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Abstract

For any stochastic gradient method one have to come to a tradeoff between rate
of convergence and limit noise level near the solution. In this paper we present a
new stochastic gradient type method, which solves this problem more efficiently.
In particular, we show that for quadratic problems with a fixed desired noise level,
this algorithm converges faster than known stochastic methods. Moreover, we give
the convergence of the new technique for a general class of convex problems. The

practical results confirm the theoretical analysis.

AHHOTaANUA

151 TPOU3BOJILHOTO TPAJUEHTHOTO METOJIA Mbl CTAJIKMBAEMCS C KOMIIPOMHUCCOM
MEKy CKOPOCTBIO CXOJMMOCTH Y IIPEAEJIbHBIM YPOBHEM IIIyMa BOKPYT penieHus. B
JAHHO¥ CTaThe Mbl BBOJUM HOBBI CTOXaCTUYECKUI I'PAJUEHTHBIA METO/I, KOTOPBINA
CIIpaBJIsIETCS C JAaHHOM 3ajavel gydine. B yacTHOCTH, MbI IOKaKEM, YTO JIJIs1 KBAI-
PATUYHOM 3a/1au¥ C 3aJJaHHBIM (DUKCUPOBAHHBIM KEJIAEMBIM IITyMOM Halll aJITOPUTM
cXonuTcs ObICTpee, YeM U3BECTHBIE CTOXACTUUECKUE MeTO/Ibl. bosee Toro, Mbl BBIBO-
MM CXOIMMOCThH HOBOTO MeTO/a IS OOIIIEro Kjacca 3aa4 BBITyKJION ONTHMU3AITAH.

Teopetuueckue pe3ysibTaThl HOAKPEIUISAIOTCS SKCIIEPUMEHTAMMU.

1. Introduction

We focus on the optimization problem

min f(z) (1)

zeR?

These kinds of problems arise in various fields of applied science. By now de-
terministic algorithms for solving problem (1) have been extensively investigated
(Nesterov ((2018))). Meanwhile, with the emergence of new fields of interest (Vap-
nik ((1999))), one often has to deal with the stochastic formulation of the problem
(1):

f(@) = Eeup [fe(2)], (2)

where ¢ is a random variable. Stochastic formulations come up when we do not have
access to (or do not want to use due to the high computational cost) the deterministic
value of f(x). For example, in the case of statistical supervised learning theory

(Shalev-Shwartz and Ben-David ((2014))). In this case, x is a machine learning



model with n weights/parameters (it can be a regression problem or a deep neural
network), D represents an unknown data distribution, f is the loss of model x on
datapoint &, and f is the generalization error. We assume that we do not know the
distribution D from which the data come, but have some samples £ from D. But
we want to have a suitable model fit to whole D. Deterministic methods are no
longer suitable, we need stochastic modifications of classical methods. One of the
most popular such methods is the stochastic gradient descent (SGD) (Robbins and
Monro ((1951)); Nemirovski et al. ((2009)); Vaswani et al. ((2019)); Gorbunov et al.
((2020))).

In the paper we compare different stochastic gradient methods in the regime
of fixed step size. In contrast to deterministic methods, stochastic methods in such
a situation do not lead to an exact solution of the problem, but begin to oscillate
around the solution, having achieved some accuracy. Then, one comes to tradeoft
between rate of convergence and limit noise level near the solution. It is proposed
to compare stochastic gradient methods by their rate of convergence with desired
limit noise being fixed. We use SGD, an eflicient method of convex optimization,
as a reasonable baseline to compare with. Also we introduce new algorithm called
Polynomial Lookahead or alternatively Polynomial Dynamic Modification(PDM)
which takes its inspiration in already studied in the literature Lookahead algorithm
firstly introduced in Michael R. Zhang and Ba ((2019)) and analysed in quadratic
stochastic case. Also Lookahead was studied in non-convex regime in Jianyu Wang
and Rabbat ((2020)). These techniques allow to come closer to the solution more

efficiently and combat the limit radius of oscillation around the solution.

2. Problem setup and assumptions

We study three methods: SGD, PDM and Lookahead in two type of problems:
unidimensional quadratic stochastic problem and strongly convex stochastic problem.

In the first part of the paper, we provide an analysis of quadratic case:

~

min L(z) with, L(x)=EL(x) 3)

z€R

L(z) = %(:1: —c)?



where ¢ ~ N (z*, 0?). Without loss of the generality we suppose z* = 0.

