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1. INTRO

T is a triangulated category closed under coproducts.

Exact functor L : T — T is called a localisation functor [Krause| if there exists a natural
transformation n : Id — L such that Ln is invertible and Ln = nL

An object A is said to be L-local if LA = A

Our goal is to describe the concrete construction of LA for A € Obj(T') for the following
case: We consider a multiplicatively closed set S of natural transformation between Id and
some functor F' such that for every 7 € S

© 17(FA) = F(r(A)) for any A from Obj(T).

© T is closed under countable coproducts.

© F'is an exact triangulated functor.

© When 7 is applied to any distinguished triangle, it can be completed to a
4 x 4 diagram where every row and column is distinguished.
[such diagram is given in the proof of Theorem 1|

For this S we consider localization functors L such that L-local objects correspond to A €
Obj(T') with property: V7 € S 7(A) is invertible. This construction will attempt to generalise
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"inverting integers in triangulated Categories”ﬂ and "localisation of coefficient rings"ﬂ where
S corresponds to a subset of Z closed under multiplication.

Main results of this text are the following ones:

- [In section 3 for some natural transformation 7 and each A we construct LA as specific|
homotopy limit A, such that 7(A’) is invertible.|

- [[n section 4 we generalise it to the case of countable set of natural transformations.|

- [In section 5 we list some categorical properties of our construction.|

2. PRELIMINARIES

Composition of morphisms is written in the diagrammatic order.

We use the standard definition of triangulated category and the following lemma cited from
[Neeman| (Proposition 1.1.20):
Lemma 1. If in the morphism of distinguished triangles

A B C A[1]
f g h fI1]
Al B " A1)

both f and g are isomorphisms, then so is h.

3. CALCULATION OF LA. POWERS OF A NATURAL TRANSFORMATION

3.1. Context. Let F' be an endofunctor on a triangulated category T'. Let 7: Id — F be a
natural transformation. We define S as the set of powers of 7 with [the properties| as written
above in the previous section.

Let D be the full subcategory of objects X such that V7 € S 7(X) is invertible (our local
objects).

For every object A we construct LA along with ¢ : A — LA such that:

© LAeD.
© For every morphism o : A — B with B in D, there exists

v:LA— B

such that o = ¢

!see Appendix A.2 of [Kelly]
Z5ee section 5.4 of [Bondarko] and section 5.6 of [Bondarko2]
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3.2. Construction. We start with the following sequence:
0— ATN pA™ED p2y

A map FA — F?A can be defined in two ways:

o 7(FA)
e F(1(A))

It would be natural to require these possibilities to be the same. This is why we require
T(FA) = F(7(A))

In the context of additive categories, cokernels and colimits which could be used for the con-
struction E] may not exist. Triangulated categories closed under countable coproducts happen
to be a fitting extension, because one can use homotopy colimits instead of colimits. Homotopy
colimits are constructed per [Neeman]| in the following way:

Let

fu: F*A — FFA@® FM1A
be defined as (id, —7(F*A)).
We define f as the direct sum of f; for all k. It’s the same as id — 7(] ] F*). There exists C,
which extends f to the distinguished triangle:

[[Fa L[ Fa—c -5 Fra Loy

Then C'is called a homotopy colimit of the sequence (F"A, 7(F;A)) and written as hocolimF"A.

3.3. Localisation property.

Theorem 1. C' € D

Proof of 1. It’s enough to prove that 7(C) : C — F(C is an isomorphism. Denote @ F*A
as M. Then 7(M) is equal to the direct sum of 7(F*A) : F*A — FkH1A

(M) : [[F*A — F(J] F*4)
We can apply F' to

and connect two triangles with 7.

3n the case of categories closed under countable colimits, localisation can be constructed as a colimit of the
sequence:

05 A s ATy

In abelian categories it can be represented as a cokernel of

T4 514

flai) = (ai, —za;)



(M) (M) 7(C) T(M)[1]
FM -FM FC - FM][1]

[T'he 4th property from the box in Section 1 of 7 allows extending this diagram to the 4 x 4
one.

f @ ¢
M .M .C - M[1]
T T IT 7[1]
| Ff Fr Fo¢
FM -FM .FC - FM(1]
\ @] p Y
K K D K[1]
| 1
? ? ? 211]

Let’s denote the left 4 x 2 rectangle in the diagram above (which we consider as a morphism
of triangles) by (x):

