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1 Introduction

Gaussian process regression based on stationary Gaussian processes provides a powerful frame-
work for data efficient learning in a relatively low dimension. One of the key features of the
framework is the ability to quantify uncertainty associated to the predictions. This is often used
in applications involving automatic decision making, including optimization [24], reinforcement
learning [8] and more [21].

In some applications, inputs of the unknown function lie in a non-Euclidean space like a
manifold or a graph. Although one can often model a function like this by embedding these inputs
into a Euclidean space, the inner structure of the input space, which is an important modeling
assumption, is lost. In practice this hinders data efficiency and impairs overall modeling quality.
It is thus important to study Gaussian process regression with inputs on such spaces directly.

Recent developments on that account include [4] where the general case of compact Rieman-
nian manifolds is studied and [3] where the object of consideration are Gaussian processes on
graph-structured finite sets.

There exists, however, a number of examples of noncompact manifolds of great significance
for applications for which the theory and the corresponding computational techniques are yet to
be developed. Arguably, the most important ones are the manifold of postive definite matrices
and the hyperbolic space — examples of the class of noncompact symmetric spaces.

In this work we study stationary Gaussian processes (most notably, based on heat and Matèrn
kernels) on such spaces and computational approaches for Gaussian process regression on them.

These techniques include: efficient (approximate) algorithms for point-wise kernel evaluation
and differentiation with respect to parameters; efficient algorithms for sampling, conditioning
and sampling from the conditional Gaussian process.

In the next three parts of the introduction we give an overview of Gaussian processes regres-
sion on Euclidean spaces. In the forth and final part of the introduction we give a brief but more
specific account of goals of the thesis and of the structure of the further text.

Notation We use lowercase bold to denote vectors (e.g. x) and uppercase upright bold to
denote matrices (e.g. A).

For a function f(·) on X and x ∈ X n we put f(x) = [f(x1), . . . , f(xn)]. Similarly, for a
function f(·, ·) on X × Y and x ∈ X n,y ∈ Ym we put f(x,y) = [f(xi, yj)]i≤n,j≤m

1.1 Gaussian Processes Regression

We start with definition of Gaussian processes. Let us fix an arbitrary set X . A random process
f(·) over X is called Gaussian if all its finite-dimensional distributions are multivariate Gaussian:
for all n ∈ N and x = (x1, x2, . . . , xn) ∈ X n

f(x1), f(x2), . . . , f(xn) ∼ N (µ,Σ). (1)

If we denote by m(x) = E f(x) the mean function and by k(x, x′) = Cov(f(x), f(x′)) the covari-
ance function or kernel of the Gaussian process f , then

µ = [m(x1),m(x2), . . . ,m(xn)], Σ = [k(xi, xj)]1≤i,j≤n. (2)

This illustrates the fact that the mean and covariance functions fully determine the distribution
of the process f . The fact that f is a Gaussian process with mean function m(·) and kernel k(·, ·)
we will denote, following the common practice, by

f ∼ GP (m, k). (3)
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Since a covariance matrix is always non-negative definite, a covariance function k must also
be non-negative definite. The converse is also true, that any pair of functions m(·) and k(·, ·),
where m is arbitrary and k is non-negative definite defines a Gaussian process.

The core of applications of Gaussian processes in machine learning is the Gaussian processes
regression. Suppose we are given noisy measurements y ∈ Rn at n inputs x ∈ X n of an unknown
function f

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

n), (4)

and we want to learn (interpolate) function f .
Gaussian processes regression, solves this problem by conditioning some prior Gaussian pro-

cess GP (m(·), k(·, ·)) by observations y. It is usually assumed that m ≡ 0 or m ≡ const and
that k is stationary. The conditional (posterior) process (f |y) is also Gaussian with mean m′

and covariance k′, where

m′(·) = m(·) + k(·,x)(k(x,x) + σ2
nIn)

−1(y −m(x)), (5)

k′(·, ·) = k(·, ·)− k(·,x)(k(x,x) + σ2
nIn)

−1k(x, ·) (6)

and In is the identity matrix of size n.
For input x∗ the conditional (posterior) mean m′(x∗) is used as a prediction and the condi-

tional (posterior) variance k′(x∗, x∗) as a measure of uncertainty associated to this prediction.
In many applications [30, 18] conditional (posterior) samples are of interest. The following

trick called Matheron’s rule [30, 7] helps reduce the problem of sampling the posterior to the
problem of sampling the prior and then performing a data dependent update:

(f |y)(·) = f(·) + k(·,x)(k(x,x) + σ2
nIn)

−1(y − f(x)− ε), (7)

where the equality is understood in the sense of distributions.
Computations required for evaluating both Eq. (5), Eq. (6) and Eq. (7) are similar and ex-

pensive. Algorithmically, they require a time consuming inversion of the matrix k(x,x) + σ2In
which entails the computational complexity of O(n3). In Section 1.3 we introduce computa-
tional techniques which are used to get approximate answers in a more computationally efficient
manner.

Now we turn to the kernels used to define prior Gaussian processes in practical applications.

1.2 Stationary Kernels on Euclidean Spaces

Let us consider the space Rd of dimension d ∈ N. Most often the prior Gaussian processes are
picked from the class of stationary Gaussian processes, i.e. GP (0, k(·, ·)) with zero or constant
mean (hereinafter we assume that the mean is zero) and a stationary kernel. Recall that a kernel
k(·, ·) on Rd × Rd is called stationary if it is transitionary invariant:

k(x+ c, y + c) = k(x, y) ∀x, y, c ∈ Rd. (8)

In this case k(x, y) depends only on difference x− y, so there is a function k′ : Rd → R

k(x, y) = k′(x− y). (9)

By Bochner’s theorem, stationary kernels are in one-to-one correspondence with non-negative
finite measures on Rd:

k(x, y) =

∫
Rd

e2πiw
T (x−y) dS(w), (10)
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where S is a non-negative finite measure called spectral measure. This correspondence gives us
the universal way of making stationary kernels from non-negative measures on Rd.

People often consider a more restricted class of isotropic kernels i.e. kernels invariant under
all isometries of Rd both translations and (proper and improper) rotations. In this case kernels
only depend on the distance between points, so there is a function k′ : R 7→ R

k(x, y) = k′(|x− y|). (11)

In this case, the spectral measure S is invariant to rotations and representation (10) can be
rewritten in terms of Fourier–Bessel (Hankel) transform.

1.2.1 Matérn and Heat Kernels

One family of stationary and isotropic kernels is most often used in applications, the Matérn
family that we will define in this section. We start this by defining the heat kernel1 — the single
most popular isotropic kernel and the (limiting) member of the Matèrn family.