We show that with desired limit noise level being fixed PDM experiences the
best rate of convergence, while Lookahead the worst, rate of convergence of SGD
being just in the middle.

In the second part we analyze the strongly-convex stochastic problem (1) +

(2) under assumptions:

Assumption 1. f lies in F 3 1> which is the family of p-strongly convex twice

continuously differentiable functions with L-Lipschitz gradients. Which means:
* f(y) = f(z) + (Vf(2),y — 2) + §lly — =[] Vo, y € R" - strong convexity
» |[Vf(x)=Vf(y)| < L||x—yl| Vz,y € R"- L-Lipschitzness of the gradients.

This two conditions under twice continuous differentiability can be equivalently
formulated as:
pl = H(x) < LI Vx € R"

where H () - Hessian of f at point x.

Assumption 2. We have unbiased estimate of gradient V f(x) with uniformly
bounded noise:
VF(x) =Vf(z)+¢
EE=0
In this setting we deduce rate of convergence of PDM and Lookahead via
new technique that we call reformulation in terms of hessian. For Lookahead there
were no estimates in strongly convex case before. We show that Lookahead still

experiences worse rate of convergence than SGD in the worst case sense with limit

noise being fixed.

3. Lookahead and Polynomial Dynamic Modification

In this section we are going to introduce Lookahead and PDM algorithms.

Lookahead algorithm have slow and fast iterations, and slow and fast weights. At

5



Algorithm 1 Lookahead(v, xy, T, k, )

input: ~y - step size, x - start point, 7' - number of slow iterations

t<+ 0

$o < T

while ¢t < T do
Orr10 = D1

for: =1, <kdo
9t+1,z’ = 9t+1,z‘—1 - ’YVF(QHLi—l)
end for
Gr1 = (1 — ) + a1k
end while
return ¢r

Algorithm 2 PDM(v, zy, T\, k, ag, . . ., ax)

input: ~y - step size, x - start point, 7" - number of slow iterations

t<+ 0

$o < T

while ¢ < 7' do
Orr1.0 = O

for: =1, <kdo
9t+1,z’ = 9t+1,z‘—1 - WVF(QHLi—l)
end for
i1 = Zf:o ;01
end while
return ¢r




each slow iteration it k£ times performs fast iterations which is just a gradient descent.
At the end of the slow iteration it updates slow weight as average of fast weight at
k-th fast iteration and slow weight at the previous slow iteration. See algorithm 1.

PDM has the same principle, but applies different averaging scheme at the
end of slow iteration. It has positive coeflicients ay, . . ., a; such that Zf:o a; =1
and to gain slow weight it averagies all the fast weights at the slow iteration with
coeflicients ay, . . ., a;.

On the matter of fact, Lookahead and PDM algorithms can apply any inner
solver instead of SGD. We can formulate these algorithms alternatively in terms
of dynamical systems. Let F}y: R" — ((Q, A P) — R") be arbitrary discrete
stochastic dynamical system where (€2, A, P) - probability space. Then, dynamical

system corresponding to one slow iteration of Lookahead can be gained as:

Fra(z) = p(F), where p(z) = (1 — ) + ax®

And for PDM:

k

FPDM(x) = p(Fﬁ), Wherep(x) = Zaixi
1=0

Thus, Lookahead and Polynomial Dynamic Modification can be considered
to be modification of arbitrary dynamical system. From here the name of the second

method takes roots. Here, in case of SGD:
Fy(z) = Fsep(x) = v =7V F(x)

Also note that condition Zf:o a; = lisnecessary for Fppy(2) = EFpp ()
to save stationary points of F3(x) = EF}(x). Thus, if z* stationary point of F}, i.e.
Fﬁ(m*) = 2%, then Fppyr(z*) = 2%

4. Unidimensional quadratic problem

In the section we analyse behaviour of all three methods on problem 3.

