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Abstract

For any stochastic gradient method one have to come to a tradeoff between rate
of convergence and limit noise level near the solution. In this paper we present a
new stochastic gradient type method, which solves this problem more efficiently.
In particular, we show that for quadratic problems with a fixed desired noise level,
this algorithm converges faster than known stochastic methods. Moreover, we give
the convergence of the new technique for a general class of convex problems. The
practical results confirm the theoretical analysis.

Аннотация

Для произвольного градиентного метода мы сталкиваемся с компромиссом
между скоростью сходимости и предельным уровнем шума вокруг решения. В
данной статье мы вводим новый стохастический градиентный метод, который
справляется с данной задачей лучше. В частности, мы покажем, что для квад-
ратичной задачи с заданным фиксированным желаемым шумом наш алгоритм
сходится быстрее, чем известные стохастические методы. Более того, мы выво-
дим сходимость нового метода для общего класса задач выпуклой оптимизации.
Теоретические результаты подкрепляются экспериментами.

1. Introduction

We focus on the optimization problem

min
x∈Rn

f(x) (1)

These kinds of problems arise in various fields of applied science. By now de-
terministic algorithms for solving problem (1) have been extensively investigated
(Nesterov ((2018))). Meanwhile, with the emergence of new fields of interest (Vap-
nik ((1999))), one often has to deal with the stochastic formulation of the problem
(1):

f(x) = Eξ∼D [fξ(x)] , (2)

where ξ is a random variable. Stochastic formulations come up when we do not have
access to (or do not want to use due to the high computational cost) the deterministic
value of f(x). For example, in the case of statistical supervised learning theory
(Shalev-Shwartz and Ben-David ((2014))). In this case, x is a machine learning
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model with n weights/parameters (it can be a regression problem or a deep neural
network), D represents an unknown data distribution, fξ is the loss of model x on
datapoint ξ, and f is the generalization error. We assume that we do not know the
distribution D from which the data come, but have some samples ξ from D. But
we want to have a suitable model fit to whole D. Deterministic methods are no
longer suitable, we need stochastic modifications of classical methods. One of the
most popular such methods is the stochastic gradient descent (SGD) (Robbins and
Monro ((1951)); Nemirovski et al. ((2009)); Vaswani et al. ((2019)); Gorbunov et al.
((2020))).

In the paper we compare different stochastic gradient methods in the regime
of fixed step size. In contrast to deterministic methods, stochastic methods in such
a situation do not lead to an exact solution of the problem, but begin to oscillate
around the solution, having achieved some accuracy. Then, one comes to tradeoff
between rate of convergence and limit noise level near the solution. It is proposed
to compare stochastic gradient methods by their rate of convergence with desired
limit noise being fixed. We use SGD, an efficient method of convex optimization,
as a reasonable baseline to compare with. Also we introduce new algorithm called
Polynomial Lookahead or alternatively Polynomial Dynamic Modification(PDM)
which takes its inspiration in already studied in the literature Lookahead algorithm
firstly introduced in Michael R. Zhang and Ba ((2019)) and analysed in quadratic
stochastic case. Also Lookahead was studied in non-convex regime in Jianyu Wang
and Rabbat ((2020)). These techniques allow to come closer to the solution more
efficiently and combat the limit radius of oscillation around the solution.

2. Problem setup and assumptions

We study three methods: SGD, PDM and Lookahead in two type of problems:
unidimensional quadratic stochastic problem and strongly convex stochastic problem.
In the first part of the paper, we provide an analysis of quadratic case:

min
x∈R

L(x) with, L(x) = EL̂(x) (3)

L̂(x) =
1

2
(x− c)2
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where c ∼ N(x∗, σ2). Without loss of the generality we suppose x∗ = 0.
We show that with desired limit noise level being fixed PDM experiences the

best rate of convergence, while Lookahead the worst, rate of convergence of SGD
being just in the middle.

In the second part we analyze the strongly-convex stochastic problem (1) +
(2) under assumptions:

Assumption 1. f lies in F 2
µ,L, which is the family of µ-strongly convex twice

continuously differentiable functions with L-Lipschitz gradients. Which means:

• f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥2 ∀x, y ∈ Rn - strong convexity

• ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥ ∀x, y ∈ Rn -L-Lipschitzness of the gradients.

