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1 Introduction

Whenever there is a group of people sharing different opinions and interacting with each
other, there is a question about the dynamics of their opinions. Will they reach the consen-
sus? Or will their opinions polarize?

Various models of opinion dynamics have been studied since 1950s ([7, 8]). At present,
opinion studies are a well-developed field of research (see, for example, the monographs [15,
20] and the recent survey [18]). The main goal of opinion dynamics is to describe and analyze
evolution of public opinion in social systems.

When trying to describe the opinion dynamics problem mathematically, we should set
what is the opinion and how the interaction between the people looks like. The opinion spaces
can vary a lot. They can be discrete or continuous, one-dimensional or multidimensional.
However, mostly (and in the current text), the models of opinion spaces as intervals in R.
And the ways of interaction can be very diverse and complicated.

Mostly, models studied in opinion dynamics are linear. DeGroot [5] model is a simple
example of such a model. In this system the vector of opinions an time n is obtained from the
previous one by multiplying by a row stochastic matrix. In this case, the entries of the matrix
determine how much an agent influences the opinion of another one. This interaction model
does not depend on time, so the result opinion of an agent is affected only by the degree
of impact of his/her friend on him/her and the degree of the agent’s own self-confidence.
The simplicity of this model allows one to apply more or less standard methods of linear
dynamical systems and describe the dynamics precisely.

One of the first nonlinear models was suggested in [12, 13], where the notion of “bounded
confidence” had been introduced. This notion formalizes the fact that, in the course of
formation of public opinion, a member of the society is mostly influenced by individuals
sharing a similar opinion. Apart from DeGroot model, in this case the group of people who
influence the opinion of the given agent can change over time. This can (and does) lead to
the significant changes in the dynamics.

The first opinion model based on the notion of bounded confidence, introduced by Hegsel-
mann and Krause, was later called the Hegselmann – Krause (HK) model; this model
and its generalizations have been intensively studied by various authors, see, for exam-
ple, [6, 17, 14, 1, 16, 4, 3, 11, 21, 22, 9]. Mostly, the results were based on computer
simulations, and it was noted that “rigorous analytical results are difficult to obtain” [10].

In the paper [18], a modification of the HK model suggested by Campi was studied. Let
us consider the dynamics of opinions in a society of voters who have to choose between two
options, -1 and 1. Assume that the society is formed by N individuals, and let vnk ∈ [−1, 1]
be the opinion of individual k at time moment n.

Fix a positive ε < 1 (the level of bounded confidence in the society) and consider for
k ∈ {1, . . . , N} the set of indices

J(vnk ) = {l ∈ {1, . . . , N} : |vnl − vnk | ≤ ε}.

This is the set of indices of agents whose opinions influence agent k at time moment n.
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In the classical HK model, the dynamics of voters is based on the following procedure:
At the step of the process of opinion formation at time n, the new opinion of agent k is
obtained by adding to vnk a value proportional to the average of values vnl − vnk over indices
l belonging to the set J(vnk ).

In the model studied in the paper [18], the average of values vnl − vnk over the set J(vnk )
is replaced by the average of values vnl over the set J(vnk ).

Thus, when taking the average, the opinion of agent k is included into consideration. In
the case where an agent has no other agents with ε-close opinions, this means that the agent
enforces her/his belief: In absence of counter-arguments, one tends to strengthen her/his
own opinion.

Mathematically, this modification of the process may lead to the following consequence:
some of the new values may be outside the interval [−1, 1]. In [18], a “cutting” procedure
was suggested; the new opinion value is obtained by replacing the values less than -1 by -1,
and the values more than 1 are replaced by 1.

The dynamics of the appearing dynamical system had been completely described in [18].
It was shown that if ε ≤ 1/2, then any trajectory tends to a fixed point as time goes to
infinity. All possible fixed points had been characterized. It was shown that any fixed point
P = (p1, . . . , pN) with |pk| = 1, k ∈ {1, . . . , N}, is attracting, while all the remaining fixed
points are Lyapunov unstable. Modifications of the model studied in [18] were considered in
the recent papers [2] (where the average of values vnl has been replaced by values i(vnl ) for a
wide class of influence functions i) and [19] (where the finite set of agents has been replaced
by the continuum [0, 1]).

