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1 Introduction
Hurwitz numbers were introduced by A. Hurwitz in 1891 ([H91]). In general, they enumerate branched
covers of the Riemann sphere with prescribed ramification data. Equivalently, they count factorizations in
symmetric group. In this paper we study real Hurwitz numbers, which enumerate branched covers preserving
real structure of the surface. Some results about real Hurwitz numbers can be found in [MR15], [GMR16]
and [KLN18].

1.1 Outline of the content
In section 2, we recall the notion of Zonal polynomials and study the properties of the Gelfand pairs formed
by symmetric group and its hyperoctahedral subgroup.

In section 3, we recall some basic facts about complex Hurwitz numbers and define real Hurwitz numbers
in terms of both branched covers and factorizations in symmetric group. One significant distinction between
complex and real Hurwitz numbers is the dependence on the location of branch points. In Section 3.3, we
present r-real Hurwitz numbers, which are invariant under change of branch points positions.

It is well known, that generating series for simple single Hurwitz numbers can be expressed in the Schur
basis. In Section 4, we will prove analogous fact for real Hurwitz numbers, but using Zonal polynomials
instead of Schur functions. In [CD20], [BCD21] and [BF21], generating series for different types of Hurwitz
numbers were already expressed in Zonal polynomials, so we present one more type of Hurwitz numbers,
which can be computed in these terms.

In section 5, we derive cut-and-join equation for special kind of real Hurwitz numbers. Using this equation,
Hurwitz numbers can be computed recursively.

1.2 Notations
Let Sd be the symmetric group of order d and Pd be the set of partitions of d. We identify partitions
with the corresponding Young diagrams, and write λ = (λ1, λ2, . . . , λk) for λ ∈ Pd with parts λ1, λ2, . . . , λk.
Sometimes we will also use another notation λ = (1p12p2 · · · dpd) meaning that partition λ has exactly pi
parts equal to i.

We call partition λ even if all its parts λ1, . . . , λk are even. We call partition co-even if all numbers
p1, p2, . . . , pd are even, i.e. every part occurs an even number of times. It is clear that if λ is an even partition,
then its conjugate partition λ′ is co-even, and vice versa (conjugate means that the Young diagram of λ′ is
obtained by transposing the diagram of λ).

Denote by C(σ) ` d the cycle type of the element σ. Recall that for a box □ = (i, j) ∈ λ in the jth row
and ith column (1 ≤ j ≤ ℓ(λ), 1 ≤ i ≤ λj), its content is equal to i − j and its 2-deformation is defined as
follows:

c2(□) = 2(i− 1)− (j − 1).

In section 4, we use function
w(λ) =

∑
□∈λ

d+ 2c2(□). (1.1)

Observe that c ((2i− 1, j)) + c ((2i, j)) = 4i− 2j − 1 = 2c2 ((i, j)) + 1, so

w(λ) =
∑
□∈2λ

c(□).

We say that a skew Young diagram is a horizontal strip if every column contains at most one box. Denote
by HS(d) the set of horizontal strips containing d boxes.

We write Id for the set of all involutive permutations on d elements and Ir
d for involutions with r fixed

points (obviously, Ir
d 6= ∅ implies d− r is even). Denote by Λ =

⊕
d∈N0

Λd the graded algebra of symmetric
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functions with scalar product (·, ·), which is defined for power-sums by

(pλ, pµ) = δλ,µzλ,

where zλ =
∏
irii! with λ = 1r12r2 . . . drd .

It is well known that the space of central functions C(Sd) is isomorphic to the space of degree d symmetric
functions Λd. This isomorphism is called Frobenius characteristic map and denoted by ch : C(Sd) → Λd.
To each characteristic function ψλ of conjugacy class λ it assigns the power-sum ch(ψλ) =

1
zλ
pλ, so for any

central function f its image can be expressed as

ch(f) =
1

d!

∑
σ∈Sd

f(σ)pC(σ) =
∑
µ⊢d

1

zµ
f(µ)pµ. (1.2)

Under this isomorphism, the irreducible character χλ is mapped to the Schur function sλ.

2 Hyperoctahedral subgroup and zonal polynomials
2.1 Gelfand pair (Sd,Hd)

In this subsection we assume that d is even number.

Definition 2.1. The pair (G,K) of group and its subgroup is called a Gelfand pair if for any irreducible
representation V of G, the space V K of K-invariant vectors in V is no-more-than-1-dimensional.

The definition of Gelfand pairs is closely related to the space of double K-invariant functions

Definition 2.2. A function f : G→ Q is said to be double K-invariant if

f(kxk′) = f(x) for all x ∈ G, k, k′ ∈ K.

We denote the space of all double K-invariant functions by C(G;K)

We equip the space C(G;K) with the multiplication given by convolution.

Lemma 2.3 ([Mac95], VII, 1.1). Let G be a group and K ≤ G. The pair (G,K) is a Gelfand pair if and
only if the algebra C(G;K) is commutative.

Consider now the symmetric group Sd and the involution

γ0 = (1 2) (3 4) · · · (d− 1 d) ∈ Sd.

Hyperoctahedral subgroup Hd is the centralizer CSd
(γ0). The cardinality of Hd is equal to 2d/2(d/2)! = d!!.

Although the standard notation for the hyperoctahedral subgroup of Sd is H d
2
, in this paper we will use Hd

instead. Double Hd-classes of Sd are indexed with partitions of d
2 . To see this, observe that the permutation

[σ−1, γ0] = (σ(1) σ(2)) (σ(3) σ(4)) · · · (σ(d− 1) σ(d)) · (1 2) (3 4) · · · (d− 1 d)

has the cycle type of the form ν ∪ ν = (ν1, ν1, ν2, ν2, . . . , νk, νk) (i.e. every part occurs an even number of
times). So we assign to each double Hd-coset the partition H(σ) = (ν1, ν2, . . . , νk) ` d, called the coset-type
of σ. This correspondence between double Hd-classes of Sd and partitions of d/2 turns out to be a bijection.