This two conditions under twice continuous differentiability can be equivalently
formulated as:

µI ⪯ H(x) ⪯ LI ∀x ∈ Rn

where H(x) - Hessian of f at point x.

Assumption 2. We have unbiased estimate of gradient ∇f(x) with uniformly
bounded noise:

∇F (x) = ∇f(x) + ξ

Eξ = 0

Eξ2 ≤ σ2

In this setting we deduce rate of convergence of PDM and Lookahead via
new technique that we call reformulation in terms of hessian. For Lookahead there
were no estimates in strongly convex case before. We show that Lookahead still
experiences worse rate of convergence than SGD in the worst case sense with limit
noise being fixed.

3. Lookahead and Polynomial Dynamic Modification

In this section we are going to introduce Lookahead and PDM algorithms.
Lookahead algorithm have slow and fast iterations, and slow and fast weights. At
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Algorithm 1 Lookahead(γ, x0, T, k, α)
input: γ - step size, x0 - start point, T - number of slow iterations
t← 0
ϕ0 ← x0
while t ≤ T do

θt+1,0 = ϕt

for i = 1, i ≤ k do
θt+1,i = θt+1,i−1 − γ∇F (θt+1,i−1)

end for
ϕt+1 = (1− α)ϕt + αθt+1,k

end while
return ϕT

Algorithm 2 PDM(γ, x0, T, k, a0, . . . , ak)
input: γ - step size, x0 - start point, T - number of slow iterations
t← 0
ϕ0 ← x0
while t ≤ T do

θt+1,0 = ϕt

for i = 1, i ≤ k do
θt+1,i = θt+1,i−1 − γ∇F (θt+1,i−1)

end for
ϕt+1 =

∑k
i=0 aiθt+1,i

end while
return ϕT
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each slow iteration it k times performs fast iterations which is just a gradient descent.
At the end of the slow iteration it updates slow weight as average of fast weight at
k-th fast iteration and slow weight at the previous slow iteration. See algorithm 1.

PDM has the same principle, but applies different averaging scheme at the
end of slow iteration. It has positive coefficients a0, . . . , ak such that

∑k
i=0 ai = 1

and to gain slow weight it averagies all the fast weights at the slow iteration with
coefficients a0, . . . , ak.

On the matter of fact, Lookahead and PDM algorithms can apply any inner
solver instead of SGD. We can formulate these algorithms alternatively in terms
of dynamical systems. Let F♯ : Rn →

(
(Ω,A,P) → Rn

)
be arbitrary discrete

stochastic dynamical system where (Ω,A,P) - probability space. Then, dynamical
system corresponding to one slow iteration of Lookahead can be gained as:

FLA(x) = p(F♯), where p(x) = (1− α) + αxk

And for PDM:

FPDM(x) = p(F♯), where p(x) =
k∑

i=0

aix
i

Thus, Lookahead and Polynomial Dynamic Modification can be considered
to be modification of arbitrary dynamical system. From here the name of the second
method takes roots. Here, in case of SGD:

F♯(x) = FSGD(x) = x− γ∇F (x)

Also note that condition
∑k

i=0 ai = 1 is necessary forF PDM(x) = EFPDM(x)

to save stationary points of F♯(x) = EF♯(x). Thus, if x∗ stationary point of F♯, i.e.
F♯(x

∗) = x∗, then F PDM(x∗) = x∗.

4. Unidimensional quadratic problem

In the section we analyse behaviour of all three methods on problem 3.
Through out this section we suppose γ ≤ 1 where γ is step size. Firstly, con-
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sider SGD algorithm:
ϕt+1 = ϕt − γ∇L̂(ϕt)

Denote by V ∗SGD = limt→∞E∥ϕt∥2 - limit noise. Then following lemma shows
linear convergence of SGD to its limit noise:

Lemma 4.1.
E∥ϕt+1∥2 = (1− γ)2E∥ϕt∥2 + γ2σ2

V ∗SGD =
γ2σ2

1− (1− γ)2

And from the first two equalities linear convergence to V ∗SGD follows:

E∥ϕt+1∥2 − V ∗SGD = (1− γ)2(E∥ϕt∥2 − V ∗SGD)

Proof.
ϕt+1 = ϕt − γ∇L̂(ϕt) = (1− γ)ϕt + γc

and we immediately get:

E∥ϕt+1∥2 = (1− γ)2E∥ϕt∥2 + γ2σ2

By taking a limit in this equality when t goes to∞ we get:

V ∗SGD = (1− γ)2V ∗SGD + γ2σ2

V ∗SGD =
γ2σ2

1− (1− γ)2

Denote by s = 1− γ - rate of convergence of SGD 1 which we can see from
lemma 4.1. Finally, rewrite V ∗SGD in terms of s:

Lemma 4.2.
V ∗SGD = σ21− s

1 + s
1We call s - rate of convergence, though it is a square root of actual rate of convergence. Further, we will do the

same for PDM and Lookahead.
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We want to find algorithm with fastest convergence with limit noise being
fixed. But instead we can actually find algorithm with the best limit noise with rate
of convergence being fixed. The equivalence of these two tasks comes from the fact
that function v∗(t) where v∗ denotes limit noise and t denotes rate of convergence
is decreasing for all three algorithms which we will see later on.

4.1. PDM analysis

Consider PDM algorithm:

ϕt+1 =
k∑

i=0

aiθt+1,i

θt+1,i = θt+1,i−1 − γ∇L̂(θt+1,i−1)

θt+1,0 = ϕt

Lemma 4.3. For PDM

E∥ϕt+1∥2 = (
k∑

i=0

ai(1− γ)i)2E∥ϕt∥2 + γ2σ2
k−1∑
i=0

(
k−1−i∑
j=0

ai+j+1(1− γ)j)2

V ∗PDM = γ2σ2

∑k−1
i=0 (

∑k−1−i
j=0 ai+j+1(1− γ)j)2

1− (
∑k

i=0 ai(1− γ)i)2

Proof.

θt+1,i = θt+1,i−1 − γ∇L̂(θt+1,i−1) = (1− γ)θt+1,i−1 + γct+1,i−1 =

(1− γ)iϕt + γ(
i−1∑
j=0

ct+1,j(1− γ)i−1−j)

ϕt+1 =
k∑

i=0

aiθt+1,i = (
k∑

i=0

ai(1 − γ)i)ϕt + γ
k−1∑
i=0

(
k−1−i∑
j=0

ai+j+1(1 − γ)j)ct+1,i
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Then

E∥ϕt+1∥2 = (
k∑

i=0

ai(1− γ)i)2E∥ϕt∥2 + γ2σ2
k−1∑
i=0

(
k−1−i∑
j=0

ai+j+1(1− γ)j)2

By taking limit we get:

V ∗PDM = γ2σ2

∑k−1
i=0 (

∑k−1−i
j=0 ai+j+1(1− γ)j)2

1− (
∑k

i=0 ai(1− γ)i)2

and lemma follows.

For convenience denote c = 1− γ. Also denote t =
∑k

i=0 ai(1− γ)i - rate
of convergence of PDM as we can see from lemma 4.3. What is more, we suppose
that t = sk where s - rate of convergence of SGD as by the time PDM takes one
step SGD can make k steps.

In terms of c and t we have:

Lemma 4.4.

V ∗PDM = (1− c)2σ2

∑k−1
i=0 (

∑k−1−i
j=0 ai+j+1c

j)2

1− t2

Now, we want to find optimal values of coefficients a0, . . . , ak. So, we aim to
solve the following problem:

V ∗PDM −→ min
ai≥0∀i∑k
i=0 ai=1∑k
i=0 aic

i=t

(4)

Lemma 4.5. Under condition:

1− t

1 + (k − 1)t
≤ γ ≤ 1

Solution of 4 is attained by:
a0 = t− (1−t)c

(1−c)k

ai =
1−t
k , i = 1, · · · , k − 1

ak =
1−t

(1−c)k
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And in this case:
V ∗PDM =

σ2(1− t)

k(1 + t)

doesn’t depend on γ.