Through out this section we suppose v < 1 where 7 is step size. Firstly, con-



sider SGD algorithm:
Gr11 = ¢t — YV L(¢)

Denote by Vi, = lim; o F|/¢y]|? - limit noise. Then following lemma shows

linear convergence of SGD to its limit noise:

Lemma 4.1.
E| ¢l = (1 = 7)°E||¢e|]* + 70

2 2
: V2o
Vigp =
YTl (1)

And from the first two equalities linear convergence to V., follows:

Ellpeill” = Viap = (1 =) (Elléel” = Viep)

Proof.
Gr11 = P — WVE(@) =(1—7)¢: +c

and we immediately get:
E|¢ial® = (1 = ) Ellé|* + %0
By taking a limit in this equality when ¢ goes to oo we get:

Veap = (1 — 7)2V§GD +7%0”

Viap =
T - (1)
O

Denote by s = 1 — - rate of convergence of SGD ! which we can see from

lemma 4.1. Finally, rewrite V., in terms of s:

Lemma 4.2.
1+s

"We call s - rate of convergence, though it is a square root of actual rate of convergence. Further, we will do the
same for PDM and Lookahead.

k
Vigp =0




We want to find algorithm with fastest convergence with limit noise being
fixed. But instead we can actually find algorithm with the best limit noise with rate
of convergence being fixed. The equivalence of these two tasks comes from the fact
that function v*(¢) where v* denotes limit noise and ¢ denotes rate of convergence

is decreasing for all three algorithms which we will see later on.

4.1. PDM analysis
Consider PDM algorithm:

k

41 = E ai9t+1,z‘

1=0

9t+1,z‘ = 9t+1,z‘—1 - 7V2(9t+1,i—1)

01110 = ¢4
Lemma 4.3. For PDM
k 1 k—1—i |
B¢l = Zaz VE| ¢ H2+72022 Z airjr1(1—7))°
i=0 =0 j=0

k—1 x—~k—1—i ;
" 9 221':0 (Zj:O ai+j+1(1 - 7)])2
Vepu =770 2

1= (i@l =7))?

Proof.

Orr1; =011 —YVL(0i11-1) = (1 —7)0i1i-1 + YCir1im1 =

(1—7)'¢r + W(Z Cryr (1 —7)""")

j=0
k k -1 k—-1—¢

Pri1 = Zazet—HZ = Zaz )"t + ’YZ( Z Aitj+1 ) )i,
1=0 1=0 = 7=0



Then

k k—1 k—1—i
Ellgral? = O ai(l =)'V Elgell + 707> (D i (1 — 7))
i=0 i=0  j=0

By taking limit we get:

o 2t (S50 g (1= 7))
1= (a1 = 9)7)?

and lemma follows. []

V;DM =7

For convenience denote ¢ = 1 — 7. Also denote ¢t = Zf:o a;(1 — )" - rate
of convergence of PDM as we can see from lemma 4.3. What is more, we suppose
that t = s* where s - rate of convergence of SGD as by the time PDM takes one
step SGD can make £ steps.

In terms of ¢ and ¢ we have:

Lemma 4.4. P
o - - Qi4q Cj 2
Vipy = (1= ¢)*o” 2o (231_0 ) )
Now, we want to find optimal values of coeflicients ay, . . . , a;. So, we aim to
solve the following problem:
Vepyu — o, 4)
Zf:o a;=1
Zf:o aic'=t
Lemma 4.5. Under condition:
L 1
1+ k-1t =
Solution of 4 is attained by:
(
. (1-t)c
ap =1 — =5

10



And in this case:
o?(1 —1t)

Vepu = —k(l 1)

doesn’t depend on 7.

Proof. Problem 4 is equivalent to:

k-1 k—1—1
a 107 — min
Z EAl ;>0
ZZO ‘7:0 Zk Oa':].
i= 1
Z?:oaici:t

Consider change of variables d;
will be:

CLZ‘:di—Cdi+1fOri:O,...,]€—1

akde

Condition 2% a; = 1 is transformed to 31! d;

1—_0. Then the problem takes following form:

k

g d? —  min

. di—cd;1>0
—1

Note that problem

g d2 min
1—t

Zz 1d1 1—¢

1s standard and its minimum is attained when d; = ...

following solution:

= Zf ;Qj ¢/~*. Inverse to this change of variables

—cdi +d=1or Y8 d; =

= dj, which gives the

&)

Note, though, that conditions d; — cd;+1 > 0,d; > 0 must be satisfied. All

conditions are satisfied automatically, except dy — cd; > 0 which adds following

11



restriction:

1—t
1+ (k—1)