Also, the the hyperoctahedral group Hd is isomorphic to a wreath product S2 o S d
2
. For more detailed

information about Gelfand pairs and hyperoctahedral group Hd in symmetric functions theory, see e.g.
[Mac95] (VII).
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2.1 Gelfand pair (Sd,Hd)

Theorem 2.4 ([Mac95], VII, 2.2). The pair (Sd,Hd) is a Gelfand pair for all even d.
Take any partition λ ` d and consider the function from Sd to Q:

σ 7→ 1

|Hd|
∑
h∈Hd

χλ(σ · h) (2.1)

The right Hd-invariance of the above function is trivial, while the left Hd-invariance holds due to the centrality
of χλ, so this function belongs to C(Sd;Hd).
Proposition 2.5 ([Mac95]). The function defined in (2.1) is non-zero if and only if the partition λ is even.
For λ = 2ν, this function is called zonal spherical function and denoted by ων

ων(σ) =
1

|Hd|
∑
h∈Hd

χ2ν(σ · h).

Zonal spherical functions {ων}ν⊢ d
2

form a basis for the space C(Sd;Hd).
The correspondence between double Hd-invariant functions (see definition 2.2) and symmetric functions

can be obtained analogously to (1.2). Namely, define a mapping

ch′ : C(Sd;Hd) → Λd/2

f 7→
∑
σ∈Sd

f(σ) pH(σ).

Lemma 2.6 ([Mac95]). The mapping ch′ : C(Sd;Hd) → Λd/2 is an isomorphism of Q-algebras.
Finally, we can introduce an analogue of Schur functions.
Definition 2.7. For each partition ν of d, we define

Zν = |Hd|−1 ch′(ων),

i.e.
Zν = |Hd|

∑
µ⊢ d

2

1

z2µ
ων
µ pµ,

where ων
µ is the value of ων at elements of the coset-type µ. Symmetric functions Zν are called zonal

polynomials.
More generally, suppose γ ∈ Id (now d is not necessarily even) is any involution. It can be written as the

product of disjoint transpositions
γ = (a1 b1) (a2 b2) · · · (ak bk).

To each permutation σ ∈ Sd we attach an undirected graph Γγ(σ) with vertices 1, 2, . . . , d and edges εi, εσi
(1 ≤ i ≤ k), where εi joins vertices ai, bi and εσi joins σ(ai), σ(bi). We also assume that edges εi are red,
while εσi are blue. The graph Γγ(σ) consists of even cycles (whose half-sizes we denote by ν1, . . . , νk) and
disjoint paths. If the first and last edges of the path are of the different colour (in particular, such path can
have only one vertex), then its length (i.e. the number of vertices) is odd. We denote the length of such
paths by ρ1, . . . , ρr. Further, suppose that paths with both red ends have lengths ρ̂1, . . . , ρ̂r̂, and likewise
lengths of paths with both blue ends are ρ̌1, . . . , ρ̌ř. The tuple of partitions (ν, ρ, ρ̂, ρ̌) = Hγ(σ) is called
γ-coset-type of σ. Note that if γ is fixed-point-free, then ρ = ρ̂ = ρ̌ = ∅.

In the next sections, we will be counting the number of permutations with given γ-coset-type. Let p1, p2,
. . ., q1, q2, . . ., q̂1, q̂2, . . ., q̌1, q̌2, . . . be independent variables. To each permutation σ ∈ Sd we assign

pHγ(σ) = pν · qρ · q̂ρ̂ · q̌ρ̌ = pν1 · · · pνk
· qρ1 · · · qρr · q̂ρ̂1 · · · q̂ρ̂r̂

· q̌ρ̌1 · · · q̌ρ̌ř ∈ Λ[q, q̂, q̌]. (2.2)
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2.2 Gelfand pair (Sd,Hd−1)

Here, we interpret variable pν as the corresponding power-sum in Λ.

2.2 Gelfand pair (Sd,Hd−1)

Now, assume d is an odd number and the involution γ has exactly one fixed point. Then centralizer CSd
(γ) ≤

Sd is isomorphic to Hd−1 (Hd−1 acts on non-fixed points of γ).

Theorem 2.8. For an odd number d, the pair (Sd,Hd−1) is a Gelfand pair.

Proof. We’ll show that the restriction of any irreducible Sd-representation to Hd−1 contains the trivial
representation 1Hd−1

with multiplicity at most one. Let χλ be an irreducible character of Sd corresponding
to the partition λ. Since Hd−1 ≤ Sd−1 ≤ Sd, we may first restrict χλ to Sd−1

ResSd

Sd−1
χλ =

⊕
µ⊢d−1
µ⊂λ

χµ

and observe that 〈ResSd−1

Hd−1
χµ, 1Hd−1

〉 = 1 if µ is even, and 0 otherwise. Therefore, the multiplicity of the
trivial character in ResSd

Hd−1
χλ is the number of ways to remove one box from λ and obtain an even partition,

which is clearly at most one. ■

We established the following decomposition for induced character

1Sd

Hd−1
=

⊕
µ⊢d

at most 1 row of µ is even

χµ

Remark 2.9. We deduced that the centralizer of γ with at most one fixed point forms a Gelfand pair.
Moreover, if γ has k ≥ 2 fixed points, then CSd

(γ) ∼= Hd−k × Sk and (Sd,Hd−k × Sk) is not a Gelfand pair.
Generally, (assuming k − d is even) we have the decomposition

1Sd

Hd−k×Sk
=
⊕
µ⊢d

χµ ·#{ν ∈ HS(k) |µ/ν is even}.