Proof. Problem 4 is equivalent to:

k−1∑
i=0

( k−1−i∑
j=0

ai+j+1c
j
)2 −→ min

ai≥0∀i∑k
i=0 ai=1∑k
i=0 aic

i=t

Consider change of variables di =
∑k

j=i ajc
j−i. Inverse to this change of variables

will be: ai = di − cdi+1 for i = 0, . . . , k − 1

ak = dk

Condition
∑k

i=0 ai = 1 is transformed to
∑k−1

i=0 di − cdi+1 + dk = 1 or
∑k

i=1 di =
1−t
1−c . Then the problem takes following form:

k∑
i=1

d2i −→ min
di−cdi+1≥0

dk≥0
d0=t∑k

i=1 di=
1−t
1−c

Note that problem
k∑

i=1

d2i −→ min∑k
i=1 di=

1−t
1−c

is standard and its minimum is attained when d1 = . . . = dk which gives the
following solution: d0 = t

di =
1−t

(1−c)k , i = 1, . . . , k
(5)

Note, though, that conditions di − cdi+1 ≥ 0, dk ≥ 0 must be satisfied. All
conditions are satisfied automatically, except d0 − cd1 ≥ 0 which adds following
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restriction:
t− c(1− t)

(1− c)k
≥ 0

c

1− c
≤ kt

1− t

c ≤ kt

1 + (k − 1)t

1− t

1 + (k − 1)t
≤ γ

Note that for γ < 1−t
1+(k−1)t we get worse V ∗PDM . Finally, from system 5 we get

optimal {ai}ki=0: 
a0 = t− (1−t)c

(1−c)k

ai =
1−t
k , i = 1, · · · , k − 1

ak =
1−t

(1−c)k

Now, let’s deduce formula for V ∗PDM :

V ∗PDM = (1− c)2σ2

∑k−1
i=0 (

∑k−1−i
j=0 ai+j+1c

j)2

1− t2
= (1− c)2σ2

∑k
i=1 d

2
i

1− t2
=

σ2(1− t)

k(1 + t)

4.2. Lookahead analysis

For Lookahead from lemma 4.3 by substituting a0 = 1 − α, ak = α, a1 =

. . . = ak−1 = 0 next lemma follows:

Lemma 4.6. For Lookahead

E∥ϕt+1∥2 = ((1− α) + α(1− γ)k)2E∥ϕt∥2 + σ2α2γ21− (1− γ)2k

1− (1− γ)2

V ∗LA = α2σ2γ2 1− (1− γ)2k

(1− (1− γ)2)(1− ((1− α) + α(1− γ)k)2)

Next we formulate auxiliary lemma necessary for our analysis:

12



Lemma 4.7.
f(x) =

(1− x)(1 + xk)

(1 + x)(1− xk)

is decreasing for 0 ≤ x ≤ 1.

Proof. Consider taking derivative f ′(x) and prove that f ′(x) ≤ 0:

f ′(x)(1+x)2(1−xk)2 = −(1+xk)(1+x)(1−xk)+kxk−1(1−x)(1+x)(1−xk)−
(1− x)(1 + xk)(1− xk) + kxk−1(1− x)(1 + xk)(1 + x) =

2(−1 + kxk−1 − kxk+1 + x2k)

Now, we need to prove that −1 + kxk−1 − kxk+1 + x2k ≤ 0. For this it is
enough to prove that this function is increasing as its value at x = 1 equals 0. Let’s
show that its derivative is positive:

k(k − 1)xk−2 − k(k + 1)xk + 2kx2k−1 ≥ 0

Or
k − 1− (k + 1)x2 + 2xk+1 ≥ 0

For this it is enough to prove that the last function is decreasing as its value at x = 1

is 0. Its derivative is obviously negative:

2(k + 1)x(−1 + xk−1) ≤ 0

Denote by c = 1−γ and t = (1−α)+αck - rate of convergence of Lookahead.
Then from lemmas 4.6 and 4.7 next lemma follows:

Lemma 4.8.

V ∗LA =
σ2(1− c)(1 + ck)(1− t)

(1 + c)(1− ck)(1 + t)
, with t ≥ ck

13



Here we can vary c from 0 to k
√
t by varying α.

min
ck≤t

V ∗LA =
σ2(1− s)

1 + s

where sk = t and minimum is attained at ck = t and α = 1. This shows that
Lookahead attains worse limit noise than SGD.

Proof. By lemma 4.6 we get:

V ∗LA = α2σ2γ2 1− (1− γ)2k

(1− (1− γ)2)(1− ((1− α) + α(1− γ)k)2)

Then, we use c = 1− γ and t = (1−α)+αck. From second one follows α = 1−t
1−ck .

