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1 Introduction

Hurwitz numbers were introduced by A. Hurwitz in 1891 ([H91]). In general, they enumerate branched
covers of the Riemann sphere with prescribed ramification data. Equivalently, they count factorizations in
symmetric group. In this paper we study real Hurwitz numbers, which enumerate branched covers preserving
real structure of the surface. Some results about real Hurwitz numbers can be found in [MR15], [GMR16]
and [KLN18].

1.1 Outline of the content

In section 2, we recall the notion of Zonal polynomials and study the properties of the Gelfand pairs formed
by symmetric group and its hyperoctahedral subgroup.

In section 3, we recall some basic facts about complex Hurwitz numbers and define real Hurwitz numbers
in terms of both branched covers and factorizations in symmetric group. One significant distinction between
complex and real Hurwitz numbers is the dependence on the location of branch points. In Section 3.3, we
present r-real Hurwitz numbers, which are invariant under change of branch points positions.

It is well known, that generating series for simple single Hurwitz numbers can be expressed in the Schur
basis. In Section 4, we will prove analogous fact for real Hurwitz numbers, but using Zonal polynomials
instead of Schur functions. In [CD20], [BCD21] and [BF21], generating series for different types of Hurwitz
numbers were already expressed in Zonal polynomials, so we present one more type of Hurwitz numbers,
which can be computed in these terms.

In section 5, we derive cut-and-join equation for special kind of real Hurwitz numbers. Using this equation,
Hurwitz numbers can be computed recursively.

1.2 Notations

Let &4 be the symmetric group of order d and Py be the set of partitions of d. We identify partitions
with the corresponding Young diagrams, and write A = (A1, A, ..., A\g) for A € Py with parts A1, g, ..., Ag.
Sometimes we will also use another notation A = (1P12P2...dP4) meaning that partition A has exactly p;
parts equal to i.

We call partition \ even if all its parts Aq,...,Ar are even. We call partition co-even if all numbers
P1,P2,- .-, Pq are even, i.e. every part occurs an even number of times. It is clear that if A is an even partition,
then its conjugate partition )\ is co-even, and vice versa (conjugate means that the Young diagram of X is
obtained by transposing the diagram of \).

Denote by C(c) - d the cycle type of the element o. Recall that for a box 0 = (4,5) € A in the " row
and it column (1 < j < ¢(\),1 < i < );), its content is equal to i — j and its 2-deformation is defined as
follows:

es(0) = 2(i— 1) — (j - ).

In section 4, we use function

w(\) =Y d+2c(0). (1.1)

Oex

Observe that ¢((2i — 1,7)) + ¢ ((24,5)) =4i — 25 — 1 = 2¢2 ((4,4)) + 1, so

Oe2x

We say that a skew Young diagram is a horizontal strip if every column contains at most one box. Denote
by HS(d) the set of horizontal strips containing d boxes.

We write Zy for the set of all involutive permutations on d elements and Z; for involutions with r fixed
points (obviously, 7] # @ implies d — r is even). Denote by A = P deNo A? the graded algebra of symmetric



functions with scalar product (-, -), which is defined for power-sums by

(px\vpu) = 6A,uz)\7

where z) = [[¢"4! with A = 172" ., d".

It is well known that the space of central functions C(S;) is isomorphic to the space of degree d symmetric
functions A?. This isomorphism is called Frobenius characteristic map and denoted by ch : C(S;) — A9.
To each characteristic function ¥, of conjugacy class A it assigns the power-sum ch(vy) = ip,\, so for any
central function f its image can be expressed as

ch(f) = % > Fopew) = Zif(u)pu- (1.2)

0ESy pEd B

Under this isomorphism, the irreducible character x* is mapped to the Schur function s.

2 Hyperoctahedral subgroup and zonal polynomials

2.1 Gelfand pair (S;, Ha)
In this subsection we assume that d is even number.

Definition 2.1. The pair (G, K) of group and its subgroup is called a Gelfand pair if for any irreducible
representation V of G, the space VX of K-invariant vectors in V is no-more-than-1-dimensional.

The definition of Gelfand pairs is closely related to the space of double K-invariant functions

Definition 2.2. A function f: G — Q is said to be double K -invariant if
flkxk') = f(x) for all z € G, k, k' € K.

We denote the space of all double K-invariant functions by C(G; K)
We equip the space C(G; K) with the multiplication given by convolution.

Lemma 2.3 ([Mac95], VII, 1.1). Let G be a group and K < G. The pair (G, K) is a Gelfand pair if and
only if the algebra C(G; K) is commutative.

Consider now the symmetric group Sy and the involution
’Y():(l 2)(3 4) (d—l d) € Sy.