In this thesis, we study a model similar to that considered in [18] but with a different
norming. Instead of “cutting” the values obtained at the first step (when we add to vnk a
value proportional to the average of values vnl over the set J(vnk ) and obtain values wn

k ), now
we divide the values wn

k by the maximal absolute value of wn
k (see a detailed description of

the appearing dynamical system in the next section).
Our main results are as follows:

• we find a condition (see inequality (6)) under which any trajectory tends to a fixed
point as time goes to infinity;

• we describe all fixed points in this case;

• we show that both fixed points P− = (−1, . . . ,−1) and P+ = (1, . . . , 1) are attracting;

• we prove that all the remaining fixed points are Lyapunov stable (thus, the dynamics
of our system is completely different from that of the system studied in [18]) but not
attracting;

• we give an example of the system for which condition (6) is not satisfied and that has
an unstable fixed point.
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Of course, our reasoning in this text essentially differs from that in [18].

The structure of the thesis is as follows. Section 2 is devoted to the statement of the
problem. In Section 3, basic properties of the system are described. In Section 4, we prove the
convergence of trajectories to fixed points. In Section 5, stability of fixed points is analyzed.
In Section 6, we give an example of a system with an unstable fixed point. Section 7 contains
several examples of computer modeling.

2 Statement of the problem

We study a dynamical system modeling the following problem of opinion dynamics. A society
consisting of N agents has to choose between two options, 1 and -1. Let vnk ∈ [−1, 1] be the
opinion of agent with index k ∈ {1, . . . , N} at time moment n = 0, 1, . . . and let

V n = (vn1 , . . . , v
n
N)

be the array of opinions at time moment n.

Let us define the operator Φ determining the iterative process which models the opinion
dynamics. Fix two numbers h, ε ∈ (0, 1) and an array

V = (vk ∈ [−1, 1] : k ∈ {1, . . . , N}).

Introduce the sets

J(vk) = {l ∈ {1, . . . , N} : |vl − vk| ≤ ε}, k ∈ {1, . . . , N}.

Denote by I(vk) the cardinality of the (nonempty) set J(vk).

Define an auxiliary array

W (V ) = (w1(V ), . . . , wN(V )),

where

wk(V ) = vk +
h

I(vk)

∑
l∈J(vk)

vl, k = 1, . . . , N. (1)

Now, assuming that W (V ) is a nonzero array, we set

m(W (V )) = max
l∈{1,...,N}

|wl(V )|

and
Φ(V ) = (v′1, . . . , v

′
N),

where

v′k =
wk(V )

m(W (V ))
.
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Clearly,
v′k ∈ [−1, 1]. (2)

We can represent W (V ) in the form

W (V ) = (E + hA)V,

where E is the identity matrix and the matrix A is row-stochastic; it easily follows from the
inclusion h ∈ (0, 1) that if V ̸= 0, then W (V ) ̸= 0 as well.

Consider an initial array of opinions V 0 = (v01, . . . , v
0
N). If V 0 = 0, then we set V n = 0

for n ≥ 0 and exclude this trivial case from the further consideration.
It follows from the above reasoning that if V 0 ̸= 0, then V n = Φn(V 0) are defined for

n > 0. Our main goal is to study the behavior of positive trajectories of the appearing
dynamical system.

3 Basic properties of the system

For simplicity, we denote wn
k = wk(V

n).

Denote by V the set of arrays V such that

v1 ≤ v2 ≤ · · · ≤ vN . (3)

Lemma 3.1. If v ∈ V, then Φ(V ) ∈ V.

Proof. It follows from [18, Corollary 1] that inequality (3) implies the inequalities wk(V ) ≤
wk+1(V ); division by m(W (V )) preserves the required inequalities. □

It is easily seen that the value wk(V ) in (1) does not depend on the indexing of components
of V . Hence, in what follows, we may (and will) consider trajectories belonging to V .

Let us note one important inequality. Without loss of generality, we may assume that,
for given V , m(W (V )) = |wN(V )|. Then

m(W (V )) =

∣∣∣∣∣∣vN +
h

I(vN)

∑
l∈J(vN )

vl

∣∣∣∣∣∣ ≤ 1 + h. (4)

Lemma 3.2. If |vnk − vnk+1| > ε, then |vνk − vνk+1| > ε for all ν > n.