Recall that heat kernel equation on Rd is

∂P
∂t

(t, x, y) = ∆xK(t, x, y), (12)

The heat kernel is the solution of this equation under the following initial condition

lim
t→0

P(t, x, y) = δx(y), (13)

where where t > 0, ∆ is the Laplace operator and the limit is taken in sense of distributions.
In applications related to Gaussian process regression P is reparametrized like this:

k∞,κ,σ2(x, y) =
σ2

Cκ
P(κ2/2, x, y), (14)

where Ck normalizes process in such a way that P(κ2/2, x, x) has variance 1.
The Matérn kernel kν,κ,σ2 may be defined by the following integral

kν,κ,σ2(x, y) =
(2ν)ν

Γ(ν)κ2ν

∫ ∞

0
uν−1e−

2ν
κ2

uk∞,
√
2u,σ2(x, y) du. (15)

There are closed form expressions both for k∞,κ,σ2 and kν,κ,σ2

k∞,κ,σ2(x, y) = σ2e−
∥x−y∥2

2κ2 , (16)

kν,κ,σ2(x, y) = σ2 2
1−ν

Γ(ν)

(√
2ν

∥x− y∥
κ

)ν

Kν

(√
2ν

∥x− y∥
κ

)
, (17)

where Kν is the Bessel function of the second kind.
Spectral measures S∞,κ,σ2 and Sν,κ,σ2 of Matérn and heat kernels are also explicit:

s∞,κ,σ2(w) = σ2C∞,κe
−2π2κ2|w|2 ; (18)

sν,κ,σ2(w) = σ2Cν,κ

(
2ν

κ2
+ 4π2|w|2

)−ν−d/2

. (19)

Note that up to re-normalization these are the densities of normal and Student t-distributions.

1Also referred to as squared exponential, Gaussian or RBF kernel.
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1.3 Computational Algorithms

As it was mentioned before, exact evaluation of posterior mean and variance (Eq. (5) and Eq. (6))
have computational complexity of order O(n3), where n is the number of observations. Moreover,
we did not yet discuss any techniques for sampling the prior Gaussian process.

In this section we consider the commonly used approximate computational techniques to
address these challenges.

1.3.1 Sampling and Conditioning via Finite-dimensional Feature Maps

We start with the abstract setting. Consider an arbitrary set of inputs X and a Gaussian process
f ∼ GP (m(·), k(·, ·)) on X .

If there is a vector valued function Φ(·) = [φ1(·), φ2(·), . . . , φL(·)]⊤ such that

k(x, y) ≈
L∑
l=1

φl(x)φl(y), (20)

then we immediately have an approximation of the Gaussian process itself:

f(·) ≈
L∑
l=1

wlφl(·), where wl
i.i.d,∼ N (0, 1). (21)

This approximation may be easily used to sample from the prior in O(L) time.
For a vector x ∈ X n let Φ(x) = [Φ(x1), . . . ,Φ(xn)], then for any x ∈ X n,y ∈ Xm

k(x,y) ≈ Φ(x)⊤Φ(y). (22)

Then the matrix k(x,x) + σ2In from equations (5) – (7) can be approximated byΦ(x)⊤Φ(x) + σ2
nIn

and then, using the Woodbury matrix identity we get an approximate conditioning technique
with computational complexity O(nL2). Note that for L ≪ n this method scales linearly with
respect to n.

1.3.2 Getting Finite-dimensional Feature Maps

Let us show how to find finite-dimensional approximations for stationary kernels on Euclidean
spaces. Consider X = Rd and a real stationary Gaussian processes f ∼ GP (0, k) on X .

Recall that by Bochner’s theorem

k(x, y) =

∫
Rd

e2πiw
⊤(x−y) dS(w) (23)

where S denotes the spectral measure.
This decomposition leads to a representation of the kernel as an inner product:

k(x, y) =

∫
Rd

e2πiw
⊤x e2πiw⊤y dS(w). (24)

Using the Monte Carlo approximation of integral and the representation eix = cos(x) + i sin(x)
while assuming that k is real-valued we get that k(x, y) ≈ Φ⊤(x)Φ(y) with

Φ(x) = σ

√
2

L
[cos(w⊤

1 x), sin(w
⊤
1 x), . . . , cos(w

⊤
Lx), sin(w

⊤
Lx)]

⊤, wl
i.i.d,∼ S (25)
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where σ2 = k(0, 0) is the variance of k and L responsible for the quality of the approximation.
This approximation is known as the Random Fourier features technique [23].

Note that the feature map given by Eq. (25) will always have an even-dimensional output
space. To remove this restriction, people also consider a similar feature map called random phase
Fourier features: Φ = [φ1(·), . . . , φL(·)] with

φi(x) = σ

√
2

L
cos(2πw⊤

i x+ θi), θi
i.i.d,∼ U(0, 2π), wi

i.i.d,∼ S. (26)

For approximation error analysis of such techniques see [25].

1.3.3 Efficient Conditioning via Variational Inference

Here we discuss another approach to drive efficient approximate conditioning. The rough idea
behind it is to approximate, in terms of KL-divergence, the conditional process by a simpler
process. This idea is called variational inference. A key ingredient here is an approximating
family of simpler processes, the most popular choices for which result in the so called inducing
variables approximations [27, 14] which we will briefly describe further. One additional advantage
of this method is that it allows to approximately condition Gaussian processes by non-Gaussian
observations, thus making it possible to use Gaussian process based techniques, for example, for
classification.

Let f(·) ∼ GP (0, k(·, ·)) be a prior Gaussian process and (y,x) be a data set of size n. We
still assume that p(y|f(x)) =

∏n
j=1 p(yj |f(xj)), but no longer that p(yj |f(xj)) is Gaussian.

Let us introduce a set of inducing points z ∈ Rm, where m ≪ n and let u = f(z) be inducing
variables. Then the hard-to-compute posterior distribution p(f,u|y) is approximated by a family
of computationally simpler distributions q(u, f) = p(f |u)q(u), where q(u) is N (µ,Σ) with µ
and Σ as well as locations z being its parameters.

The parameters are found by minimizing Kullback–Leibler divergence

DKL(q(u, f)||p(u, f |y)) := Eq(u,f) ln
q(u, f)

p(u, f |y)
= (27)

= DKL(q(u)||p(u))−
n∑

i=1

Eq(u,f) ln p(yi|f(xi))− p(y). (28)

Note, that the term p(y) does not depend on the parameters, so it is enough to minimize the
sum of the first two terms. There are different ways to approach this optimization problem, but
more or less all of the ones used in practice use some form of (stochastic) gradient descent.

One particularly simple and general way is called doubly stochastic variational inference
algorithm [28]. This technique leads to a computational complexity O(m3) and when m ≪ n
the complexity is sublinear in n.

1.4 Goals and Structure of the work

Now, after giving a brief account on Gaussian processes regression on Euclidean spaces we are
ready to discuss the goals of this work in more detail. The main goal is to adapt the described
notions and the corresponding computational techniques to the case of noncompact symmetric
spaces such as the space of symmetric positive definite matrices or the hyperbolic space. We
start with a description of stationary processes on them. This leads the statement of following
questions.

Question 1. How to define the notion of the stationarity in general situation?
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Question 2. How to describe stationary kernels on symmetric spaces?

Question 3. How to generalize Matérn and heat kernels?

When suitable answers to these questions are given we have to suggest computational routines
for this kind of processes within the context of Gaussian process regression. This motivates the
following additional questions.

Question 4. How to approximately evaluate the kernels point-wise?

Question 5. How to efficiently build a finite dimensional approximation?

Question 6. How to adapt the method of a variational inference to this setting?

Before answering these questions, in Section 2 we give a partial overview of symmetric spaces
and harmonic analysis on them.

The Section 3 contains answers to the raised questions. The answer for the first question is
given in the sense of invariance to a group action. This is relevant for symmetric spaces as they
can be represented as homogeneous spaces of form G/H upon which the group G acts naturally.
The answer for the second question can be found in Yaglom [31].

The main contribution of this work is answering the last four questions. To achieve this we
adapt the spectral approach described previously. For this purpose we use the theory of spherical
Fourier transform developed by Helgason [13]. We give an analogue of the method of random
Fourier features and bound its error. Also we generalize Matérn and heat kernels and show how
variational methods may be used on such spaces.