ﬁ we get worse V5. Finally, from system 5 we get

<
t_’Y

Note that for v <

optimal {a;}%_:
(

_ (-t
ap =1 — (I—c)k
qai=4 i=1, k-1
1t
| Yk = T=ok

Now, let’s deduce formula for V5,

k—1 k—1—i i
2,2 Zizo (ijo Z ai+j+1cj)2 2,2 Zf:1 d? _ 02(1 — t)
1 —1¢2 k(l + t)

Vepu = (1—¢) 1 — 2 =(1-¢)

[]

4.2. Lookahead analysis

For Lookahead from lemma 4.3 by substituting ag = 1 — o, ap = a,a; =

... = aj_1 = 0 next lemma follows:
Lemma 4.6. For Lookahead

— _ A2k
Blloeall = (1= ) + a(l =) B + oty 1= 2

1—-(1—p*
(1= =)0 = (1 =a)+all=7)"?)

Next we formulate auxiliary lemma necessary for our analysis:

Vig = a’o’y?

12



Lemma 4.7.

is decreasing for 0 < x < 1.
Proof. Consider taking derivative f'(x) and prove that f'(z) < 0:
F@)(142)2(1—2"? = —(1+2M (14+2) A —2") + ka2 (1 —2) (1+2) (1 —2F) -

(1—2)14+ 21— 2" + k"1 —2)1+2M (1 +2) =
2(—1 + ka1 — kM 4 2%

Now, we need to prove that —1 + kz*~! — kz**! + 22% < 0. For this it is
enough to prove that this function is increasing as its value at z = 1 equals 0. Let’s

show that its derivative is positive:

k(k — 12" — k(k + 1)2" + 2ka®1 >0

k—1—(k+12*+22"1 >0

For this it is enough to prove that the last function is decreasing as its value at x = 1

is 0. Its derivative is obviously negative:
2k + Da(—1+ 2" <o

[]

Denote by ¢ = 1—vyand t = (1—a)+ac” - rate of convergence of Lookahead.

Then from lemmas 4.6 and 4.7 next lemma follows:

Lemma 4.8.

o?(1—c)(1+ )1 —1)
1

t with t> "
(T+e)(I—=cF)(1+1) B

k
VLA -

13



Here we can vary c from 0 to </t by varying o.

o?(1 —s)
Ly - 1 —s)
g AT T

where s* = t and minimum is attained at ¢* = t and o = 1. This shows that

Lookahead attains worse limit noise than SGD.

Proof. By lemma 4.6 we get:

1-(1—p*
(1= =)0 = (1 =a)+a(l=7)"?)

Vig = a’o’y

Then, we use ¢ = 1 —y and t = (1 — ) + ac®. From second one follows v = f_‘ctk.
Then we get following form of V7 ,:
vroo 21— =) o?(1—)(1+cM)(1 - 1)
= g ==
LA (1—c*)2(1 =) (1 —t2) (14+c)(1 —c*)(1+1)

From lemma 4.7 o )

o°(1—s

Vig=
I;Ikll<l’; LA 1+s

follows. []
4.3. Summary

— PDM —
— PDM

— Lookahead_alpha0.2 \ — Lookahead_alphat.2
— Lookahead_alphal.3 okahead_alphal.
Lookahead alphal.s 4x107? — Lookahead_alpha0.3
Eaer Lookahead alpha0.5

— Lookahead_alpha0.8 3x10-1 o

= Lookahead alphal.8

x —x'|*

10t

w0t

0 0 40 B0 80 100 B B 10 2 1
Iterations Iterations

Figure 1: Right figure is just enlarged version of the left one. Here, SGD, PDM and Lookahead
were trained on quadratic stochastic function. Parameters of all algorithms are picked up according
to the theory so as they all have the same limit noise v* = 0.05. For PDM and Lookahead k = 5.

Finally, let’s compare SGD and PDM:

14



Lemma 4.9.

poy . (1—=t)(1+s)
o ROIFO0—s)

Proof. % 1s increasing in s which follows from lemma 4.7 and its value at

s = 1 equals 1. [l

Lemmas 4.8 and 4.9 show exactly that PDM attains the best limit noise and
Lookahead the worst. In the Figure 1 empirical results on quadratic function are
depicted. It can be seen that rate of convergence of Lookahead is the worst. As
for SGD and PDM their convergence rates here are indistinguishable which we

prescribe to the high noise level.