Then we get following form of V ∗LA:

V ∗LA = σ2 (1− t)2(1− c)2(1− c2k)

(1− ck)2(1− c2)(1− t2)
=

σ2(1− c)(1 + ck)(1− t)

(1 + c)(1− ck)(1 + t)

From lemma 4.7
min
ck≤t

V ∗LA =
σ2(1− s)

1 + s

follows.

4.3. Summary

Figure 1: Right figure is just enlarged version of the left one. Here, SGD, PDM and Lookahead
were trained on quadratic stochastic function. Parameters of all algorithms are picked up according
to the theory so as they all have the same limit noise v∗ = 0.05. For PDM and Lookahead k = 5.

Finally, let’s compare SGD and PDM:
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Lemma 4.9.
V ∗PDM

V ∗SGD

=
(1− t)(1 + s)

k(1 + t)(1− s)
≤ 1

Proof. (1−t)(1+s)
k(1+t)(1−s) is increasing in s which follows from lemma 4.7 and its value at

s = 1 equals 1.

Lemmas 4.8 and 4.9 show exactly that PDM attains the best limit noise and
Lookahead the worst. In the Figure 1 empirical results on quadratic function are
depicted. It can be seen that rate of convergence of Lookahead is the worst. As
for SGD and PDM their convergence rates here are indistinguishable which we
prescribe to the high noise level.

5. Strongly convex case

Through out this section we suppose γ ≤ 2
L+µ .

5.1. Hessian reformulation

Now, we consider problem 1 + (2) under assumptions 1 and 2.
On the matter of fact, we can reformulate our problem and algorithms in

terms of Hessian and forget that we were given function f . Assumption 1 in terms
of hessian can be equivalently reformulated as two assumptions:

Assumption 3.
H : Rn → Rn×n is hessian function

Assumption 4.
µI ⪯ H(x) ⪯ LI ∀x ∈ Rn

Assumption 3 is indeed a similar assumption to gradient function to be
a conservative vector field. In our case also some conservative properties for
some integrals over closed paths must be satisfied. Though, we leave analysis of
assumption 3 and its corollaries for future work.

Firstly, let’s formulate Sylvester’s criterion which we will use in this section:
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Lemma 5.1. Sylvester’s criterion
Symmetric matrix A is positive-semidefinite if and only if all its principal

minors are non-negative.

Corollary 5.2. Symmetric matrix A is negative-semidefinite if and only if

• all its even principal minors are non-negative

• all its odd principal minors are non-positive

Further we formulate auxiliary lemmas relevant for our analysis:

Lemma 5.3. For symmetric matrix S such that

−cI ⪯ S ⪯ cI

where c > 0.

1. v = Se ∈ B(0, c), where e = (1, 0, . . . , 0).

2. For any v ∈ B(0, c) there exists symmetric S, −cI ⪯ S ⪯ cI : v = Se.

Proof. 1. Let v = Se. Then ∥v∥2 = vTv = eTS2e ≤ c2 as S2 ⪯ c2I .

2. We can prove for c = 1 and general statement will follow. Let v = (v1, . . . , vn)

be in B(0, 1). Define ṽ = p(v − v1e), where p = (v22 + . . . v2n)
− 1

2 . Complete
to orthogonal basis e, ṽ, u3, · · · , un. Define map:

S̃ =


v1 p−1 0 · · · 0

p−1 −v1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...
0 0 · · · · · · 1


S̃ is symmetric. Also,

−I ⪯

[
v1 p−1

p−1 −v1

]
⪯ I

16



due to Sylvester’s criterion and ∥v∥ ≤ 1. Then −I ⪯ S̃ ⪯ I . Finally put
S = US̃UT , where U - orthogonal matrix of transition from basis e1, . . . , en
to e, ṽ, u3, . . . , un. It is obvious that v = Se.

Lemma 5.4. For any symmetric S such that

µI ⪯ S ⪯ LI

and v ∈ Rn

Sv ∈ B(
µ+ L

2
v,

L− µ

2
∥v∥)

and for any u in such sphere exists symmetric S, µI ⪯ S ⪯ LI such that u = Sv.