M . -FM i -K - M[1]
(id — 7) (id — 7) a (id — 7)[1]
M -FM -FK - M]1]

Denote the following diagram as (kx):

YA VL S S M1
(M) T(FM) 0 T(M)[1]
YA R VL S S . M1

The left square of (**) commutes by the definition of a natural transformation. Let’s show
that the remaining squares commute on the level of summands:



T(F'A) hi Di

FiA FitlA ¢ - FiA[]
T(F'A) T(F1A) 0 T(F'A)[1]
. T(FHlA) . h; Di .
FHlA FerQA +l ‘Kz‘-i-l +l ‘FlJrlA[l]

The bottom triangle is distinguished. It follows that 7(F ™' A)h;;; = 0 as the composition of
consequent morphisms in a distinguished triangle. This equality corresponds to the commu-
tativity of the central square. The rotation of the diagram gives the equality p;7(F?A)[1] =0
which implies the commutativity of the right square and finishes the proof of the commutativ-
ity of (xx). It means that (**) is a morphism of triangles. The sum (x) + (%) corresponds to
the following diagram:

M FM K M1
id id a id|1]
M FM K MI1]

Difference between morphisms of triangles is a morphism of triangles. Both of the triangles
are distinguished. According to Lemma 1 « is an isomorphism. As

K-> K — D — K[l]
is distinguished, it implies that D = 0.
C -5 FC— D — C[1]

is distinguished. It follows that 7o is an isomorphism as well. 0J

3.4. Universality.

Theorem 2. The "universal" property of C'.

Let A, M and C be defined as above and let B be an object such that 7(B) is invertible. Then
any morphism g : A — B can be factored through C.

Proof of 2. We have two distinguished triangles:

ML M — c— M

0— B4 B—0
The morphism g produces F'g : F'(A) — F'(B) for every i > 0. As 7(B) is an isomorphism
B — F'(B), we can define

gi = (F'g)("(F"B))
from F(A) to B where 77(F"B) = (7(B))~!. Define ¢’ : M — B to be a sum of g; for
every 7 > 0.



Now we will prove that f¢' = 0. In other words, the left square of

M >y M —— C > MI1]
I |
0 > B > B > 0

comiutes.
For every object X we required the equality

F(r(X)) = 7(F(X))
If 7(X)~! exists, then
Lreo) = F(lx) = F(r(X)"'7(X)) = F(r(X) ) F(7(X)) = F((X) )7 (FX)

It means that for such X
F(r(X)™) = 7(F(X))™
is also true. It implies that in the case of X € D similar equality holds for all integer powers

of 7:
VieZ: F(r(X)) = r(F(X))

Let’s prove the following equality by induction:
T(F" 1 A)g; = gi_1Vi > 0

Base: 1 =1
7(A)g1 = T(FA)F(g)7(B)™"
Naturality of 7 implies the commutativity of the following square

7(A)
A F(A)
g Fyg
(B
(B) F(B)

(9)(7(B)) = (r(A))(Fyg)

F'(g7(B)) = F'(r(A)Fg)
Figr(F'B) = r(F'A)F"™g

Then, for every ¢ > 0

Thus
T(A)F(g)r(B)™ = g7(B)7(B) " =¢
Inductive step for k > 2. Suppose that 7(F¥"2A)g,_1 = gr_o: Let’s notice that for any n > 1
gn = F"gr "(F"B) = (FF"'g)(r7""/(F"B))(r(FB)) =
— F(F"g)(r~ (F(F"'B)))(r~ (FB)) =
= F(F" ) F(r " (F"'B))(r ! (FB)) =
= F(F"lgr " (F"IB))(r (FB)) =

~— —



= F(go_1)7 Y(FB)
Then, by the equality which we just got:
T(F* 1 A)gy = T(FM T A)F(ge)7~(FB) =
= F(1(F* 2 A))F(gp-1)7 ' (FB) =
= F(r(F"2A)gp_1)7 ' (FB) =
= F(gk—2)7 '(FB) = gr1
It finishes the proof of the equality. H

We wanted to prove that fg = 0: For every i > 0 define the ¢th summand of f¢' as
n; » F'A — B. Tt can be written as the composition:

(id,—T)

iAo FZ'H(A) (9i,9i11) B
i = 9i — T(F1A>gz'+1
But we had proved already that 7(F'A)g;,1 = g; and thus
Vi>0:n=0
It follows that f¢’ = 0 and the diagram

FiA =

0 v B4 . p > 0

commutes. Then we can complete it to a full morphism of the triangles with an arrow C' —— B
such that

g =
First summand of this equality is

g=op

Note: in general, there is no such property as uniqueness of .