5. Strongly convex case

2

Through out this section we suppose v < e

5.1. Hessian reformulation

Now, we consider problem 1 + (2) under assumptions 1 and 2.
On the matter of fact, we can reformulate our problem and algorithms in
terms of Hessian and forget that we were given function f. Assumption 1 in terms

of hessian can be equivalently reformulated as two assumptions:

Assumption 3.

H: R" — R™" is hessian function

Assumption 4.
pl = H(x) < LI Vx € R"

Assumption 3 is indeed a similar assumption to gradient function to be
a conservative vector field. In our case also some conservative properties for
some integrals over closed paths must be satisfied. Though, we leave analysis of
assumption 3 and its corollaries for future work.

Firstly, let’s formulate Sylvester’s criterion which we will use in this section:

15



Lemma 5.1. Sylvester’s criterion
Symmetric matrix A is positive-semidefinite if and only if all its principal

minors are non-negative.
Corollary 5.2. Symmetric matrix A is negative-semidefinite if and only if
* all its even principal minors are non-negative
* all its odd principal minors are non-positive
Further we formulate auxiliary lemmas relevant for our analysis:

Lemma 5.3. For symmetric matrix S such that
—cl X5 <¢cl

where ¢ > 0.

1. v= Se € B(0,c), wheree = (1,0,...,0).

2. Forany v € B(0, c) there exists symmetric S, —cl < S <cl: v = Se.
Proof. 1. Letv = Se. Then ||[v]|*> = vTv = e?S% < ¢ as S* < 1.

2. We can prove for ¢ = 1 and general statement will follow. Letv = (vy, ..., v,)

be in B(0, 1). Define & = p(v — vie), where p = (v 4 ... v2) 2. Complete

to orthogonal basis e, v, us, - - - , u,. Define map:
[ m p_l O e 0-
pt —v; 0 0
S=10 0 1 0
0 0 - 1]

Sis symmetric. Also,



due to Sylvester’s criterion and |[v|| < 1. Then —/ < S =< I. Finally put
S =USU T where U - orthogonal matrix of transition from basis e1, . . ., e,

to e, v, us, ..., u,. It is obvious that v = Se.
]

Lemma 5.4. For any symmetric S such that

ul =S < LI
and v € R" —i—L L
,u
sve BT =0, 2L ul)

and for any u in such sphere exists symmetric S, uwl =S < LI such that u = Sw.

Proof. v = ||v||Ue, where U - orthogonal matrix. Then

CRALY SRy

Sv = ||o|UUTSUe = ||v|U((UTSU — > ;

Here —%I < 8§ =UTSU — L‘QH‘I =< L;“I any such symmetric matrix. By

lemma 5.3 we obtain:

L — L
Sv = |jv|| 5 Pw+ ‘2|'/Lv

where ||w|| < 1. O

Using auxiliary lemmas we can rewrite gradient of the function in the follow-

ing form:

Lemma 5.5. For f in F; |

L+p

Vi) =~ ) 4 22

[z = 2" [|v(z)

where v(z) € B(0,1) and x* - optimum of f.

Proof.

Vfix)=Vf(zr)-Vf(x / H(z" +t(x — x¥))dt(x — z¥)

17



Here )
,LLIjS:/ H(x* 4+ t(x — %)) X LI
0

and S - symmetric. And indeed we can gain any such matrix and lemma follows by
lemma 5.4. [

Note, that lemma 5.5 shows that at any point z € R" vector v(x) € B(0,1)
can be chosen arbitrary. Indeed, for any such v there exists a function f under
assumption 1 for which V f(x) takes form as in lemma 5.5 with specified v. Though,
there is some dependence of vectors v(z), v(y) at any two given points, which takes

place from assumption 3 and which we do not study here.

5.2. PDM analysis
Consider PDM algorithm:

k

¢t+1 = E ai9t+1,z‘

1=0

Ori1i = Ory1i-1 — YF(Or1i-1)

Ori1,0 = &1
Consider expression:
Orr1i— " = (1 — VTM)(QtH,i—l —¢%)+
L — *
VTM‘|9t+l,i—1 — ¢ [v(Org1,-1) + YErr1,i-1 (6)

which follows from lemma 5.5.
Let’s define a filtration Fjy < F} < ... < Fj with F; = 0(0p41,).