3 Hurwitz Numbers
3.1 Complex Hurwitz Numbers
We briefly recall the definition of complex Hurwitz numbers. Throughout this section we fix an integer d,
which is the degree of coverings we will consider. Let C be a Riemann surface of genus g and fix a collection
of points x = {x1, x2, . . . , xk} ⊂ CP1.

Definition 3.1. Let λ1, . . . , λk ∈ Pd be partitions. A complex Hurwitz covering of type (g;λ1, . . . , λk, x) is
a degree d branched covering of CP1 by some genus g surface C such that the ramification profile over xi is
λi for i = 1, 2, . . . , k.

We define the complex Hurwitz numbers hC(g;λ1, . . . , λk) as the weighted number of complex Hurwitz
coverings of the corresponding type:

hC(g;λ1, . . . , λk) =
∑
[π]

1

|Aut(π)|
,

where we sum over all equivalence classes of complex Hurwitz coverings of type (g; λ1, . . . , λk), and Aut(π)

is the automorphism group of π. It is a classical result that this number does not depend on the positions
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3.2 Real Hurwitz Numbers

of points in x. We also mention that the Riemann-Hurwitz formula implies

2g − 2 +

k∑
i=1

ℓ(λi) = (k − 2)d, (3.1)

so g is uniquely determined by λ1, . . . , λk.
There is an equivalent definition of complex Hurwitz numbers via symmetric groups.

Definition 3.2. Let λ1, . . . , λk ∈ Pd be partitions. A factorization of type (λ1, . . . , λk) is a tuple (τ1, . . . , τk)

of permutations in Sd such that

• C(τi) = λi for i = 1, 2, . . . , k;

• τ1τ2 · · · τm = 1.

We denote by FC(λ1, . . . , λk) the set of all factorizations of type (λ1, . . . , λk).

Theorem 3.3 (Hurwitz, [H91]). For integer g and partitions λ1, . . . , λk satisfying (3.1),

hC(g;λ1, . . . , λk) =
1

d!
|FC(λ1, . . . , λk)|.

The important special case of the complex Hurwitz numbers is the Hurwitz numbers of the type (λ,

(1d−221), . . . , (1d−221)), where the partition (1d−221) repeats m times. These numbers are called simple
single Hurwitz numbers. To light the notation, we denote by hCm(λ) the corresponding simple single Hurwitz
number. We can collect all these numbers to a generating series

HC =
∑

m∈N0,λ⊢d

hCm(λ)pλ1 · · · pλk

um

m!
,

where u and p1, p2, . . . are independent variables. We can think of pi as the corresponding power-sums, then
HC is an element of Λ[[u]].

Proposition 3.4. The series HC can be rewritten in the Schur basis

HC =
∑

m∈N0,λ⊢d

hCm(λ)pλ
um

m!
=

1

d!

∑
λ⊢d

dim(λ)sλe
∑

c(□)u,

where
∑
c(□) is the sum of the contents of all boxes in λ.

3.2 Real Hurwitz Numbers
Now we define the real Hurwitz numbers and give equivalent definition in terms of factorizations in symmetric
group.

Suppose that C is a Riemann surface of genus g and ι : C → C is an orientation-reversing involution. We
call a pair (C, ι) a real surface. Call a branched covering π : C1 → C2 of real surfaces (C1, ι1), (C2, ι2) real if
it respects the real structures, i.e. π ◦ ι1 = ι2 ◦ π. We say that two real branched coverings π1 : (C1, ι1) →
(C, ι), π2 : (C2, ι2) → (C, ι) are equivalent if there exists isomorphism f : (C1, π1) → (C2, π2) of complex
covers such that f ◦ ι1 = ι2 ◦ f .

Real Hurwitz numbers count real branched coverings of (CP1, conj), where conj : z 7→ z is complex
conjugation. Suppose that π : (C, ι) → (CP1, conj) is a real branched covering and let y ∈ CP1 \ RP1 be
a non-real branch point of π. It can be easily seen that conj(y) is also a branch point of π. Moreover,
ramification profiles over y and conj(y) are the same.
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3.2 Real Hurwitz Numbers

Definition 3.5. Let λ1, . . . , λk and µ1, . . . , µm be partitions of integer d, x1 < x2 < · · · < xk ∈ RP1 ⊂ CP1

be an increasing sequence of points, and y1, y2, . . . , ym ∈ CP1 \RP1 be a sequence of distinct non-conjugated
points. A real Hurwitz cover of type (g;λ1, . . . , λk, x;µ1, . . . , µm, y) is a degree d real branched covering of
(CP1, conj) by some genus g real surface (C, ι) such that the ramification profiles over xi and yj are λi and
µj respectively.

We define the real Hurwitz numbers hR(g;λ1, . . . , λk;µ1, . . . , µm) as the weighted number of real Hurwitz
coverings of the corresponding type:

hR(g;λ1, . . . , λk;µ1, . . . , µm) =
∑
[π,ι]

1

|AutR(π, ι)|
, (3.2)

where we sum over all equivalence classes of real Hurwitz coverings of type (g; λ1, . . . , λk, x; µ1, . . . , µm, y).
Note that the number of such coverings doesn’t depend on the positions of points in x and y themselves, but
only on the order of points in x. In this case Riemann-Hurwitz formula (3.1) reads

2g − 2 +

k∑
i=1

ℓ(λi) + 2

m∑
j=1

ℓ(µj) = (k + 2m− 2)d. (3.3)

It will be helpful for us to give an equivalent definition in terms of permutations of symmetric group.