In the last section we apply the obtained results for the arguably the most interesting case,
the space of symmetric positive definite matrices. For this specific case we additionally suggest an
efficient way to sample from the spectral measures to drive better Monte Carlo approximations.

2 Symmetric Spaces

In this section we discuss the symmetric spaces, their properties, their classification and describe
some of the key notions of harmonic analysis on these spaces. The section is based on the lecture
notes [10] and the books [26, 13].

2.1 Definition and Classification

Symmetric spaces may be defined in geometric and algebraic terms. Let us start with a more
intuitive geometric definition.

Definition 7. Let M be a connected manifold with Riemannian metric g. For a point p ∈ M let
TpM be a tangent space at p. Let us denote by sp the geodesic symmetry defined on the image
U of a sufficiently small ball B(0p, ε) ⊂ TpM under the exponential map at point p. It is defined
by

sp exp(v) = exp(−v) where v ∈ B(0p, ε). (29)

Then the space M is called a locally symmetric space if for all points p ∈ M the map sp is
an isometry. It is called a (globally) symmetric space if this isometry may be extended to an
isometry of the whole space M .
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Informally speaking, a Riemannian manifold (M, g) is a symmetric space if all point reflections
are isometries of the manifold. This is true for such spaces as spheres, Grassmannians, Euclidian
and hyperbolic spaces etc.

From the definition of a symmetric space it immediately follows that M is geodesically com-
plete (since every geodesic can be continued by reflection). Also, for every p, q ∈ M we can find
a geodesic γ : [0, 1] 7→ M,γ(0) = p, γ(1) = q that connects p and q. Then point reflection on the
middle of γ(1/2) sends p to q and q to p. Thus the group of isometries acts transitively on M .

By the Myers-Steenrod theorem [20] the group of isometries of M , that we will denote by G,
has natural structure of a Lie group. Let us fix an arbitrary point p ∈ M on the manifold. It
turns out that point p generates a Lie subgroup H of isometries that leaves p fixed (H is called
isotropy group). This leads to the representation of M as a homogeneous space G/H.

This representation gives us a way to study symmetric spaces in a Lie theoretic (algebraic)
way. The reflection sp defines the involution σ on G, namely

σ(g) = sp ◦ g ◦ sp where g ∈ G. (30)

Let g and k be the Lie algebras of G and H respectively. Since σ is an involution (σ2 = id)
the differential θ = De σ of σ at the identity e is a linear map with {+1,−1} eigenvalues.
The eigenspace corresponding to +1 is exactly k — the Lie algebra of H. The eigenspace that
corresponds to −1 we denote by p. It can be identified with the tangent space TpM . The pair
(k, p) is called a Cartan pair.

Further we will assume that symmetric spaces we consider are simply connected since every
symmetric space can be represented as quotient of a simply connected symmetric space and a
discrete group. Every simply connected symmetric space M may be further decomposed into a
direct product of manifolds

M = Me ×Mc ×Mn, (31)

where Me is isomorphic to a Euclidean space; Mc is a symmetric space with positive sectional
curvature (it is said to be of the compact type); Mn is a symmetric space with negative sectional
curvature (it is said to be of the noncompact type).

At the same time Mc and Mn may in their turn be decomposed into a product of irreducible
symmetric spaces i.e. the spaces that can not be represented as direct product of two symmetric
spaces. Élie Cartan [5, 6] has given full classification of irreducible symmetric spaces. More
precisely, there are four types of irreducible symmetric spaces, two of compact type (I, II) and
two of noncompact type (III, IV):

I G/H where G is compact connected Lie group and H is the subgroup of points fixed by
some involution σ of G (σ2 = Id),

II compact connected simple Lie groups themselves,

III G/H where G is a connected noncompact simple Lie group and H is a maximal compact
subgroup of G,

IV G/H where G is a noncompact connected Lie group and Lie algebra of G is a simple Lie
algebra over C viewed as a real one, and H is a maximal compact subgroup of G.

In this work we will only consider groups of type III. Since, spaces of type I and II are
compact, techniques described in [4] may be used. Spaces of type IV originate from complex Lie
groups and therefore are less interesting to us. Most importantly, the main examples, e.g. the
space of positive symmetric matrices and the hyperbolic space are of type III.
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2.2 Lie Structure of Symmetric Spaces

In the preceding section we reviewed the general symmetric spaces. Further we focus on sym-
metric spaces which on the one the hand generalize spaces of type III and on the other hand
possess well developed Harmonic analysis.

Recall that a Lie algebra is called semisimple if it can be decomposed into a direct sum of
simple2 Lie algebras. A Lie group is called semisimple if its Lie algebra is semisimple. Our spaces
of interest have form G/H where G is a noncompact semisimple Lie Group with finite center and
H is a maximal compact subgroup of H. The finite center assumption is made for convenience:
in any case the center is always contained in H and is eliminated after factorization. See [12,
Ch. VI, Th. 1.1] for details.

Again, let G be a noncompact semisimple Lie group with finite center and let H be its
maximal compact subgroup. Also, let g and k be Lie algebras corresponding to G and to H. By
e we denote identity element of the group G.

On a Lie algebra g one can define the adjoint action of X ∈ g

adX : g 7→ g, adX(Y ) = [X,Y ] for Y ∈ g, (32)

where [·, ·] denotes the Lie bracket of g. The Killing form B of Lie algebra g is a symmetric
bilinear form on g× g defined by

B(X,Y ) = Tr(adX ◦ adY ). (33)

Then the subalgebra p (see previous section), can be viewed as the orthogonal complement of k
with respect to B and the differential at e of involution σ is of form

Deσ(X + Y ) = X − Y, where X ∈ k, Y ∈ p. (34)

Let us select in the subalgebra p the maximal abelian3 subalgebra a and let a∗ be the space
of real linear functionals on a. For a linear functional a∗ ∋ α : a 7→ R we can define the root
space

gα = {X ∈ g
∣∣[X,Y ] = α(Y )X, ∀Y ∈ a}. (35)

and denote by mα the dimension of gα. If mα > 0 and α ̸= 0 then α is called a restricted root.
By Σ we will denote the set of restricted roots. Note that the number of restricted roots is finite.
One can choose a set of positive roots Σ+ defined by the following conditions.

• For each restricted root α exactly one of α and −α is contained in Σ+.

• For any α, β ∈ Σ+ either α+ β ∈ Σ+ or α+ β is not a restricted root.

Then we can define another Lie subalgebra n of g by

n = ⊕α∈Σ+gα. (36)

Finally, the Iwasawa decomposition of the Lie algebra g is

g = n⊕ a⊕ k. (37)

The following claim shows that this decomposition can be lifted to the group level.

2Non-abelian Lie algebra is simple if it does not contain any non-trivial ideals.
3Lie algebra a is abelian if [x, y] = 0 for all x and y in a.
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Theorem 8. Let G and H be as above and let g = l⊕ a⊕ n be an Iwasawa decomposition of the
Lie algebra g of G. Then there are subgroups A and N of G with Lie algebras a and n such that
the multiplication map N × A×H 7→ G given by (n, a, h) 7→ nah is diffeomorphism. Moreover,
the subgroups A and N are simply connected.

For g ∈ G let us denote by n(g) ∈ N, a(g) ∈ A, h(g) ∈ H such elements that g = n(g)a(g)h(g).
The abelian Lie algebra a endowed with the inner product given by the restriction of the

Killing form B|a×a can be identified with the Euclidean space Rl for some l. The dimension
dim a := l is called the rank of the symmetric space G/H.

