Крымский Станислав Тимурович

Выпускная квалификационная работа

О поведении на бесконечности функции Грина

Выполнил студент 4 курса бакалавриата направления "Математика" СВ.5000.01.03.01 группы 18.Б03-мкн Факультета математики и компьютерных наук

Научный руководитель:

Кандидат физико-математических наук,

ведущий научный сотрудник

ПОМИ РАН

Филонов Николай Дмитриевич.

Рецензент:

Старший научный сотрудник

ПОМИ РАН,

кандидат физико-математических наук

Михайлов Виктор Сергеевич.

Содержание

Аннотация	3
Ключевые слова: функция Грина	3
Введение	3
0.1. Структура работы и основной результат	3
1. О границах областей вещественного пространства	4
2. Определение и свойства функции Грина в физическом смысле	4
3. Об оценке функции Грина в области	11
4. Заключение	21
5. Благодарности	22
Список литературы	23

Аннотация

В данной работе рассматривается функция Грина задачи Дирихле для областей произвольного типа. Получена оценка, зависящая только от мер и характерных размеров области. Показано, что при определённом условии на меру пересечения области с шаром характерного размера логарифм функции Грина убывает со скоростью, обратно пропорциональной характерному радиусу.

Ключевые слова: функция Грина.

Введение

Функция Грина является одним из основных понятий математической физики и применяется для решения неоднородных краевых задач. Теория функции Грина была развита английским математиком Джорджем Грином в 1830-е годы. С тех пор функция Грина широко применяется в электродинамике, квантовой теории поля, теории упругости, в частности, для описания распространения волн.

При решении задачи о построении вещественного примера быстро убывающей функции с ограниченным лапласианом в полуцилиндре была сформулирована теорема 3.1, являющаяся инструментом для оценки функции Грина. Полученный результат может быть применён к широкому классу задач, поскольку позволяет оценивать функцию Грина для лапласиана при задании функции Грина в области с произвольным характерным размером. В известных нам работах по исследованию функций Грина оценки, связанные с расстояниями, оказываются либо намного более слабыми, либо требующими специфических условий. Например, результаты, изложенные в статье В.А.Кондратьева и Е.М. Ландиса 1988 года [10], касаются областей типа цилиндра или типа конуса. В статье Ю. А. Алтухова 1998 года [12] функция Грина оценивается через расстояние до границы области и убывает полиномиально с ростом расстояния между точками.

Теорема 3.1, являющаяся основным результатом настоящей работы, показывает быстрое убывание функции Грина и является естественным обобщением теорем, аналогичных теореме Фрагмена-Линделёфа, на области произвольного типа. В частности, результат для области типа цилиндра получается из теоремы 3.1 при постоянном радиусе r, а результат для области типа конуса — при радиусе r, линейно растущем при удалении от начальной точки.

0.1. Структура работы и основной результат. Работа состоит из двух частей. В первой части даётся определение функции Грина и исследуются её основные свойства: существование, монотонность, простейшая оценка значений, поведение лапласиана. Во второй части эти свойства используются для доказательства теоремы об оценке функции Грина. Основным результатом работы является доказательство теоремы об оценке функции Грина в области в \mathbb{R}^d : при d>2 при определённых условиях функция Грина экспоненциально убывает.

1. О ГРАНИЦАХ ОБЛАСТЕЙ ВЕЩЕСТВЕННОГО ПРОСТРАНСТВА

Лемма 1.1. Если область $\Omega \subset \mathbb{R}^d$ имеет липшицеву границу, то для любого шара $B \subset \mathbb{R}^d$ граница области $\partial(\Omega \cap B)$ имеет конечную площадь.

Доказательство. Рассмотрим какой-нибудь шар $B \subset \mathbb{R}^d$ и пересечение $\overline{\Omega} \cap B$. Оно компактно, и любое открытое покрытие границы пересечения содержит конечное подпокрытие. С другой стороны, граница $\partial\Omega$ является локально липшицевой и накрывается открытыми множествами, в каждом из которых площадь участка границы конечна. Граница ∂B тоже накрывается открытыми множествами, в каждом из которых площадь участка границы конечна. Поэтому $\partial(\Omega \cap B)$ накрывается конечным числом множеств, в каждом из которых площадь конечна. Значит, площадь $\partial(\Omega \cap B)$ конечна, что и требовалось.

Лемма 1.2. Рассмотрим области $\Omega_1 \subset \mathbb{R}^d$ и $\Omega_2 \subset \mathbb{R}^d$, такие, что их пересечения с любым шаром $B \subset \mathbb{R}^d$ имеют конечную площадь границы. Тогда пересечение областей $\Omega = \Omega_1 \cap \Omega_2$ таково, что для любого шара $B \subset \mathbb{R}^d$ пересечение $\Omega \cap B$ тоже имеет конечную площадь границы.

 \mathcal{A} оказательство. $\partial(\Omega_1 \cap \Omega_2 \cap B) \subset \partial(\Omega_1 \cap B) \cup (\partial\Omega_2 \cap B)$. Поэтому для любого шара B граница $\partial(\Omega_1 \cap \Omega_2 \cap B)$ имеет конечную площадь. Значит, исследуемое свойство областей из \mathbb{R}^d замкнуто относительно пересечения.

2. Определение и свойства функции Грина в физическом смысле

Определение 2.1. При рассмотрении краевой задачи Дирихле для лапласиана, заданного в области $\Omega \subset \mathbb{R}^d$, функцией Грина в физическом смысле называется лежащая в классе $C^1_{loc}(\Omega \times \Omega \setminus \{(z,z)|z \in \overline{\Omega}\})$ функция $G: \overline{\Omega} \times \overline{\Omega} \setminus \{(z,z)|z \in \overline{\Omega}\} \to \mathbb{R}$, такая, что

- для любых точек $z, t \in \Omega$, таких, что $z \in \partial \Omega$ или $t \in \partial \Omega$, G(z, t) = 0;
- $\Delta_t G(z,t) = 0$ при $t \neq z$;
- для любого вещественного r > 0, такого, что $B_r(z) \subset \Omega$,

$$\int_{u \in \partial B_{r/2}(z)} (\overrightarrow{\nabla}_u G(z, u) \cdot (\overrightarrow{u - z})) du = -\frac{r}{2}.$$

Иными словами, поток градиента функции Грина из шара с центром в точке z, целиком лежащего внутри Ω , равен -1 при рассмотрении функции Грина в физическом смысле.

• G(z,t) > 0, если z и t достаточно близки и лежат внутри Ω .

Здесь и далее будем считать, что размерность пространства d > 2.

Лемма 2.1 (о существовании функции Грина). Если ограниченная область $\Omega \subset \mathbb{R}^d$ имеет конечную площадь границы, то в этой области существует функция Грина.

Доказательство. Приведём с небольшими изменениями доказательство из книги Вольперта А.И., Худяева С.И. [9], глава VII, параграф 5, стр. 223-224.

Зададим функцию $\Phi: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ как

$$\Phi(z,t) = \frac{1}{(d-2)\chi_d|z-t|^{d-2}},$$

где z и t — точки из \mathbb{R}^d . Построим ограниченную гармоническую по t функцию $\gamma_z(t)$, равную $\Phi(z,t)$ на границе $\partial\Omega$. Благодаря тому, что точка z находится внутри области Ω , функция Φ ограничена на границе $\partial\Omega$.

Зададим функционал $F:W_2^1(\Omega) \times W_2^1(\Omega) \to \mathbb{C}$ как

$$F[u,v] = \int_{t \in \Omega} (\nabla u, \nabla v) dt,$$

где u и v – функции из пространства Соболева $W_2^1(\Omega)$.

Функционал F положительно определён, и соответствующая ему однородная задача о функции $u_0 \in \overset{\circ}{W_2^1}$, такой, что $F(u_0,v)=0$ при всех $v\in \overset{\circ}{W_2^1}$ имеет только нулевое решение. Поэтому по первой теореме Фредгольма существует функция $u\in W_2^1$, имеющая след $\Phi(z,t)|_{\partial\Omega}$, для которой

$$F[u,v] = 0$$

при любой функции $v\in \overset{\circ}{W_2^1}(\Omega).$ Но тогда функция u с этим свойством и является искомой функцией $\gamma.$

Теперь убедимся, что $G(z,t)=\Phi(z,t)-\gamma_z(t)$ является искомой функцией Грина.