4. LOCALISATION BY A FAMILY OF NATURAL TRANSFORMATIONS CLOSED UNDER
MULTIPLICATION

4.1. Generalization. We had constructed the localisation for the case when a multiplicative
family was just a set of powers of some transformation. In this section we construct the
localisation by arbitrary countable multiplicatively closed set S. It means that for any 7,v € S
the composition 7v € S as well.

4All equalities from the proof become much simpler if you don’t write an argument of a natural transformation
and assume that morphisms chain correctly.
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4.2. Construction. For finitely generated multiplicative sets we can construct the localisation
by the whole set as the localisation by all generators (one by one). To extend this process to
infinitely generated sets, we will use a homotopy limit.

Theorem 3. Let S be a countable multiplicative set of natural transformations Id to F indexed
by the natural numbers. Let S; be the set of the first ¢ elements from S. Let A be the
localisation of A by S; for every ¢ < k. Construct the homotopy limit

Where 7 is the "inclusion" A; — A, .

Then H is the localisation by S

Proof of 3. As § = US,, for any 7 € S exists k such that 7 € S,.. If we choose a subsequence
starting at A, then, according to Lemma 1.7.1 from [Neeman| it will have a homotopy limit
H isomorphic to the initial one. Then consider the diagram for 7 applied to the shortened
distinguished triangle:

H/{<’y A’Y Hn<'y A’Y g H (Hn<'y A’Y) [1]
T T T (1]
Hn<'y F(A“/) HKZ<'7 F(A'Y> . F(H> - (HH<~/ F(A'Y))[l]
At all entries except H 7 is an isomorphism. It means that at H it will be an isomorphism
by Lemma 1. O

5. EXAMPLES

In previous chapters we assumed [some properties|on a set of natural transformations. Now
we will present a few examples which satisfy them.

5.1. Example 1. If S is a subset of Z closed under multiplication then for each element s € S
we can define the natural transformation /d —» Id as sid: sum of s identity maps. All
properties are satisfied as Id functors preserves and commutes with everything.

5.2. Tensor product. For this example we need to assume that category T is a tensor trian-
gulated category with the distributive property for coproducts.
Category T'is called a tensor triangulated category E] if

- T has the structure of triangulated category.
- T has the structure of tensor category.
- Tensor product is additive and exact.

Given a countable set of objects {X;} and morphisms 1 N X; with "balancing" property (x)
id®t; =t; ®id, we can define:

For more precise definition, refer to https://ncatlab.org/nlab/show/tensor+triangulated+category


https://ncatlab.org/nlab/show/tensor+triangulated+category
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— Functors F; which map A -5 Bto A® X; 2% B X,

— Natural transformations 7;(X) : X X ® X,

Let’s check [the propertiest
Commutation. Let A be an object from category. Then, we want

Ti(Fi(A)) = F(7(4))

By definition:

A=A X, @128 Ag X, ® X;

Fr(A)=A®1e X, "2 A0 X, ® X;

The property (*) required from the set {X;} assures that these morphisms are equal. The
second and the third properties are yet again required by the definition. For the 4th property
consider two triangles

A— B— C — All]

1% X, — H; — 1][1]

Then, according to the definition of tensor triangulated category, all rows and columns of
4 x 4 square built as the tensor product of the triangles will be distinguished as needed. The
commutativity of the smaller squares is expressed analogously to

f®idy tdp®@t;=fRt;=1ida®@1t; fRidp

5.3. Example of Not example. The properties we require from natural transformations are
quite strong. For example, property 7F = F'r fails in the case of functor which sends an object
Ato A® A and a morphism f to a f @ f and 7 is set to the diagonal map.

F(A)=Aa A

T(F(A)=7(A®A) =A(Ad A)

Fr(A)=F(A(A)) = A(A) @ A(A)

The problem is that A(A) & A(A) and A(A @ A) are quite different morphisms: Let’s fix in
Hom(A%?, A®*) matrix units e; ; which are just the identity maps from the ith component to
the jth one.

A(A) & A(A), A(A® A) € Hom(A®?, A%
Then, A(A) @D A(A) = €11 + €1,2 + €23 + €24 while A(A ) A) =€1.1 + €1,3 + €22 + €2.4.
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6. CATEGORICAL PROPERTIES OF THE CONSTRUCTED LOCALISATION.

