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Introduction
Linear algebra is an excellent instrument for solving a wide variety of prob-
lems by utilizing matrices and vectors for data representation and analysis
with the help of highly optimized routines. And whilst the matrices involved
in a vast diversity of modern applications, e.g., recommender systems [22, 3]
and graph analysis [34, 4], consist of a large number of elements, the major
part of them are zeros. For example, the matrix representing YouTube’s
social network connectivity contains only 2.31% non-zeros [21]. Such a high
sparsity incurs both computational and storage inefficiencies, requiring un-
necessarily large storage occupied by zero elements and many operations on
zeroes, where the result is obviously known beforehand. The traditional ap-
proach to address these inefficiencies is to compress the matrix, store only
the non-zero elements, and then operate only on non-zero values. Thus,
the effect of matrices tending to be sparse in many applications makes the
techniques of matrix compressed representation and sparse linear algebra to
be an effective way of tackling problems in areas including but not limited
to graph analysis [20], computational biology [9] and machine learning [10].
GraphBLAS [14] standard defines sparse linear algebra building blocks

useful to express algorithms for already mentioned areas uniformly in terms
of sparse matrix and vector operations over some semiring. These include,
for instance, matrix/vector multiplication, element-wise operations (e-wise
for short), Kronecker product, masking, i.e., taking a subset of elements that
satisfies the mask or its complement, etc.. These are sufficient to express a
lot of algorithms, e.g. PageRank, Breadth-First-Search, Sparse Deep Neural
Network [7].

However, sparse computations appear to have a low arithmetic-to-me-
mory operations intensity, meaning that the main bottleneck of sparse al-
gorithms is the sparse representation itself. It induces pointer-chasing and
presents irregularity of memory accesses. Thus, a number of optimizations
were identified [46], whose aim is to reduce the intensity of memory ac-
cesses, and the one considered in this work is fusion. Fusion simply stands
for gluing several functions into one to remove intermediate data structures,
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Figure 1: Mask fusion

namely those that are first constructed and then deconstructed.
An example of fusion could be seen in figure 1. There a masked sparse

matrix-spare vector multiplication (shown with ⊗) is depicted. The mask
simply takes the subset of the result, but fusing the mask inside the multipli-
cation reduces the number of memory accesses by avoiding the construction
of an intermediate matrix that would store the result of multiplication.

In the case of loop-based programming, fusion simply stands for joining
several loops into one to increase memory locality and reduce the number
of required iterations. It is a crucial technique in dense applications and
is usually implemented as a part of affine transformations and polyhedral
analysis [2]. However, indexing in sparse applications is not an affine one.

Some general-purpose solutions exist that support fusion (e.g., [12])
which are based on map/reduce semantics. But in order to support sparse
operations, they should be able to fuse across index arithmetic, which is not
the case. Also, at the moment neither SuiteSparse [40] nor GraphBlast [46]
have adopted automatic fusion in their implementations but address the is-
sue, and these are widely used GraphBLAS implementations for CPU and
GPU platforms, respectively.

Further, there are several implementations of GraphBLAS standard that
show decent performance for both GPU [46] and CPU [6] backends, with
one of them already speeding up graph database queries [28]. However,
typical CPUs and GPUs were proven to be underutilized [8, 21, 24, 36],
i.e., their computing units do not achieve peak performance, for tasks that
involve sparsity, due to being too general-purpose by design and suffering
from the irregularity of memory accesses incurred by sparsity.
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The traditional approach for problems when existing hardware does not
provide enough performance or appear to be energy-inefficient for a partic-
ular application is the design of an application-specific processor. Such an
approach has found a successful application in image processing [15, 25],
programmable networks [23], and machine learning [5, 45]. Thus, a possi-
ble way of addressing the underutilization issues of the current hardware
running sparse algorithms is the design of an application-specific processor
that could handle sparse operations more efficiently.

And indeed, there are a number of works [24, 30, 36, 37] that imple-
ment specific hardware for sparse operations. However, they generally fo-
cus on sparse matrix-matrix and matrix-vector multiplications which are
not enough to express a somewhat useful subset of sparse building blocks,
i.e., blocks that appear to be useful to construct, e.g., some graph algorithms
like finding maximal independent subset. The low-level nature of such so-
lutions makes it impossible to reason about them, which makes automatic
fusion impossible. Finally, in such applications, the overall design energy
consumption and performance are dominated by external memory accesses.
Fusion reduces the number of such accesses and thus could improve the
performance.

The traditional approach for developing hardware uses some low-level
RTL programming, e.g., in SystemVerilog. However, high-level synthesis, a
process when hardware is generated from a description given in a high-level
language, makes reasoning about programs easier, opening opportunities for
already mentioned fusion. Thus, the aim of this work is to compile sparse
linear algebra programs into hardware with fusion optimization in mind.
That will exploit the performance from the hardware side and amenability
to optimizations from the software side.
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Problem statement
The aim of this work is to evaluate whether it is practical and effective
to utilize distillation and specialized hardware to optimize programs that
contain sparse linear algebra routines. The work elaborates on distillation
and high-level synthesis, outlining key challenges to obtain a better solution.
In order to achieve the aim, the following objectives were set.

• Study approaches for providing fusion in different areas.

• Implement hardware generation with fusion in mind.

• Design memory interface.

• Implement the testbench and carry out the evaluation.

8



1 Background
The section gives the necessary insights about sparse linear algebra to more
clearly show the context of the work. Further, it discusses fusion, challenges
and outlines the proposed solution.

1.1 GraphBLAS
GraphBLAS is a C API specification that standardizes sparse linear al-
gebra building blocks initially for graph computations but is nevertheless
applicable in other areas. It translates mathematical specifications to API
that could be efficiently implemented in hardware or software. Also, it
is the only such specification and was completed by researchers from the
field of high-performance graph algorithms based on sparse linear algebra.
The specification further gives the means for interoperation with vertex-
centric libraries, which potentially makes it a crucial component in the
future ecosystem of big graphs [13]. A list of operations (not exhaustive,
though) provided by the standard could be seen in table 1, where C⟨M⟩
stands for masking, i.e., taking a subset of elements that satisfies the mask
or its complement. These are sufficient to express a lot of algorithms, e.g.,
PageRank, Breadth-First-Search, Sparse Deep Neural Network Graph Chal-
lenge [7]. Notably, each operation is parameterizable by a semiring, which
is the key to expressivity.