Definition 3.6. Let λ1, . . . , λk, µ1, . . . , µm be partitions of integer d and m be a natural number. Real
factorization π of type (λ1, . . . , λk;µ1, . . . , µm) is a tuple (γ; τ1, . . . , τk;σ1, . . . , σm) of permutations in Sd

such that

• C(τi) = λi and C(σj) = µj for i = 1, . . . , k, j = 1, . . . ,m;

• γτ1τ2 · · · τi is an involutive permutation for i = 0, 1, . . . ,m (in particular γ2 = 1);

• γ (σ1σ2 · · ·σm)
−1
γτ1τ2 · · · τkσ1σ2 · · ·σm = 1.

We denote by F(λ1, . . . , λk;µ1, . . . , µm) the set of all real factorizations of the type (λ1, . . . , λk;µ1, . . . , µm).

The next theorem establishes the correspondence between these two definitions.

Theorem 3.7. For any partitions λ1, . . . , λk, µ1, . . . , µm and integer g satisfying (3.3) the following equality
holds

hR(g;λ1, . . . , λk;µ1, . . . , µm) =
1

d!
|F(λ1, . . . , λk;µ1, . . . , µm)|.

Proof. The proof is similar to the proof of the corresponding theorem for complex Hurwitz numbers. Let
π : (C, ι) → (CP1, conj) be the real Hurwitz covering of the above type. Pick x ∈ (xk, x1) and consider the
loops as in the picture 1.
The preimage π−1(x) of the point x consists of d distinct points {p1, . . . , pd}. The monodromy actions of the
loops t1, . . . , tk, s1, . . . , sm, s1, . . . , sm on this set is represented by permutations τ1, . . . , τk, σ1, . . . , σm, σ1, . . . , σm

respectively. Let γ be the involutive permutation corresponding to the action of ι on π−1(x). Next, since
sj = conj(s−1

j ), we have σj = γσ−1
j γ for j = 1, . . . ,m. Further, it’s not hard to see that

conj(ti ◦ ti−1 ◦ · · · ◦ t1) = (ti ◦ ti−1 ◦ · · · ◦ t1)−1,

which yields
γτ1τ2 · · · τiγ = (τ1τ2 · · · τi)−1,

so the second condition of 3.6 is satisfied. The last condition is implied by the fact that the product of all
loops depicted in 1 is trivial. By this construction we obtained the map from the set of isomorphism classes
of real Hurwitz covers R to F := F(λ1, . . . , λk, µ1, . . . , µm).
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3.2 Real Hurwitz Numbers

x

x1 x2 x3

y3

y2

y1

y3

y2

y1

RP1

t1
t2

t3

s3

s2

s1

s3

s2

s1

Figure 1: Generators of π1(CP1 \ {x, y, y}, x)

Now we’ll get the inverse map F → R. Given permutations τ1, . . . , τk, σ1, . . . , σm, σ1 = γσ−1
1 γ, . . . , σm =

γσ−1
m γ, we construct complex branched covering π : C → CP1 with branch points x1, . . . , xk ∈ RP1, y1, . . . , ym,

y1, . . . , ym ∈ CP1 \ RP1 and prescribed monodromy action on π−1(x) = {p1, . . . , pd}. It remains only to de-
fine the involution ι : C → C. Take any point p ∈ C and choose a path α in CP1 \ {x, y, y} from x to π(p),
put β = conj(α). Lift α to a path α̃ with endpoint p and let pn be its starting point. Lift β to a path β̃ with
starting point pγ(n) and set τ(p) = β̃(1). Now we’ll show that this map is well-defined (i.e. does not depend
on the choice of α). It is sufficient to verify this only for generators of π1(CP1 \ {x, y, y}).

Indeed, if p = pn ∈ π−1(x) and α = ti ◦· · ·◦ t1, then the starting point of α̃ is indexed with (τ1 · · · τi)−1(n)

and the starting point of β̃ is thus labelled with γ(τ1 · · · τi)−1(n). Next, since conj(α) = α−1, the endpoint
of β̃ has index (τ1 · · · τi)−1γ(τ1 · · · τi)−1(n), which is by the third condition of 3.6 equal to γ(n). Otherwise,
if α = sj , then the starting point of α̃ is indexed with σ−1

j (n) and the starting point of β̃ is thus labelled
with γσ−1

j (n). Next, since conj(sj) = (sj)
−1, the endpoint of β̃ has index (γσjγ)γσ

−1
j (n) = γ(n).

It is a direct check that two constructed maps are mutually inverse and the second map F → R is clearly
independent on the labelling of π−1(x), so we have a map F/Sd → R. Standard argument (e.g. see [CM16],
7.3.1 for complex case) shows that this map is bijection with | StabSd

(T )| = |AutR(T )|, and the theorem
follows. ■

In this paper we’re interested in so-called conjugate-invariant simple single Hurwitz numbers which restrict
us to the case k = 1 and µ1 = · · · = µm = 1d−221 (this means that there is exactly one real branch point
and all non-real branch points are simple).

Remark 3.8. In this case, the third condition of the real factorization is equivalent to the following:

τ = [γ, σ1 · · ·σm].

Moreover, it automatically implies (γτ)2 = 1.

In order to make the notation lighter, we write hRm(λ) for real Hurwitz numbers of the type (λ; 1d−221,

9



3.2 Real Hurwitz Numbers

. . ., 1d−221), where partition 1d−221 repeats m times. We also call (m,λ) the type of such factorization and
denote the set of all real factorizations of type (m,λ) by F(m,λ).