Hyperoctahedral subgroup Hy is the centralizer Cs, (7). The cardinality of Hg is equal to 24/2(d/2)! = d!.
Although the standard notation for the hyperoctahedral subgroup of Sy is 7-[%, in this paper we will use Hq

instead. Double H 4-classes of Sy are indexed with partitions of %. To see this, observe that the permutation

[0, 70] = (0(1) 0(2)) (0(3) o(4)) -+ (o(d = 1) o(d)) - (12)(34) - (d—1d)

has the cycle type of the form v Uv = (v1,v1,v0,v9,..., vk, 1) (i.e. every part occurs an even number of
times). So we assign to each double H4-coset the partition H(o) = (v1, v, ...,vx) b d, called the coset-type
of o. This correspondence between double H4-classes of Sy and partitions of d/2 turns out to be a bijection.

Also, the the hyperoctahedral group H, is isomorphic to a wreath product S, 28%. For more detailed
information about Gelfand pairs and hyperoctahedral group Hy4 in symmetric functions theory, see e.g.
[Mac95] (VII).



2.1 Gelfand pair (Sg, Hq)

Theorem 2.4 ([Mac95], VII, 2.2). The pair (Sq,Ha) is a Gelfand pair for all even d.
Take any partition A - d and consider the function from S; to Q:

o lH—{d‘ Z o - h) (2.1)

heHaq

The right H 4-invariance of the above function is trivial, while the left H 4-invariance holds due to the centrality
of x*, so this function belongs to C(Sq; Ha)-

Proposition 2.5 ([Mac95)). The function defined in (2.1) is non-zero if and only if the partition X is even.
For \ = 2v, this function is called zonal spherical function and denoted by w”

v _ 1 2v
(o) = Gt 2 X (oo h)

h€EH 4

Zonal spherical functions {w”}y,_% form a basis for the space C(Sg;Ha).

The correspondence between double Hg-invariant functions (see definition 2.2) and symmetric functions
can be obtained analogously to (1.2). Namely, define a mapping

ch' : O(Sq; Ha) — AY?
Fe Y F0) pro):

oESy

Lemma 2.6 ([Mac95]). The mapping ch’ : C(Sg; Ha) — AY? is an isomorphism of Q-algebras.
Finally, we can introduce an analogue of Schur functions.

Definition 2.7. For each partition v of d, we define
Z, = [Ha| ™ b (W),

i.e.

1 v
Z, = M4l 5 o Wy Pus
o

d
pEg

where wy is the value of w” at elements of the coset-type p. Symmetric functions Z, are called zonal
polynomials.

More generally, suppose v € Z; (now d is not necessarily even) is any involution. It can be written as the
product of disjoint transpositions

7 = (a1 by) (az bs) -~ (ax by).

To each permutation o € S; we attach an undirected graph I'y (o) with vertices 1,2,...,d and edges ¢;,&7
(1 < i < k), where ¢; joins vertices a;,b; and €7 joins o(a;),o(b;). We also assume that edges ¢; are red,
while €7 are blue. The graph I'y (o) consists of even cycles (whose half-sizes we denote by vy, ..., ;) and
disjoint paths. If the first and last edges of the path are of the different colour (in particular, such path can
have only one vertex), then its length (i.e. the number of vertices) is odd. We denote the length of such
paths by p1,...,p,. Further, suppose that paths with both red ends have lengths p1, ..., ps, and likewise
lengths of paths with both blue ends are pi,...,pz. The tuple of partitions (v, p, p, p) = H(o) is called
v-coset-type of o. Note that if ~ is fixed-point-free, then p = p = p = .

In the next sections, we will be counting the number of permutations with given ~y-coset-type. Let p1, pa,
cees Gl G2y - -+ 41, G2, - -+, 41, G2, - .. be independent variables. To each permutation o € S; we assign

p’Hn,(cf) =Dv-4p Cj,ﬁ ' qvﬁ =Pvi " Pu, ~dpy """ dp,. - qul Cjﬁr ' (jﬁl "'qvﬁf- € A[(L(qu] (22)



2.2 Gelfand pair (Sq, Ha—1)

Here, we interpret variable p, as the corresponding power-sum in A.

2.2 Gelfand pair (S, Hq 1)

Now, assume d is an odd number and the involution v has exactly one fixed point. Then centralizer Cs, () <
S, is isomorphic to H4—1 (Hq—1 acts on non-fixed points of 7).

Theorem 2.8. For an odd number d, the pair (Sq, Ha—1) is a Gelfand pair.