Proof. It is enough to prove the statement for ν = n+ 1.
The inequality |vnk − vnk+1| > ε implies that J(vnk ) ⊂ {1, . . . , k} and J(vnk+1) ⊂ {k +

1, . . . , N}. Hence,
vnk +

h

I(vnk )

∑
l∈J(vnk )

vnl ≤ vnk (1 + h)
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and

vnk+1 +
h

I(vnk+1)

∑
l∈J(vnk+1)

vnl ≥ vnk+1(1 + h).

Thus,

vn+1
k+1 − vn+1

k ≥
(vnk+1 − vnk ) · (1 + h)

m(W (V n))
>

ε(1 + h)

m(W (V n))
. (5)

Now inequality (4) implies the required inequality

vn+1
k+1 − vn+1

k > ε.

Remark 1. An analog of Lemma 3.2 does not necessarily hold for vnk and vnm with |k−m| ≠ 1.
Let us consider the following example.

Let N = 8, ε = 1/2, and h = 1/3. If

V 0 = (−1,−5/16, 0, 0, 0, 0, 5/16, 1),

then m(W (V 0)) = 1 + h and

V 1 = (−1,−1/4, 0, 0, 0, 0, 1/4, 1).

Hence, v07 − v02 = 10/16 > ε, while v17 − v12 = 1/2 = ε.

4 Convergence to fixed points

In this section, we show that if
ε(N − 1) < 1, (6)

then any trajectory Φn(V ) converges to a fixed point of Φ as n → ∞.

Now we introduce the object which is the main tool in the following proofs.

Definition 4.1. For an array V n = Φn(V 0), a set {k, k + 1, . . . ,m} ⊂ {1, . . . , N} is called
a band at time n if the following properties are satisfied:

(1) if k > 1, then |vnk−1 − vnk | > ε, and if m < N , then |vnm − vnm+1| > ε;

(2) |vnl − vnl+1| ≤ ε for all l ∈ {k, . . . ,m− 1}.

The value |vnk − vnm| is called the diameter of the band {k, k + 1, . . . ,m}.
In what follows, we often use the term band instead of band at time n.

Remark 2. Since we work with trajectories in V ,

vnk ≤ . . . ≤ vnm

for any band {k, k + 1, . . . ,m}.
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It follows from Lemma 3.2 that if {k, k + 1, . . . ,m} is a band at time n for some V n =
Φn(V 0), then no subset of {k, k + 1, . . . ,m} can be a subset of a band at time ν > n for V ν

containing either k − 1 or m + 1. Hence, either a band {k, k + 1, . . . ,m} at time n for V n

is a band at time n+ 1 for V n+1 as well or it splits into a union of several bands of smaller
lengths.

Thus, for any band {k, k+1, . . . ,m} of any initial array V 0 there exists a unique decom-
position

{k, k + 1, . . . ,m} =
r⋃

j=1

{kj, . . . ,mj} (7)

with k1 = k, mr = m, and kj+1 = mj + 1 and a time ν such that any {kj, . . . ,mj} is a band
for any V n = Φn(V 0) for any n ≥ ν (i.e., it does not split into bands of smaller lengths as
time grows).

Clearly, if V 0 is a nonzero array, then either vn1 = −1 or vnN = 1 for any n > 0. We
assume that the same holds for n = 0.

We introduce the following condition on the initial array V 0.

Condition A. The array V 0 has a band {k, . . . ,m} at time 0 such that v0k, . . . , v
0
m are

nonzero and have the same sign.

If V 0 contains a single band, then this band is {1, . . . , N}, and, by our assumption, either
v01 = −1 either v0N = 1. Then inequality (6) implies that V 0 satisfies Condition A.

If V 0 contains at least two bands, then it obviously satisfies Condition A.
Thus, inequality (6) implies Condition A for any array V 0.

In the remaining part of this section, we assume that any initial array V 0 satisfies Con-
dition A.

Lemma 4.2. For any V 0, the following relation holds:

lim
n→∞

m(W (V n)) = 1 + h. (8)

Proof. Fix a band {k, . . . ,m} for V 0 at time 0 such that v0k, . . . , v
0
m are nonzero and have

the same sign. Without loss of generality, we may assume that these values are positive.
Let us consider the behavior of vnk as n grows:

vn+1
k =

1

m(W (V n))

vnk + h
1

I(vnk )

∑
l∈J(vnk )

vnl

 ≥ (1 + h)

m(W (V n))
vnk .