Proof. v = ∥v∥Ue, where U - orthogonal matrix. Then

Sv = ∥v∥UUTSUe = ∥v∥U((UTSU − L+ µ

2
I) +

L+ µ

2
I)e

Here −L−µ
2 I ⪯ S̃ = UTSU − L+µ

2 I ⪯ L−µ
2 I any such symmetric matrix. By

lemma 5.3 we obtain:

Sv = ∥v∥L− µ

2
w +

L+ µ

2
v

where ∥w∥ ≤ 1.

Using auxiliary lemmas we can rewrite gradient of the function in the follow-
ing form:

Lemma 5.5. For f in F 2
µ,L

−∇f(x) = −L+ µ

2
(x− x∗) +

L− µ

2
∥x− x∗∥v(x)

where v(x) ∈ B(0, 1) and x∗ - optimum of f .

Proof.

∇f(x) = ∇f(x)−∇f(x∗) =
∫ 1

0

H(x∗ + t(x− x∗))dt(x− x∗)
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Here
µI ⪯ S =

∫ 1

0

H(x∗ + t(x− x∗)) ⪯ LI

and S - symmetric. And indeed we can gain any such matrix and lemma follows by
lemma 5.4.

Note, that lemma 5.5 shows that at any point x ∈ Rn vector v(x) ∈ B(0, 1)

can be chosen arbitrary. Indeed, for any such v there exists a function f under
assumption 1 for which∇f(x) takes form as in lemma 5.5 with specified v. Though,
there is some dependence of vectors v(x), v(y) at any two given points, which takes
place from assumption 3 and which we do not study here.

5.2. PDM analysis

Consider PDM algorithm:

ϕt+1 =
k∑

i=0

aiθt+1,i

θt+1,i = θt+1,i−1 − γF (θt+1,i−1)

θt+1,0 = ϕt

Consider expression:

θt+1,i − ϕ∗ = (1− γ
L+ µ

2
)(θt+1,i−1 − ϕ∗)+

γ
L− µ

2
∥θt+1,i−1 − ϕ∗∥v(θt+1,i−1) + γξt+1,i−1 (6)

which follows from lemma 5.5.
Let’s define a filtration F0 ⪯ F1 ⪯ . . . ⪯ Fk with Fi = σ(θt+1,i).
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For PDM consider equality:

E∥ϕt+1 − ϕ∗∥2 | F0 =
k∑

i=0

a2iE∥θt+1,i − ϕ∗∥2 | F0+∑
i<j

2aiajE(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | F0 (7)

Then we evaluate first and second part of the equality 7 separately:

Lemma 5.6.

E∥θt+1,i − ϕ∗∥2 ≤ (1− γµ)2E∥θt+1,i−1 − ϕ∗∥2 + γ2σ2

Proof. From expression 6 we get:

E∥θt+1,i − ϕ∗∥2 | Fi−1 ≤

(1− γ
L+ µ

2
)2∥θt+1,i−1 − ϕ∗∥2 + γ2 (L− µ)2

4
∥θt+1,i−1 − ϕ∗∥2+

γ(L− µ)(1− γ
L+ µ

2
)∥θt+1,i−1 − ϕ∗∥(θt+1,i−1 − ϕ∗, v(θt+1,i−1)) + γ2σ2 ≤

(1− γµ)2∥θt+1,i−1 − ϕ∗∥2 + γ2σ2

where we used the inequality (θt+1,i−1 − ϕ∗, v(θt+1,i−1)) ≤ ∥θt+1,i−1 − ϕ∗∥.

Lemma 5.7.

E∥θt+1,j − ϕ∗∥2 | Fi ≤ (1− γµ)2(j−i)∥θt+1,i − ϕ∗∥2 + γ2σ22(j − i)

2− γµ

Proof. Firstly, by applying lemma 5.6 multiple times we get:

E∥θt+1,j − ϕ∗∥2 | Fi ≤ (1− γµ)2(j−i)∥θt+1,i− ϕ∗∥2 + γ2σ21− (1− γµ)2(j−i)

1− (1− γµ)2

Then by Bernoulli inequality:

(1 + x)n ≥ 1 + nx for x ≥ −1
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lemma follows.