Proof. We’ll show that the restriction of any irreducible Sy-representation to Hy_ 1 contains the trivial
representation 14, , with multiplicity at most one. Let x be an irreducible character of S; corresponding
to the partition A. Since Hy—1 < Sg—1 < Sy, we may first restrict x» to Sg—1

Sa _
ReSSd—l XX = @ Xu
pEd—1

HCA
and observe that (Resffdfl Xp> 12, ) = 1if p is even, and 0 otherwise. Therefore, the multiplicity of the

trivial character in Resf_fdil X is the number of ways to remove one box from A and obtain an even partition,
which is clearly at most one. |

We established the following decomposition for induced character

178'&1—1 = @ Xu

pkd
at most 1 row of p is even

Remark 2.9. We deduced that the centralizer of v with at most one fixed point forms a Gelfand pair.
Moreover, if v has k > 2 fixed points, then Cs,(y) = Ha—k X Sk and (Sq, Ha—r % Sk) is not a Gelfand pair.
Generally, (assuming k — d is even) we have the decomposition

1ftdd,kxsk = @XU -#{v € HS(k) | u/v is even}.
pkd

3 Hurwitz Numbers

3.1 Complex Hurwitz Numbers

We briefly recall the definition of complex Hurwitz numbers. Throughout this section we fix an integer d,
which is the degree of coverings we will consider. Let C' be a Riemann surface of genus g and fix a collection
of points x = {z1, 29,..., 21} C CPL.

Definition 3.1. Let A',..., \* € P4 be partitions. A complex Hurwitz covering of type (g; \', ..., \¥, ) is
a degree d branched covering of CP! by some genus g surface C such that the ramification profile over z; is
Nofori=1,2,...,k.

We define the complex Hurwitz numbers h®(g; A}, ..., A\¥) as the weighted number of complex Hurwitz
coverings of the corresponding type:

1
C/ o1 ky _
h=(g; A%, .., A%) = [E] At

where we sum over all equivalence classes of complex Hurwitz coverings of type (g; A!,..., \¥), and Aut(r)
is the automorphism group of 7. It is a classical result that this number does not depend on the positions



3.2 Real Hurwitz Numbers

of points in . We also mention that the Riemann-Hurwitz formula implies

k
29— 24> L(\) = (k—2)d, (3.1)

i=1

so g is uniquely determined by \!,..., \*.
There is an equivalent definition of complex Hurwitz numbers via symmetric groups.

Definition 3.2. Let \},..., \¥ € P, be partitions. A factorization of type (A, ..., \¥) is a tuple (71,..., %)
of permutations in S; such that

o C(r;) =N fori=1,2,... k;
.T1T2-..Tm:1_
We denote by FE(AL, ..., \F) the set of all factorizations of type (A, ..., \F).

Theorem 3.3 (Hurwitz, [H91]). For integer g and partitions \',...  \* satisfying (3.1),
1
(g AL, 0\ = E\I‘C(/\l,...,/\kﬂ.

The important special case of the complex Hurwitz numbers is the Hurwitz numbers of the type (A,
(197221) ... (197221)), where the partition (19722') repeats m times. These numbers are called simple
single Hurwitz numbers. To light the notation, we denote by hS ()\) the corresponding simple single Hurwitz
number. We can collect all these numbers to a generating series

C C u™
H* = Z hm()‘)pkl'”pAkM’
meNg,A\Fd
where u and pi, pe, ... are independent variables. We can think of p; as the corresponding power-sums, then

HC is an element of A[[u]].

Proposition 3.4. The series HC can be rewritten in the Schur basis

u™ 1 . (M
HE = > hnMpa— = EZdlm()\)S)\eZ e

m!
mENy, A\-d -d

where Y c(Od) is the sum of the contents of all boxes in .

3.2 Real Hurwitz Numbers

Now we define the real Hurwitz numbers and give equivalent definition in terms of factorizations in symmetric
group.

Suppose that C' is a Riemann surface of genus g and ¢ : C' — C' is an orientation-reversing involution. We
call a pair (C, ) a real surface. Call a branched covering 7 : C1 — Cq of real surfaces (Cy, 1), (Ca, t2) real if
it respects the real structures, i.e. w01 = 19 om. We say that two real branched coverings m : (Cq,t1) —
(C,1),ma : (Cayt2) — (C,1) are equivalent if there exists isomorphism f : (C1,m) — (C2,7m2) of complex
covers such that fou =0 f.

Real Hurwitz numbers count real branched coverings of (CP!,conj), where conj : z + Z is complex
conjugation. Suppose that 7 : (C,1) — (CP!, conj) is a real branched covering and let y € CP! \ RP! be
a non-real branch point of 7. It can be easily seen that conj(y) is also a branch point of 7. Moreover,
ramification profiles over y and conj(y) are the same.