We are studying the properties of the following generating series, which can be considered as the element
of Λ[u]:

HR =
∑

λ⊢d,m∈N0

hRm(λ)pλ
um

m!
.

To compute this series, we need a more subtle approach to combinatorics of real factorizations. Consider
the series

H̃R =
1

d!

∑
λ⊢d,m∈N0

π∈F(m,λ)

pHγ(σ1···σm)
um

m!
∈ Λ[q, q̂, q̌, u]. (3.4)

Note that HR can be derived by setting

pν 7→ p2ν ;

qρ 7→ pρ;

q̂ρ̂ 7→ pρ̂;

q̌ρ̌ 7→ pρ̌

in (3.4). This follows from the observation that assuming γ = (a1 b1) (a2 b2) · · · (ak bk) and denoting
σ = σ1 · · ·σm, we can express the cycle type of commutator τ = [γ, σ] as

C([γ, σ]) = C
(
(σ−1γσ) · γ

)
= C ((σ(a1) σ(b1)) (σ(a2) σ(b2)) · · · (σ(ak) σ(bk)) · (a1 b1) (a2 b2) · · · (ak bk)) .

Hence the cycle type λ of τ is uniquely determined by γ-coset-type Hγ(σ).

Remark 3.9. Consider the series H̃R and put qi = q̂i = q̌i = 0 for all i ∈ N. Observe that this specialization
corresponds to real factorizations with fixed-point-free involution γ (that is, the graph Γγ(σ) contains only
even cycles). In further computations we will use the notation

H̃R
r =

1

d!

∑
λ⊢d,m∈N0

π∈Fr(m,λ)

pHγ(σ1···σm)
um

m!
.

Here, Fr(m,λ) is the set of real factorizations of type (m,λ) with involution γ having r fixed points. Clearly,

H̃R = H̃R
0 + H̃R

1 + . . .+ H̃R
d

H̃R
0 = H̃R|qi=q̂j=q̌l=0

H̃R
d =

1

d!
q
d/2
1 exp

(
d(d− 1)

2
u

)
.

Example 3.10. Put r = 0 and m ∈ {0, 1}. For m = 0, all real factorizations have the type
(
0, (1d)

)
, so

|F0

(
0, (1d)

)
| = (d− 1)!! and |F0(0, λ)| = 0 for any other λ.

Suppose now m = 1. Take any real factorization (γ;σ1), then the transposition σ1 either commutes with
γ (the number of such transpositions is d/2) or the commutator [γ, σ1] consists of two cycles of length 2 and
d− 4 fixed points. Therefore,

|F0

(
1, (1d)

)
| = d

2
· (d− 1)!!, |F0(1,

(
1d−4 22)

)
| = d(d− 2)

2
· (d− 1)!!

and |F1(0, λ)| = 0 for any other λ.

10



3.3 r-real Hurwitz Numbers

Thus, we get the following expansion of H̃R
0

H̃R
0 =

p
d/2
1

d!!
+

(
p
d/2
1

2 · (d− 2)!!
+

p
d/2−2
1 p2

2 · (d− 4)!!

)
u+O(u2).

Lemma 3.11. The series H̃R is invariant under involution which swaps q̂i and q̌i for all i.

Proof. Indeed, let (γ;σ1, σ2, . . . , σm) be any factorization of type (m,λ), put σ = σ1 · · ·σm. Then (σ−1γσ;

σm, σm−1, . . . , σ1) is a real factorization of the same type, and graph Γσ−1γσ(σ
−1) is obtained from Γγ(σ)

by changing the colour of all edges. Thus, we see that coefficients of pν · qρ · q̂ρ̂ · q̌ρ̌ and pν · qρ · q̂ρ̌ · q̌ρ̂ in H̃R

are equal. ■

3.3 r-real Hurwitz Numbers
Now we consider another type of Hurwitz numbers. Real Hurwitz numbers defined in (3.7) depend on the
order of points x1, x2, . . . , xk. For example, take d = 3, k = 4,m = 0, then

hR
(
(11 21), (31), (11 21), (31)

)
= 0 and hR

(
(11 21), (11 21), (31), (31)

)
6= 0.

To avoid this dependence, one can add another restriction on Hurwitz covers. We say that real Hurwitz
cover (π, ι) is r-real Hurwitz cover, if for any non-branched point x ∈ RP1 \ {x1, . . . , xk}, the involution
corresponding to the action of ι on π−1(x) has exactly r fixed points. Analogously we may define the r-real
Hurwitz numbers as the weighted sum

hr,R(g;λ1, . . . , λk;µ1, . . . , µm) =
∑
[π,ι]

1

AutR(π, ι)
,

where the sum is taken over all equivalence classes of r-real Hurwitz coverings of type (g; λ1, . . . , λk, x;

µ1, . . . , µm, y).
In the same way the r-real Hurwitz numbers can be identified with the number of factorizations.

Definition 3.12. r-real factorization π is a real factorization (γ, τ1, . . . , τk, σ1, . . . , σm) such that involution
γτ1 · · · τi has exactly r fixed points for i = 0, 1 . . . , k.

Denote the set of all r-real factorizations of type (λ1, . . . , λk;µ1, . . . , µm) by Fr(λ1, . . . , λk;µ1, . . . , µm). Then

hr,R(g;λ1, . . . , λk;µ1, . . . , µm) =
1

d!
|Fr(λ1, . . . , λk;µ1, . . . , µm)|.