To get a contradiction, assume that relation (8) does not hold. Then there exists a
subsequence nk tending to infinity such that

m(W (V nk)) ≤ 1 + h− α

for some α ∈ (0, h).
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Without loss of generality, we may assume that the above inequalities hold for all n.
Then

vn+1
k ≥ 1 + h

1 + h− α
vnk = βvnk ,

where

β =
1 + h

1 + h− α
> 1.

Thus,
vn+1
k ≥ βnv0k → ∞, n → ∞,

which contradicts the inequalities vnk ≤ 1.

Let us describe the behavior of a band of diameter not more than ε.

Lemma 4.3. Assume that a band {k, . . . ,m} for an array V ν at time ν has diameter not
more than ε and does not split as time grows. Then the diameters of this band for the arrays
V n at all times n > ν are not more than ε as well and

lim
n→∞

(vnm − vnk ) = 0. (9)

Proof. Without loss of generality, we assume that ν = 0. Applying Lemma 4.2, we may also
assume that

m(W (V n)) ≥ γ > 1, n ≥ 0.

It follows from our assumption (the band does not split) that J(vnk ) = J and I(vnk ) = I
for n ≥ 0. Hence, if n ≥ 0, then

vn+1
m − vn+1

k =
1

m(W (V n))

(
vnm +

h

I

∑
l∈J

vnl − vnk − h

I

∑
l∈J

vnl

)
=

=
1

m(W (V n))
(vnm − vnk ) ≤

1

γ
(vnm − vnk ) .

This obviously implies the statement of our lemma.

Now we prove that the diameter of every band in decomposition (7) does not exceed ε
for times n ≥ ν if ν is large enough.

Lemma 4.4. For any initial array V 0 and any its band {k, . . . ,m} at time 0 there exists
a time ν such that the diameter of any band {kj, . . . ,mj} in decomposition (7) for V n with
n ≥ ν does not exceed ε.

First we fix some constants.

Fix a positive δ such that

δ ≤ εh

3N(1 + h)
, (10)
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a positive β such that

β ≤ δh

3N(1 + h)
, (11)

and a positive α such that
α

1 + h− α
≤ β. (12)

We get Lemma 4.4 as a corollary of the following two lemmas.

Lemma 4.5. Assume that the diameter of a band {k, . . . ,m} is larger than ε for all n ≥ 0.
There exists an n0 ≥ 0 such that the following implication holds. If vnl ∈ [vnk , v

n
k+δ) for all l ∈

J(vnk ) and for some n ≥ n0, then there exists an index s such that vn+1
s ∈ [vn+1

k + δ, vn+1
k +ε].

Proof. Fix a time n and let s = max J(vnk ). We will show that the assumption of the lemma
implies the inclusion vn+1

s ∈ [vn+1
k + δ, vn+1

k + ε].
By assumption, the value vnm − vnk (the diameter of the band {k, . . . ,m}) is larger than

ε for all n, and it follows from the inequality

vns − vnk ≤ ε

that s < m. Hence, s, s+ 1 ∈ {k, . . . ,m}. Since {k, . . . ,m} is a band, s+ 1 ∈ J(vns ).
Then we have the following estimates for n ≥ 0:

vn+1
s − vn+1

k =
1

m(W (V n))

vns +
h

I(vns )

∑
l∈J(vns )

vnl − vnk − h

I(vnk )

∑
l∈J(vnk )

vnl

 ≥

≥ 1

m(W (V n))

(
vns + h

(
I(vns )− 1

I(vns )
vnk +

1

I(vns )
vns+1

)
− vnk − hvns

)
≥

≥ 1

m(W (V n))

(
vns + h

(
I(vns )− 1

I(vns )
(vns − δ)+

+
1

I(vns )
(vns + ε− δ)

)
− vnk − h(vnk + δ)

)
≥

≥ 1 + h

m(W (V n))
(vns − vnk ) +

h

m(W (V n))
·
( ε

N
− 2δ

)
≥

≥ h

1 + h

( ε

N
− 2δ

)
≥ δ.