3.2 Real Hurwitz Numbers

Definition 3.5. Let A',... . \* and p!,..., u™ be partitions of integer d, x; < x5 < --- < 23, € RP! ¢ CP!
be an increasing sequence of points, and y1, ¥z, . . ., ym € CP*\ RP! be a sequence of distinct non-conjugated
points. A real Hurwitz cover of type (g; A\, ..., Nt , 1™, y) is a degree d real branched covering of
(CP*, conj) by some genus g real surface (C,¢) such that the ramification profiles over x; and y; are A\’ and
1/ respectively.

We define the real Hurwitz numbers hR(g; ANt , ™) as the weighted number of real Hurwitz
coverings of the corresponding type:

1
(gAY, o Nt ™) = _— 3.2
(9 I TOESY A0 (3.2)
[m,e]
where we sum over all equivalence classes of real Hurwitz coverings of type (g; A!,..., Ne oot ,um,y).

Note that the number of such coverings doesn’t depend on the positions of points in x and y themselves, but
only on the order of points in . In this case Riemann-Hurwitz formula (3.1) reads

k m
29 -2+ ) () +2) L) = (k+2m — 2)d. (3.3)

It will be helpful for us to give an equivalent definition in terms of permutations of symmetric group.

Definition 3.6. Let A,... \* ul ..., 4™ be partitions of integer d and m be a natural number. Real
factorization m of type (A1,..., A¥;pul ... ™) is a tuple (y;71,...,7;01,-..,0m) of permutations in Sy
such that

e C(ri)=Xand C(o;)=p fori=1,... .k, j=1,...,m;
® YTiTy -+ T; is an involutive permutation for i = 0,1,...,m (in particular 42 = 1);
-1
o V(0102 0p) YTIT2TRO102 O = 1
We denote by F(AL, ..., A% ul, ... u™) the set of all real factorizations of the type (AL, ... A& pul, ... u™).
The next theorem establishes the correspondence between these two definitions.

Theorem 3.7. For any partitions ', ..., \F ul, ... u™ and integer g satisfying (3.3) the following equality
holds

m 1 m
hR(g;)\lﬂ"'7)\k;l[’L1""7N ):aLF()\l""?)\k;Ml""?M )"

Proof. The proof is similar to the proof of the corresponding theorem for complex Hurwitz numbers. Let

7 :(C,1) — (CP!, conj) be the real Hurwitz covering of the above type. Pick z € (xy,z1) and consider the
loops as in the picture 1.

The preimage 71 () of the point x consists of d distinct points {py,...,ps}. The monodromy actions of the
loopsti,...,tk,S1,.--,Sm,S1,- - -, Sm On this set is represented by permutations 7, ..., 7%, 01,...,0m, 015, 0m
respectively. Let v be the involutive permutation corresponding to the action of ¢ on 7~ !(z). Next, since

5 = conj(sj_l), we have 5; = ’yaj_lfy for j = 1,...,m. Further, it’s not hard to see that
conj(tioti—yo---oty) = (t;oti_10---oty)"},

which yields

77-17—2 .. ‘Ti’y e (7‘17—2 .. .7-1.)_1’

so the second condition of 3.6 is satisfied. The last condition is implied by the fact that the product of all
loops depicted in 1 is trivial. By this construction we obtained the map from the set of isomorphism classes
of real Hurwitz covers R to F := F(AL, ..., F ub .. u™).



3.2 Real Hurwitz Numbers

Figure 1: Generators of 71 (CP' \ {z,y,7},z)

Now we’ll get the inverse map F — R. Given permutations 7y,..., 7k, 01,...,0m, 01 = fyal_l*y, ey O =
yo 15, we construct complex branched covering 7 : C' — CP! with branch points z1,. ..,z € RPL y1, ..., ym,
Ul -+ Jm € CPL\ RP! and prescribed monodromy action on 7= (x) = {p1,...,pq}. It remains only to de-

fine the involution ¢ : C' — C. Take any point p € C and choose a path o in CP* \ {z,y, 7} from  to 7(p),
put 5 = conj(«). Lift « to a path & with endpoint p and let p,, be its starting point. Lift 5 to a path 3 with
starting point p.,) and set 7(p) = B(1). Now we’ll show that this map is well-defined (i.e. does not depend
on the choice of «). It is sufficient to verify this only for generators of i (CP' \ {z,y,7}).