These operations are often chained in such a way that makes fusion pos-
sible. Consider, for example, an excerpt from Luby’s maximal independent
set algorithm [41] in listing 1 depicted in pseudo-Haskell with mutable vari-
ables. It shows a sequence of element-wise additions which could be fused

Function Description Notation
GrB_mxm matrix-matrix mult. C⟨M⟩ = AB

GrB_eWiseMult element-wise, set union C⟨M⟩ = A⊗ B
GrB_eWiseAdd element-wise, set-intersection C⟨M⟩ = A⊕ B
GrB_apply apply unary op. C⟨M⟩ = f(A)

Table 1: Some of the GraphBLAS operations
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-- select node if its probability is > than all its active neighbors
let new_members = prob `GrB_eWiseAdd GrB_GT_FP64_Semiring` neighbor_max
-- add new members to independent set.

iset = iset `GrB_eWiseAdd GrB_LOR_Semiring` new_members

Listing 1: Excerpt from Luby’s maximal independent set algorithm implementation

to eliminate the construction of a new_members matrix in the middle. The
result of such fusion depends on the implementation of GrB_eWiseAdd and
hence is not shown.

1.2 Fusion
The formal definition of fusion is not obvious to give, and thus some intuitive
understanding is assumed. Fusion optimization often stands for the removal
of something intermediate, i.e., something which is first constructed and
then deconstructed. These could be arrays for imperative programs, lists
for functional programs, and whole kernels in the case of a GPU accelerated
linear algebra library (kernel launch overhead is mitigated by gluing kernels
into one). This section will give a brief overview of what is assumed by
fusion in some systems and outline their implementation details. Note that
only automatic fusion will be considered since the easy solution is to provide
enough already fused primitives, but the approach has limited flexibility and
high development costs.

In imperative languages, fusion is often associated with gluing several
loops into one. It may increase the locality and reduce the required memory
consumption. The procedure often relies on polyhedral and affine analysis
techniques and is infeasible if the loops exhibit non-affine indexing, which
is just the case for sparse data structures.

In functional languages, we mainly deal with functions, and hence fusion
in its simplest form is function composition, which is implemented as a term
rewriting pass, e.g., map f . map g == map (f . g). However, functions
are less performant in representing data than, e.g., arrays, and some state-
of-the-art solutions exist that provide fusion for high-order array operations
in functional languages [12]. But they also fail to fuse across index arith-
metic which arises in sparse data structures. There was an attempt to
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implement sparse matrix e-wise addition in functional array programming
language [12], but indexing appeared to be hard to fuse1.

Furthermore, rewrite rules are domain-specific. They are tightly cou-
pled with, e.g., arrays or matrices where one could use distributive law to
perform some kind of fusion. But, in sparse applications, it is often the
case that we do not have any special properties like associativity and com-
mutativity, e.g., in the case of context-free graph querying. However, it is
worth noticing that such rewrite rules are very powerful when combined
with staged compilation [32]. Such rules also form the basis for a widely
addressed area of stream fusion [38]; however sparse matrices impose a par-
ticular structure and thus are not stream-like, and rules require to express
programs with certain combinators.

In Tensorflow and its XLA compiler [45] a machine learning model is
represented with a dataflow graph, in which tensors flow through the edges
and nodes represent some operations. The goal of the compiler is to iden-
tify and offload some parts of such a graph to, e.g., GPU, and perform
corresponding code generation. Fusion is performed on that graph level,
either by duplicating producers for each consumer or fusing outputs of sev-
eral operations. The approach works under the restrictions that the kernels
comply with similar memory access and iteration patterns, which is hard
to guarantee in sparse applications.

Another approach to removing intermediate data structures in func-
tional programs is distillation [16]. It is a generalization of supercompila-
tion [39], and briefly, its goal is to represent all possible execution paths
of a program with a finite process graph. Such a process graph is built
by performing normal order reduction on terms, and the fusion effect is
achieved by performing a transitive closure of such a graph. On top of that,
distillation is able to provide superlinear programs speedup, perform spe-
cialization, and make other optimizations available by propagating positive
information.

1Implementation is available here: https://github.com/Tiltedprogrammer/impala-sparse/blob/
master/futhark/sparse.fut (online; accessed: 2022-06-07)
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1.3 Challenges
Despite the overall achieved performance of GraphBLAS implementations,
there are inevitable challenges both for the hardware running sparse algo-
rithms and for the software performing optimizations.

For the former, both CPUs and GPUs remain underutilized when exe-
cuting sparse operations due to high cache-miss rates and limited communi-
cation between processors [24]. Sparse algorithms are inherently memory-
bound, resulting in poor GFLOPs number compared to peak GFLOPs the-
oretically available on modern devices, namely less than 0.2% of theoretical
performance is achieved as reported in [21, 8]. For example, the pipeline of
sparse matrix-matrix multiplication consists of several kernels that greatly
vary in performance and resource utilization. For the case of a GPU imple-
mentation2 the performance analysis is illustrated in figure 2. Each kernel
utilizes SM (Streaming multiprocessor) differently, where percentage means
the number of cycles the SM is not idle. It is also worth noting that the
utilization of floating-point units is still about 0% for all the kernels. Also as
it could be seen from the kernels’ runtime, the reduce kernel (the one that
actually performs the operations, e.g., addition and multiplication) takes
about 2% of the time, while memory operations take the whole half of it.
It means that full GPU power is needed only in 2% of the pipeline time.

For the latter, optimizations are hard to automate and perform in gen-
eral. Kernels are compelled to satisfy certain restrictions to be fuseable:

2Using cuSPARSE library and roadNet-CA graph.
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the absence of intermediate synchronization, same data access pattern, and
enough resources on the device to execute the fused kernel. For specializa-
tion, it is better for the underlying hardware to be MIMD for the workers
to be completely independent, however GPU’s architecture is SIMD, which
prevents successful specialization in many cases.