In the last line, we apply inequality (10).
To get the upper bound, take a number n0 ≥ 0 such that

m(W (V n)) ≥ 2

3
+ h, n ≥ n0.
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If n ≥ n0, then

vn+1
s − vn+1

k =
1

m(W (V n))

vns +
h

I(vns )

∑
l∈J(vns )

vnl − vnk − h

I(vnk )

∑
l∈J(vnk )

vnl

 ≤

≤ 1

m(W (V n))

(
vns + h

(
1

I(vns )
vnk +

I(vns )− 1

I(vns )
vns+1

)
− vnk − hvnk

)
≤

≤ 1

m(W (V n))

(
vnk + δ + h

(
1

I(vns )
vnk +

I(vns )− 1

I(vns )
(vnk + ε+ δ)

)
− vnk − hvnk

)
=

=
1

m(W (V n))

(
δ + h

(
I(vns )− 1

I(vns )
(ε+ δ)

))
≤

≤ 1
2
3
+ h

((1 + h)δ + hε) ≤ 1
2
3
+ h

(2δ + hε) ≤ ε,

where in the last line we take into account that δ ≤ ε

3
due to (10).

Lemma 4.6. There exists an n0 ≥ 0 such that for any n ≥ n0, the following inequality
holds:

vn+2
k ≥ vnk + β.

Proof. We claim that there exists an n0 such that

vn+1
k ≥ vnk − β, n ≥ n0, (13)

and if there exists an index s such that vns ∈ [vnk + δ, vnk + ε], then

vn+1
k ≥ vnk + 2β, n ≥ n0. (14)

Then the statement of our lemma follows from Lemma 4.5. To establish estimate (13),
let us fix a positive α such that inequality (12) holds.

Consider an n0 ≥ 0 such that

m(W (V n)) ≥ 1 + h− α, n ≥ n0.

If n ≥ n0, then

vn+1
k =

1

m(W (V n))

vnk +
h

I(vnk )

∑
l∈J(vnk )

vnl

 ≥ 1 + h

m(W (V n))
vnk =

=vnk +

(
1 + h

m(W (V n))
− 1

)
vnk ≥ vnk −

(
1 + h

m(W (V n))
− 1

)
≥

≥vnk − α

1 + h− α
≥ vnk − β.
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Next, we assume that vns ∈ [vnk + δ, vnk + ε]. Let us estimate

vn+1
k =

1

m(W (V n))

vnk +
h

I(vnk )

∑
l∈J(vnk )

vnl

 ≥

≥ 1

m(W (V n))

(
vnk + h

(
I(vnk )− 1

I(vnk )
vnk +

1

I(vnk )
vns

))
≥

≥ 1

m(W (V n))

(
vnk + h

(
I(vnk )− 1

I(vnk )
vnk +

1

I(vnk )
(vnk + δ)

))
=

=
1 + h

m(W (V n))
vnk +

δh

I(vnk ) ·m(W (V n))
≥

≥vnk − α

1 + h− α
+

δh

N(1 + h)
≥ vnk + 2β.

To prove Lemma 4.4, we assume that the diameter of the band {k, . . . ,m} is more than ε
for arbitrarily large n0. Then Lemmas 4.5 and 4.6 lead to a contradiction since the sequence
(vnk ) is bounded.

Theorem 4.7. If condition (6) is satisfied, then any trajectory Φn(V 0) tends to a fixed point
of Φ as n → ∞.

Proof. It follows from Lemmas 4.3 and 4.4 that for any initial nonzero array V 0 the following
holds: if n is large enough, then the set {1, . . . , N} is the union of disjoint subsets,

{1, . . . , N} =
r⋃

i=1

{k : bi ≤ k ≤ ci},

where b1 = 1, cr = N , ci+1 = bi + 1, and any set {bi, . . . , ci} is a band for V n such that

0 ≤ vnci − vnbi → 0, n → ∞.

There are the following possible cases:

• vnbi ≥ 0 for some n; then vmk ≥ 0 for all bi ≤ k ≤ ci and m ≥ n;

• vnci ≤ 0 for some n; then vmk ≤ 0 for all bi ≤ k ≤ ci and m ≥ n;

• vnbiv
n
ci
< 0 for some n; then vmk v

m
k < 0 for all bi ≤ k ≤ ci and m ≥ n.

In any of these cases, there exist numbers ai ∈ [0, 1] such that

vnk → ai, bi ≤ k ≤ ci, n → ∞,

(and ai = 0 in the third case).
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It follows from the left-hand side of inequality (5) that

vn+1
ci+1

− vn+1
bi

≥ vnci+1
− vnbi ;

hence,
ai+1 − ai > ε, i = 1, . . . , r − 1.

In addition, either a1 = −1 or ar = 1 (or both possibilities are realized). Clearly, the
corresponding array

A = (a1, . . . , a1, a2, . . . , a2, . . . , ar, . . . , ar)

is a fixed point of Φ such that
V n → A, n → ∞.