Lemma 5.8. For j > i

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fi ≤ ∥θt+1,i − ϕ∗∥2 + γ3σ2L− µ

4

(j − i)(j − i− 1)

2− γµ

Proof. By expression 6 we get:

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fj−1 = (1− γ
L+ µ

2
)(θt+1,i − ϕ∗, θt+1,j−1 − ϕ∗)+

γ
L− µ

2
∥θt+1,j−1 − ϕ∗∥(θt+1,i − ϕ∗, v(θt+1,j−1))

Further, we get:

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fj−1

≤ (1−γ
L+ µ

2
)(θt+1,i−ϕ∗, θt+1,j−1−ϕ∗)+γ

L− µ

2
∥θt+1,i−ϕ∗∥∥θt+1,j−1−ϕ∗∥

≤ (1− γ
L+ µ

2
)(θt+1,i − ϕ∗, θt+1,j−1 − ϕ∗) + γ

L− µ

4
∥θt+1,j−1 − ϕ∗∥2

+ γ
L− µ

4
∥θt+1,i − ϕ∗∥2 (8)

Then applying inequality 8 multiple times we gain:

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fi ≤
(
(1− γ

L+ µ

2
)j−i

+ γ
L− µ

4

j∑
l=i+1

(1− γ
L+ µ

2
)j−l

)
∥θt+1,i − ϕ∗∥2

+ γ
L− µ

4

j∑
l=i+1

(1− γ
L+ µ

2
)j−lE∥θt+1,l−1 − ϕ∗∥2 | Fi
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Further, by applying lemma 5.7 to E∥θt+1,l−1 − ϕ∗∥2 | Fi:

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fi ≤
(
(1− γ

L+ µ

2
)j−i

+ γ
L− µ

2

j∑
l=i+1

(1− γ
L+ µ

2
)j−l

)
∥θt+1,i − ϕ∗∥2

+ γ
L− µ

4

j∑
l=i+1

(1− γ
L+ µ

2
)j−lγ2σ22(l − i− 1)

2− γµ

Continuing:

E(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | Fi ≤

((1− γ
L+ µ

2
)j−i + γ

L− µ

2

j∑
l=i+1

(1− γ
L+ µ

2
)j−l)∥θt+1,i − ϕ∗∥2+

γ3σ2L− µ

4

j∑
l=i+1

2(l − i− 1)

2− γµ

≤ ((1− γ
L+ µ

2
)j−i +

L− µ

L+ µ
(1− (1− γ

L+ µ

2
)j−i))∥θt+1,i − ϕ∗∥2+

γ3σ2L− µ

4

(j − i)(j − i− 1)

2− γµ
≤

∥θt+1,i − ϕ∗∥2 + γ3σ2L− µ

4

(j − i)(j − i− 1)

2− γµ

Then main theorem follows:

Theorem 5.9. For γ ≤ 2
L+µ

E∥ϕt+1 − ϕ∗∥2 ≤ (
k∑

i=0

a2i (1− γµ)2i +
∑
i<j

2aiaj(1− γµ)2i)E∥ϕt − ϕ∗∥2

+ γ2σ2(
k∑

i=0

a2i
2i

2− γµ
+
∑
i<j

2aiaj(
2i

2− γµ
+ γ

L− µ

4

(j − i)(j − i− 1)

2− γµ
))
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Note that

k∑
i=0

a2i (1− γµ)2i +
∑
i<j

2aiaj(1− γµ)2i < (
k∑

i=0

ai)
2 = 1

This implies linear convergence to limit noise.

Proof.

E∥ϕt+1 − ϕ∗∥2 | F0 =
k∑

i=0

a2iE∥θt+1,i − ϕ∗∥2 | F0+∑
i<j

2aiajE(θt+1,i − ϕ∗, θt+1,j − ϕ∗) | F0 ≤

k∑
i=0

a2i (1− γµ)2i∥ϕt − ϕ∗∥2 +
∑
i<j

2aiajE∥θt+1,i − ϕ∗∥2 | F0+

γ2σ2(
k∑

i=0

a2i
2i

2− γµ
+
∑
i<j

2aiajγ
L− µ

4

(j − i)(j − i− 1)

2− γµ
) ≤

(
k∑

i=0

a2i (1− γµ)2i +
∑
i<j

2aiaj(1− γµ)2i)E∥ϕt − ϕ∗∥2

+ γ2σ2(
k∑

i=0

a2i
2i

2− γµ
+
∑
i<j

2aiaj(
2i

2− γµ
+ γ

L− µ

4

(j − i)(j − i− 1)

2− γµ
))

5.3. Lower bounds

In this section we support our statement that Lookahead works worse than
SGD in strongly convex case as well. Next lemma shows tight estimates for SGD:

Lemma 5.10. For SGD

E∥ϕt+1 − ϕ∗∥2 ≤ (1− γµ)2E∥ϕt − ϕ∗∥2 + γ2σ2

V ∗SGD ≤
σ2

µ2

1− s

1 + s
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where s = 1 − γµ. This estimate is indeed precise and inequalities turns into
equalities for function f(x) = µ

2∥x− ϕ∗∥2.