• При $t \in \partial \Omega$ $\gamma_z(t) = \Phi(z,t)$ по определению, и G(z,t) = 0.

Теперь проверим, что G(z,t) дифференцируема в $\Omega \times \Omega \setminus \{(z,z)\}$. Действительно, по построению $\Phi(z,t)$ дифференцируема по z и t, а $\gamma_z(t)$ является гармонической и поэтому лежит в классе C^1_{loc} . Поэтому функция G(z,t) лежит в классе $C^1_{loc,t}$ функций, дифференцируемых по t.

Теперь проверим дифференцируемость функции G(z,t) по z. Для функции $\Phi(z,t)$ дифференцируемость по z очевидна. Докажем, что $\gamma_z(t)$ тоже является дифференцируемой функцией от z. Действительно, $\gamma_z(t)$ является гармонической функцией с граничными условиями $\gamma_z(t) = \Phi(z,t)$ при $t \in \partial \Omega$. Поскольку точка z лежит внутри области Ω , градиент $\nabla_z \Phi(z,t)$ на границе $\partial \Omega$ ограничен. Значит, существует векторная функция $\overrightarrow{\gamma'}(z,t)$, которая является гармонической и равна $\nabla_z \Phi(z,t)$ на границе. Поскольку точка z лежит внутри области Ω , вторые производные функции $\Phi(z,t)$ равномерно ограничены в окрестности границы. Поэтому для любого вектора $\overrightarrow{v} \in \mathbb{R}^d$ при вещественном $\epsilon \to 0$ величина

$$\frac{\Phi(z+\epsilon\overrightarrow{v},t) - \Phi(z,t) - \epsilon\overrightarrow{v}\nabla_z\Phi(z,t)}{\epsilon^2}$$

равномерно ограничена по t и ϵ . Значит,

$$\left| \frac{\gamma_{z+\epsilon \overrightarrow{v}}(t) - \gamma_z(t) - \epsilon \overrightarrow{v} \overrightarrow{\gamma'}(z,t)}{\epsilon^2} \right| \leq \sup \left| \frac{\Phi(z+\epsilon \overrightarrow{v},t) - \Phi(z,t) - \epsilon \overrightarrow{v} \nabla_z \Phi(z,t)}{\epsilon^2} \right|,$$

и величина

$$\frac{\gamma_{z+\epsilon\overrightarrow{v}}(t) - \gamma_z(t) - \epsilon\overrightarrow{v}\overrightarrow{\gamma'}(z,t)}{\epsilon^2}$$

равномерно ограничена по t и ϵ . Значит,

$$\lim_{\epsilon \to 0} \frac{\gamma_{z+\epsilon \overrightarrow{v}}(t) - \gamma_z(t) - \epsilon \overrightarrow{v} \overrightarrow{\gamma'}(z,t)}{\epsilon} = 0,$$

и $\gamma_z(t)$ дифференцируема по z. Поэтому функция G(z,t) дифференцируема по z.

• Для любой функции $v \in W_2^1(\Omega)$

$$\int_{t \in \Omega} (\Delta u, v) = \int_{t \in \Omega} (\nabla u, \nabla v) dt = F[u, v] = 0.$$

Значит, $\Delta u=0$ на всей области Ω . Поэтому $\Delta_t G(z,t)=\Delta_t \Phi(z,t)-\Delta_t \gamma_z(t)=0$ при $t\neq z$.

• Функция $\gamma_z(t)$ является гармонической в шаре $B_r(z)$. Поэтому поток градиента функции $\gamma_z(t)$ из шара равен нулю. Поток градиента функции $\Phi(z,t)$ из шара равен

$$\int_{t \in \partial B_{r/2}(z)} -|\nabla_t \Phi(z, t)| dt = |\partial B_{r/2}(z)| \frac{\partial \left(\frac{1}{(d-2)\chi_d|z-t|^{d-2}}\right)}{\partial |z-t|} =$$

$$= -\chi_d(r/2)^{d-1} \frac{1}{\chi_d|z-t|^{d-1}} = -1.$$

Значит, поток градиента функции G(z,t) из шара тоже равен -1.

• $\gamma_z(t) \leq \sup_{t \in \partial\Omega} \Phi(z,t)$, и

$$G(z,t) = \Phi(z,t) - \gamma_z(t) \ge \Phi(z,t) - \sup_{t \in \partial\Omega} \Phi(z,t) =$$

$$= \frac{1}{(d-2)\chi_d|z-t|^{d-2}} - \frac{1}{(d-2)\chi_d(\inf_{t\in\partial\Omega}|z-t|)^{d-2}}.$$

Значит, если точка t ближе к точке z, чем любая точка границы $\partial\Omega,$ то разность $G(z,t)=\Phi(z,t)-\gamma_z(t)$ положительна.

Таким образом, выполнены все четыре пункта определения 2.1, и функция G(z,t) является функцией Грина в области Ω .

Лемма 2.2 (о неотрицательности функции Грина). В ограниченной области $\Omega \subset \mathbb{R}^d$ с конечной площадью границы для любых точек $z,t\in\Omega$ $G_\Omega(z,t)\geq 0$.

Доказательство. Пусть для каких-то точек $z,t\in\Omega$ $G_{\Omega}(z,t)<0$. Тогда рассмотрим множество всех точек t, для которых $G_{\Omega}(z,t)$ отрицательна. Градиент функции Грина направлен только из этого множества точек t. Поэтому поток градиента из этого множества положителен, и в какой-то точке t этого множества лапласиан $\Delta_t G(z,t) \neq 0$. Но это противоречит определению 2.1 функции Грина. Значит, функция Грина G(z,t) неотрицательна для любых точек z и t.

Определение 2.2. Если для области $\Omega \subset \mathbb{R}^d$ существует функция Грина $G_\Omega(z,t)$, то для любой точки $z \in \Omega$ будем называть лапласианом функции Грина $\Delta_t G_\Omega(z,t)$ заданную при всех точках $t \in \mathbb{R}^d$ обобщённую функцию $\Delta(z,t)$, такую, что для любой функции $f \in C^0_\infty(\mathbb{R}^d)$

$$\int f(t)\Delta(z,t)dt = \int G_{\Omega}(z,t)\Delta_t f(t).$$

Замечание 2.1. Если область $\Omega \subset \mathbb{R}^d$ ограничена, то функция $\Delta_t G_{\Omega}(z,t)$ равна сумме $-\delta_z(t)$ и вероятностной меры, сосредоточенной на границе области Ω .

Доказательство. Так как $\overline{\Omega} \neq \mathbb{R}^d$, существует замкнутое множество, не пересекающееся с $\overline{\Omega}$. Построим гладкую функцию f, равную нулю в этом замкнутом множестве и равную единице в $\overline{\Omega}$. Тогда Δf сосредоточен вне Ω , и

$$\int \Delta f(t)G(z,t)dt = 0.$$

Поэтому

$$\int \Delta_t G(z,t)dt = 0.$$

Теерь заметим, что внутри Ω $\Delta_t G(z,t)$ равен нулю по определению. Поэтому эта обобщённая функция сосредоточена в точке t=z и на границе $\partial\Omega$.

Если положительный радиус r таков, что шар $B_r(z) \subset \Omega$, то

$$\int_{t \in B_{r/2}(z)} \Delta_t G(z, t) dt = -1,$$

так как поток градиента в шар $B_{r/2}(z)$ равен единице по условию. Значит, $\Delta_t G(z,t)$ является суммой $-\delta_z(t)$ и обобщённой функции, сосредоточенной на границе области $\partial\Omega$.