18



For PDM consider equality:

k

Ellgr1 — ¢*|1* | Fo = ZQ?EHQHM — &P | Fot
i=0

> 204, B0 — ¢, 01— 67) | Fy (D)

i<j
Then we evaluate first and second part of the equality 7 separately:

Lemma 5.6.
B0 1 — ¢*H2 <(1- 7#)2E|‘9t+17i—1 - ¢*\|2 +7%0”

Proof. From expression 6 we get:

B0, — ¢*H2 | Fioq <
L+p

N L — % 2 *
(1—~- 9 0101 — &*|1* + WQ%HHHMA — "I+

L+p ; ;
V(L = 1) (1 =y == bs1.-1 — ¢ (Brs1-1 — %, 0(Br11-1)) + 770” <

2
(1 = vu)?|0ps1,i-1 — &*|] + 720
where we used the inequality (6;41,-1 — ¢, v(0i11.-1)) < [|0r41.-1 — @7 O

Lemma 5.7.

2(j — 1)
2—yp

Efr1y = ¢ 1P | Fr < (1= bsri — ¢°|1° + 7707
Proof. Firstly, by applying lemma 5.6 multiple times we get:

1— (1 —yp)?U"

Bl — & NP1 F < (1 —~v)20 10,1, — ¢*||2 + ~202
101115 — @717 | 5 < (1 —p) 10i11: — &°||"+ 70 gR—

Then by Bernoulli inequality:

(1+2)">1+nxforz>—1

19



lemma follows. [l

Lemma 5.8. For j > 1

* * * L _
EO1;— ¢ 041 — ) | Fi < |01, — @ 1> + %0

4 2—p
Proof. By expression 6 we get:
Ei1,;— ¢ 01— ") | Fior=(1— 7%)(915“,1 — ¢ 0111 — @)+
7#“9t+1,j1 — ¢ (Or15 — @, v(Ors1,5-1))
Further, we get:
EO1;— ¢, 041, — 0") | Fia
<(1- 7%)(@“,2' — ¢, 04151 — ") +’7%”9t+1,i — &"|[|0t41,5-1— 97|
<(1- ’Yﬂ)(eﬂ—l,i — ¢ 0151 — @) + VQHQtH,j—l - ¢

4
L — *
1=l — oI ®

Then applying inequality 8 multiple times we gain:

E(Or1,; — ¢ 01— ") | F; < (1 —~ 5 )
L—p 3 L+p,, *
Ty > (-~ 5 Y MO — ¢

l=i+1

L—p L4y £)2
+7T 1—231(1 —’VT)] ElO1-1 — 0|7 | i

20



Further, by applying lemma 5.7 to E||0;:1,-1 — ¢*||* | F;:

* * L+ j—1
E(Oi1i — ¢, 0115 — ¢ )\Fiﬁ((l— 2M)J
L—pu L+ p
Ty > BV ) 641 — |1
l=i+1
b —MZ L‘*‘M;z,YzUzQ(l i—1)
I=i+1 2_7M

Continuing:

Ei1,— ¢ 041, —¢") | F; <

Ltu,, L—pg L+p; ]
(1= y=5Y +v—;—§2a— BV 005 — 6|+

l—i—i—l
l=i+1 _’y’u
L—l—,LL . L—,u L—I—,u . 5
1— It (1 — (1 — " NNOss1s — OF
<((1-7=3H +L+M< (1= =) e — 071+
L nl =i
4 2—yp
oL —p(j—1)(j—1—-1
610 — 672 + P02 2 U = )
4 2—yp
Then main theorem follows:
Theorem 5.9. For v < = +u
k
Bl — ¢ < O ai(l—yw)* + ) 2a,a;(1 — yu)* ) El| ¢y — ¢7|°
i=0 i<j
k N
L—p(—9)(—i-1)
) 2
+’ya(;az2 +;2azaj + 1 " )
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Note that

k k
> all—yw)* + ) 2aa;(1 — ) < (D ;) =1
i=0 i<j i=0

This implies linear convergence to limit noise.
Proof.
k
Ellgrin — ¢*1* | Fo =Y aiEl0r1i — &"|° | Fo+
i=0
Z 200, E(0ri1, — ¢, 015 — @) | Fo <
i<j
k
> al(l =)l — 1P+ ) 200, E)|0p1; — ¢7|17 | Fot
i=0 i<j