Define the operator Dλ as the composition

Dλ : C[Ir
d ]

·cλ−−→ C[Sd]
pr−→ C[Ir

d ],

where the first map is right multiplication by the sum of permutations of cycle type λ and the second map
is projection to the subspace C[Ir

d ]. Also define the operator D̃µ : C[Ir
d ] → C[Ir

d ] as follows

D̃µ(γ) =
∑

C(σ)=µ

σγσ−1.

It is not hard to see that

hr,R(λ1, . . . , λk;µ1, . . . , µm) =
1

d!
tr
(
D̃µm ◦ · · · ◦ D̃µ1 ◦Dλk ◦ · · · ◦Dλ1

)
. (3.5)

11



3.3 r-real Hurwitz Numbers

Lemma 3.13. For any partitions λ1, λ2 ∈ Pd,

[D̃λ1 , D̃λ2 ] = [Dλ1 , D̃λ2 ] = [Dλ1 , Dλ2 ] = 0.

Proof. To see that first commutator is zero, write

D̃λ1
D̃λ2(γ) =

∑
C(σ2)=λ2

∑
C(σ1)=λ1

σ1σ2γσ
−1
2 σ−1

1 =
∑

C(σ2)=λ2

∑
C(σ1)=λ1

(σ1σ2σ
−1
1 )σ1γσ

−1
1 (σ1σ2σ

−1
1 ) =

=
∑

C(σ1)=λ1

∑
C(σ2)=λ2

σ2σ1γσ
−1
1 σ−1

2 = D̃λ2D̃λ1(γ).

For the second commutator, write

Dλ1D̃λ2(γ) =
∑

C(σ2)=λ2

∑
C(σ1)=λ1

σ1·σ2γσ
−1
2 ∈Ir

d

σ1 · σ2γσ−1
2 =

∑
C(σ2)=λ2

∑
C(σ1)=λ1

σ1·σ2γσ
−1
2 ∈Ir

d

σ2(σ
−1
2 σ1σ2 · γ)σ−1

2 =

=
∑

C(σ1)=λ1

σ1·γ∈Ir
d

∑
C(σ2)=λ2

σ2(σ1 · γ)σ−1
2 = D̃λ2Dλ1(γ).

For the last identity, we use that Dλ preserves the cycle type. For any η ∈ Sd, we can write

[ηγη−1]Dλ1Dλ2(γ) = #{γ′ ∈ Ir
d | C(γγ′) = λ1, C(γ′ηγη−1) = λ2},

where Dλ1 mutiplies γ by γγ′, Dλ2 multiplies by γ′ηγη−1 ([ηγη−1] means the coefficient of ηγη−1). Similarly,

[ηγη−1]Dλ2Dλ1(γ) = #{γ′ ∈ Ir
d | C(γγ′) = λ2, C(γ′ηγη−1) = λ1}.

We claim that the map γ 7→ ηγη−1 establish bijection between these sets. Indeed,

C(γγ′) = λ1 ⇔ C(γ′γ) = λ1 ⇔ C((ηγ′η−1)ηγη−1) = λ1,

C(γ′ηγη−1) = λ2 ⇔ C((ηγη−1)γ′) = λ2.

Therefore, Dλ1Dλ2(γ) = Dλ2Dλ1(γ), and we’re done. ■

This lemma together with (3.5) immediately implies the following result.

Proposition 3.14. For any partitions λ1, . . . , λk, µ1, . . . , µm, the r-real Hurwitz number hr,R(λ1, . . . , λk;

µ1, . . . , µm) does not depend on the order of real branch points. In other words,

hr,R(λ1, . . . , λk;µ1, . . . , µm) = hr,R(λσ(1), . . . , λσ(k);µ1, . . . , µm)

for any permutation σ acting on {1, 2, . . . , k}. ■

This result is natural in view of geometric and combinatorial correspondence because it claims that r-real
Hurwitz numbers are independent on the positions of branch points.

Now we connect the notion of 0-real Hurwitz numbers and the algebra of double Hd invariant functions
C(Sd;Hd). First, observe that all partitions λi must be co-even, otherwise the set of 0-real factorizations is
empty. So, suppose λi = λ̃i ∪ λ̃i, 1 ≤ i ≤ k and define the characteristic function ψλ̃ ∈ C(Sd;Hd)

ψλ̃(η) =

{
1/|Hd| if H(η) = λ̃;

0 otherwise.

12



Proposition 3.15. For co-even partitions λ1 = λ̃1 ∪ λ̃1, . . . , λk = λ̃k ∪ λ̃k, holds the equation

h0,R(λ1, . . . , λk) =
1

d!!

(
ψλ̃1ψλ̃2 · · ·ψλ̃k

)
(id).

Proof. Take any two involutions γ, γ′ ∈ Ir
d , then γ′ can be written as η−1γη (the choice of η is unique up to

left multiplication by the element of CSd
(γ)). Therefore, we can express the action of Dλ in the following

way
Dλ(γ) =

1

|CSd
(γ)|

∑
η∈Sd

C([γ,η])=λ

η−1γη.

Thus, we may write

Dλk ◦ · · · ◦Dλ1(γ) =
1

|CSd
(γ)|k

∑
η1∈Sd

C([γ,η1])=λ1

· · ·
∑

ηk∈Sd

C([γ,ηk])=λk

(ηk · · · η1)−1γηk · · · η1. (3.6)

Combining (3.5) and (3.6), we get

h0,R(λ1, . . . , λk) =
1

d!
· (d− 1)!!

|Hd|k
·#{η1, . . . , ηk ∈ Sd | η1 · · · ηk ∈ Hd, C ([γ0, ηi]) = λi for i = 1, . . . , k} (3.7)

for some fixed involution γ0 ∈ I0
d (we used that |I0

d | = (d− 1)!! and CSd
(γ0) = Hd). Now clearly,

1

|Hd|k
#{η1, . . . , ηk ∈ Sd | η1 · · · ηk ∈ Hd, C ([γ0, ηi]) = λi for i = 1, . . . , k} = (ψλ̃1ψλ̃2 · · ·ψλ̃k)(id).