Eventually, some application-specific integrated circuits were designed to
address the issues mentioned above, that basically provide hardware units
for sparse matrix-matrix or matrix-vector multiplication [24, 35, 36, 37].
A brief overview could be found in [36]. The implementation from [36]
greatly outperforms CPUs (Intel MKL3) and GPUs (cuSPARSE4) solutions
in terms of speed and power consumption. Despite high performance, such
solutions do not yet provide a complete implementation of GraphBLAS (or
even a subset required for a concise breadth-first search) and seem too self-
contained to split the operation into phases that could be optimized in the
discussed sense. However, considering high performance, it is promising
to combine software and hardware parts to achieve both performance and
expected usability inherent to GraphBLAS implementations.

3Intel MKL library: https://software.intel.com/content/www/us/en/develop/tools/oneapi/
components/onemkl.html (online; accessed: 2022-06-07)

4https://developer.nvidia.com/cusparse (online; accessed: 2022-06-07)
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1.4 Proposed solution
To address the mentioned challenges and support automatic fusion for
sparse applications, the work opts for distillation to provide fusion and high-
level synthesis (HLS) to generate application-specific hardware. The first
option provides low-level automatic fusion for functional programs while
still making it possible to eventually use rewrite rules and staged compila-
tion5. The latter one takes into account all the software optimizations made
to generate application-specific hardware, and hence it is more flexible than,
e.g., hardcoded solutions for matrix multiplication.

Since distillation provides fusion for functional programs, it is left to
perform HLS for a functional program. Modern HLS tools are imperative
and do not handle arbitrary recursion. This work uses and refines the ex-
perimental compiler FHW from [44]. This compiler compiles an arbitrary
Haskell program into SystemVerilog utilizing parallel and pipelined dataflow
intermediate representation, which allows to perform syntax-directed trans-
lation into hardware.

The flow of data in our solution could be seen in figure 3. We write a
program that contains sparse linear algebra routines in a simple, functional
language .pot, which is a source language for the distiller. After distilla-
tion, the transformed program is emitted into Haskell and GHC dumps
the external core representation of it. This representation is input for
FHW. First, a program in external core representation is transformed into
dataflow intermediate representation by using auxiliary syntax transforma-
tions. Then a program in dataflow representation is fed into FHW again
to finally get SystemVerilog code in main.sv. Some auxiliary modules are
also generated: main_wrapper.sv is needed to pass arguments to main.sv
and main_testbench.sv is simulation testbench, main_testbench.sv is
not used for synthesis and thus is marked by ?.

5It is noted to justify the design choice and is not the purpose of the work.
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append (append xs ys) zs where

append xs ys = case xs of
[] -> ys
(x:xs') -> x : (append xs' ys)

f xs ys zs where

f xs ys zs = case xs of
[] -> case ys of
[] -> zs
(y':ys') -> y' : (g ys') where

g ys = case ys of
[] -> zs
(y':ys') -> y' : (g ys')

(x':xs') -> x' : (f xs' ys zs)

Listing 2: Program before
transformation

Figure 4: Process graph Listing 3: Program after
transformation

1.5 Distillation
Distillation is an extension of positive supercompilation, described in [16].
It is a functional programs transformation technique that aims to reduce
the number of required reductions and intermediate data structures. In do-
ing so, it drives the program with the help of normal order reduction rules
constructing a process graph. The process of driving could be potentially
infinite, but it is bounded by homeomorphic embedding relation, which
guarantees the termination of such driving. Such a finite process graph
describes all possible execution paths of a program. Driving makes a tran-
sitive closure of such graph and propagates information, thus the number of
required computations is reduced: transitive closure removes intermediate
nodes, and information propagation makes extra case expressions unnec-
essary. An example of such transformation could be seen below, where a
sequence of append functions is transformed to iterate over each list only
once.

The process graph in the middle is obtained from driving the program
to the left and the right program is residualized from the process graph.
Dashed edges lead to recursive function calls, but before the call information
is propagated.
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Actor Description
primitive Performs built-in operations, e.g., integer addition or

constructor application.
destruct Disassembles a value of algebraic data type. It has an

output per each data type’s constructor field.
fork Consumes a single input token and copies it to each

of its output channels.
demux Behaves like a demultiplexer, i.e. routes the value

input to the channel chosen by the choice input.

mux
Behaves like a multiplexer, i.e. chooses the value
from inputs according to the choice input and routes
it to the output.

read Constructs a pointer from a value.

write Returns a value for a pointer.

merge It chooses an available token from one of its inputs
and routes it to its output.

mergeChoice Same as above but also generates a token indicating
which input channel provided the selected token.

source Serves as an entry point to dataflow network, it is
allowed to have no inputs.

sink Serves as an output of dataflow network, it is allowed
to have no outputs.

Table 2: FHW actors

1.6 FHW
FHW [44] is a compiler that compiles a Haskell program into SystemVerilog.
Notably, the tool is purely functional and allows programs with arbitrary
recursion. The compiler relies on specific syntax transformations, which
make eventual translation into hardware easier. The most crucial trans-
formations are defunctionalization, which encodes higher order functions,
making them possible to be represented in hardware; continuation-passing-
style (CPS) transformation, which makes control flow explicit by passing it
via additional arguments to functions; and encoding recursive types with
explicit pointers. CPS makes each recursive function tail-recursive, hence
there is no need to maintain a stack for each function call: each group
of mutually recursive functions shares the same heap, which stores their
continuations. This makes it easier to return values to the caller.

The compiler relies on dataflow intermediate representation that is con-
structed from combinations of predefined basis actors. Then, such actors
are implemented in SystemVerilog and cooperate via valid/ready protocol.
Each actor is required to have at least one input and one output, thus a spe-
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cial Go token is added to trigger dataflow execution and constants creation.
The available actors are summarized in table 2.