1<J

k :
pU—1—i-1)
zO:aZ +22azaﬂ S ) <
k

Za? L—yu)® + ) 2aia;(1 — yp)*) Bl ¢ — ¢°||°

1<j

2 2 g 20 2i —p( -9 —i—1)
"’70(2% +22aiaj(2_%u—|—fy 1 2 n )

5.3. Lower bounds

In this section we support our statement that Lookahead works worse than

SGD in strongly convex case as well. Next lemma shows tight estimates for SGD:
Lemma 5.10. For SGD

B¢ — ¢'” < (1 =)’ Ellgy — 6" + %0

0?1l —s
prl+s

VSGD —=
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where s = 1 — ~yu. This estimate is indeed precise and inequalities turns into

equalities for function f(x) = &z — ¢*||%.

Proof. Due to lemma 5.5 we have:

b1 = 8" = (L= =2 L) (6 = 6) 4 =5 L6~ & 0(61) + 7
Then:

L L — pu)?
Bl — &Pl (6) < (1 =200 — o7 + 2L gy — g

L+p ] "
L = (1 = 6= 10— 6" () +170° <
(1= yu)?llér = &"|* + %0 (9)
where the last inequality follows from (¢ — ¢*, v(¢:)) < ||¢+ — ¢*||. Note that these

two inequalities turn into equalities on the function f(z) = £||z — ¢*||* when noise
under assumption 2 has exactly variance o2. Taking limit in inequality 9 we get:
021 —s

Viep < —

Also for Lookahead we show following lower bound:

Lemma 5.11. For Lookahead

On function f(x) = 4|z — ¢*||* and when noise under assumption 2 has

exactly variance o

)2k

Bligri1 = 'l = (1 =) +a(l —yu)"2Ellér — ¢*|* + 770 11__%__%2

. 2l —t(l—c)(1+ch)

AT 21 +t(1 -1 +0¢)
withc =1—ypu, t = (1 — a) + ack.

Proof. Completely repeat the proof of convergence of Lookahead for quadratic

case. See section 4.2. []
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Note that Vg, and V}, in strongly convex case take the same form as in the
quadratic case except for the multiplier ;2. This shows that just like in quadratic
case in strongly convex case Lookahead experiences worse rate of convergence than

SGD with limit noise being fixed in the worst case sense.

6. Experiments

— SGD
— PDM
—— Lookahead

6x10771 o — SGD
— PDM
— Lookahead

107t
4x1072

|x—x"|?
[ —x"|F

3Ix1072

1072

T T T T T T T T T 2x1077 1 T r T r r
0 2500 5000 7500 10000 12500 15000 17500 20000 5000 5500 6000 6500 7000 7500
Iterations Iterations

Figure 2: Right figure is just enlarged version of the left one. We train logistic regression with
regularization on dataset German. Parameters of the algorithms are picked up so as to their limit
noises are approximately the same. Here, their limit noises approximately equal v* = 0.0044. For
Lookahead and PDM £ = 20.

— SGD
10° — PDM — 5SGD
—— Lookahead £on
—— Lookahead
102
n_ 1072 "
f ]
= =
102
Bx 1032
10732 . r T T T T T r : T T T T
o 10000 20000 30000 40000 50000 60000 20000 21000 22000 23000 24000 25000

Iterations Iterations

Figure 3: Right figure is just enlarged version of the left one. We train logistic regression with
regularization on dataset Mushrooms. Parameters of the algorithms are picked up so as to their limit
noises are approximately the same. Here, their limit noises approximately equal v* = 0.0016. For
Lookahead and PDM £ = 20.

We trained logistic regression model with regularization on two datasets
Mushrooms and German from Chang and Lin ((2011)) on the task of 2-label

classification. Methods’ parameters are picked so as they have approximately equal
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limit noises. Coeflicients for PDM are taken as:

where « € [0, 1] is new hyperparameter. Actually, coefficients are taken in accor-
dance with optimal coeflicients for quadratic case with the only difference that we
do not know c in the system from lemma 4.5 so we need new hyperparameter. In

the Figures 2 and 3 we see that PDM experiences superior rate of convergence.

7. Conclusion

We introduced new algorithm called Polynomial Dynamic Modification and
showed that it experiences faster convergence rate on the quadratic stochastic prob-
lem compared to SGD and Lookahead with desired noise near solution being fixed.
Moreover, we prove linear convergence of PDM to some limit noise on the class of

stongly convex twicely differentiable functions.
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