A vector X ∈ a is called regular if α(X) ̸= 0 for all α ∈ Σ. Since Σ is a finite set, the
connected components of the set of regular elements are convex cones. They are called Weyl
chambers. By construction, the sign of α(X) is constant on each Weyl chamber. By a+ we will
denote the positive Weyl chamber, i.e. the unique Weyl chamber such that all elements of a+ take
positive values on Σ+. The Weyl group W is the finite subgroup of the group of bijective linear
transforms GL(a) generated by reflections relative to the hyperplanes Lα = {α(X) = 0|X ∈ a},
where α ∈ Σ. This group acts by permutations on the set of Weyl chambers.

Using the Killing form B we can identify a and a∗: for λ ∈ a∗ we associate Xλ ∈ a such that
B(Xλ, X) = λ(X) for all X ∈ a. Then, the space a∗ is naturally endowed with the inner product
⟨λ, µ⟩ = B(Xλ, Xµ). Finally, the Weyl chamber and the Weyl group can lifted to a∗:

a∗+ = {λ ∈ a∗|Xλ ∈ a+} (38)

and the Weyl group W is generated by reflections relative to the hyperplanes L∗
α = {α(Xλ) =

0|λ ∈ a∗} where α ∈ Σ.

2.3 Harmonic Analysis

In this section we give a brief introduction to the topic of harmonic analysis on symmetric
spaces not going far beyond the definition of the spherical Fourier transform. Again, we consider
symmetric spaces of form M = G/H where G is a noncompact semisimple Lie group with finite
center and H is its maximal compact subgroup.

Harmonic analysis on symmetric spaces is similar to the harmonic analysis on abelian groups.
In abelian case the Fourier transform can be defined in terms of the Gelfand transform. The
Banach algebra L1(A) of integrable functions on an abelian group A with multiplication given
by convolution is commutative. Thanks to this the Gelfrand transform on algebra L1(A) is
well-defined. For every function from L1(A) its Gelfand transform is a function on the space of
multiplicative linear functionals from algebra L1(A) to C. All such functionals in they turn may
be represented as inner product with group characters i.e. continuous mappings from the group
A to the unit circle S1 ⊆ C.

The case of a symmetric space is quite similar. For a symmetric space M = G/H let us
consider the space L1

H(G) ofH bi-invariant integrable functions onG. This space can be naturally
identified with the space of H-invariant functions on G/H. It turns out that L1

H(G) with
multiplication given by convolution is also a commutative Banach algebra. Hence it admits the
Gelfand transform as well and the key question to characterize the continuous homomorphisms
(multiplicative linear functionals). As shown by Helgason [13, Ch. III, Th. 12.5], these are the
inner products with some of the spherical functions.

Definition 9. A spherical function on G is a continuous non-zero function φ that satisfies

φ(x)φ(y) =

∫
H
φ(xhy) dµH(h) for all x, y ∈ G, (39)

where µH is the Haar measure on the compact group H normalized to be probabilistic.
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Note the similarity to the definition of a character χ on an abelian group requiring χ(x)χ(y) = χ(xy).
All continuous homomorphisms of L1

H(G) onto C are given by

f 7→
∫
G
f(g)φ(g−1) dµG(g), (40)

where µG is a Haar measure on G and φ is a bounded spherical function.
The following explicit formula for spherical functions was found by Harish-Chandra.

Theorem 10. Spherical functions on the group G are in one-to-one correspondence with a∗C/W ,
where a∗C is a complexification of the dual space a∗ and W is the Weyl group4 (see definitions in
Section 2.2). For λ ∈ a∗C we assign the function φλ given by

φλ(g) =

∫
H
e(i·λ+ρ)A(hg) dµH(h), (41)

here ρ = 1
2

∑
α∈Σ+ mαα is the half-sum of all positive roots α weighted by the dimensions mα

of the corresponding root spaces gα while A(g) = log a(g) is the logarithm of the a-part of the
Iwasawa decomposition g = n(g)a(g)k(g). Factorization by W means that for all w ∈ W and
λ ∈ a∗C one has φλ ≡ φwλ.

Let us here describe some properties of spherical functions.

Result 11.

• All spherical functions have the same value at the identity

φλ(e) = 1. (42)

• Spherical functions are eigenfunctions of the Laplace–Beltrami operator ∆G on G:

∆G φλ = −(|λ|2 + |ρ|2)φλ. (43)

• Spherical functions have the “symmetry” property

φλ(g
−1
1 g2) =

∫
H
e(iλ+ρ)A(h−1g2)e(−iλ+ρ)A(h−1g1) dµH(h). (44)

In contrast to the abelian case not all spherical functions are bounded and non-negative
definite.

Theorem 12. The subset Λb of a∗C that corresponds to the bounded spherical functions is

Λb = a∗ + i · C(ρ), where C(ρ) = Conv{wρ |w ∈ W}, (45)

ρ was defined in Theorem 10 and Conv is the notation for convex hull.

The subset Λ+ corresponding to non-negative definite functions is a subset of Λb. This
subset includes a∗, since by Eq. (44) we can represent φλ as a scalar product of functions
pλ,g(h) = e(iλ+ρ)A(h−1g) with respect to the Haar measure on H.

The spherical Fourier transform of a function f on G defined by

f̂(λ) =

∫
G
f(g)φλ(g

−1) dµG(g). (46)

Our next goal is to describe Plancherel formula and the inversion formula. We start with the
definition of Plancherel measure that is given in terms of a certain c-function.

4Elements of Weyl group are linear mappings which can be naturally extended to act on the complexification.
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Definition 13. The Haris-Chandra c-function is defined as

c(λ) = I(iλ)/I(ρ), where I(ν) =
∏

α∈Σ+

B

(
1

2
mα,

1

4
mα/2 +

(ν, α)

(α, α)

)
(47)

and B(n, z) is considered as the unique analytical continuation of Beta function on subset of the
complex plane {z ̸= 0,Rez ≥ 0}, mα are as in Theorem 10 and inner product is induced by the
Killing form.

Theorem 14. Let f ∈ L2
H(G) ∩ L1

H(G) and f̂ be the Fourier transform as defined by Eq. (46).
Then the inverse transform is given by

f(x) = const

∫
a∗+

f̂(λ)φλ(x)|c(λ)|−2 dλ, (48)

where dλ is the Lebesgue measure. Moreover, the analog of Plancherel theorem holds true:∫
G
|f(g)|2 dµG(g) =

∫
a∗+

|f(λ)|2|c(λ)|−2 dλ. (49)

Finally, the map f 7→ f̂ can be extended to an isometry between L2
H(G) and L2

(
a∗+, |c(λ)|−2 dλ

)
.

3 Gaussian Processes on Symmetric Spaces

3.1 Stationary Gaussian Processes

As it was mentioned in the introduction, we are interested in stationary Gaussian processes.
Because of this, we start with presenting a general notion of stationarity which will be applicable,
in particular, to symmetric spaces.

Let X be a set and let G be a group acting on X. Then we will call a kernel k : X ×X 7→ C
on X stationary with respect to G if

k(gx, gx′) = k(x, x′) (50)

for all g ∈ G and x, x′ in X.
A zero-mean process f = GP (0, k) will be called stationary if the kernel k is stationary. One

can check that if f is stationary then the processes f(g ·) and f(·) have same finite-dimensional
distributions.