Indeed, if p = p,, € 7~ (x) and a = t;0---oty, then the starting point of & is indexed with (71 ---7;)~1(n)
and the starting point of 3 is thus labelled with (7 - - - 7;) "' (n). Next, since conj(e) = a~!, the endpoint
of 3 has index (7 ---7;) " 'y(71 - - - ;) 1(n), which is by the third condition of 3.6 equal to y(n). Otherwise,
if @ = s;, then the starting point of & is indexed with a{l(n) and the starting point of 3 is thus labelled
with vajl(n). Next, since conj(s;) = (5;) ", the endpoint of 3 has index (Wojw)'yajfl(n) =v(n).

It is a direct check that two constructed maps are mutually inverse and the second map F — R is clearly
independent on the labelling of 771 (x), so we have a map F/S; — R. Standard argument (e.g. see [CM16],
7.3.1 for complex case) shows that this map is bijection with | Stabs,(T)| = | Aut™(T))|, and the theorem
follows. |

In this paper we’re interested in so-called conjugate-invariant simple single Hurwitz numbers which restrict
us to the case k = 1 and p! = --- = p™ = 197221 (this means that there is exactly one real branch point
and all non-real branch points are simple).

Remark 3.8. In this case, the third condition of the real factorization is equivalent to the following:
T=[v,01 " Om]-

Moreover, it automatically implies (y7)% = 1.

In order to make the notation lighter, we write h¥, (\) for real Hurwitz numbers of the type (\; 197221,



3.2 Real Hurwitz Numbers

.oy 197221 wwhere partition 197221 repeats m times. We also call (m, \) the type of such factorization and
denote the set of all real factorizations of type (m, A) by F(m, ).

We are studying the properties of the following generating series, which can be considered as the element
of Afu):
R R u™
H® = Z hm(A)p)\ﬁ'
A-d, meNg

To compute this series, we need a more subtle approach to combinatorics of real factorizations. Consider

the series
mr_ 1 u™ o
B = > Pro(orom) oy € Alg: 44, u]- (3.4)
" AFd,meN, :
TeF(m,\)

Note that HR can be derived by setting

Py P

4p = Dps

4p = Dp3

dp = Pp
in (3.4). This follows from the observation that assuming v = (aj b1) (a2 ba) - -+ (ax bg) and denoting
0 =01 0m, we can express the cycle type of commutator 7 = [y, o] as

C(ly,0]) = € (67 190) - 7) = C ((o(ar) o(b1)) (o(az) o(b2) -+ (o(ar) o(Br)) - (a by) (az ba) -+ (ax by)).
Hence the cycle type A of 7 is uniquely determined by 7-coset-type H- (o).

Remark 3.9. Consider the series HE and put ¢; = ¢; = ¢; = 0 for all i € N. Observe that this specialization
corresponds to real factorizations with fixed-point-free involution v (that is, the graph I', (o) contains only
even cycles). In further computations we will use the notation

r a Z pr(gl"'Jm,)m'
AHd, meNg
wEFr(m,A\)

Here, F,.(m, A) is the set of real factorizations of type (m, A) with involution « having r fixed points. Clearly,

HE = HY + HY + ...+ H5

HE = H®|g,=g,=qi=0
~ 1 d(d—1)
R d/2
H,; = d q,' " exp ( 5 u> .

Example 3.10. Put r = 0 and m € {0,1}. For m = 0, all real factorizations have the type (0, (1)), so
|70 (0, (14)) | = (d — 1)!! and |Fo(0,A)| = 0 for any other A.

Suppose now m = 1. Take any real factorization (7y; 1), then the transposition oy either commutes with
~ (the number of such transpositions is d/2) or the commutator [y, o1] consists of two cycles of length 2 and
d — 4 fixed points. Therefore,

Foah) =3 @—nn (R ate) = 422 g gy

VESW

and |F1(0,A)] = 0 for any other .

10



3.3 r-real Hurwitz Numbers

Thus, we get the following expansion of HE

pd/2 pd/Z pd/2_2p2
mR _ 1 1 1 5
Ho =T <2~(d—2)” i 2~(d—4)!!> u+ 00w,

Lemma 3.11. The series HE is invariant under involution which swaps §; and ¢; for all i.

Proof. Indeed, let (v;01,09,...,0.,) be any factorization of type (m, ), put ¢ = o1 ---0,,. Then (o~ yo;
Oms Om—1,---,01) is a real factorization of the same type, and graph I';-1,,(c™!) is obtained from F,Y(NU)
by changing the colour of all edges. Thus, we see that coeflicients of p, - ¢, - ¢; - G5 and p, - q, - §5 - G5 in HR
are equal. ]

3.3 r-real Hurwitz Numbers
Now we consider another type of Hurwitz numbers. Real Hurwitz numbers defined in (3.7) depend on the
order of points z1, o, ..., z;. For example, take d = 3,k = 4, m = 0, then

RE((1'2Y),(3%),(1'2Y),(3Y)) =0 and A% ((1'2'),(1'2"),(3"),(3")) £ 0.