Зададим с помощью обобщённой функции $\Delta_t G(z,t)$ меру на борелевских подмножествах границы $\partial\Omega$. Именно, пусть множество $Y\subset\partial\Omega$ открыто на границе $\partial\Omega$. Тогда рассмотрим функцию $[\Delta_t G(z,t)](Y)$, равную потоку градиента $\nabla_t G(z,t)$ из любого открытого множества $Y^+\subset\mathbb{R}^d$, не содержащего точку z, но пересекающегося с $\partial\Omega$ по Y. Этот поток не зависит от выбора множества Y^+ , поскольку функция Грина является гармонической всюду, кроме границы $\partial\Omega$ и точки z. Убедимся, что определённая таким образом на открытых множествах функция $[\Delta_t G(z,t)](Y)$ продолжается до меры.

Во-первых, для объединения непересекающихся открытых множеств $Y_i \subset \partial \Omega$ таким образом определённая функция $[\Delta_t G(z,t)](\cup Y_i)$ равна сумме значений $[\Delta_t G(z,t)](Y_i)$ для отдельных множеств Y_i , так как множества Y_i дополняются до непересекающихся открытых множеств Y_i^+ , и поток из $\cup Y_i^+$ равен сумме потоков из Y_i^+ . Поэтому выполняется свойство аддитивности, необходимое для определения меры.

Во-вторых, в любом открытом множестве $Y \subset \partial \Omega$ функция $[\Delta_t G(z,t)](Y)$ неотрицательна. Действительно, дополним его до открытого множества $Y^+ \subset \mathbb{R}^d$, не содержащего точку z. Получим, что поток градиента из области $Y^+ \cap (\mathbb{R}^d \setminus \overline{\Omega})$ равен нулю, так как в этой области равен нулю сам градиент функции Грина. Поток градиента из области $Y^+ \cap \Omega$ неотрицателен,

так как функция Грина неотрицательна внутри области Ω . Поэтому поток градента из Y^+ неотрицателен, и значение $[\Delta_t G(z,t)](Y)$ неотрицательно.

Теперь покажем, что если открытые множества $Y_i \subset \partial \Omega$ монотонно убывают и стремятся к некоторому (не обязательно открытому) пределу $Y_{\infty} \subset \partial \Omega$, то значения $[\Delta_t G(z,t)](Y_i)$ монотонно убывают и тоже сходятся к пределу. Действительно, пусть $Y_i \supset Y_j$ — два открытых подмножества $\partial \Omega$. Тогда существуют открытые множества $Y_i^+ \subset \mathbb{R}^d$ и $Y_j^+ \subset \mathbb{R}^d$, такие, что $Y_i = Y_i^+ \cap \partial \Omega, Y_j = Y_j^+ \cap \partial \Omega$. Значит, $(Y_i^+ \cap Y_j^+) \cap \partial \Omega = Y_j$. Поэтому можно считать, что $Y_i^+ \supset Y_j^+$.

Теперь представим $Y_i^+ = Y_j^+ \cup (Y_i^+ \setminus Y_j^+)$. Поток градиента из множества $Y_i^+ \setminus Y_j^+$ неотрицателен по определению функции Грина. Значит, поток градиента из Y_i^+ не меньше потока градиента из Y_j^+ . Но тогда $[\Delta_t G(z,t)](Y_j) \leq [\Delta_t G(z,t)](Y_i)$, и функция $[\Delta_t G(z,t)](Y)$ монотонно убывает с уменьшением множества $Y \subset \partial \Omega$.

Поскольку значения $[\Delta_t G(z,t)](Y_i)$ неотрицательны и монотонно убывают, они сходятся к пределу.

Таким образом, функция $[\Delta_t G(z,t)](Y)$, определённая на открытых множествах, продолжается до меры. Действительно, если открытые множества Y_i монотонно убывают к Y_{∞} , то будем называть мерой множества $[\Delta_t G(z,t)](Y_{\infty}) = \lim_{i \to \infty} [\Delta_t G(z,t)](Y_i)$. Далее эта мера аналогично распространяется на все борелевские подмножества $\partial \Omega$, причём принимает только неотрицательные значения.

Наконец, проверим, что полученная мера является вероятностной на $\partial\Omega$. Именно, поток градиента из области Ω равен нулю. Поток градиента в точку z равен единице. Значит, поток градиента из множества $\partial\Omega$ равен единице, и мера $[\Delta_t G(z,t)]$ является вероятностной. Поэтому обобщённая функция $\Delta_t G(z,t) + \delta_z(t)$ является вероятностной мерой на границе $\partial\Omega$.

Таким образом, $\Delta_t G(z,t)$ действительно является суммой $-\delta_z(t)$ и некоторой вероятностной меры на границе $\partial\Omega$, что и требовалось.

Лемма 2.3 (об оценке функции Грина). При d>2 в области $\Omega\subset\mathbb{R}^d$ $G_\Omega(z,t)\leq \frac{1}{(d-2)\chi_d|z-t|^{d-2}},$ где χ_d – площадь поверхности единичного d-мерного шара.

Доказательство. Вспомним построение функции Грина из леммы 2.1. Функция Грина G(z,t) задавалась как $\Phi(z,t) - \gamma_z(t)$, где $\Phi(z,t) = \frac{1}{(d-2)\chi_d|z-t|^{d-2}}$, а $\gamma_z(t)$ задавалась как гармоническая функция, чьи значения на границе совпадают со значениями Φ . Поэтому значения $\gamma_z(t)$ неотрицательны на границе. Но тогда они неотрицательны и в любой точке t. Значит,

$$G(z,t) \le \Phi(z,t) = \frac{1}{(d-2)\chi_d|z-t|^{d-2}}.$$

Замечание 2.2. Таким образом, функция Грина в любой ограниченной области при любом вещественном $p \in (1; \frac{d-1}{d-2})$ лежит в классе L_p .

Лемма 2.4 (о монотонности функции Грина). Если $\Omega_1, \Omega_2 \subset \mathbb{R}^d$ – области, в которых существует функция Грина, и $\Omega_1 \subset \Omega_2$, то для любых точек $z, t \in \Omega_1$

$$G_{\Omega_1}(z,t) \leq G_{\Omega_2}(z,t).$$

Доказательство. Продолжим $G_{\Omega_1}(z,t)$ нулём на $\Omega_1 \times (\Omega_2 \setminus \Omega_1)$. Получим функцию, гладкую всюду, кроме границы $\partial \Omega_1$ и множества точек, для которых t=z. Докажем, что такая функция представима в виде

(2.1)
$$G_{\Omega_1}(z,t) = G_{\Omega_2}(z,t) - \int_{u \in \partial \Omega_1} G_{\Omega_2}(u,t) \Delta_u G_{\Omega_1}(z,u) du.$$

Сначала заметим, что по замечанию 2.2 функция $G_{\Omega_2}(z,u)$ лежит в классе L_p . Затем вспомним, что $\Delta_u G_{\Omega_1}(z,u)$ является вероятностной мерой на границе $\partial\Omega_1$. Значит,

$$\int_{u\in\partial\Omega_1} G_{\Omega_2}(u,t)\Delta_u G_{\Omega_1}(z,u)du$$

является функцией, лежащей в L_p .

Затем заметим, что функции $G_{\Omega_2}(u,t)$ являются гладкими и гармоническими во всех точках, кроме границы $\partial\Omega_1$. Поэтому интеграл от них сам является гладким и гармоническим всюду, кроме границы $\partial\Omega_1$. Значит, разность в формуле 2.1 является функцией, гладкой и гармонической всюду, кроме точек t=z и $t\in\partial\Omega_1$.

Чтобы убедиться, что равенство 2.1 верно, сосчитаем поток градиента $\nabla_t G_{\Omega_1}(z,t)$ в любую область $W \subset \Omega_2$, не содержащую точку z и такую, что мера $\int_{u \in \partial W} \Delta_u G_{\Omega_1}(z,u) du$ равна нулю. Такой областью является почти любая область, не содержащая точку z^1 .

