :

119 debug ( node , nodes , v i s i t e d , min_heap )
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120

121 # Reass ign source node

122 node = min_heap [ 0 ] [ 1 ]

123

124 # −−−−−−−−−−− Return Resu l t s −−−−−−−−−−− #

125 shortest_path_cost = nodes [ des t ] [ " co s t " ]

126 shortest_path = nodes [ des t ] [ "pred" ] + [ dest ]

127

128 return shortest_path_cost , shortest_path

129

130

131 i f (__name__ == "__main__" ) :

132

133 # −− input −− #

134

135 network_f i l e = input ( "Network␣ f i l e : ␣" ) . s t r i p ( )

136

137 source_points = int ( input ( ’ P layers ␣number : ␣ ’ ) . s t r i p ( ) )

138 sour c e s = [ ]

139 for s in range ( source_points ) :

140 source = input ( f "Player ␣ ({ s +1}): ␣" ) . s t r i p ( ) . t i t l e ( )

141 sour c e s . append ( source )

142

143 d e s t i n a t i on = input ( "Fixed␣node : ␣" ) . s t r i p ( ) . t i t l e ( )

144

145 # open network f i l e

146 with open ( path . j o i n (FILE_PATH, f "{ network_f i l e } . j son " ) , " r " ) as f :

147 graph = loads ( f . read ( ) )

148

149 p r in t ( "∗" ∗60)

150

151 # −− Di jk s t r a −− #

152

153 ca s e s = l i s t ( permutat ions ( sources , source_points ) )
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154 cases_num = l i s t ( permutat ions ( range (1 , source_points + 1) , source_points ) )

155

156 # F i l l empty co s t d i c t i ona ry

157 c o s t s = d i c t ( )

158 for num in range (1 , l en ( ca s e s ) + 1 ) :

159 c o s t s [ f "Case␣{num}" ] = l i s t ( )

160

161 for num, case in enumerate ( cases , s t a r t =1):

162

163 p r in t ( ’− ’ ∗26)

164

165 deleted_nodes = [ ]

166 for source in case :

167

168 de l e ted_sources = [ n for n in case i f n != source ]

169

170 r e s u l t = d i j k s t r a ( graph , source , de s t i na t i on , deleted_nodes + de le ted_sources )

171 c o s t s [ f "Case␣{num}" ] . append ( r e s u l t [ 0 ] )

172

173 # pr in t r e s u l t s

174 p r i n t_r e su l t s ( r e su l t , source , d e s t i n a t i on )

175

176 # Next s tep

177 deleted_nodes += r e s u l t [ 1 ] [ 1 : − 1 ]

178

179

180 # Get f i n a l co s t

181 f i n a l_co s t = min ( [ sum( co s t ) for _, co s t in c o s t s . i tems ( ) ] )

182 i f ( f i n a l_co s t == maxsize ) :

183 f i n a l_co s t = " i n f i n i t y "

184 p r in t ( f "\n␣−␣Minimal␣ o f ␣maximal␣ time␣=␣{ f i n a l_co s t }" )

185

186 input ( ’ \ npres s ␣any␣key␣ to ␣ e x i t ␣ . . . ’ )
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Appendix F

The algorithm for n− player case in

Γ1( cooperative as mini maximal

time (vertices))

1 # −−− Modules −−− #

2 from sys import maxsize

3 from heapq import heapi fy , heappush

4 from json import l oads

5 from os import path

6

7 from i t e r t o o l s import permutat ions

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

9 FILE_PATH = path . dirname ( path . abspath (__file__ ) )

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

11

12 de f get_conn ( node , prev_path ) :

13

14 i f node not in prev_path :

15 return [ ]

16

17 max_index = len ( prev_path ) − 1
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18 min_index = 0

19 node_index = prev_path . index ( node )

20

21 i f ( node_index == min_index ) :

22 return [ prev_path [ node_index + 1 ] ]

23 e l i f ( node_index == max_index ) :

24 return [ prev_path [ node_index − 1 ] ]

25 else :

26 return [ prev_path [ node_index − 1 ] , prev_path [ node_index + 1 ] ]

27

28 # Debugging func t i on

29 de f debug ( current_node , nodes , v i s i t e d , min_heap ) :

30 p r i n t ( f "====>␣Node␣{current_node}␣<====" )

31 for node , data in nodes . i tems ( ) :

32 p r i n t ( f "−−−␣Node␣{node}␣−−−" )

33 for key , va lue in data . i tems ( ) :

34 p r i n t ( f "{key}␣=␣{ value }" )

35 p r in t ( f " v i s i t e d ␣−>␣{ v i s i t e d }" )

36 p r in t ( f "min␣heap␣−>␣{min_heap}" )

37 p r in t ( ’−−−−−−−−−−−−−−−−−−−−−−␣Next␣−−−−−−−−−−−−−−−−−−−−−− ’ )

38

39 # Print r e s u l t s

40 de f p r i n t_r e su l t s ( r e su l t , source , de s t i na t i on , N=40):

41

42 sp_cost , sp = r e s u l t

43

44 p r in t ( f "␣===␣ ({ source }) ␣−−>␣({ de s t i n a t i on }) ␣===" )

45

46 i f ( sp_cost == maxsize ) :

47 p r i n t ( "Time␣=␣ i n f i n t y " )

48 p r in t ( "Can ’ t ␣ f i nd ␣path" )

49 p r in t ( "="∗N)

50 else :

51 shortest_path = "␣−>␣" . j o i n ( sp )
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52 p r in t ( f "Time␣=␣{ sp_cost }" )

53 p r in t ( f " Shor t e s t ␣path␣=␣{ shortest_path }" )