To avoid this dependence, one can add another restriction on Hurwitz covers. We say that real Hurwitz
cover (m,t) is r-real Hurwitz cover, if for any non-branched point z € RP! \ {x1,..., 2.}, the involution
corresponding to the action of  on 7~ !(z) has exactly r fixed points. Analogously we may define the r-real
Hurwitz numbers as the weighted sum

1
RPR(g N o =y —————
(g pho ™) ZAutR(ﬂ',L)

]

where the sum is taken over all equivalence classes of r-real Hurwitz coverings of type (g; A',..., \F, ;

phy 1™ y).
In the same way the r-real Hurwitz numbers can be identified with the number of factorizations.

Definition 3.12. r-real factorization 7 is a real factorization (v, 7y,..., Tk, 01, - -, 0m) such that involution
~71 - - - 7; has exactly r fixed points for ¢ = 0,1... k.

Denote the set of all 7-real factorizations of type (A, ..., A\¥;put ... u™) by Fr (AL, ... A% ut, ... u™). Then
RER(g AL Rt ™) = %|}"T(x\1,...,/\k;u1,...,,um)|.
Define the operator D) as the composition
Dy« C[z3] == ClSa] = CIZg],

where the first map is right multiplication by the sum of permutations of cycle type A and the second map
is projection to the subspace C[Z}]. Also define the operator D,, : C[Z};] — C[Z}] as follows

D,(v) = Z oyo L.
Clo)=p
It is not hard to see that

1

rR/y1 k. 1 my\ _
h (Aa"'7A7Ma"'7/’L )_d'

tr(lN)umo-uolN)”l ODMO---OD»). (3.5)

11



3.3 r-real Hurwitz Numbers

Lemma 3.13. For any partitions \', \2 € Py,
[Dy1, Dy2] = [Dy1, Dyz] = [Dan, Dy2] = 0.

Proof. To see that first commutator is zero, write
DAlD)\z Z Z 0102705 01 = Z Z (010907 01701_1(010201_1) =
C(O’z) A2 C(O‘l) AL C(O’Q) A2 C(O’l) AL

Z Z ogo1y0y toy t = 5/\25)\1(7).

C(O’]):/\l C(O‘z):)\Q
For the second commutator, write
R S S SN D e

C(o2)= C(o1)=A! C(02)=A?  (C(o1)=A"
0'14027027161'; 01-027051612

Z Z o3(01 7)oy " = Dy2Dai (7).

C(o1)=A' C(o2)=)2
o1-v€ELY

For the last identity, we use that D) preserves the cycle type. For any n € S4, we can write

[mm~ " 1Dxi Dy (y) = #{7' € Iy |C(vy') = A", C(Y'mym ™) = A},

1

where D, mutiplies v by ', Dy, multiplies by v/nyn~! ([7yn~!] means the coefficient of yn~1). Similarly,

[mm~ " 1Dx2Dxi () = #{7" € Ty |C(vy) = X, C(y'mym ™) = AT}

-1

We claim that the map v — nyn~" establish bijection between these sets. Indeed,

C)=AaCHy) =X aC((m'n Hmm™) =,
CHY'mm ") =X & C(tpm™ ) = M.

Therefore, Dy1Dy2(v) = Dy2Dx:(7), and we're done. [ ]

This lemma together with (3.5) immediately implies the following result.

Proposition 3.14. For any partitions \',... \¥ pl ... u™, the r-real Hurwitz number h™F(\Y, ... \F;
pty ..., u™) does not depend on the order of real branch points. In other words,
REOEOL Nt ™) = hr’R()\"(l), AR w™)
or any permutation o acting on {1,2,...,k}. |
for any p g on {1, ;

This result is natural in view of geometric and combinatorial correspondence because it claims that r-real
Hurwitz numbers are independent on the positions of branch points.

Now we connect the notion of 0-real Hurwitz numbers and the algebra of double H, invariant functions
C(S4;Ha). First, observe that all partitions A’ must be co-even, otherwise the set of O-real factorizations is
empty. So, suppose A\! = A* U\, 1 < i < k and define the characteristic function Y5 € C(Sa; Ha)

b () = {1/|Hd| if #(n) =

0 otherwise.
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Proposition 3.15. For co-even partitions \! = ALy :\1, A= MU S\k, holds the equation

ROR(AL, .. Nk = % (51152 -+ i) (id).