Each function and recursive data type has its own heap, which increases
parallelism, but maintaining equally-sized memory spaces could be quite
expensive. Memory at the moment is implemented as bram blocks in hard-
ware. The memory is assumed to be garbage collected, but garbage collec-
tor is not implemented. To break cycles in valid/ready networks additional
buffers are inserted.
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2 Specialized hardware generation with fu-
sion

As has already been mentioned, we utilize distillation to provide fusion for
routines written in a simple functional programming language and utilize
FHW compiler, which is able to translate any Haskell program into Sys-
temVerilog and eventually into bitcode for FPGA. This section discusses
how the gap between the distiller language and Haskell was closed, what
issues in FHW were found and how they were solved. Also the section de-
scribes data structures being used for which fusion via distillation works
well.

2.1 Distiller
The distiller from [16] operates on programs written in .pot language: a
simple call-by-name functional language. Its syntax resembles the one of
Haskell, but it encloses the arguments of a constructor in parentheses and
separates them with a comma to make parsing easier. In order to emit
Haskell, the pretty-printer prints such constructors correspondingly and
maintains correct indentation for case alternatives, which are originally sep-
arated by | in .pot. With such modifications, it is possible to emit Haskell
code from .pot programs and eventually pass them into FHW compiler. It
is worth noting that .pot assumes a Hindley-Milner type system, but its
implementation is untyped; thus the emitted program should be extended
by hand to contain proper type definitions and annotations where needed
to eliminate unnecessary typeclasses.

Another issue is that the distiller originally produced duplicated func-
tions during residualization. Such functions increase the size of the gener-
ated hardware significantly for reasonable examples and make translation
into hardware more complex. The functions are filtered to contain only
non-duplicates. Since functions use De Bruijn indexes for bound variables,
functions are considered to be duplicates if their bodies are equal after we
replace each recursive call in one function with the name of the other func-

18



tion.

2.2 FHW
Unlike [11], which utilized C++ Verilator simulation, we use Xilinx Vivado
to both simulate the generated SystemVerilog and to synthesize it. It allows
to better estimate design and memory transferring overheads.

Initially, generated hardware did not work in Vivado simulation due to
the multiple driving of initial blocks, which are also not synthesizable.
Such blocks were replaced with a reset signal. The dataflow network works
under valid-ready protocol, and memory output had to be invalidated to
prevent the propagation of undefined signals. Such outputs are invalidated
on the positive edge of the reset signal.

After that, it appeared that the compiler could not handle examples with
sparse linear algebra routines due to the limited maximum number (64) of
inputs in merge actors. For each merge actor in the dataflow there is a sum
datatype with the number of fields equal to the number of merge inputs to
be able to correctly type each merge and to identify the chosen input to
pass that choice to another actor: demux, fork or mux. Such datatypes are
recursively split until every datatype satisfies the restriction. The inputs
of a merge are also split and a new layer of merge actors is added on top,
as it could be seen in figure 5 where the limit is 2 while the original input
size is 4; consuming actor is split accordingly. Similar procedure is applied
for datatypes that arise during lowering passes of FHW, for example, if
the defunctionalization pass introduces more than 64 constructors in the
corresponding datatype. An example of such step could be seen in listing 4,
if we suppose that maximum supported number of alternatives is 4.

2.3 Data types
The success of sparse linear algebra functions fusion depends on the com-
pressed representation being used. Our choice here is quadtree represen-
tation [33]. It provides a reasonable compression rate compared to tradi-
tionally used formats, e.g., coordinate format, or compressed sparse row
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data Cont = C_1 | C_2 | C_3 | C_4
-- transformed into
data LeftCont = C_1 | C_2
data RightCont = C_3 | C_4
data Cont = LeftCont | RightCont

Listing 4: Data type split step

data

merge

data

demux

choice

...

data

merge

data

demux

choice

...

choice

merge

choice

merge

demux demux

Figure 5: Merge split
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representation [20], consuming 1.5x more memory on average in our ex-
periments, although memory consumption grows logarithmically with the
dimensions of a matrix. Also, it allows to express algorithms in a divide and
conquer manner leaving indexing implicit, which facilitates fusion. The rep-
resentation simply recursively splits the matrix into submatrices until the
size of 1x1 or until the submatrix is empty. Thus it encodes only matrices
with the size of power of 2, but any matrix could be extended with zeroes to
fit the size requirement. An example of such representation could be seen in
figure 6, where a matrix with 4 non-zero entries is depicted. Dashed squares
represent either submatrix with only zero entries or zero entry. A procedure
of getting a quadtree representation from coordinate format could be found
in [42]. Since the representation is constructive, it is possible to utilize de-
pendent type programming techniques to, for example, specify correct by
construction routines or use rewrite rules for matrix relations to optimize
routines, following the approach of [31]. Next, we use terms tree, quadtree
or matrix interchangeably: they all mean a sparse matrix representation
via quadtree.

2.4 GRIN
Some other issues with FHW’s frontend exist. FHW uses external core
representation of GHC, which was removed after GHC 7.6.3. This makes
the compiler tightly coupled with Haskell, with the necessity to support
various Haskell features, like type classes and burdens of primops. The
obsolete version of GHC also makes the development process harder. FHW
at the moment does not support partially applied functions in a frontend
and CPS transformation is slow.

To mitigate the above issues, we opted for graph reduction intermediate
notation (GRIN) [26] as a prospective frontend that would tie the frontend
of the distiller and dataflow representation. It provides extra optimizations,
like heap-points-to analysis, inlining, common subexpression elimination,
etc., which improve the results of distillation: the distiller naively inlines
some terms duplicating computations.
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All the essential frontend transformations of FHW are actually parts
of the translation procedure into GRIN. The procedure includes variable
names unification, variable lifting, lambda lifting, and defunctionalization.
These steps were implemented to translate a program from .pot language
into .grin. .pot language does not allow recursive let bindings, which
makes lambda lifting a bit easier. The algorithm could be found in [18].
Defunctionalization is a part of the GRIN itself: the representation defines
ap, apply, and eval procedures. The first one takes a function node and
an argument node: it evaluates the function node and applies it to the
argument. The second one operates with partially applied functions and
constructors: it either saturates a function with one more argument or
makes a function call if the argument fully saturates the function. The last
one simply evaluates each possible node in a program. These procedures
are built during translation, when either a constructor application, or a
function application (partial or saturated) are encountered. The notation is
designed for lazy languages: it accumulates nodes without evaluating them
if not needed, however the hardware is strict (otherwise, it would be needed
to force node evaluation before transferring data from hardware to host).
To make translated programs strict, calls to eval procedure are inserted
to each function or constructor argument and functions are guaranteed to
return and receive pointers to evaluated nodes. The implementation of the
translator from .pot to .grin could be found at [43].