Очевидно, поток градиента $\nabla_t G_{\Omega_2}(z,t)$ в область W равен нулю, так как $G_{\Omega_2}(z,t)$ гармоническая в $\Omega_2 \setminus \{z\}$. Поток градиента $\nabla_t G_{\Omega_1}$ в область W равен интегралу

$$-\int_{u\in\partial W}\Delta_u G_{\Omega_1}(z,u)du.$$

Теперь вычислим поток в область W градиента разности в правой части равенства 2.1

(2.2)
$$G_{\Omega_2}(z,t) - \int_{u \in \partial \Omega_1} G_{\Omega_2}(u,t) \Delta_u G_{\Omega_1}(z,u) du.$$

Поток градиента $\nabla_t G_{\Omega_2}(z,t)$ в область W равен нулю, а поток градиента $\nabla_t G_{\Omega_2}(u,t)$ в область W равен нулю при $u \notin W$ и единице при $u \in W$. Поэтому поток градиента разности 2.2 равен интегралу по $W \cap \partial \Omega_1$, то есть $-\int_{u \in W \cap \partial \Omega_1} \Delta_u G_{\Omega_1}(z,u) du$. Этому же интегралу равен поток градиента $\nabla_t G_{\Omega_1}(z,t)$. Таким образом, потоки градиента функций с обеих сторон равенства 2.1 совпадают.

Наконец, заметим, что функция в правой части равенства 2.1

$$G_{\Omega_2}(z,t) - \int_{u \in \partial \Omega_1} G_{\Omega_2}(u,t) \Delta_u G_{\Omega_1}(z,u) du$$

и доопределённая функция Грина $G_{\Omega_1}(z,t)$ равны нулю на границе $\partial\Omega_2$. Поэтому совпадают не только потоки градиента функций в любую область, но и сами функции.

Для любой точки $u\in\partial\Omega_1$ плотность меры $\Delta_uG_{\Omega_1}(z,u)\geq 0$. Кроме того, по лемме 2.2 $G_{\Omega_2}(u,t)\geq 0$. Поэтому

$$G_{\Omega_2}(z,t) - G_{\Omega_1}(z,t) = \int_{u \in \partial \Omega_1} G_{\Omega_2}(u,t) \Delta_u G_{\Omega_1}(z,u) du \ge 0.$$

Значит, $G_{\Omega_1} \leq G_{\Omega_2}$.

3. Об оценке функции Грина в области

Теорема 3.1 (об оценке функции Грина в области в \mathbb{R}^d). Пусть при d>2 в пространстве \mathbb{R}^d задана вещественнозначная положительная непрерывная функция $r:\mathbb{R}^d\to\mathbb{R}_+$, удовлетворяющая условию

$$\forall x, y \in \mathbb{R}^d |x - y| \le r(x) \implies \frac{r(y)}{r(x)} \in (\frac{1}{2}, 2),$$

а область $\Omega \subset \mathbb{R}^d$ такова, что для любого шара $B \subset \mathbb{R}^d$ граница $\partial(\Omega \cap B)$ имеет конечную площадь², и что для любой точки $x \in \mathbb{R}^d$ отношение меры пересечения шара $B_{r(x)}(x)$ с областью Ω к мере самого шара не больше вещественного числа $a \in (0;1)$:

$$\frac{|B_{r(x)}(x) \cap \Omega|}{|B_{r(x)}(x)|} \le a.$$

Для любых точек $z,t \in \Omega$ обозначим $n_{min}(z,t)$ наименьшее число $n \in \mathbb{N}$, для которого существует последовательность $(x_0=z,x_1,\ldots,x_n=t)$, такая, что

$$\begin{cases} |x_i - x_{i-1}| = r(x_{i-1}) & npu \ i = 1, \dots, n-1, \\ |x_i - x_{i-1}| \le r(x_{i-1}) & npu \ i = n. \end{cases}$$

Тогда при $n_{min}(z,t)>1$ функция Грина в области Ω удовлетворяет оценке

$$G_{\Omega}(z,t) \leqslant A(a)r^{2-d}(t)a^{n_{\min}(z,t)} = A(a)r^{2-d}(t)e^{n_{\min}(z,t)\ln(a)},$$

 $rde \ A(a)$ – вещественная положительная константа, зависящая от a.

Кроме того,для любых точек $z,t\in\Omega$ справедлива оценка

$$G_{\Omega}(z,t) \le \frac{1}{(d-2)|z-t|^{d-2}\chi_d},$$

 $\epsilon de \ \chi_d$ – площадь поверхности единичного шара в d-мерном пространстве.

Замечание 3.1. Наименьшие длины ломаных $n_{min}(z,t)$ и $n_{min}(t,z)$ могут быть различными. Например, если r(z) < |z-t| < r(t), то $n_{min}(t,z) = 1$, но $n_{min}(z,t) > 1$.

Пример 3.1. В частном случае теоремы 3.1, когда r(x) = 1 для любой точки $x \in \mathbb{R}^d$, заданная в области Ω функция Грина G(z,t) убывает экспоненциально с ростом расстояния между точками z и t. Действительно, если точки $z,t \in \Omega$ находятся на расстоянии более 1 друг от друга, то ломаные, соединяющие точки z и t, должны состоять из отрезков длины не более 1. Поэтому наименьшая длина ломаной $n_{min}(z,t)$ зависит только от расстояния |z-t| и равна $\lceil |z-t| \rceil$. Значит, функция Грина оценивается как

$$G(z,t) \le A(a)e^{n_{\min}(z,t)\ln(a)} = A(a)a^{n_{\min}(z,t)} = A(a)a^{\lceil |z-t| \rceil}.$$

 $^{^{2}}$ Как показано в лемме 1.1, этому условию удовлетворяет, в частности, любая область с липшицевой границей.

Доказательство теоремы. Для доказательства теоремы при оценке функции Грина мы будем использовать рекурсию. Для этого нам потребуется оценить плотность лапласиана функции Грина как меры. Бьорн Е. Дж. Дальберг в статье [11] показал, что плотность лапласиана совпадает с нормальной производной функции Грина. На основании теорем 2 и 3, доказанных в статье [11], сформулируем следующую лемму.

Лемма 3.1 (о плотности лапласиана функции Грина). Пусть дана липшицева область $W \subset \mathbb{R}^d, d > 2$, и функция Грина G_W . Тогда на границе ∂W существует множество E меры нуль, такое, что для любой точки $t \in (\partial W) \setminus E$ окажется верным:

- (1) в точке $t \in \partial W$ существует вектор $\overrightarrow{\nu_t}$, нормальный к границе ∂W в этой точке;
- (2) для любой точки $z \in W$ предел

$$\frac{\partial G(z,t)}{\partial \overrightarrow{\nu_t}} = \lim_{\overrightarrow{u-t}||\overrightarrow{\nu_t},|\overrightarrow{u-t}| \to 0, u \in W} \frac{G(z,u)}{|\overrightarrow{u-t}|}$$

существует и конечен;

(3) этот предел равен производной гармонической меры $\Delta_t G(z,t)$ по хаусдорфовой мере границы ∂W .

Доказательство. Доказательство утверждений (1), (2) изложено в доказательствах теорем 2 и 3 в статье [11]. Утверждение 3 в статье сформулировано следующим образом: для любой точки $p \in W$ и множества $F \subset \partial W$ гармоническая мера $\omega(p,F)$ равна интегралу

$$\omega(p,F) = \int_{q \in F} \frac{\partial G(p,q)}{\partial \overrightarrow{\nu_q}} d\sigma(q),$$

где σ — мера Хаусдорфа размерности d-1. Из этого можно сделать вывод, что производная гармонической меры $\omega(p,F)$ по хаусдорфовой равна $\frac{\partial G(p,q)}{\partial \overrightarrow{\nu_q}}$, то есть пределу

$$\lim_{\overrightarrow{u-q}||\overrightarrow{\nu_q},|\overrightarrow{u-q}|\to 0, u\in W} \frac{G(p,u)}{|\overrightarrow{u-q}|}$$

из пункта (2). Таким образом, плотность лапласиана функции Грина действительно совпадает с нормальной производной этой функции, что и требовалось. ■

Следствие 3.2. Сформулированные в лемме 3.1 утверждения верны и в том случае, если липшицевой окажется не вся область, а только участок её границы $D \subset \partial W$. Если в области W существует функция Грина, то на участке D также существует множество E меры нуль, такое, что для всех точек $t \in D \setminus E$ будут верны те же утверждения (1)–(3), что сформулированы в лемме 3.1 для точек $t \in (\partial W) \setminus E$.