In this section we study how the construction of the localisation described above is related or
similar to localisation functors. While homotopy limit is not a functor (it’s not even unique),
it’s possible to notice the properties similar to the properties of localisation functors E] if we
look at all possible limits at the same time.

In the context of this section, T is a triangulated category with all countable colimits. As the
localisation by any S is built as the homotopy colimit of the localisations by sets of powers, we
limit ourselves to the case when S is the set of powers of some natural transformation 7. For
an object A we denote the localisation by S via homotopy colimit as LA. D is the collection of
objects A such that 7(A) is an isomorphism. The elements of D will be called as local objects.

6.1. Definitions.
Definition: For every object A from T we define L'(A) as the family of all possible localizing
homotopy limits.
Definition: Define C' as the union of all L'(A)
Now, for every morphism f : A — B consider the following diagram:

A"

B

L(B)

The universal property of the localisation applied to fl, gives us the non-unique morphism
L(A) — L(B), which completes the diagram to the commuting one.
Definition: Define Mor(C) as the family of all such morphisms.

Theorem 4. C together with Mor(C) forms a category ImL. O
Definition: Define KerL as the full subcategory of objects A such that L(A) =0

Now we can ask the following questions: If for A all transformations are already invertible,
will it lie in ImL? Can the constructed localisation be realised as the abstract localisation by
the subcategory KerL? Is there an equivalent localisation functor?

6.2. Results. Let’s prove the properties which will help to answer these questions.

Theorem 5. Ve € D; L(c) = c. (It follows that D = I'mL)

. . h .
Proof of 5. Let ¢; be the sequence of isomorphisms ¢; 2 civ1, where ¢ = ¢y and ¢ > 0.

Let 14 be the composition ¢o¢; ... ¢r. Then ¥ = [[, ;¢ is an isomorphism [[e¢ — [] e
Construct the commutative square where the horizontal morphisms are as in the construction
of the homotopy limit.

6They are described extensively in [Krause]
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[Tc —[]c

v

[Heo —— 1«

Complete this diagram to the morphism of the distinguished triangles. hocolim of identity
maps is isomorphic to the first object of the sequenceﬂ. So the top row will be completed with
c. Lemma 1 implies that ¢ = hocolim ¢;. Substitution of ¢; with Fic and ¢; with 7(F(c))
implies that ¢ = hocolimFic = Le.

4

O
Important consequence of this theorem is

Theorem 6. I'mL allows completions of a morphism to a triangle.
Proof of 6. For any morphism from I'mL : L(A) — L(B) we can complete it to a triangle
inT

L(A) — L(B) — ¢ — L(A)[1]
T7(L(A)) and 7(L(B)) are isomorphisms. Lemma 1 guarantees that 7(c) is an isomorphism.
L(c) = ¢, so we got the triangle consisting from elements of ImL. O

Theorem 7. KerL1ImL
Proof of 7. A € Obj(KerL). B € Obj(ImL) = D. ¢ € Hom(A,B). As B € D, ¢ can be
decomposed into A — L(A) — B. But L(A) =0, so ¢ = 0. O

Theorem 8. Take A € Obj(T) and ¢ € Hom(A, L(A)). There is the distinguished triangle

A -2 L(A) -5 H(A) — A[1]

Then, H(A) € LObj(ImL) if and only if L(A) satisfies the juniversal property from Section 3.1|
with uniqueness.

Proof of 8. For any C from ImL functor Hom(—,C) is a homological functor which will
turn the distinguished triangle from the statement of the theorem into the following long exact
sequence:

«—— Hom(H(A)[—1],C) «— Hom(A,C) <— Hom(L(A),C)
«— Hom(H(A),C) <— Hom(A[1],C) <— Hom(L(A)[1],C)) +—

The universal property states that for any f € Hom(A,C) exists g € Hom(L(A),C). In
other words Hom(A[i],C) «— Hom(L(A)[i],C) is surjective for every i. Then the long exact
sequence splits into the short exact sequences of type:

0<«— Hom(A,C) «— Hom(L(A),C) <— Hom(H(A),C)<+— 0

But then Hom(H(A),C) = 0 if and only if the left arrow is injective. The left arrow is injective
if and only if choice of g above is unique. 0

"|Nechman| Lemma 1.6.6
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