GRIN representation uses static single assignment (SSA), and whilst
SSA and CPS are equivalent [19] they are different when generating hard-
ware through dataflow. The current implementation is heavily CPS-depend-
ent, which makes control flow in dataflow straightforward: every recursive
call is a tail call. This makes parallelization harder, since otherwise, chained
recursive calls could be executed in parallel instead of chaining them with
continuations. Such parallelization is more explicit in SSA form. However,
SSA conversion into hardware would require heavy modifications to the cur-
rent dataflow scheme and it is unclear whether it will maintain the existing
formalisms that dataflow fulfills. Since CPS is crucial, to express it in GRIN
several auxiliary routines are added and existing ones are modified: eval
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is modified to accept a continuation; ap applies a function to an argument
in a continuation, which is passed to function evaluation; apCont is a ver-
sion of ap, which accepts a continuation; applyC applies a partial function
or constructor to an argument with continuation; evalC and evalC2 are
eval continuations for ap and apCont respectively. A full example for CPS
transformation of a program, that adds to zeroes in Peano arithmetics could
be seen on GitHub6,7.

Unfortunately, it appeared that heap-points-to analysis in the current
implementation of GRIN worked only for tiny programs8, which is not the
case for our sparse linear algebra routines. Since this analysis is crucial in
GRIN, the prospective frontend was left until the analysis is performant
enough and the part between GRIN and dataflow representation is unim-
plemented at the moment.

6https://github.com/Tiltedprogrammer/SparseLinAlgHardware/blob/master/grin-examples/
zero_plus_zero.grin (online; accessed: 2022-06-07) Original program.

7https://github.com/Tiltedprogrammer/SparseLinAlgHardware/blob/master/grin-examples/
zero_plus_zero.grin.cps (online; accessed: 2022-06-07) CPS-transformed program.

8https://github.com/grin-compiler/grin/issues/128 (online; accessed: 2022-06-07) A correspond-
ing issue related to GRIN supporting only small enough programs.
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3 Memory system
Initially, FHW did not support passing arguments to the main function,
which meant that all matrices were stored in a program’s text. It increased
the generated circuit size making it unsynthesizable, and did not allow
to calculate all overheads, including memory transferring. This section
describes a corresponding workaround, namely, it shows the transition from
the listing 5 and how it was implemented at dataflow and hardware levels.

3.1 Dataflow implementation
The first step is to compile such programs with -fno-do-eta-reduction
GHC flag to prevent GHC from doing main = f, since the f and its mutually
recursive functions should be translated as a whole while main function is
translated separately. The next step is to enumerate all the arguments to
main in order to be able to distinguish the order of arguments of the same
type when transferring data. After that, a corresponding fork node is added
for each argument that ”forks” each argument to the place of its usage, e.g.
to the f’s argument.

Memories are implemented as bram nodes in the dataflow. All the
writes/reads to the same memory are collected at a corresponding merge
actor, which chooses the needed input, and another merge actor chooses
whether it is write or read action. The result of read/write is sent to demux
node, which routes the result to the caller. A new input to the merge actor

-- How to get from

main :: QTree Bool
main = let m_1 = ...

m_2 = ... in
f m_1 m_2

-- to
main :: QTree Bool -> QTree Bool -> QTree Bool
main m_1 m_2 = f m_1 m_2

Listing 5: Transition to main function with arguments
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is added for each main’s argument. Since we do not have any caller in such
a case, demux’s output is sent to sink nodes. The only thing that is left
is to initialize each memory’s pointer. For this purpose, special dataflow
source node inputs are added, which initialize memories for each type in
main’s arguments, and a sink node is created, which shows the pointer,
where the current value is stored at.

3.2 SystemVerilog implementation
Modifications from above provided us with three types of source nodes, one
to initialize memory pointer, one to provide values to store in memory, and
one to finally provide pointers for main’s arguments. These arguments are
either scalar values (and, in that case, are not stored in any memory and just
flow through dataflow edges) or quadtree node pointers (or quadtree mask
pointers). Assuming memory size of 216 (it models the situation when data
fits into the cache, and currently, FHW supports memory spaces of sizes
either 28, 216, or 232: 216 is a tradeoff between matrix sizes and maximum
available memory resources on FPGA boards) and that quadtree nodes are
represented as the data type below (QError is needed for error checking),
FHW encodes a node in the following manner: first is a valid bit, then an
encoding for the node constructor (QNone : 00, QVal : 01, QNode : 10,
QError : 11), and then goes either four 16 bit pointers to other nodes (in
case the node is QNode) or the encoding for a value (32 bits for integer, for
example). For example, QVal 4 is encoded as 0{61}100100 (least significant
bit is to the right).

data QTree a = QNone
| QVal a
| QNode (QTree a) (QTree a) (QTree a) (QTree a)
| QError;

Listing 6: Quadtree data type

Our trees are complete trees, i.e., every node is saturated (contains four
children). To serialize and then deserialize such trees, one stack is sufficient.
First, we store reversed post-order tree traversal and pass tree nodes in such
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order to the corresponding input port of a wrapper for the dataflow module.
We push a pointer for the currently stored node onto the stack (the wrapper
takes it from the output port of a sink node added above) then if the input
node is QNode, we pop four values from the stack and construct a new QNode
with these four pointers in the body, pushing pointer for QNode onto the
top. The wrapper then routes this input to the corresponding source node
added above. The dataflow network operates under valid/ready protocol,
thus we utilize AXI-stream [1] protocol to transfer trees into the circuit.
The protocol makes it possible to use other predefined blocks in future
FPGA design. The wrapper also makes sure that the wrapper’s input is of
appropriate width for the protocol, extracting the encoded node from more
wide representation if needed. The end of each tree is marked with tlast,
and the wrapper tready becomes invalid when the last tree arrives (that
is why we enumerated the arguments). When all the arguments of all the
types arrive, the circuit is finally ready.
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4 Testbench
This section describes the implementation details of the testbench used
to perform benchmarking. One part of the testbench is implemented in
System Verilog and another part in TCL scripting language, which manages
simulation. Also, the section describes a small sparse linear algebra library
written in .pot language that we used for experiments.