Доказательство. Утверждения (1)–(3) леммы 3.1 для точки $t \in D \setminus E$ вытекают из леммы 9 в статье [11]. \blacksquare

Производную меры $\Delta_t G(z,t)$ по хаусдорфовой мере поверхности ∂W можно назвать поверхностной плотностью этой меры по аналогии с принятыми в физике обозначениями.

Лемма 3.2 (о плотности потока из шара). Пусть дана точка $x \in \mathbb{R}^d$, шар $B = B_r(x) \subset \mathbb{R}^d$, имеющий радиус r>0, и множество $W\subset B$, такое, что площадь границы ∂W конечна. Если для точки $t \in \partial B \cap \partial W$, существует окрестность U, такая, что $U \cap \partial W = U \cap \partial B$, то поток градиента функции Грина $\nabla_t G_W(x,t)$ через границу шара ∂B имеет плотность не более

$$\frac{1}{\chi_d r^{d-1}},$$

где χ_d – площадь поверхности единичного шара в \mathbb{R}^d .

Доказательство. По лемме 2.1 функция Грина в области W существует, поскольку площадь границы ∂W конечна.

Пусть $\Omega_1 = W, \Omega_2 = B$. Применив формулу 2.1 к этим областям, получим

(3.1)
$$G_W(x,t) = G_B(x,t) - \int_{u \in \partial W} G_B(u,t) \Delta_u G_W(x,u) du.$$

Величина $\Delta_u G_W(x,u)$, заданная определением 2.2, неотрицательна при $u \in \partial W \cap \partial B$ в силу замечания 2.1. Оценим поверхностную плотность меры $\Delta_u G_W(x,u)$ на сфере ∂B . Поскольку сфера липшицева, поверхностная плотность этой меры по лемме 3.1 равна пределу

$$\lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}} \frac{G_W(x,v)}{|\overrightarrow{v-u}|},$$

где $v \in W, \overrightarrow{\nu_u}$ – нормальный вектор, направленны внутрь области W из точки u. В силу формулы 3.1 верно неравенство

$$G_W(x,v) = G_B(x,v) - \int_{u \in \partial W} G_B(u,v) \Delta_u G_W(x,u) du \le G_B(x,v),$$

так как $G_B(u, v) \ge 0$ при всех точках $u, v \in B$.

Теперь рассмотрим значения

$$\frac{G_W(x,v)}{|\overrightarrow{v-u}|} = \frac{G_B(x,v) - \int_{t \in \partial W} G_B(t,v) \Delta_t G_W(x,t) dt}{|\overrightarrow{v-u}|} \le \frac{G_B(x,v)}{|\overrightarrow{v-u}|}.$$

Так как отношение $\frac{G_W(x,v)}{|v-u|}$ поточечно не превосходит $\frac{G_B(x,v)}{|v-u|}$, предел отношения $\frac{G_W(x,v)}{|v-u|}$ не превосходит предела $\frac{G_B(x,v)}{|v-u|}$:

(3.2)
$$\lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}|} \frac{G_W(x,v)}{|v-u|} \le \lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}|} \frac{G_B(x,v)}{|v-u|}.$$

Оценим предел

$$\lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}} \frac{G_B(x,v)}{|\overrightarrow{v-u}|}.$$

Для лежащей в центре шара B точки x и точки $v \in B$ функция Γ рина в шаре B выражается как

$$G_B(x,v) = G_{\mathbb{R}^d}(x,v) - G_{\mathbb{R}^d}(x,u)$$
, где $u \in \partial B$.

Обозначив $r_v = |v - x|$, получим

$$\lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}} \frac{G_B(x,v)}{|\overrightarrow{v-u}|} = \lim_{r_v\to r} \frac{\frac{1}{(d-2)r_v^{d-2}} - \frac{1}{(d-2)r^{d-2}}}{\chi_d(r-r_v)} = -\left(\frac{1}{\chi_d(d-2)r_v^{d-2}}\right)' = \frac{1}{\chi_d r^{d-1}}.$$

По неравенству 3.2 поверхностная плотность меры $\Delta_u G_W(x,u)$ на границе ∂B оценивается как

$$\lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}} \frac{G_W(x,v)}{|\overrightarrow{v-u}|} \le \lim_{|v-u|\to 0, \overrightarrow{v-u}||\overrightarrow{\nu_u}|} \frac{G_B(x,v)}{|\overrightarrow{v-u}|} = \frac{1}{\chi_d r^{d-1}}.$$

Значит, она не превышает $\frac{1}{\chi_d r^{d-1}}$, что и требовалось.

Лемма 3.3 (о функции Грина в шаре). Дана точка $x \in \mathbb{R}^d$, и множество $W \subset B_r(x)$, такое, что площадь его границы конечна, а отношение меры W к мере самого шара $B = B_r(x)$ не больше параметра $a \in (0;1)$:

$$\frac{|W|}{|B_r(x)|} \le a.$$

Тогда поток через границу ∂B градиента функции Грина $\nabla_t G_W(x,t)$ для точки t из W не превосходит значения параметра a, причём плотность этого потока не больше $\frac{1}{\chi_d r^{d-1}}$, где χ_d – площадь поверхности единичного шара в \mathbb{R}^d .

Доказательство. Рассмотрим любую точку $y \in W$ и поток градиента $\nabla_t G_W(y,t)$ через границу ∂B . Следующие функции являются гармоническими:

- сама функция Грина $G_W(y,t)$ как функция от y;
- градиент функции Грина $\nabla_t G_W(y,t)$ как функция от точки y при фиксированной точке t, лежащей на границе ∂B ;
- поток градиента $\nabla_t G_W(y,t)$ через границу ∂B как функция от y, так как для любой точки $t \in \partial B$ градиент функции Грина является гармоническим как функция от точки y.

Назовём поток градиента функции Грина $\nabla_t G_W(y,t)$ через границу ∂B функцией H(y), заданной на множестве W. Эта функция является гармонической на множестве W.

Докажем, что функция H(y) нигде не превосходит 1. Для этого представим функцию Грина в соответствии с формулой 2.1 в виде

$$G_W(y,t) = G_B(y,t) - \int_{u \in B} G_B(u,t) \Delta_u G_W(y,u) du.$$

Модули градиентов равны нормальным производным. Поэтому, как и в неравенстве 3.2, в области W они не превышают своих значений в шаре B:

$$|\nabla_t G_W(y,t)| = \frac{\partial G_W(y,t)}{\partial \nu_t} \le \frac{\partial G_B(y,t)}{\partial \nu_t} = |\nabla_t G_B(y,t)|.$$

Поэтому

$$H(y) = \int_{t \in \partial B} |\nabla_t G_W(y, t)| dt \le \int_{t \in \partial B} |\nabla_t G_B(y, t)| dt = 1.$$

Итак, H(y) равна потоку градиента функции Грина $\nabla_t G_W(y,t)$ в множестве W и нигде не превышает единицы. Положим H(y) = 0 для любого $y \notin W$. Полученная функция H(y) будет субгармонической и всюду в шаре B будет лежать между нулём и единицей.

По условию леммы шар B имеет центр в точке x. Поэтому значение функции H в точке x не превышает среднего значения функции H(y) по всем точкам шара B. Однако в множестве $B \setminus W$ значение функции H(y) по определению равно нулю. Мера множества $B \setminus W$ по условию не меньше (1-a)|B|. В множестве W значение H(y) не превышает единицы. Поэтому среднее значение H(y) по всем точкам шара B не превышает

$$\frac{\int_B H(y)dy}{|B|} \le \frac{|W|}{|B|} \le \frac{a|B|}{|B|} = a.$$

Но тогда H(x) также не превышает этой оценки:

$$H(x) \le \frac{\int_B H(y)dy}{|B|} \le a.$$

Значит, поток градиента функции Грина $G_W(x,t)$ через границу ∂B не превышает a. При этом плотность потока не превышает $\frac{1}{\chi_d r^{d-1}}$. Лемма доказана.