Let us additionally assume that the group G acts transitively on X. This means that for each
pair x, y ∈ G there is an element g ∈ G such that gx = y. In this case X is called a homogeneous
space. Further, if we fix some element x ∈ G and let H be the stabilizer subgroup of G with
respect to x i.e.

H = {h ∈ G|hx = x}, (51)

then X will be isomorphic to the left coset space G/H.
Let us now point out an important property of stationary kernels on homogeneous spaces.

For any h ∈ H

k(g1H, g2H) = k(g−1
2 g1H, eH) = k(g−1

2 g1H,hH) = (52)

= k(h−1g−1
2 g1H,H) = k(Hg−1

1 g2H,H), (53)

so the kernel k may be identified with a one argument function k′ on the double coset space
H\G/H.

Remark 15. When X = Rd we can consider two groups of isometries. The group S(d) of shifts
and the group M(d) of motions. In the first case the stabilizer is trivial and S(d) ≡ Rd, so the
kernel is a one function on Rd as in Section 1.2. In the second case the stabilizer is O(d) — the
group of rotations of Rd and the kernel is the function of distance between points.
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3.2 Stationary Gaussian Processes on Symmetric Spaces

Since symmetric spaces are also homogeneous, the notion of stationarity from Section 3.1 is
applicable for them. All stationary kernels on symmetric spaces of a rather general sort are
described by the following result.

Theorem 16. Consider a symmetric space M = G/H where G is a separable locally compact
group of type I.5 A Gaussian process f ∼ GP (0, k) is stationary on M if and only if k is of form

k(g1H, g2H) =

∫
Λ+

φλ(g
−1
2 g1) dµk(λ), (54)

where Λ+ is the set of indices of non-negative definite spherical functions6 and µk is a nonnegative
finite measure over Λ+.

Proof. See [13, Ch. III, Th. 12.9] and [31, Th. 6].

As before, we restrict ourselves to the case when G is a noncompact semisimple Lie group
with finite center and H is the maximal compact subgroup of G.

We also impose the square integrability assumption on the function k′(g) = k(H, gH) to be
able to use the spherical Fourier transform. As we will see further, our main examples (heat
and Matérn kernels) satisfy this assumption. With the assumption, Theorem 16 is modified as
follows.

Theorem 17. Consider a symmetric space M = G/H where G is a semisimple Lie group with
finite center and H is its maximal compact subgroup.

The Gaussian process f ∼ GP(0, k) is stationary on M with square integrable k′(g) =
k(gH,H) if and only if there exists a non-negative function

k̂ ∈ L1(a∗+, |c(λ)|−2 dλ) ∩ L2(a∗+, |c(λ)|−2 dλ) (55)

such that

k(g1H, g2H) =

∫
a∗+

φλ(g
−1
2 g1)k̂(λ)|c(λ)|−2 dλ, (56)

where φλ(·) are spherical functions, c(λ) is the Harish-Chandra c-function and a∗+ is the positive
Weyl chamber.

Proof. Under the square integrability assumption due to Theorem 14 there is a function
k̂ ∈ L2(a∗+, |c(λ)|−2) on the a∗+ such that Eq. (56) is true. The condition k̂ ∈ L1(a∗+, |c(λ)|−2 dλ)
is obtained by substituting g1 = g2 = e into the Eq. (56). This proves the forward implication.

Substituting µk(λ) = k̂(λ)|c(λ)|−2 dλ into Eq. (54) we get the backwards implication.

As in the Euclidean case, we call the function k̂ the spectral density of process f and the
measure µk = k̂(λ)|c(λ)|−2dλ the spectral measure of process f .

3.3 Computational Algorithms

In this section we develop the counterparts of the computational techniques from Section 1.3 in
the setting of symmetric spaces. Notably, in contrast to the Euclidean case, it is unclear how to
evaluate the kernels of interest since there are no closed form expressions for them. We discuss
how to solve this problem first.

Hereinafter we always assume that a stationary kernel k satisfies the conditions of Theorem 17
and is given in terms of its spectral measure µk.

5For precise definition see [15]. All symmetric spaces that we consider further satisfy this assumption.
6Note that in the paper [31] spherical functions are called zonal spherical functions and “spherical functions”

are something different.
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3.3.1 Pointwise Kernel Evaluation

We start with the evaluation problem. Applying a Monte Carlo approximation to Eq. (56) we
can approximate the kernel k by

k(g1H, g2H) ≈ σ2

L

L∑
j=1

φλj
(g−1

2 g1) where λj
i.i.d.∼ µk/σ

2, (57)

where σ2 = k(H,H) is the variance of process f .
Eq. (57) still requires integration because φλ(g) =

∫
H e(iλ+ρ)A(hg) dµH(h). To overcome this

we suggest using Monte Carlo approximation again:

k(g1H, g2H) ≈ σ2

L

L∑
j=1

e(iλj+ρ)A(hjg
−1
2 g1), where λj

i.i.d.∼ µk/σ
2, hj

i.i.d.∼ dµH(h). (58)

This gives rise to a computational algorithm provided there’s a way to sample µk/σ
2 and the

uniform distribution µH over the compact group H.
A natural question arising from this is how to estimate the convergence rate of this approxi-

mation.

Theorem 18. The estimator on the right-hand side of Eq. (58) is unbiased and its standard
deviation is bounded by σ2/

√
L uniformly with respect to g1 and g2.

Proof. Because of the properties of Monte Carlo approximation, it is clear that the estima-
tor is unbiased, hence we only need to estimate the variance. Since the estimator is a sum
of independent random variables it is enough to bound the variance of the random variable
σ2e(iλ+ρ)A(hg−1

2 g1), where λ ∼ µk/σ
2 and h ∼ µH

Var(σ2e(iλ+ρ)A(hg−1
2 g1)) ≤

∫
a∗+

∫
H
σ2|e(iλ+ρ)A(hg−1

2 g1)|2 dµH(h) dµk(λ) (59)

Using equations Eq. (44), Eq. (42) and noticing that A(g), ρ, λ are real∫
H
|e(iλ+ρ)A(hg−1

2 g1)|2 dµH(h) = φλ(e) = 1. (60)

Finally,

Var(σ2e(iλ+ρ)A(hg−1
2 g1)) ≤ σ2

∫
a∗+

1 dµk(λ) = σ4. (61)

3.3.2 Finite-dimensional Feature Maps

As in Euclidean case, a finite-dimensional feature map can be found to drive an analogue of
random Fourier features technique.

By virtue of Eq. (44) we may obtain from Eq. (57) the finite-dimensional approximation of
the process f ∼ GP (0, k)

f(g) ∼ σ√
L

L∑
l=1

wle
(iλl+ρ)A(hlg), where wl

i.i.d.∼ N (0, 1), λl
i.i.d.∼ µk/σ

2, hl
i.i.d.∼ µH . (62)
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As in Eq. (25) the vector-valued feature map Φ(·) = [φ1(·), . . . , φ2L(·)]⊤ is given byφ2l−1 =
√

2
Le

ρA(hlg) · cos(λlA(h1g));

φ2l =
√

2
Le

ρA(hlg) · sin(λlA(h1g)).
(63)

Let us denote the process on the right-hand side of Eq. 62 by fL. By construction the process
fL is Gaussian with covariance

kL(g1H, g2H) =
σ2

L

∑
e(iλj+ρ)A(hjg1)e(−iλj+ρ)A(hjg2). (64)

One of the ways to quantify the quality of approximation of f by fL is to estimate the
difference between k and kL.