4.1 SystemVerilog
Testbench is a generated module that interacts with the wrapper module
by providing appropriate inputs to AXI-stream ports of a wrapper. It reads
serialized trees from the given files and sequentially transfers nodes to the
wrapper module. The file reading is performed in initial block, so it
does not take any simulation time.

The generated dataflow circuit may optionally contain profiling registers
for counting the number of memory writes or reads, namely the number of
cycles write_enable is 1 and read’s value is valid and consumer’s input is
ready. These registers are disabled during synthesis.

4.2 TCL
It is not possible to pass arguments to SystemVerilog module during simu-
lation, and for this purpose, TCL language is used since a TCL script in its
turn may receive any arguments. The script initializes the project and runs
the simulation, providing and gathering values of interest. To modify wire
values in SystemVerilog testbench set_value TCL command is used. It is
needed to specify file paths to read the input trees from. Unfortunately,
SystemVerilog does not support set_value for string values, thus all files
are enumerated and only file number is set. To collect the information
about how long data transferring takes, TCL script uses add_condition
command, which queries the current simulation time on the event occur-
rence. After the simulation is ended, the script queries current simulation
time once again and queries the values of profiling registers. It outputs both
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Function Description

mAdd :: (b->Bool) -> (a->a->b) -> QTree a -> QTree a-> QTree b

Performs an arbitrary element-wise
operation (passed as the 2nd
argument), between two matrices.
The 1st argument defines if the
resulting element is zero.

mMask :: QTree a -> MQTree -> QTree a

Takes a subset specified in the 2nd
argument of the elements in the 1st
argument. Mask is also represented
as a quadtree, nodes just do not store
any values.

kron :: (b->Bool) -> (a->a->b) -> QTree a -> QTree a -> QTree b

Performs Kronecker product of two
matrices. The 1st argument defines if
the resulting element is zero. The
2nd argument defines the operation
applied between an element of the
3rd argument and the 4th argument.

map :: (b->Bool) -> (a->b) -> QTree a -> QTree b

Applies a function, specified as the
2nd argument to matrix entries from
the 3rd argument. The 1st argument
defines if the resulting element is
zero.

Table 3: Library functions used in evaluation

time and values to the specified .yaml file. Thus the result of any bench-
mark is stored completely, which makes a basis for future benchmarks. In
a similar manner other tasks could be automated using TCL scripting, e.g.,
synthesis and resource utilization reporting.

4.3 Sparse linear algebra library
We also developed a small library of sparse linear algebra routines in .pot
language that we used in our experiments. The library follows the API
of GraphBLAS and provides functions for matrix-matrix multiplication,
element-wise operations, Kronecker product, foldrs and maps, and mask-
ing (i.e. taking a matrix’s subset). At the moment, we do not focus on
matrix-vector operations, hence our library does not express, e.g., finding
all shortest paths. However, the functionality is enough to express other
useful algorithms, e.g., triangle counting. The key to expressivity is that
.pot is a functional language, thus all the functions are parametric with
respect to matrix elements operations. .pot language does not have any
primitives, so passing a matrix could be achieved via emitting Haskell code,
or creating a module that contains a proper matrix definition of construc-
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tors and importing this module into a program. Such definitions could be
obtained via utilities from [42]. Programs could be executed in several ways:
by using .pot interpreter, using .grin interpreter, using Haskell emitting,
or in hardware simulation.

Function signatures used in the next section are summarized in table 3.
We choose these functions because we are sure the distiller yields correct
and appropriate results for chains of them.

30



5 Evaluation
This section describes the methodology and answers the following research
questions.

1. Does fusion via distillation give any benefits at the software and hard-
ware levels?

2. What are the properties of the generated hardware?

3. Does the generated hardware outperform software implementations?

5.1 Methodology
Our focus is on creating a basis for future research and experiments, thus we
make our experiments as much reproducible as possible9. We benchmarked
the following list of chained functions. The choice is prompted by the cur-
rent state of the distiller: at the moment, it does not successfully distill
matrix multiplication. However, the functions are still practical enough, for
example, chained addition could be seen in Luby’s maximal independent set
algorithm and clearly describe the applicability of the proposed approach.

• mAdd (==False) (||) (mAdd (==False) (||) m1 m2) m3

• mask (mAdd (== False) (||) m2 m3) (m1)

• map (==Zero) (to_nat) (mAdd (==False) (||) m1 m2

• map (==Zero) (to_nat) (kron (==False) (&&) m1 m2

Above, Zero and to_nat are corresponding definitions for Peano arith-
metics, since the .pot language does not have any primitives. For the same
reason, we operated with boolean matrices. Such functions could be ab-
stracted with free variables and then instantiated in the emitted Haskell

9https://github.com/sedwards-lab/fhw/tree/sparse-linear-algebra-distillation/examples/
QTreeBenchmarks/diploma/verilog-bool-no-nnz-inlined (online; accessed: 2022-06-07) Here one could
find all the results. For each benchmark all statistics are specified: matrix names, their sizes, collected
metrics for both hardware and software benchmarks.
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code. However, to get maximum from distillation, we provided all the in-
formation about the functions.

For these functions, we compared the execution time of distilled and not
distilled hardware generated circuits, execution time of original and distilled
Haskell code and reference Suite Sparse10,11 variants of these functions in
C++. Note that SuiteSparse does not support recursive data types, thus only
the first two function chains were implemented in SuiteSparse (since Peano
number is essentially a linked list). We did not replace Peano numbers
with integers, so our experiments could be interpreted easier. For hardware
experiments we collected execution time and the number of memory writes
and reads, to access how well fusion is performed. For software experiments
we only measured the execution time. Also note that we measured only the
time, required to execute the lines above, not including any IO, required
to get and evaluate function arguments. But in hardware benchmarks we
measured the time required to pass arguments into the circuit’s memory,
because such IO is inevitable. It is tricky to make such measures in Haskell
due to laziness, thus the programs were compiled with –fno-full-laziness
to turn off memoization. Also all the arguments were forced to normal
form via force and evaluate. Haskell programs were compiled12 with -O2
–fno-full-laziness and Suite Sparse was compiled with default flags and
linked as a shared library to C++ code.