Теперь вернёмся к условиям теоремы 3.1 и применим леммы 3.3 и 2.3 для оценки функции Грина в области $\Omega \subset \mathbb{R}^d$. Зафиксируем произвольную точку $x \in \Omega$. Построим функцию Грина в области Ω с помощью метода последовательных приближений. Для этого мы рассмотрим функцию $G_{B_{r(x)}(x)\cap\Omega}(x,t)$, где $t\in\Omega\cap B_{r(x)}(x)$, и назовём её функцией $G_1(x,t)$. Функция $G_1(x,t)$ такова, что поток её градиента через границу $\partial B_{r(x)}(x)$ шара $B_{r(x)}(x)$ не превышает a по лемме 3.3:

(3.3)
$$\int_{t\in\Omega,t\neq u} \Delta_t G_1(u,t)dt = \int_{t\in\partial B_{r(u)}(u)} |\nabla_t G_1(u,t)|dt \le a.$$

Будем считать, что вне области $B_{r(x)}(x) \cap \Omega$ функция G_1 равна нулю. Далее построим последовательность функций $G_n(x,t)$, удовлетворяющих рекуррентному соотношению

(3.4)
$$G_{n+1}(x,t) = G_n(x,t) + \int_{u \in \Omega} \int_{u \neq x} G_1(u,t) \Delta_u G_n(x,u) du, n \in \mathbb{N}.$$

Обозначим

(3.5)
$$D_n = \int_{t \in \Omega, t \neq x} \Delta_t G_n(x, t) dt, n \in \mathbb{N}.$$

Тогда в силу формул 3.5 и 3.3

$$D_{n+1} = \int_{t \in \Omega, t \neq x} \Delta_t G_{n+1}(x, t) dt =$$

$$= \int_{t \in \Omega, t \neq x} \Delta_t \left(G_n(x, t) + \int_{u \in \Omega, u \neq x} G_1(u, t) \Delta_u G_n(x, u) du \right) dt =$$

$$= \int_{t \in \Omega, t \neq x} \Delta_t G_n(x, t) dt + \iint_{u \in \Omega, u \neq x, t \in \Omega} \Delta_t G_1(u, t) \Delta_u G_n(x, u) du dt.$$

Однако функция $\Delta_t G_1(u,t)$ в силу замечания 2.1 равна сумме $-\delta(u,t)$ и некоторой вероятностной меры. Эта вероятностная мера такова, что её значение в области Ω не превышает a. Таким образом,

$$D_{n+1} = \int_{t \in \Omega, t \neq x} \Delta_t G_n(x, t) dt + \iint_{u \in \Omega, u \neq x, t \in \Omega} \Delta_t G_1(u, t) \Delta_u G_n(x, u) du dt =$$

$$= \int_{t \in \Omega, t \neq x} \Delta_t G_n(x, t) dt + \iint_{u \in \Omega, u \neq x, t \in \Omega} (-\delta(u, t) + \chi_{t \neq u} \Delta_t G_1(u, t)) \Delta_u G_n(x, u) du dt =$$

$$= \int_{t \in \Omega, t \neq x} \Delta_t G_n(x, t) dt - \int_{u \in \Omega, u \neq x} \Delta_u G_n(x, u) du + \iint_{u \in \Omega, u \neq x, t \in \Omega, t \neq u} \Delta_u G_n(x, u) \Delta_t G_1(u, t) du dt =$$

$$= \int_{u \in \Omega, u \neq x} \Delta_u G_n(x, u) \int_{t \in \Omega, t \neq u} \Delta_t G_1(u, t) dt du \leq a \int_{u \in \Omega, u \neq x} \Delta_u G_n(x, u) du = D_n a.$$

Значит,

$$D_{n+1} \leq D_n a$$
.

По формуле 3.3 $D_1 \le a$, и

Аналогично получаем выражение для $\Delta_t G_{n+1}(x,t)$:

$$\Delta_t G_{n+1}(x,t) = \Delta_t \left(G_n(x,t) + \int_{u \in \Omega, u \neq x} G_1(u,t) \Delta_u G_n(x,u) du \right) =$$

$$= \Delta_t G_n(x,t) + \int_{u \in \Omega, u \neq x} \Delta_t G_1(u,t) \Delta_u G_n(x,u) du =$$

$$= \Delta_t G_n(x,t) + \int_{u \in \Omega, u \neq x} (-\delta(u,t) + \chi_{u \neq t} \Delta_t G_1(u,t)) \Delta_u G_n(x,u) du =$$

$$= \Delta_t G_n(x,t) - \Delta_t G_n(x,t) + \int_{u \in \Omega, u \neq x, u \neq t} \Delta_t G_1(u,t) \Delta_u G_n(x,u) du = \int_{u \in \Omega, u \neq x, u \neq t} \Delta_t G_1(u,t) \Delta_u G_n(x,u) du.$$

Теперь оценим разность между приближениями G_{n+2} и G_{n+1} . Для этого заметим, что при $n \geq 1$

$$G_{n+2}(x,t) = G_{n+1}(x,t) + \int_{u \in \Omega, u \neq x} \Delta_u G_{n+1}(x,u) G_1(u,t) du =$$

$$= G_{n+1}(x,t) + \iint_{u,v \in \Omega, u \neq x, u \neq v} \Delta_u G_n(x,u) \Delta_v G_1(u,v) G_1(v,t) du dv.$$

Для функций G_1 и G_2 в силу 3.4 верно соотношение

$$G_2(x,t) = G_1(x,t) + \int_{u \in \Omega, u \neq x} G_1(u,t) \Delta_u G_1(x,u) du.$$

Поэтому

(3.7)
$$G_{n+2}(x,t) - G_{n+1}(x,t) = \iint_{u,v \in \Omega, u \neq x, u \neq v} \Delta_u G_n(x,u) \Delta_v G_1(u,v) G_1(v,t) du dv,$$

а для функций G_1 и G_2

$$G_2(x,t) - G_1(x,t) = \int_{\substack{u \in \Omega, u \neq x \\ 16}} G_1(u,t) \Delta_u G_1(x,u) du.$$

Однако

$$G_1(v,t) \leq G_{\mathbb{R}^d}(v,t),$$

а по лемме 3.2

$$\Delta_v G_1(u, v) \le \Delta_v G_{B_{r(u)}(u)}(u, v),$$

и интеграл

(3.8)
$$\int_{v \in \Omega, v \neq u} G_1(v, t) \Delta_v G_1(u, v) dv \leq \int_{v \in \mathbb{R}^d, v \neq u} G_{\mathbb{R}^d}(v, t) \Delta_v G_{B_{r(u)}(u)}(u, v) dv = I(u, t).$$

Вычислим интеграл I. Он является гармоническим всюду, кроме $\partial B_{r(u)}(u)$. Кроме того, он сферически симметричен и стремится к нулю на бесконечности. Поэтому внутри шара $B_{r(u)}(u)$ он является постоянным, а вне этого шара убывает пропорционально $\frac{1}{|u-t|^{d-2}}$. Теперь заметим, что

$$\int_{v \in \mathbb{R}^d, v \neq u} \Delta_v G_{B_{r(u)}(u)}(u, v) dv = 1.$$

Поэтому I(u,t) убывает на бесконечности как

$$I(u,t) = \int_{v \in \mathbb{R}^d, v \neq u} G_{\mathbb{R}^d}(v,t) \Delta_v G_{B_{r(u)}(u)}(u,v) dv = (1+o(1)) \frac{1}{(d-2)\chi_d |u-t|^{d-2}}.$$

Значит,

$$I(u,t) = \frac{1}{(d-2)\chi_d \max(r(u), |u-t|)^{d-2}}.$$

Таким образом, по формуле 3.8

$$\int_{v \in \Omega, v \neq u} G_1(v, t) \Delta_v G_1(u, v) dv \le \frac{1}{(d-2)\chi_d \max(r(u), |u-t|)^{d-2}}.$$