Proof. Take any two involutions 7,~" € Z, then +' can be written as n~ym (the choice of 7 is unique up to
left multiplication by the element of Cs,()). Therefore, we can express the action of Dy in the following

way

1
Da(V) = >, n'm
|CSd(rY)| nesd
C(lymh=A
Thus, we may write
1 _
DAkO"'ODxl(W)Zm Z Z (i =)~ e+ (3.6)
SalY N ESq NLESq
CllymD=x"  c(lvme])=A*
Combining (3.5) and (3.6), we get
0,R/y1 k 1 (d — 1)” i .
RO ) = E.W'#{m"”’nk €Salm - nk € Ha,C([y0,m:]) =X fori=1,...,k} (3.7)

for some fixed involution vy € Z9 (we used that |Z9| = (d — 1)!! and Cs, (7o) = Ha). Now clearly,

b

‘Hd‘k , Mk € Sd‘771 Mk € Hdac(h/07nl]) = )‘Z for i = 17ak} = (¢i1¢i2 wik)(ld)

#ms -

4 Real Hurwitz numbers in terms of zonal polynomials

4.1 ﬁ§ expansion in zonal polynomials

Theorem 4.1. The function ]ﬁ%& has the expansion in the basis of zonal polynomials

T 1 : w(v)u
HE = a Z dim(2v) Z, e,
VF%
where w(v) =d+2 Y co(0).
Oev

Proof. First of all, denoting u = C(oy - - - 04, ), We obtain

~ 1 m m
Fod T e T w0 S

" Akd, meN, pkd, meNy YyELq
TEF(m,\)

where o, is an arbitrary permutation of cycle type u. Therefore, the power series HE can be derived by
applying the map ® : A — Alq, 4, q]
(4.1)

PPy Y P (o)
YEZLq

to the power series HC. The key idea of the proof is to rewrite pry o ® (pr, is the specialization homomor-

13



4.1 ]IT]IHO{ expansion in zonal polynomials

phism ¢ = § = ¢ = 0) in the Schur basis

1
Disy=) - X (W pu =5 LS e - T ST @) (4.2)
I €Sy UEgd
YELqg

Since any two fixed-point-free involutions are conjugate to each other, it is enough to compute the sum (4.2)
only with
Y=7%=(12)(34) - (d-1d).

The number of fixed-point-free involutions in Sy is (d — 1)!!, so we get

I LS @) Py = |7—ld| > xM0) o)

O'GSd gESy
v€ETY

The multiplication by element of H, preserves the coset-type of permutation, so we see that

> XN Py = D X0 h) puge)- (4.3)
|H‘i| 0€Sq |H | €Sy
heHq

By 2.5, it follows that sum in (4.3) can be non-zero only if A is even, so we may assume A = 2v. Now, if we
recall the definitions of zonal spherical functions and zonal polynomials, we get

1
|7‘[ |2 Z X 0’ h)pH( y = |7‘[ | Z H(o) = mCh’(wl’) Zp.
ngld ogeSy
€EHa

Finally, we're ready to rewrite ® in the Schur basis:

Z, if A = 2v for some v;
S\
0 otherwise.

Since > ¢(0) =2 > ¢2(0) +d=w(v), applying this map to the series for Hurwitz numbers
Oe2v Oev

1
o(H® ( Zdlm N (D)“> = Z dim(2v) Z, e

yl—%
concludes the proof. |

Remark 4.2. Very similar object was studied in [BF21]. Tuwisted Hurwitz numbers count the number
of fixed-point-free real factorizations Fo(m, \) with additional restriction that none of the transpositions
01, --.,0m coincide with transpositions of . Up to constant, generating series for twisted Hurwitz numbers
equals ]ﬁl%f cemud,

The same generating series is obtained in [CD20] for non-orientable Hurwitz numbers. However, the bijection
between twisted Hurwitz numbers and non-orientable Hurwitz numbers is not yet known.
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4.2 Eaplicit formula for h¥, ((1d))

4.2 Explicit formula for 1% ((1%))

Proposition 4.3. Let m be a natural number. Then the following equation for the number of real Hurwitz
coverings with 2m simple non-real branch points holds

o=y g (3] [252)- (12 [2)- (5e)

Oex

Remark 4.4. Since L%J = LIT*lJ for odd z, we can restrict the above sum to partitions that are strict on
odd parts.

Proof. We have seen that the map ® defined in (4.1) establishes the connection between H® and HE. Further,
the condition A = 1¢ means that the permutations o and v commute. Hence we have the following expression

for ¥ ((19))
> hh (1) T = @/(EO),
m&ENy

where

@' (pu) = |Cs, (o) N Ll
i.e. the number of involutive permutations commuting with o,. Again we write this map in the Schur basis
SR SR NG TREE S SPUCHENCALETEED DD I
0€S4 oE€Sq V€Za 0€Cs,(v)

The centralizer of involution + is a subgroup conjugate to Haor X Sg—ok, where d — 2k is the number of
fixed points of 7, Ha acts on the first 2k elements of {1,2,...,d} and Sy_of acts on the remaining elements.
Therefore we can write

YooY XM= D> X)) xMe) =D D xX(o1) (M ids,u)-

k<d 0€Ha2kXSa—2k k<2 vCA k<4 vCA
-2 —?% o01€H 2% o1€Hak
02€Sq—2k
Since (x*",ids, ,,) equals 1 if \/v is a horizontal strip and 0 otherwise, we have

=

k<g

> X(a).