In contrast to the previous statement, the speed of convergence is non-uniform and depends
on g1H, g2H, but for every compact subset of M the uniform convergence is still true.

On the bright side, unlike approximation 58, approximation 62 is guaranteed to be non-
negative definite. This consideration is crucial for many practical applications.

Theorem 19. Let k(g1H, g2H) and kL(g1H, g2H) be as above, then kL(g1H, g2H) is an unbiased
estimator of k(g1H, g2H) and for every compact subset U ⊂ M the standard deviation is bounded
by CUσ

2/
√
L uniformly with respect g1H, g2H ∈ U .

Proof. As in previous statement, since all terms are independent and identically distributed, it
is enough to estimate the variance of one term

Var
(
σ2e(iλ+ρ)A(hg2)e(−iλ+ρ)A(hg2)

)
≤
∫
a∗+

∫
H
σ2|e(iλ+ρ)A(hg1)e(−iλ+ρ)A(hg2)|2 dµH(h) dµk(λ) =

(65)

=

∫
a∗+

∫
H
σ2e2ρA(hg1)e2ρA(hg2) dµH(h) dµk(λ) = σ4

∫
H
e2ρA(hg1)e2ρA(hg2) dµH(h) ≤ (66)

≤ σ4

(∫
H
e4ρA(hg1) dµH(h)

)1/2(∫
H
e4ρA(hg2) dµH(h)

)1/2

= σ4φ
1/2
−3iρ(g1)φ

1/2
−3iρ(g2). (67)

So the question is reduced to the bounding φ−3iρ. Since spherical functions are continuous, φ−3iρ

is continuous, so it is bounded on the compact set U and therefore we get the uniform estimation
σ4maxg∈U φ−3i·ρ(g).

Remark 20. Recall that by Theorem 12 the space of bounded spherical functions Λ+ is

Λ+ = a∗ + i · C(ρ), where C(ρ) = Conv{wρ |w ∈ W}, (68)

ρ is the half-sum of positive roots and W is the Weyl group. Since the Weyl group is generated
by reflections, we have that imaginary part for all λ ∈ Λ+ is bounded by ∥ρ∥ which implies that
−3i · ρ ̸∈ Λ+ and φ−3i·ρ is not globally bounded.

Substituting g1 = g2 = g into Eq. (65) the Cauchy inequality turns into an equality and since
Var(X) = EX2 − (EX)2 we get

Var
(
σ2e(iλ+ρ)A(hg)e(−iλ+ρ)A(hg)

)
= σ4(φ−3i·ρ(g)− 1). (69)

Since the spherical function φ−3i·ρ is not globally bounded the unbounded variance is not a product
of loose bounds, it is an inherent property of the estimator.
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3.3.3 Variational Inference

The variational approach mentioned in Section 1.3 is applicable in our current setting as well.
As we will see, the only difference is the optimization of locations of inducing points.

Let us recall the main points of variational approach. Let x,y the observed data set of size n
and f ∼ GP (0, k) be a prior distribution. The first step is to choose some initial set of inducing
points z ∈ Mn and denote u = f(z). The second step is to approximate the posterior p(f,u|y)
with the variational family p(f |u)q(u), where q(u) ∼ N (µ,Σ). The third step is to optimize
µ,Σ and z by minimizing the KL-divergence (Eq. 27) using a (stochastic) gradient optimization
method.

The process of optimization of µ and Σ is exactly the same as in Euclidean case. The
optimization of locations z of inducing points calls for a gradient optimization technique on the
symmetric space. For many examples this optimization is available [1] and can be performed e.g.
by means of the PyManOpt library [29].

3.4 Matérn and Heat Kernels

As mentioned in the introduction, Matérn kernels are arguably the most popular family of kernels
used in applications in the Euclidean setting. To generalize this family to the setting of symmetric
spaces we will utilize their characterization in terms of heat kernel k∞,κ,σ2 and heat kernel itself
will be defined in terms of the appropriate version of the heat equation.

Recall that heat kernel on an arbitrary smooth Riemannian manifold defined in the same
way as in Section 1.2.1

∂P
∂t

(t, x, y) = ∆xK(t, x, y), (70)

with initial condition
lim
t→0

P(t, x, y) = δx(y), (71)

where where t > 0 and ∆ is the Laplace–Beltrami operator and the limit is taken in the sense of
distributions.

For a symmetric space the heat kernel [26] can be found in terms of the spherical Fourier
transform, in the same way as in Euclidean case, because ∆Gφλ(gH) = −(|λ|2 + |ρ|2)φλ(gH):

P(t, xH, yH) =

∫
a∗+

e−t(|λ|2+|ρ|2) · φλ(y
−1x) · |c(λ)|−2 dλ. (72)

Then a heat kernel k∞,κ,σ2 defined as

k∞,κ,σ2(xH, yH) = σ2P(κ2/2, xH, yH) = σ2

∫
a∗+

e−
1
2
κ2(|λ|2+|ρ|2) · φλ(y

−1x) · |c(λ)|−2 dλ. (73)

Note, that unlike the Euclidean case, we do not normalize the kernel so that k∞,κ,σ2(xH, xH) = σ2

since Cκ,σ = k∞,κ,σ(xH, xH) cannot be computed analytically.
Finally the Matérn kernel kν,κ,σ2 is defined by Eq. (15) with different normalization:

kν,κ,σ2(xH, yH) =
1

Γ(ν)

∫ ∞

0
uν−1e−

2ν
κ2

u k∞,
√
2u,σ2(x, y) du. (74)

This formula can be simplified
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kν,κ,σ2(xH, yH) =
1

Γ(ν)

∫ ∞

0
uν−1e−

2ν
κ2

uk∞,
√
2u,σ2(xH, yH) du = (75)

=
1

Γ(ν)

∫ ∞

0
uν−1e−

2ν
κ2

u

(
σ2

∫
a∗+

e−u(|λ|2+|ρ|2) · φλ(y
−1x) · |c(λ)|−2 dλ

)
du = (76)

σ2 1

Γ(ν)

∫
a∗+

(∫ ∞

0
uν−1e−u( 2ν

κ2
+|λ|2+|ρ|2) du

)
φλ(y

−1x) · |c(λ)|−2 dλ. (77)

By Gradshteyn and Ryzhik [11], Section 3.326, Item 2 the following relation holds∫ ∞

0
une−au du = Γ(n+ 1)a−n−1. (78)

Hence, substituting n = ν − 1 and a = 2ν
κ2 + |λ|2 + |ρ|2 we finally arrive at

kν,κ,σ2(xH, yH) =σ2

∫
a∗+

(
2ν

κ2
+ |λ|2 + |ρ|2

)−ν

φλ(y
−1x) · |c(λ)|−2 dλ. (79)

The derivation of Eq. (79) is somewhat informal but is enough to motivate why this equation
should serve as the definition of Matérn kernels in this setting. As by Section 3.2, for Matérn
kernels to be well defined we must have(

2ν

κ2
+ |λ|2 + |ρ|2

)−ν

∈ L1(a∗+, |c(λ)|−2 dλ) ∩ L2(a∗+, |c(λ)|−2 dλ). (80)

Theorem 21. Matérn kernel kν,κ,σ2 is well defined in terms of Theorem 17 if and only if ν > d/2,
where d is the dimension of manifold G/H.

Remark 22. Note, that the constant d/2 is the same as in the Euclidean case.