Оценим $\int_{v\in\Omega,v\neq u}G_1(v,t)\Delta_vG_1(u,v)dv$ через радиус r(t), чтобы убрать зависимость от точки u. Для этого заметим, что если

$$\int_{v \in \Omega, v \neq u} G_1(v, t) \Delta_v G_1(u, v) dv \neq 0,$$

то существует точка v, такая, что $v \in B_{r(u)}(u)$, а точка $t \in B_{r(v)}(v)$. Поэтому в соответствии с условием теоремы

(3.9)
$$\frac{r(t)}{r(v)} \in (\frac{1}{2}, 2), \frac{r(v)}{r(u)} \in (\frac{1}{2}; 2), \frac{r(t)}{r(u)} \in (\frac{1}{4}; 4),$$

И

$$r^{d-2}(t) \int_{v \in \Omega, v \neq u} G_1(v, t) \Delta_v G_1(u, v) dv \le 4^{d-2} r^{d-2}(u) \frac{1}{(d-2)\chi_d \max(r(u), |u-t|)^{d-2}} \le \frac{4^{d-2} r^{d-2}(u)}{(d-2)\chi_d r^{d-2}(u)} = \frac{4^{d-2}}{(d-2)\chi_d}.$$

Обозначим

(3.10)
$$C = \frac{4^{d-2}}{(d-2)\chi_d}.$$

Тогда

$$\int_{v \in \Omega, v \neq u} G_1(v, t) \Delta_v G_1(u, v) dv \le C r^{2-d}(t).$$

По формулам 3.7 и 3.5

$$G_{n+2}(x,t) - G_{n+1}(x,t) = \iint_{u,v \in \Omega, u \neq x, u \neq v} \Delta_u G_n(x,u) \Delta_v G_1(u,v) G_1(v,t) du dv =$$

$$= \int_{u \in \Omega, u \neq x} \Delta_u G_n(x,u) \int_{v \in \Omega, v \neq u} \Delta_v G_1(u,v) G_1(v,t) dv du \leq \int_{u \in \Omega, u \neq x} Cr^{2-d}(t) \Delta_u G_n(x,u) du =$$

$$= Cr^{2-d}(t) \int_{u \in \Omega, u \neq x} \Delta_u G_n(x,u) du = Cr^{2-d}(t) D_n \leq a^n Cr^{2-d}(t).$$

Таким образом,

(3.11)
$$G_{n+2}(x,t) - G_{n+1}(x,t) \le a^n C r^{2-d}(t).$$

При $n \to \infty$ разность 3.11 экспоненциально убывает, и приближения G_n стремятся к некоторому пределу

$$\lim_{n \to \infty} G_n(x, t) = G_{\infty}(x, t).$$

Теперь докажем, что этот предел и является функцией Грина. Сначала убедимся, что он является гармоническим всюду, кроме нашей фиксированной точки x. Для этого заметим, что функция $f \in L_1$ является гармонической в области W, если и только если для любой точки $y \in W$ и любых радиусов r' > 0 и r'' > 0, таких, что $B_{r'}(y), B_{r''}(y) \subset W$, средние значения функции f в этих шарах совадают:

$$\frac{\int_{t \in B_{r''}(y)} f(t)dt}{|B_{r''}(y)|} = \frac{\int_{t \in B_{r'}(y)} f(t)dt}{|B_{r'}(y)|}.$$

Убедимся в том, что это верно для функции G_{∞} в области $W=\Omega\setminus\{x\}$. Действительно, для любой функции $f:\Omega\to\mathbb{R}$, такой, что её лапласиан Δf является зарядом, любой точки $y\in\Omega$ и любых постоянных радиусов r'>0 и r''>0, таких, что $B_{r'}(y), B_{r''}(y)\subset\Omega$,

$$\left| \frac{\int_{t \in B_{r''}(y)} f(t)dt}{|B_{r''}(y)|} - \frac{\int_{t \in B_{r'}(y)} f(t)dt}{|B_{r'}(y)|} \right| \le const(r', r'') \int_{t \in B_{\max(r', r'')}(y)} |\Delta f| dt,$$

где const(r', r'') – коэффициент, зависящий только от радиусов r' и r'', но не от положения точки y в области Ω или от функции f. Иными словами, разность средних значений функции в концентрических шарах оценивается с помощью интеграла от модуля лапласиана в этих шарах.

Теперь докажем, что для функции $G_n(x,t)$, где $x,t\in\Omega$, подобные разности стремятся к нулю во всех парах концентрических шаров, не содержащих точку x. Для этого достаточно оценить интеграл модуля лапласиана функции G_n внутри шара. При n>1 функция G_n выражается через $G_{n-1}(x,t)$ и интеграл от $\Delta_u G_{n-1}(x,u)G_1(u,t)$ (см. формулу 3.4). Выражая каждое приближение через предыдущее, на k-м шаге получим слагаемое $\Delta_u G_{n-k}(x,u)G_1(u,t)$. Сделав n-1 шаг, выразим функцию $G_n(x,t)$ через $G_1(x,t)$ и, при n>1, сумму интегралов от $\Delta_u G_{n-k}(x,u)G_1(u,t), k\in\mathbb{N}, k< n$. Функции $G_1(x,t)$ и $G_1(u,t)$ лежат в классе L_1 и таковы, что

их лапласианы $\Delta_t G_1(x,t)$ и $\Delta_t G_1(u,t)$ являются зарядами. Значит, лаласиан $\Delta_t G_n(x,t)$ также является зарядом.

Поэтому при фиксированной точке x можно рассмотреть $f(t) = G_n(x,t)$. Для любых двух лежащих в области Ω шаров радиусов r' и r'' с одним центром y, не содержащих точку x, разность средних значений G_n

$$\left| \frac{\int_{t \in B_{r''}(y)} G_n(x,t)dt}{|B_{r''}(y)|} - \frac{\int_{t \in B_{r'}(y)} G_n(x,t)dt}{|B_{r'}(y)|} \right| \le const(r',r'') \int_{t \in B_{\max(r',r'')}(y)} |\Delta_t G_n(x,t)|dt \le const(r',r'') D_n \le const(r',r'') a^n$$

в силу формул 3.5 и 3.6. Эта разность сходится к нулю при $n \to \infty$. Поэтому для функции G_∞ разность средних значений в концентрических шарах, не содержащих точку x, равна нулю. Значит, функция $G_\infty(x,t)$ является гармонической всюду, кроме точки t=x.

Кроме того, G_{∞} неотрицательна в любой точке $t \in \Omega$ и равна нулю на границе $\partial \Omega$. Остаётся заметить, что поток градиента функции $G_n(x,t)$ в малую окрестность точки x не меньше $1-D_n$, так как интеграл лапласиана $\Delta_t G_n(x,t)$ внутри области Ω по всем точкам, кроме x, равен D_n , а особенность в точке x создаёт поток градиента, равный единице. Поэтому поток градиента $\nabla_t G_n(x,t)$ в малую окрестность точки x стремится к единице. Значит, в пределе при $n \to \infty$ поток градиента становится равным единице, и функция $G_{\infty}(x,t)$ является функцией Грина:

$$\lim_{n \to \infty} G_n(x,t) = G_{\infty}(x,t) = G_{\Omega}(x,t).$$

Поэтому в силу 3.11

$$G_{\Omega}(x,t) - G_{1}(x,t) = G_{\infty}(x,t) - G_{1}(x,t) = (G_{2} - G_{1}) + (G_{3} - G_{2}) + (G_{4} - G_{3}) + \dots =$$

$$= \sum_{n=0}^{\infty} (G_{n+2}(x,t) - G_{n+1}(x,t)) \le \sum_{n=0}^{\infty} Cr^{2-d}(t)a^{n} = \frac{Cr^{2-d}(t)}{1-a}.$$