Remark 3. In fact, the proofs of Lemmas 4.3 and 4.4 (and hence, of Theorem 4.7) are based
not on condition (6) but on the assumption that for any V 0, relation (8) holds (which we
deduce from Condition A).

We refer to condition (6) in Theorem 4.7 since the above-formulated two assumptions are
of “inner” character while condition (6) relates values from the statement of the problem.

5 Stability of fixed points

In this section, we assume that relation (8) holds. As was noted, this assumption implies
the conclusion of Theorem 4.7. Let us study the stability properties of the appearing fixed
points of Φ.

First we introduce the following notation. Let P = (p1, . . . , pN) be a fixed point of Φ.
An array

(B1(a1), . . . , Br(ar))

is called the scheme of the fixed point P if any

Bj(aj) = {bj, . . . , cj}, j = 1, . . . , r,

where b1 = 1, cr = N , and ci+1 = bi + 1, is a band for P = Φn(P ) at any time n and

pk = aj, k ∈ Bj(aj).

Let us select two fixed points, P− and P+, having schemes (B1(−1)) and (B1(1)), respec-
tively, where B1(−1) = B1(1) = {1, . . . , N}.

Theorem 5.1. If relation (8) holds, then

(1) both fixed points P− and P+ are asymptotically stable for Φ;

(2) any fixed point P different from P− and P+ is Lyapunov stable but not asymptotically
stable.
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Proof. Let us first prove item (1). We consider the case of the fixed point P+, for P− the
proof is similar.

First we prove that P+ is Lyapunov stable. Fix a ∆ > 0; without loss of generality, we
assume that ∆ ≤ ε.

Let δ ≤ ∆ and consider a V = (v1, . . . , vN) ∈ V such that

vk ∈ [1− δ, 1], k ∈ {1, . . . , N}. (15)

Then J(vk) = {1, . . . , N} for k ∈ {1, . . . , N}; hence,

wk(V ) ≥ (1 + h)(1− δ), k ∈ {1, . . . , N},

and
(Φ(V ))k ∈ [1− δ, 1], k ∈ {1, . . . , N}.

This implies that
(Φn(V ))k ∈ [1−∆, 1], k ∈ {1, . . . , N}, n ≥ 0.

Thus, P+ is Lyapunov stable.
As was said before introducing Condition A, we may assume that, for any V , either

(Φn(V ))1 = −1 or (Φn(V ))N = 1 for n ≥ 0. In our case, inequality (15) implies that
vnN = (Φn(V ))N = 1 for all n, and it follows from Lemma 4.3 that

|vnk − 1| → 0, n → ∞, k ∈ {1, . . . , N}.

Thus, P+ is asymptotically stable.

Now we prove item (2). Consider two possible cases.

Case 1. The fixed point P has scheme (B1(−1), B2(1)) with nonempty B1(−1), B2(1). In
this case, the Lyapunov stability is proved by the same reasoning as above. To prove that
P is not asymptotically stable, note that any point with scheme (B1(−1 + δ), B2(1)), where
δ ∈ (0, ε), is a fixed point of Φ.

Case 2. The fixed point P = (p1, . . . , pn) has scheme

(B1(−1), . . . , Bl(al), . . . , Br(1)),

where Bl(al) is nonempty and |al| ≠ 1. In this case, |al| ∈ (−1+ ε, 1− ε) and one of the sets
B1(−1), Br(1) is nonempty. To simplify consideration, assume that B1(−1) is empty (the
remaining cases are treated similarly).

Fix a ∆ > 0 such that

aj+1 − aj > ε+ 2∆, j = 1, . . . , r − 1. (16)

Without loss of generality, we assume that ∆ ≤ ε/2. Clearly, if V = (v1, . . . , vN) and

|vk − pk| ≤ ∆, k ∈ {1, . . . , N},
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then J(vk) = J(pk) for k ∈ {1, . . . , N}.
Take a positive δ such that

2δ

1− δ
< ∆. (17)

Clearly, in this case δ < ∆.
Introduce the following condition on the trajectory of an initial point V 0.
Condition C(ν):

|vnk − pk| ≤ ∆, k ∈ {1, . . . , N}, 0 ≤ n ≤ ν.

We show that if
|v0k − pk| ≤ δ, k ∈ {1, . . . , N}, (18)

for an initial point V 0, then Condition C(ν) is satisfied for all ν ≥ 0, which, of course, means
that P is Lyapunov stable.