We took matrices from SuiteSparse matrix collection with sizes ranging
from 64x64 to 512x512. We limited ourselves with such sizes due to the fact
that this is the maximum sizes that fit into bram with 216 address space.
Such number of bram blocks is available only on really expensive FPGA
boards, thus in practice sizes would be smaller to achieve better utilization.
Once again, it models the situation when data fits into the cache, since bram
in our circuits will operate as a cache in real application.

10https://github.com/DrTimothyAldenDavis/GraphBLAS (online; accessed: 2022-06-07), Suite Sparse
library sources.

11The library also uses different variations of coordinate formats (opaque to the user) and not a quadtree
representation.

12GHC 8.10.4.
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5.2 Experiments
Table 4 shows the results of all execution time benchmarks. To evaluate ex-
ecution time for hardware simulation, implementation stage was performed
to assess the maximum frequency of FPGA device used for synthesis and
implementation, and the number of execution cycles was multiplied by the
number of nanoseconds a clock cycle takes. The frequencies were equal
within the same benchamark set, i.e., frequency was not affected by distil-
lation. We used xcu250figd2104-2L device13 for synthesis and implemen-
tation stages. It is not really a casual and affordable chip, but it contains
enough bram for our evaluation to see scalability. In the table a median
across several benchmarks is shown.

As it could be seen, distillation steadily increases performance: up to
2x speedup for hardware simulation and up to 3x for software benchmarks.
The results are maintained within the borders of the corresponding confi-
dence interval and the borders are not shown for brevity. Hardware speedup
is lower due to the different execution semantics, dataflow is not reduction-
based and distillation is a reduction-based transformation. Note that gen-
erated hardware appears to be less performant than both Haskell and C++,
which a bit contradicts the results from [17]. For hardware benchmarks
time (IO) shows the execution time including the time needed to transfer
the data though the arguments, time (no IO) does not include it in its
turn. It could be seen that not all the benchmarks are computationally
extensive enough to cover memory transferring costs, but for more complex
examples the ratio would be better. Since we basically transfer the matri-
ces node by node from a file in the testbench, we have probably the lowest
possible latency, and in practice it would be higher if reading from DDR,
however the bandwidth could be increased. Noticeably, running times for
mMaskAdd for C++ and distilled Haskell are similar, which shows that fusion
really provides some extra performance: SuiteSparse at the moment does
not implement any fusion.

Table 5 summarizes the ratios between distilled and not distilled hard-
13https://www.xilinx.com/products/boards-and-kits/alveo/u250.html (online; accessed: 2022-06-

07)
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ware circuits memory reads and writes. Since in general case distillation re-
moves extra pattern matching, essentially it saves memory reads and writes.
The eventual number of memory reads and writes is implementation depen-
dent, thus the table shows what share of speedup is prompted by saving
memory operations. Distillation successfully reduces the number of mem-
ory accesses, about 15% on average. mMapKron has a bit higher ratio due
to the fact that Nat numbers require additional memory accesses, since the
type is recursive. It could also be seen that a major part of speedups is
attributed to saved memory accesses.

Finally, table 6 shows device resources utilization ratios between distilled
and not distilled hardware circuits and frequencies. Columns are device
primitives: registers, lookup tables, bram blocks or multiplexers. Utilization
for both types of circuits is below 1% of available resources on the device,
except for the memory. Memory blocks utilization is about 30% (since we
choose larger brams to store larger matrices). Apart from that, distilled
circuits could have both higher and lower utilization. Since the hardware
generation is primarily syntax-directed it follows from the distilled program
structure. For example, distillation might glue two recursive functions into
one (in that case, memory utilization would be lower, because each cluster
of mutually recursive functions possesses its own heap) or make more recur-
sive functions than in the original program. The frequencies are the same,
however, they possibly could be made better with more intelligent buffer
allocation.

5.3 Discussion
Answering the research questions above.

1. Fusion gives significant benefits, however at the hardware level the
benefits are a bit smaller since hardware semantics is not reduction
based. The benefits at the hardware level are mostly determined by
the reduced number of memory accesses (each access takes 2 clock
cycles). Notably, distilled Haskell implementation of mMaskAdd has
similar performance with C++.
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2. Device utilization is low, but such circuits could be copied on the
same device to provide better utilization and higher parallelism. Re-
source utilization might be both better and worse after distillation, de-
pending on the transformed program itself since translation is syntax-
directed. Frequency could be increased by more intelligent buffering
strategy.

3. Although we use low-latency design with brams that take 2 clock cy-
cles per request and transfer matrices from files, which does not have
any latency in simulation, we get slower execution time than Haskell
and C++ counterparts. It could be partly due to excessive buffering
performed by FHW at the moment. Also there is no pipelining for re-
cursive calls, i.e. only one set of function argument tokens are allowed
to enter a tail-recursive function call until a result is finally generated.
Further CPS transformation hinders parallelization, which could be
made more explicit with SSA. Some other optimizations exist that
may significantly influence the performance. Also, since device uti-
lization is about 1%, such circuits could be copied on one device and
provide more parallelism. A more detailed discussion could be found
at [11].