X/veHS(2k)
o1€H 2k

|H2k|

Using 2.5, we get
Z w”/z #{v C A : viseven and \/v € HS},

A/veHS
since wfln) =1 for any p. The possible half-number of boxes in the i*"" row of v belongs to the set

i i A i1 — 1

— —L|l=|-1,....| — 1}.
Thus, we conclude

A1 Az —1 Ak—1 Ap—1
@l = _— — cee — .
= (3] ) - (2] 2))

Combining this with H® expression in Schur basis, we get the desired equality. |
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5 Cut-and-join equation for ]IT]I](I)Q and ]I/-V]I}F

In this section we present the differential equation which is usually called 'cut-and-join’. It demonstrates
how the y-coset-type of permutation can change when multiplied by a transposition.

Definition 5.1. Using the notation 9, = 3% define the deformed Laplace-Beltrami operator Ag as
-AO = Z Zzpzapz + Z [(Z + j)pipjapH_j + 2ijpi+japiapj] :
i>1 i,j>1

Remark 5.2. It is well known that Zonal polynomials Z,, are eigenfunctions of Laplace-Beltrami operator

with eigenvalues w(v) =d+2 Y co(0). Thus, it can be easily checked that
Oev

Ao HE = 9, H .
However, this equation also has combinatorial meaning, we will demonstrate it for real Hurwitz number with
one fixed point.

Remark 5.3. The cut-and-join operator for twisted Hurwitz numbers studied in [BF21] coincide with

Z i(i — 1)piOp, + Z [(i + J)pipjOp,., + 2ijpitjOp,Op, | = Ao — Z ip; O, -

i>1 i,5>1 i<1

This means that the eigenfunctions of this operator are the same (i.e. Zonal polynomials Z,), and the
eigenvalues differ by |v| = d/2 from the eigenvalues of Ay.

Theorem 5.4 (Cut-and-join equation). The power series ]Ifﬂﬂf satisfy the equation

O, HY = Ay HE, (5.1)
where the operator Ay is given by
Al = AO + Z ’LQ - 1(]18q7 + Z [2ijq¢+2j6'qi8pj + iqipjaqHz_J . (52)
; 4 ~
i>1 i,j>1
Proof. We start with considering the series
~r Z um—l
O, Hy = PH, (01 0m) T
1 m _ |
A-d, meN k (m —1)!
TEFL(m,\)

|

— X
~

 —

Figure 2: Mutating vertices o(a) and o(b) are coloured green
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Figure 3: Mutating vertices belong to different even
cycles. The produced term is 2ijp;; ;0p,0p,-

SRR

Figure 4: Mutating vertices belong to an even cycle
and path. The produced term is ijq;42;0,,0p,

and observing that this series can be derived by applying the operator which maps p3_(,) to Z PH. (0om)>

where the sum is taken over all transpositions o, € Sg. Now our purpose is to find out how the ~- coset types
of ¢ and oo, are related. Let

v ={(ay b1) (ag b)) -+ (ag by) and o, = (ab).

We call vertices o(a) and o(b) mutating vertices. The graph I'y(oco,,) can be obtained from I'y (o) by
switching blue edges incident to mutating vertices as shown in 2 (depending on whether a and b are fixed
points of v or not).

Recall that the graph I', (o) consists of some number of even cycles and one path of even length. Suppose,
o(a) and o(b) are both vertices of the same cycle of length 2{. If the distance between o(a) and o(b) in
this cycle is even, then multiplying o by ., split this cycle into two even cycles of total length 2! (this case

produces the term (i+47)pip;0p,,; in (5.2)). If the distance is odd, then nothing happens (this case produces
the term i?p;d,,). Four other possible cases are shown in the pictures 3, 4, 5 and 6. |

Remark 5.5. Using a similar analysis of cases, it is not hard to write cut-and-join equations for HE, However,
we do not provide it here due to very large number of its summands.

Figure 5: Both mutating vertices belong to Figure 6: Both mutating vertices belong to one
one path, and the dibtance is odd. The produced path, and the distance is even. The produced term
term is £1q; 0, is 1qipjOq; ;-
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