Proof. We need to study for which a, b the integral∫
a∗+

(a+ |λ|2)−b|c(λ)|−2 dλ < ∞, (81)

is finite. Since the integral is rotational invariant∫
a∗+

(a+ |λ|2)−b|c(λ)|−2 dλ =
1

|W |

∫
a∗
(a+ |λ|2)−b|c(λ)|−2 dλ (82)

where W is the Weyl group. So it is enough to work with the integral on a∗. To do this we
need to look closer at the c-function. Recall that this function is equal up to a constant (this is
denoted by ∝) to

c(λ) ∝
∏

α∈Σ+

B

(
1

2
mα,

1

4
mα/2 + i

(λ, α)

(α, α)

)
. (83)

Because B(x, y) = Γ(x)Γ(y)
Γ(x+y) we can rewrite formula for c(λ)−1

c(λ)−1 ∝
∏

α∈Σ+

Γ
(
1
2mα + 1

4mα/2 + i (λ,α)(α,α)

)
Γ
(
1
4mα/2 + i (λ,α)(α,α)

) . (84)
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It is well known [22, Ch. 4, Eq. (5.02)] that

Γ(z + s)

Γ(z)
= zs(1 +O(1/z)), (85)

as z → ∞ in the sector | arg z| ≤ π − δ for any 0 < δ < π.
On the other hand for a positive fixed s > 0 and Rez ≥ 0 function Γ(z+s)/Γ(z) is continuous,

since Γ(z + s) is analytic on Rez > −s and 1
Γ(z) is an entire function. Then for any R > 0 the

function Γ(z+s)
Γ(z) is bounded in {z : |z| < R,Re z ≥ 0}. Thus for big enough Cα, C

′
α we have

∣∣∣∣∣Γ
(
1
2mα + 1

4mα/2 + i (λ,α)(α,α)

)
Γ
(
1
4mα/2 + i (λ,α)(α,α)

) ∣∣∣∣∣ ≤ Cα + 2

∣∣∣∣14mα/2 + i
(λ, α)

(α, α)

∣∣∣∣ 12mα

≤ 2

∣∣∣∣C ′
α + i

(λ, α)

(α, α)

∣∣∣∣ 12mα

. (86)

Then for C > C ′
α we get

|c(λ)|−2 ≤
∏

α∈Σ+

2
∣∣C + i

(λ, α)

(α, α)

∣∣∣mα

. (87)

Applying the Cauchy inequality for a large positive constant D > 0 we can get the upper bound

|c(λ)|−2 ≤ (2C +D|λ|)
∑

α∈Σ+ mα . (88)

On the other side, for a small enough δ > 0 the set Λ = {λ ∈ a∗ : (λ, α) ≥ δ|λ||α| for all α ∈ Σ+}
has infinite Lebesgue measure. Therefore, by Eq. (85) there is ε > 0 such that

|c(λ)|−2 ≥ (C + ε|λ|)
∑

α∈Σ+ mα (89)

for all λ ∈ Λ such that |λ| is big enough.
Comparing Eq. (87) and Eq. (89) we conclude that integral in Eq. (82) converge if and only

if the following integral converges ∫
a∗
(1 + |λ|)

∑
α∈Σ+ mα−2b dλ. (90)

Finally, since a∗ ≡ Rdim a the conditions for this are quite clear: 2b > dim a+
∑

α∈Σ+ mα. Com-
puting the dimensions in Eq. (37) we conclude that b > d/2. Returning to the theorem we
get that integrability condition implies ν > d/2 and that square integrability condition implies
ν > d/4 which is even weaker.

4 Application to the Space of Symmetric Positive Definite Ma-
trices

The space of symmetric positive-definite matrices arises in many real-world applications [2, 9,
16, 17]. In this section we demonstrate how to apply techniques described in Section 3 to get
efficient computational techniques for Gaussian process regression.

Further we fix d ∈ N and denote by Pd the space of symmetric positive definite matrices of size
d×d. We denote by GLd(R) and Od(R) the groups of invertible matrices and orthogonal matrices
of size d × d correspondingly. As SLd(R) and SOd(R) we denote determinant one subspaces of
GLd(R) and Od(R). And as Id we denote the identity matrix of size d.

Let us consider the action of GLd(R) on the space Pd

Y[M] = MYMT , Y ∈ Pd and M ∈ GLd(R). (91)
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Every symmetric positive-definite matrixY ∈ Pd admits Cholesky decomposition: Y = UUT

where U is upper–triangular matrix. Because of that it is clear that the map M 7→ Id[M] is
surjective. Moreover, for Y1,Y2 ∈ Pd having the Cholesky factors U1,U2 respectively we have
that Y1[U2U

−1
1 ] = Y2. Because Id[H] = HHT = Id if and only if H ∈ Od(R) the stabilizer of

the action (91) is Od(R). Therefore we conclude that Pd may be identified with GLd(R)/Od(R).
Similarly, the subspace SPd of the space Pd consisting of the matrices with determinant equal
to 1 may be represented as SLd(R)/SOd(R).

The group GLd(R) is not semisimple so, strictly speaking, it does not satisfy the assumptions
made in Section 3. However, pulling out the determinant, we may represent Pd = R+ × SPd,
where R+ is the group of positive real numbers under multiplication. Then the Fourier transform
on Pd is given [26, Th. 1.3.1] in terms of the Mellin transform7 on R+ and the spherical Fourier
transform on SLd(R)/SOd(R). Further in this section we use the notation from [26] and denote
by G and H the groups GLd(R) and Od(R).

All approximation techniques and definitions of heat and Matérn kernels from Section 3 are
applicable to Pd. Now we discuss the specifics needed for practical algorithms on the space Pd.

The Iwasawa decomposition of GLd(R) states that a matrix M ∈ GLd(R) can be represented
as M = n(M)a(M)h(M) where n(M) is an upper-triangular matrix with ones on the diagonal,
a(M) is a diagonal matrix with positive entries and h(M) is an orthogonal matrix. Note that
after grouping the first two factors this decomposition coincides with the RQ8 decompositon with
n(M)a(M) being the upper-triangular and h(M) being the orthogonal parts.

Denote the group of diagonal matrices of size d with positive entries by Ad (this is the A part
of the Iwasawa decomposition). Denote its Lie algebra by a. It is isomorphic to Rd. For λ ∈ a∗

we define a power function pλ by

pλ(Y) = pλ(Id[U]) =

d∏
j=1

e2(i·λj+
j
2
− d+1

2
) logUjj =

d∏
j=1

U
2i·λj+j−(d+1)/2
jj , (92)

where U ∈ GLd(R) is an upper triangular matrix such that Y = Id[U] (the Cholesky factor of
Y). These functions play the same role as exponents e(iλ+ρ)A(g) in previous section.

The spherical functions are then defined by

φλ(Y) =

∫
H
pλ(Y[H]) dµH(H) (93)

and they satisfy Result 11 with ρ = [12 − d+1
4 , . . . , j2 − d+1

4 , . . . , d2 − d+1
4 ].

The Plancherel measure is given in terms of the Harish-Chandra c−function which simplifies
to

|c(λ)|−2 =
∏

1≤i<j≤d

π|λi − λj | tanh(π|λi − λj |). (94)

4.1 Efficient Evaluation of Heat and Matérn Kernels

In this section we focus on Matérn kernel and computational approaches associated with their
usage. As we have shown in Section 1.3 this problem can be reduced to the problem of sampling
from the corresponding spectral measure.