Proof. Due to lemma 5.5 we have:

ϕt+1 − ϕ∗ = (1− γ
L+ µ

2
)(ϕt − ϕ∗) + γ

L− µ

2
∥ϕt − ϕ∗∥v(ϕt) + γξ

Then:

E∥ϕt+1 − ϕ∗∥2|σ(ϕt) ≤ (1− γ
L+ µ

2
)2∥ϕt − ϕ∗∥2 + γ2 (L− µ)2

4
∥ϕt − ϕ∗∥2+

γ(L− µ)(1− γ
L+ µ

2
)∥ϕt − ϕ∗∥(ϕt − ϕ∗, v(ϕt)) + γ2σ2 ≤

(1− γµ)2∥ϕt − ϕ∗∥2 + γ2σ2 (9)

where the last inequality follows from (ϕt−ϕ∗, v(ϕt)) ≤ ∥ϕt−ϕ∗∥. Note that these
two inequalities turn into equalities on the function f(x) = µ

2∥x−ϕ∗∥2 when noise
under assumption 2 has exactly variance σ2. Taking limit in inequality 9 we get:

V ∗SGD ≤
σ2

µ2

1− s

1 + s

Also for Lookahead we show following lower bound:

Lemma 5.11. For Lookahead
On function f(x) = µ

2∥x − ϕ∗∥2 and when noise under assumption 2 has
exactly variance σ2

E∥ϕt+1− ϕ∗∥2 = ((1−α) +α(1− γµ)k)2E∥ϕt− ϕ∗∥2+ γ2σ2α21− (1− γµ)2k

1− (1− γµ)2

V ∗LA =
σ2

µ2

1− t

1 + t

(1− c)(1 + ck)

(1− ck)(1 + c)

with c = 1− γµ, t = (1− α) + αck.

Proof. Completely repeat the proof of convergence of Lookahead for quadratic
case. See section 4.2.
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Note that V ∗SGD and V ∗LA in strongly convex case take the same form as in the
quadratic case except for the multiplier µ−2. This shows that just like in quadratic
case in strongly convex case Lookahead experiences worse rate of convergence than
SGD with limit noise being fixed in the worst case sense.

6. Experiments

Figure 2: Right figure is just enlarged version of the left one. We train logistic regression with
regularization on dataset German. Parameters of the algorithms are picked up so as to their limit
noises are approximately the same. Here, their limit noises approximately equal v∗ = 0.0044. For
Lookahead and PDM k = 20.

Figure 3: Right figure is just enlarged version of the left one. We train logistic regression with
regularization on dataset Mushrooms. Parameters of the algorithms are picked up so as to their limit
noises are approximately the same. Here, their limit noises approximately equal v∗ = 0.0016. For
Lookahead and PDM k = 20.

We trained logistic regression model with regularization on two datasets
Mushrooms and German from Chang and Lin ((2011)) on the task of 2-label
classification. Methods’ parameters are picked so as they have approximately equal
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limit noises. Coefficients for PDM are taken as:
a0 = (1− α)(t+ 1−t

k )

ai =
1−t
k , i = 1, · · · , k − 1

ak = α(t+ 1−t
k )

where α ∈ [0, 1] is new hyperparameter. Actually, coefficients are taken in accor-
dance with optimal coefficients for quadratic case with the only difference that we
do not know c in the system from lemma 4.5 so we need new hyperparameter. In
the Figures 2 and 3 we see that PDM experiences superior rate of convergence.

7. Conclusion

We introduced new algorithm called Polynomial Dynamic Modification and
showed that it experiences faster convergence rate on the quadratic stochastic prob-
lem compared to SGD and Lookahead with desired noise near solution being fixed.
Moreover, we prove linear convergence of PDM to some limit noise on the class of
stongly convex twicely differentiable functions.
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