Distillation clearly showed its applicability to optimization of sparse
linear algebra routines and notably it still could be combined with other
techniques, like rewrite rules to achieve better results. High-level synthe-
sis has a room for improvements by increasing pipelining, parallelism and
frequency and the generated hardware could be improved from usability
perspective: a support for arbitrary sized matrices is desirable. Thus we
will focus on these directions. Probably a better solution would be to em-
bed .pot language into e.g. Haskell to leverage its type system (to be able
to use some rewrite rules as well), and add support for primitive types
and parallel primitives to be able to conduct a more scalable comparison
with SuiteSparse (since SuiteSparse is multithreaded). For such embed-
ding different execution models could be implemented, including hardware
synthesis, for which SSA form of GRIN looks promising, as well as extra
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optimizations shipped with GRIN. For hardware synthesis, an interesting
direction is achieving predictable results in hardware from certain modifi-
cations in software. This property partly holds for the current approach,
since the translation is syntax- directed. More information on this could be
found at [27].
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mAddAdd
Matrices dimensions Haskell Haskell (distilled) FHW FHW (distilled) C++
m1 m2 m3 time time time (no IO) time (IO) time (no IO) time (IO) time
64 64 64 29 us 20 us 76 us 170 us 64 us 158 us 14 us
128 128 128 94 79 146 476 134 469 30
256 256 256 123 103 202 681 168 662 44
512 512 512 219 143 474 1192 375 1093 49

mMaskAdd
Matrices dimensions Haskell Haskell (distilled) FHW FHW (distilled) C++
m1 m2 m3 time time time (no IO) time (IO) time (no IO) time (IO) time
64 64 64 10 us 7 us 64 us 133 us 46 us 111 us 18 us
128 128 128 38 30 118 322 75 292 33
256 256 256 48 42 168 498 104 456 46
512 512 512 126 76 400 762 300 729 65

mMapAdd
Matrices dimensions Haskell Haskell (distilled) FHW FHW (distilled) C++
m1 m2 m3 time time time (no IO) time (IO) time (no IO) time (IO) time
64 64 — 45 us 37 us 189 us 253 us 137 us 202 us —
128 128 — 162 105 524 685 397 579 —
256 256 — 312 216 1047 1360 680 986 —
512 512 — 436 273 1346 1776 900 1330 —

mMapKron
Matrices dimensions Haskell Haskell (distilled) FHW FHW (distilled) C++
m1 m2 m3 time time time (no IO) time (IO) time (no IO) time (IO) time
2 64 — 64 us 36 us 212 us 242 us 94 us 125 us —
2 128 — 137 68 434 502 199 266 —
2 256 — 364 126 1004 1188 449 636 —
4 128 — 302 94 694 763 330 401 —

Table 4: Execution time

mAddAdd
Matrices dimensions Ratio ( FHW

FHWdistilled
)

m1 m2 m3 writes reads
64 64 64 1.10 1.15
128 128 128 1.02 1.05
256 256 256 1.03 1.06
512 512 512 1.10 1.16

mMaskAdd
Matrices dimensions Ratio ( FHW

FHWdistilled
)

m1 m2 m3 writes reads
64 64 64 1.13 1.26
128 128 128 1.06 1.11
256 256 256 1.08 1.09
512 512 512 1.10 1.16

mMapAdd
Matrices dimensions Ratio ( FHW

FHWdistilled
)

m1 m2 m3 writes reads
64 64 — 1.10 1.21
128 128 — 1.07 1.14
256 256 — 1.07 1.19
512 512 — 1.10 1.21

mMapKron
Matrices dimensions Ratio ( FHW

FHWdistilled
)

m1 m2 m3 writes reads
2 64 — 1.71 1.88
2 128 — 1.72 1.87
2 256 — 1.65 1.83
4 128 — 1.81 1.91

Table 5: Memory accesses

Benchmark Ratio ( FHW
FHWdistilled

) Frequency
FDRE LUT3 LUT6 LUT5 LUT4 LUT2 RAMB36E2 MUXF7

mAddAdd 0.3 0.3 0.3 0.5 0.3 0.3 0.5 0.5 200 MHz
mMaskAdd 0.5 0.5 0.7 0.4 0.7 0.5 0.7 0.6 200 MHz
mMapAdd 1 0.9 0.9 1.2 1 1.1 1.1 1.2 200 MHz
mMapKron 1.5 1.5 1.3 2 2 1.8 1.4 1.7 200 MHz

Table 6: Resource utilization
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6 Related Work
This section will try to show more clearly the place the work takes among
adjacent works.

Firstly, the work utilizes distillation technique to provide automatic fu-
sion of sparse linear algebra routines. At the moment, we are not aware
of other works that focus on sparse linear algebra routines fusion from im-
plementation perspective. However, it is worth noticing that SuiteSparse
addresses this problem in future work [40]. The approaches that work well
for dense routines fusion struggle with index arithmetic, e.g. [12], induced by
sparse representation. Other approaches makes specific assumption about
the operands or require to express computations with the help of combi-
nators [38]. Our approach makes no assumptions and was shown to work
successfully.

Secondly, in contrast with other works, e.g.[36], this work opts for func-
tional high-level synthesis to produce hardware. Thus, we are not limited
to only specific kernels like matrix-vector multiplication. FHW is not the
only functional high-level synthesis compiler, however, it appeared to be the
best fit for our pipeline. A more detailed discussion of alternatives could be
found at [11]. Although we have slightly worse performance than software
counterparts, the approach has a certain potential. For the same reason, we
do not provide any comparison with other hardware works at the moment.
Also, they are too specialized, e.g. they provide only matrix multiplication
operations, while we focus on providing a reasonable GraphBLAS subset.

Finally, [29] evaluates whether supercompilation makes any benefits
when a functional program is executed on a dedicated reduction-based pro-
cessor Reduceron. Unlike this work, we use another hardware backend,
distillation, and choose specific programs, namely those that contain sparse
linear algebra routines. However, we plan to perform the same evaluation
with Reduceron as a backend.
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7 Conclusion
In the course of this work, the following results were obtained:

• Approaches for fusion in different area were studied. It was shown
that distillation might be a good choice for fusion automation in the
area of sparse linear algebra programs.

• Hardware generation was implemented by combining the distiller and
FHW compiler. Both the distiller and the compiler were refined to
have the needed functionality.

• The support for passing arguments to the main function in FHW
was added. The passing itself works under AXI-Stream protocol and
supports tree-like structures.

• A testbench was implemented by using SystemVerilog generation and
TCL scripts. It allows to query execution times and collect mem-
ory usage statistics. Configurations and results of all benchmarks are
stored on GitHub. The evaluation showed the success of fusion by
means of distillation and slight performance degradation from hard-
ware generation. Future work directions were outlined.

• Two posters were accepted at ICFP SRC 2021, and VPT 2022 respec-
tively.
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