Let us fix Y1,Y2 ∈ Pd and denote as U1,U2 corresponding Cholesky factors. Then the heat
kernel [26, Ex. 1.3.8] is

k∞,κ,σ2(Y1,Y2) = σ2

∫
λ∈a∗

e
−κ2

2

(
|λ|2+ d3−d

48

)
· φλ(U

−1
1 U2)|c(λ)|−2 dλ (95)

7Mellin transform M of function f is (Mf)(s) =
∫∞
0

xs−1f(x) dx.
8RQ decomposition of a matrix M is the representation M = RQ where R is an upper-triangular matrix and

Q is an orthogonal matrix.
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and as in Eq. (79) the Matérn kernel is

kν,κ,σ2(Y1,Y2) = σ2

∫
λ∈a∗

(
2ν

κ2
+ |λ|2 + d3 − d

48

)−ν

· φλ(t
−1
1 t2)|c(λ)|−2 dλ (96)

where ν > d(d+ 1)/4 by Theorem 21.
Substituting Eq. (94) we obtain that Matérn kernel kν,κ,σ2(Y1,Y2) is given by

σ2

∫
λ∈a∗

(
2ν

κ2
+ |λ|2 + d3 − d

48

)−ν

· φλ(U
−1
1 U2)

∏
1≤i<j≤d

π|λi − λj | tanh(π|λi − λj |) dλ. (97)

The spectral measure is(
2ν

κ2
+ |λ|2 + d3 − d

48

)−ν ∏
1≤i<j≤d

π|λi − λj | tanh(π|λi − λj |)dλ. (98)

Unfortunately, we are unaware of a direct way to sample from this measure. The naive approach,
since we know the density, is to use the MCMC-based sampling. However, such methods are
often difficult to use and slow to converge. It turns out though that we can invent a way to
sample a similar density. Specifically, let us rearrange the terms

σ2

∫
λ∈a∗

φλ(U
−1
1 mU2)

∏
1≤i<j≤d

tanh(π|λi − λj |)
(
2ν

κ2
+ |λ|2 + d3 − d

48

)−ν

·
∏

1≤i<j≤d

π|λi − λj |dλ

pν,κ(λ)dλ

(99)
and sample from the measure with density proportional to pν,κ(λ) as described further in the
text.

The way of getting of a finite-dimensional approximation is similar to Eq. (63), it is given by
Φ(·) = [φ1(·), . . . , φ2L(·)]⊤ withφ2l−1(Y) =

√
2
L

∏
tanh(π|λl

i − λl
j |) · e2ρ(a(H

lU)) · cos(2λl(a(HlU)));

φ2l(Y) =
√

2
L

∏
tanh(π|λl

i − λl
j |) · e2ρ(a(H

lU)) · sin(2λl(a(HlU))),
(100)

where Y = In[U] and λl,Hl are sampled independently from pν,κ(λ)dλ, µH(H).
Similarly, for the heat kernel we can define the measure

p∞,κ(λ)dλ = e−
κ2

2
(|λ|2+|ρ|2)

∏
1≤i<j≤d

π|λi − λj |dλ. (101)

and use the same feature map as above.
We start with demonstrating a way of sampling from the measure corresponding to p∞,κ.

Theorem 23. Consider a random matrix X = (Xij)1≤i,j≤d, where Xij
i.i.d.∼ N (0, 1) and put

M = (X+XT )/
√
2. The distribution of M is called Gaussian Orthogonal Ensemble (GOE).

Let λ1, λ2, . . . , λd be the eigenvalues of the matrix M defined above. Let pGOE be the joint
density function of the random vector λ = (λ1, λ2, . . . , λn). Then

pGOE(λ1, λ2, . . . , λn) ∝ e−|λ|2/2
∏
i<j

|λi − λj |. (102)
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Proof. see [19, Th. 3.3.1].

As corollary, we have that the density of the random vector κ−1λ is proportional to p∞,κ.
To sample from measure pν,κ(λ) dλ we present the lemma that generalizes the representation

of a Student’s t-distribution as the quotient of the standard normal and χ distributions.

Lemma 24. Let X be a random vector on Rn with density proportional to e−|x|2/2f(x), where
f(x) is a non-negative function such that for some k ∈ R

f(ax) = akf(x). (103)

Let Y be a random variable independent of X with the χd distribution (the squared root of
the χ2

d distribution) for some d > 0. Then the random variable Z = X/Y has density

pZ(z) ∝ f(z)(1 + |z|2)−ν , where ν = (n+ k + d)/2. (104)

Proof. We prove this by a direct computation of the density of Z. Recall that pY (y) ∝ yd−1e−y2/2.
Thus

pZ×Y (z, y) = pX×Y (yz, y)y
n ∝ e−y2(|z|2+1)/2f(z)yn+k+d−1. (105)

The marginal distribution of Z is, up to a constant,

pZ(z) ∝ f(z)

∫ +∞

0
e−y2(|z|2+1)/2yn+k+d−1 dy ∝ f(z)(1 + |z|2)−(n+k+d)/2. (106)

Substituting the distribution pGOE and χ2ν into Lemma 24 we get the random variable Z
with density

pZ(λ) ∝ (1 + |λ|2)−d(d+1)/4−ν
∏

|λi − λj |, (107)

which is up to rescaling the density we need for Matérn kernels.

Remark 25. Similarly, for this purposes we can use measures with densities

p′ν,κ(λ) ∝
(
2ν

κ2
+ |λ|2 + |ρ|2

)−ν

, p′∞,κ(λ) ∝ e−
κ2

2 (|λ|
2+|ρ|2). (108)

As in Eq. (18) up to re-normalization they are the densities of normal and Student t-distributions.
The advantage of such approach is that this method is generally applicable. However, as can be
seen from Figure 2, for Pd the approach with p′ν,κ and p∞,κ behaves more favorably.

Let us visualize the kernels and processes defined above. For illustration purposes, we consider
kernels on P3 restricted on the subspace SP3. We match numbers λ1, λ2 ∈ R with the matrix
Yλ1,λ2 ∈ SP3 given by

Yλ1λ2 =

eλ1 0 0
0 eλ2 0
0 0 e−λ1−λ2

 . (109)

On Figure 1 for λ1, λ2 ∈ [−5, 5]2 and κ ∈ [0.5, 1, 2, 4] the covariance function k∞,κ,1(I3,Yλ1,λ2)
is plotted, where I3 = Y00 the identity matrix. Samples are obtained using the approximation
(100) with L = 1000. It is clear from Figure 1 that when κ increases samples oscillate less.

On Figure 2 we compare different ways of approximate computations. For random matrices
Y ∈ P5 and M ∈ GL5(R) the kernel k∞,κ,1(Y,Y[ecM]) is computed for c ∈ [−2, 2] and κ ∈
[0.5, 1, 2, 4] using different methods. In the first case we use Eq. (57) for measures p∞,κ (Eq. 101)
and p′∞,κ (Eq. 108). In the second case for finite-dimensional approximations with the same
measures we compute the kernel using Eq. (64). In all cases the approximations have L = 2000.
This illustrates the advantage of using p∞,κ.
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Kernel k∞,κ,1: Sample from GP (0, k∞,κ,1):

Figure 1: Kernels k∞,κ,1 on the left and samples from GP (0, k∞,κ,1) on the right.
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Figure 2: Comparing the approximation approaches for heat kernels with different values of κ.
By “Normal” we denote the approximation corresponding to p′∞,κ and by “GOE” we denote
approximations corresponding to p∞,κ. The “rff” signifies that the approximation was made
using the finite-dimensional feature transform.
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