■

4 Real Hurwitz numbers in terms of zonal polynomials
4.1 H̃R

0 expansion in zonal polynomials
Theorem 4.1. The function H̃R

0 has the expansion in the basis of zonal polynomials

H̃R
0 =

1

d!

∑
ν⊢ d

2

dim(2ν)Zνe
w(ν)u,

where w(ν) = d+ 2
∑
□∈ν

c2(□).

Proof. First of all, denoting µ = C(σ1 · · ·σm), we obtain

H̃R =
1

d!

∑
λ⊢d,m∈N0

π∈F(m,λ)

pHγ(σ1···σm)
um

m!
=

∑
µ⊢d,m∈N0

hm(µ)
um

m!

∑
γ∈Id

pHγ(σµ),

where σµ is an arbitrary permutation of cycle type µ. Therefore, the power series H̃R can be derived by
applying the map Φ : Λ → Λ[q, q̂, q̌]

Φ : pµ 7→
∑
γ∈Id

pHγ(σµ) (4.1)

to the power series HC. The key idea of the proof is to rewrite prΛ ◦Φ (prΛ is the specialization homomor-
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4.1 H̃R
0 expansion in zonal polynomials

phism q = q̂ = q̌ = 0) in the Schur basis

Φ : sλ =
∑
µ

1

zµ
χλ(µ) pµ =

1

d!

∑
σ∈Sd

χλ(σ)pC(σ) 7→
1

d!

∑
σ∈Sd
γ∈Id

χλ(σ)pHγ(σ). (4.2)

Since any two fixed-point-free involutions are conjugate to each other, it is enough to compute the sum (4.2)
only with

γ = γ0 = (1 2) (3 4) · · · (d− 1 d).

The number of fixed-point-free involutions in Sd is (d− 1)!!, so we get

1

d!

∑
σ∈Sd

γ∈I0
d

χλ(σ) pHγ(σ) =
1

|Hd|
∑
σ∈Sd

χλ(σ) pH(σ).

The multiplication by element of Hd preserves the coset-type of permutation, so we see that

1

|Hd|
∑
σ∈Sd

χλ(σ) pH(σ) =
1

|Hd|2
∑
σ∈Sd
h∈Hd

χλ(σ · h) pH(σ). (4.3)

By 2.5, it follows that sum in (4.3) can be non-zero only if λ is even, so we may assume λ = 2ν. Now, if we
recall the definitions of zonal spherical functions and zonal polynomials, we get

1

|Hd|2
∑
σ∈Sd
h∈Hd

χ2ν(σ · h) pH(σ) =
1

|Hd|
∑
σ∈Sd

ωρ(σ) pH(σ) =
1

|Hd|
ch′(ωρ) = Zρ.

Finally, we’re ready to rewrite Φ in the Schur basis:

sλ 7→

{
Zν if λ = 2ν for some ν;
0 otherwise.

Since
∑

□∈2ν

c(□) = 2
∑
□∈ν

c2(□) + d = w(ν), applying this map to the series for Hurwitz numbers

Φ(HC) = Φ

(
1

d!

∑
λ

dim(λ) sλ e
∑

c(□)u

)
=

1

d!

∑
ν⊢ d

2

dim(2ν)Zνe
w(ν)u

concludes the proof. ■

Remark 4.2. Very similar object was studied in [BF21]. Twisted Hurwitz numbers count the number
of fixed-point-free real factorizations F0(m,λ) with additional restriction that none of the transpositions
σ1, . . . , σm coincide with transpositions of γ. Up to constant, generating series for twisted Hurwitz numbers
equals H̃R

0 · e−ud.
The same generating series is obtained in [CD20] for non-orientable Hurwitz numbers. However, the bijection
between twisted Hurwitz numbers and non-orientable Hurwitz numbers is not yet known.
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4.2 Explicit formula for hRm
(
(1d)

)

4.2 Explicit formula for hR
m

(
(1d)

)
Proposition 4.3. Let m be a natural number. Then the following equation for the number of real Hurwitz
coverings with 2m simple non-real branch points holds

hRm
(
(1d)

)
=

1

d!

∑
λ⊢d

dimλ

(⌊
λ1
2

⌋
−
⌊
λ2 − 1

2

⌋)
· · ·
(⌊

λk−1

2

⌋
−
⌊
λk − 1

2

⌋)
·

(∑
□∈λ

c(□)

)m

.

Remark 4.4. Since
⌊
x
2

⌋
=
⌊
x−1
2

⌋
for odd x, we can restrict the above sum to partitions that are strict on

odd parts.

Proof. We have seen that the map Φ defined in (4.1) establishes the connection between HC and H̃R. Further,
the condition λ = 1d means that the permutations σ and γ commute. Hence we have the following expression
for hRm

(
(1d)

) ∑
m∈N0

hRm
(
(1d)

) um
m!

= Φ′(HC),

where
Φ′(pµ) = |CSd

(σµ) ∩ Id|,

i.e. the number of involutive permutations commuting with σµ. Again we write this map in the Schur basis

Φ′ : sλ =
1

d!

∑
σ∈Sd

χλ(σ)pC(σ) 7→
1

d!

∑
σ∈Sd

χλ(σ) · |CSd
(σµ) ∩ Id| =

1

d!