54 p r in t ( "="∗N)

55

56 de f get_case ( case ) :

57 case = map( st r , case )

58 case = " , ␣" . j o i n ( case )

59 return f "{{{ case }}}"

60 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

61

62 # MAIN ALGORITHM

63 de f d i j k s t r a ( graph , src , dest , deleted_nodes =[ ] , Debug=False ) :

64

65 # Make node data

66 al l_nodes = s e t ( )

67 nodes = {}

68 for node in graph :

69 nodes [ node ] = {" co s t " : maxsize , "pred" : [ ] }

70 al l_nodes . add ( node )

71

72 # Assign co s t for source po int to 0

73 nodes [ s r c ] [ " co s t " ] = 0

74

75 # v i s i t e d nodes

76 i f deleted_nodes :

77 v i s i t e d = se t ( deleted_nodes )

78 else :

79 v i s i t e d = se t ( )

80

81 # Assign node to s r c

82 node = s r c

83 for _ in range ( l en ( nodes ) − l en ( deleted_nodes ) − 1 ) :

84

85 i f ( node not in v i s i t e d ) :
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86 v i s i t e d . add ( node )

87

88 # Get cur rent node co s t

89 current_cost = nodes [ node ] [ " co s t " ]

90

91 # Create "Min␣Heap"

92 min_heap = [ ]

93

94 # Check a l l ne ighbors

95 ne ighbors = graph [ node ]

96 for neighbor , d i s t ance in ne ighbors . i tems ( ) :

97

98 i f ( ne ighbor not in v i s i t e d ) :

99 old_cost = nodes [ ne ighbor ] [ " co s t " ]

100 co s t = current_cost + d i s t anc e

101

102 # Change node co s t

103 i f ( co s t < old_cost ) :

104 nodes [ ne ighbor ] [ " co s t " ] = co s t

105 nodes [ ne ighbor ] [ "pred" ] = nodes [ node ] [ "pred" ] + [ node ]

106

107 heappush (min_heap , ( nodes [ ne ighbor ] [ " co s t " ] , ne ighbor ) )

108

109 # Check i f heap i s empty to push unv i s i t ed nodes to i t

110 i f ( l en (min_heap ) == 0 ) :

111 not_vi s i t ed = l i s t ( a l l_nodes − v i s i t e d )

112 for node in not_vi s i t ed :

113 heappush (min_heap , ( nodes [ node ] [ " co s t " ] , node ) )

114

115 heap i fy (min_heap )

116

117 # Debug

118 i f Debug :

119 debug ( node , nodes , v i s i t e d , min_heap )
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120

121 # Reass ign source node

122 node = min_heap [ 0 ] [ 1 ]

123

124 # −−−−−−−−−−− Return Resu l t s −−−−−−−−−−− #

125 shortest_path_cost = nodes [ des t ] [ " co s t " ]

126 shortest_path = nodes [ des t ] [ "pred" ] + [ dest ]

127

128 return shortest_path_cost , shortest_path

129

130

131 i f (__name__ == "__main__" ) :

132

133 # −− input −− #

134

135 network_f i l e = input ( "Network␣ f i l e : ␣" ) . s t r i p ( )

136

137 source_points = int ( input ( ’ P layers ␣number : ␣ ’ ) . s t r i p ( ) )

138 sourc e s = [ ]

139 for s in range ( source_points ) :

140 source = input ( f "Player ␣ ({ s +1}): ␣" ) . s t r i p ( ) . t i t l e ( )

141 sourc e s . append ( source )

142

143 d e s t i n a t i on = input ( "Fixed␣ ver tex : ␣" ) . s t r i p ( ) . t i t l e ( )

144

145 # open network f i l e

146 with open ( path . j o i n (FILE_PATH, f "{ network_f i l e } . j son " ) , " r " ) as f :

147 graph = loads ( f . read ( ) )

148

149 p r in t ( "∗" ∗60)

150

151 # −− Di jk s t r a −− #

152

153 ca s e s = l i s t ( permutat ions ( sources , source_points ) )
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154 cases_num = l i s t ( permutat ions ( range (1 , source_points + 1) , source_points ) )

155

156 # F i l l empty co s t d i c t i ona ry

157 c o s t s = d i c t ( )

158 for num in range (1 , l en ( ca s e s ) + 1 ) :

159 c o s t s [ f "Case␣{num}" ] = l i s t ( )

160

161 for num, case in enumerate ( cases , s t a r t =1):

162

163

164 p r in t ( ’− ’ ∗26)

165

166 deleted_nodes = [ ]

167 for source in case :

168

169 de l e ted_sources = [ n for n in case i f n != source ]

170

171 r e s u l t = d i j k s t r a ( graph , source , d e s t i na t i on , deleted_nodes + de le ted_sources )

172 c o s t s [ f "Case␣{num}" ] . append ( r e s u l t [ 0 ] )

173

174 # pr in t r e s u l t s

175 p r i n t_r e su l t s ( r e su l t , source , d e s t i n a t i on )

176

177 # Next step

178 deleted_nodes += r e s u l t [ 1 ] [ 1 : − 1 ]

179

180

181 # Get f i n a l co s t

182 f i n a l_co s t = min ( [max( co s t ) for _, co s t in c o s t s . i tems ( ) ] )

183 i f ( f i n a l_co s t == maxsize ) :

184 f i n a l_co s t = " i n f i n i t y "

185 p r in t ( f "\n␣−␣ Fina l ␣Time␣=␣{ f i n a l_co s t }" )

186

187 input ( ’ \ npres s ␣any␣key␣ to ␣ e x i t ␣ . . . ’ )
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