Thus, below we assume that inequalities (18) are satisfied.
Since δ < ∆, Condition C(0) is satisfied. Now we show that Condition C(ν) implies

Condition C(ν + 1).
We start with k ∈ Br(1). Due to Condition C(ν), J(vnk ) = Br(1) for 0 ≤ n ≤ ν. The

same reasoning as in the proof of item (1) shows that

|vnk − 1| < δ, k ∈ Br(1), n ≤ ν + 1.

Denote
µn = m(W (V n−1))× · · · ×m(W (V 1))×m(W (V 0)).

Since v0k ≥ 1− δ for k ∈ Br(1),

(1 + h)n

µn

(1− δ) ≤ vnk ≤ 1, 0 ≤ n ≤ ν + 1, k ∈ Br(1),

and the inequalities
(1 + h)n

µn

− 1 ≤ δ

1− δ
, 0 ≤ n ≤ ν + 1, (19)

hold.
Now we consider indices k ∈ Bl(al) with l < r. Condition C(ν) and inequalities (18)

imply that

v0k ≤ al + δ, v1k ≤ 1 + h

µ1

(al + δ), . . . , vnk ≤ (1 + h)n

µn

(al + δ)

for 0 ≤ n ≤ ν + 1.
Hence, if k ∈ Bl(al), then it follows from inequality (19) with n = ν + 1 that

vν+1
k − al ≤

(1 + h)ν+1

µν+1

(al + δ)− al =

=

(
(1 + h)ν+1

µν+1

− 1

)
al +

(1 + h)ν+1

µν+1

δ ≤ 2δ

1− δ
< ∆.
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Similarly one shows that
vν+1
k − al > −∆,

which proves that Condition C(ν + 1) is satisfied.
This completes the proof of Lyapunov stability of the fixed point P .
To prove that P is not asymptotically stable, note that any point with scheme

(B1(−1), . . . , Bl(al + δ), . . . , Br(1)),

where δ is small enough, is a fixed point of Φ.

6 Example with a single band

The following example shows that if ε is not small, then the dynamics of the system can be
essentially different from that described above.

Let N = 6 and ε = 1/2. Then Φ has a fixed point

P = (−1,−1/2, 0, 0, 1/2, 1).

Clearly,

W (P ) =

(
−1− 3h

4
,−1

2
− 3h

8
, 0, 0,

1

2
+

3h

8
, 1 +

3h

4

)
,

m(W (P )) = 1 +
3h

4
, (20)

and Φ(P ) = P .
This fixed point is unstable; for any small δ > 0, the point

V 0 = (−1,−1/2, δ, δ, 1/2, 1)

has a band {δ, δ, 1/2, 1} at time 0 with nonzero elements of the same sign; the reasoning
applied in the proof of Lemma 4.2 shows that

m(W (V n)) → 1 + h, n → ∞,

which, compared with relation (20) indicates that the fixed point P is unstable.
In Fig. 3 of the next section, the dynamics with δ = 0.01 is shown.

7 Numerical experiments

The first figure illustrates the dynamics of the system for which condition (6) holds. Figure 1
shows the initial distribution of opinions and the evolution of the system at times 10, 30,
and 70. One can see that at time 70, the equilibrium is almost reached. The fixed points of
this system are 4 groups of equal numbers.
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Figure 1: Initial distribution and opinions’ evolution of system with (6) at steps 10, 30 and
70; ε = 0.1, h = 0.1.

Figure 2: Initial distribution and opinions’ evolution of system with Condition A at steps
20, 40 and 90; ε = 0.4, h = 0.1.

Figure 3: Initial distribution and opinions’ evolution for third example at steps 10, 30 and
70, when the equilibrium is reached; ε = 0.5, h = 0.1.

The second example illustrates the evolution of the system with a larger number of agents.
Here, condition (6) is not met, but Condition A holds. Figure 2 shows the initial distribution
of such a system with ε = 0.5, h = 0.1 and its evolution at times 20, 40, and 90.

Figure 3 shows the dynamics of the band

V 0 = (−1,−1/2, δ, δ, 1/2, 1)

which was mentioned in Section 6. The illustration shows the initial distribution of this
system with δ = 0.01 and its evolution at times 10, 30, and 70. In this case, the band of
positive values collapses into a band with the same values.
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