Аналогично при $n \ge 1$

$$G_{\Omega}(x,t) - G_{n}(x,t) = \sum_{k=n-1}^{\infty} (G_{k+2}(x,t) - G_{k+1}(x,t)) \le \sum_{k=n-1}^{\infty} Cr^{2-d}(t)a^{k} = \frac{Cr^{2-d}(t)a^{n-1}}{1-a}.$$

Таким образом, n-е приближение $G_n(x,t)$ близко к функции Грина $G_{\Omega}(x,t)$. Теперь мы можем оценить значение функции Грина $G_{\Omega}(x,t)$ в зависимости от r(t) и определённой в условии теоремы величины $n_{min}(x,t)$, то есть от радиуса шара в конце пути и от длины пути. Заметим, что функция $G_1(x,t) = G_{B_{r(x)}(x)\cap\Omega}(x,t)$ и её лапласиан $\Delta_t G_1(x,t)$ не равны нулю только при $|x-t| \leq r(x)$. Согласно соотношению 3.4 при n>1

$$G_n(x,t) = G_{n-1}(x,t) + \int_{u \in \Omega, u \neq x} G_1(u,t) \Delta_u G_{n-1}(x,u) du.$$

Поэтому

$$\operatorname{supp} G_n(x,t) \subseteq \operatorname{supp} G_{n-1}(x,t) \bigcup \bigcup_{u \in \operatorname{supp} G_{n-1}(x,t)} B_{r(u)}(u) = \bigcup_{u \in \operatorname{supp} G_{n-1}(x,t)} B_{r(u)}(u).$$

Поэтому

$$\operatorname{supp} G_n(x,t) \subseteq \bigcup_{n_{\min}(x,u) \le n-1} B_{r(u)}(u) = \{ u \in \mathbb{R}^d | n_{\min}(x,u) \le n \}.$$

Значит, при $n < n_{min}(x,t)$

$$G_n(x,t) = 0,$$

 $G_{\infty}(x,t) = G_{\infty}(x,t) - G_n(x,t) \le \frac{Cr^{2-d}(t)a^{n-1}}{1-a},$

и поэтому при $n_{min}(x,t)>1$

$$G_{\infty}(x,t) \le \frac{Cr^{2-d}(t)a^{n_{\min}(x,t)-2}}{1-a}.$$

Значит, при $n_{min}(x,t) > 1$

$$G_{\infty}(x,t) \le \frac{Cr^{2-d}(t)}{a^2(1-a)}a^{n_{min}(x,t)}.$$

Положив

$$A(a) = \frac{C}{a^2(1-a)},$$

получим, что

$$G_{\Omega}(t,x) = G_{\infty}(x,t) \le A(a)r^{2-d}(t)a^{n_{\min}(x,t)}.$$

Для случая $n_{min}=1$ применим лемму 2.3. Для любых точек $x,t\in\Omega$

$$G_{\Omega}(x,t) \le G_{\mathbb{R}^d}(x,t) = \frac{1}{(d-2)\chi_d|x-t|^{d-2}}.$$

Замечание 3.2. Если в условии теоремы 3.1 потребовать, чтобы для некоторого вещественного числа $\alpha > 1$ $\frac{r(y)}{r(x)} \in (\alpha^{-1}; \alpha)$, то это приведёт только к тому, что в формуле 3.9 отношение радиусов $\frac{r(t)}{r(u)}$ будет лежать в интервале $(\alpha^{-2}; \alpha^2)$, а константа C в формуле 3.10 заменится на $\frac{\alpha^{2(d-2)}}{(d-2)\chi_d}$. На дальнейшем рассуждении это изменение не отразится.

4. Заключение

Основным результатом работы является имеющая общий характер теорема 3.1 о скорости убывания функции Грина в любых областях, пересекающихся с шарами заданных радиусов по множествам малой меры.

Тема, в рамках которой получен результат, актуальна. Например, в статье 2021 года Бо-Ёнга Чена и Юанпу Ксионга [13] доказано противоположное утверждение: если в область в пространстве $\mathbb{C}^n = \mathbb{R}^{2n}$ вкладываются каспы, то функция Грина (и, как следствие, любая супергармоническая функция) убывает не более чем с определённой скоростью при приближении к границе. Комплексная структура на пространстве \mathbb{R}^{2n} в данном случае играет вспомогательную роль.

Доказанная в работе теорема 3.1 легко обобщается на произвольные многообразия, что позволяет применить её во многих задачах. В частности, обобщение теоремы позволяет построить пример быстро убывающей на бесконечности функции, заданной на полуцилиндре и имеющей ограниченное отношение лапласиана к значению функции. Помимо этого, предполагается, что теорема 3.1 позволит при всех $d \geq 4$ построить пример вещественнозначной функции на \mathbb{R}^d , убывающей пропорционально $e^{-c|x|^{\frac{4}{3}}}$ и имеющей ограниченное отношение лапласиана к значению функции. Такой пример опровергнул бы гипотезу Ландиса, высказанную в 1960-х годах, о том, что не существует вещественнозначной функции, имеющей ограниченное отношение лапласиана к потенциалу, но убывающей быстрее, чем экспоненциально. В размерности d=2 более слабая версия гипотезы, запрещающая убывание быстрее $e^{-|x|^{1+\epsilon}}$, доказана в 2020 году в работе Логунова, Малинниковой, Надирашвили и Назарова [5]. Таким образом, гипотеза Ландиса останется открытой проблемой только при d=3.

5. Благодарности

Хочу выразить благодарность моему научному руководителю Н.Д. Филонову за моё обучение, за увлекательные и сложные поставленные задачи. Также хочу поблагодарить рецензента данной работы В.С. Михайлова за проявленный интерес. В заключение хочу выразить мою признательность Факультету математики и компьютерных наук, где я активно занимался поставленными задачами и получал навыки, полезные для доказательства теорем, разработки методов и вывода формул, указанных выше.

Список литературы

- [1] Эванс Л.К., Уравнения с частными производными, 2003, Новосибирск, изд-во Тамары Рожковской.
- [2] А. Л. Гусаров, Лиувиллевы теоремы для эллиптических уравнений в цилиндре, Труды Моск. Мат. Об-ва 42 (1981), 254–266.
- [3] Е. М. Ландис, Некоторые вопросы качественной теории эллиптических уравнений второго порядка (случай многих независимых переменных), УМН 18 (1963), вып. 1(109), 3–62.
- [4] Б. А. Пламеневский, А. С. Порецкий, О системе Максвелла в волноводах с несколькими цилиндрическими выходами на бесконечность, Алгебра и анализ, 2013, том 25, выпуск 1, 94–155
- [5] A. Logunov, E. Malinnikova, N. Nadirashvili, F. Nazarov, *The Landis conjecutre on exponential decay*, https://arxiv.org/pdf/2007.07034.pdf
- [6] В. З. Мешков, О возможной скорости убывания на бесконечности решений уравнений в частных производных второго порядка, Матем. сб. 182 (1991), номер 3, 364–383.
- [7] N. D. Filonov, S. T. Krymskii, On the speed of decreasing of solutions of the Schrödinger's equations on a half-cylinder,
- [8] Л.И. Волковыский, Г.Л. Лункц, И.Г. Араманович Сборник задач по теории функций комплексного переменного, Учеб. пособие, 4-е изд., испр., М Физматлит. 2002, 312 с., ISBN 5-9221-0264-8.
- [9] Вольперт А.И., Худяев С.И. Анализ в классах разрывных функций и уравнения математической физики.
 М.: Наука, 1975. 395 с.
- [10] V. A. Kondratiev, E. M. Landis, "Qualitative theory of second order linear partial differential equations", Partial differential equations 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32, VINITI, Moscow, 1988, 99–215
- [11] Dahlberg, B.E.J. Estimates of harmonic measure. Arch. Rational Mech. Anal. 65, 275–288 (1977).
- [12] Yu. A. Alkhutov, "Lp-estimates of the solution of the Dirichlet problem for second-order elliptic equations", Sb. Math., 189:1 (1998), 1–17
- [13] Bo-Yong Chen, Yuanpu Xiong, A Psh Hopf Lemma for Domains with Cusp Conditions, https://arxiv.org/pdf/2112.09480.pdf