∑
γ∈Id

∑
σ∈CSd

(γ)

χλ(σ).

The centralizer of involution γ is a subgroup conjugate to H2k × Sd−2k, where d − 2k is the number of
fixed points of γ, H2k acts on the first 2k elements of {1, 2, . . . , d} and Sd−2k acts on the remaining elements.
Therefore we can write∑

k≤ d
2

∑
σ∈H2k×Sd−2k

χλ(σ) =
∑
k≤ d

2

∑
ν⊂λ

σ1∈H2k
σ2∈Sd−2k

χν(σ1) · χλ/ν(σ2) =
∑
k≤ d

2

∑
ν⊂λ

σ1∈H2k

χν(σ1) · 〈χλ/ν , idSd−2k
〉.

Since 〈χλ/ν , idSd−2k
〉 equals 1 if λ/ν is a horizontal strip and 0 otherwise, we have

Φ′(sλ) =
∑
k≤ d

2

1

|H2k|
∑

λ/ν∈HS(2k)
σ1∈H2k

χν(σ1).

Using 2.5, we get
Φ′(sλ) =

∑
λ/ν∈HS
ν is even

ω
ν/2
(1n) = #{ν ⊂ λ : ν is even and λ/ν ∈ HS},

since ωρ
(1n) = 1 for any ρ. The possible half-number of boxes in the ith row of ν belongs to the set

µi

2
∈ {bλi

2
c, bλi

2
c − 1, . . . , bλi+1 − 1

2
c+ 1}.

Thus, we conclude
Φ′(sλ) =

(⌊
λ1
2

⌋
−
⌊
λ2 − 1

2

⌋)
· · ·
(⌊

λk−1

2

⌋
−
⌊
λk − 1

2

⌋)
.

Combining this with HC expression in Schur basis, we get the desired equality. ■
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5 Cut-and-join equation for H̃R
0 and H̃R

1

In this section we present the differential equation which is usually called ’cut-and-join’. It demonstrates
how the γ-coset-type of permutation can change when multiplied by a transposition.

Definition 5.1. Using the notation ∂x = ∂
∂x define the deformed Laplace-Beltrami operator A0 as

A0 =
∑
i≥1

i2pi∂pi
+
∑
i,j≥1

[
(i+ j)pipj∂pi+j

+ 2ijpi+j∂pi
∂pj

]
.

Remark 5.2. It is well known that Zonal polynomials Zν are eigenfunctions of Laplace-Beltrami operator
with eigenvalues w(ν) = d+ 2

∑
□∈ν

c2(□). Thus, it can be easily checked that

A0 H̃R
0 = ∂uH̃R

0 .

However, this equation also has combinatorial meaning, we will demonstrate it for real Hurwitz number with
one fixed point.

Remark 5.3. The cut-and-join operator for twisted Hurwitz numbers studied in [BF21] coincide with∑
i≥1

i(i− 1)pi∂pi
+
∑
i,j≥1

[
(i+ j)pipj∂pi+j

+ 2ijpi+j∂pi
∂pj

]
= A0 −

∑
i≤1

ipi∂pi
.

This means that the eigenfunctions of this operator are the same (i.e. Zonal polynomials Zν), and the
eigenvalues differ by |ν| = d/2 from the eigenvalues of A0.

Theorem 5.4 (Cut-and-join equation). The power series H̃R
1 satisfy the equation

∂uH̃R
1 = A1 H̃R

1 , (5.1)

where the operator A1 is given by

A1 = A0 +
∑
i≥1

i2 − 1

4
qi∂qi +

∑
i,j≥1

[
2ijqi+2j∂qi∂pj

+ iqipj∂qi+2j

]
. (5.2)

Proof. We start with considering the series

∂uH̃R
1 =

∑
λ⊢d,m∈N
π∈Fk(m,λ)

pHγ(σ1···σm)
um−1

(m− 1)!

Figure 2: Mutating vertices σ(a) and σ(b) are coloured green
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Figure 3: Mutating vertices belong to different even
cycles. The produced term is 2ijpi+j∂pi

∂pj
.

Figure 4: Mutating vertices belong to an even cycle
and path. The produced term is ijqi+2j∂qi∂pj

.

and observing that this series can be derived by applying the operator which maps pHγ(σ) to
∑
σm

pHγ(σσm),

where the sum is taken over all transpositions σm ∈ Sd. Now our purpose is to find out how the γ-coset-types
of σ and σσm are related. Let

γ = (a1 b1) (a2 b2) · · · (ak bk) and σm = (a b).

We call vertices σ(a) and σ(b) mutating vertices. The graph Γγ(σσm) can be obtained from Γγ(σ) by
switching blue edges incident to mutating vertices as shown in 2 (depending on whether a and b are fixed
points of γ or not).

Recall that the graph Γγ(σ) consists of some number of even cycles and one path of even length. Suppose,
σ(a) and σ(b) are both vertices of the same cycle of length 2l. If the distance between σ(a) and σ(b) in
this cycle is even, then multiplying σ by σm split this cycle into two even cycles of total length 2l (this case
produces the term (i+ j)pipj∂pi+j

in (5.2)). If the distance is odd, then nothing happens (this case produces
the term i2pi∂pi). Four other possible cases are shown in the pictures 3, 4, 5 and 6. ■

Remark 5.5. Using a similar analysis of cases, it is not hard to write cut-and-join equations for H̃R. However,
we do not provide it here due to very large number of its summands.

Figure 5: Both mutating vertices belong to
one path, and the distance is odd. The produced

term is i2−1
4 qi∂qi .

Figure 6: Both mutating vertices belong to one
path, and the distance is even. The produced term

is iqipj∂qi+2j .
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