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For an arbitrary convex function, using the infimal convolution operation, a family of
continuously differentiable convex functions approximating it is constructed. The constructed
approximating family of smooth convex functions Kuratowski converges to the function under
consideration. If the domain of the considered function is compact, then such smooth convex
approximations are uniform in the Chebyshev metric. The approximation of a convex set by
a family of smooth convex sets is also considered.
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1. Introduction and preliminaries. The concepts of convex sets and convex func-
tions are fundamental in Convex Analysis (see, e.g., [1-3]). The class of convex functions
is one of the most studied among the family of nonsmooth functions. Convex functions
are known to be nondifferentiable. Convex sets and convex functions are the main tools
in theoretical studies in many subjects of nondifferentiable optimization. In the absence
of smoothness, the convexity enables us to use a rich set of analytical tools for the deve-
lopment of the theory of optimality conditions.

The aim of this paper is to construct a family of smooth convex functions, which
approximates a given convex function and a family of smooth convex sets, which approxi-
mates a given convex set. The need for function approximation arises in many branches
of applied mathematics, and in particular in computer science (see, e.g., [4]). For con-
structing such an approximation family, the operation of taking the infimal convolution is
used. As it is known from Convex Analysis [3], if one of the convex functions involved in
the infimal convolution operation is essentially smooth, then the resulting function is also
smooth. The Moreau — Yoside regularization is the most well-studied among the functions
obtained as a result of the infimal convolution. The Moreau envelope also smoothes a
nonsmooth convex function. However, these functions approximate well the given func-
tion in a neighborhood of an optimal point. Based on such regularization, algorithms,
called proximal algorithms, are widely used for solving convex optimization problems. A
lot of investigations have been done on the properties of the Moreau envelope, including
differentiability, regularization (see, e. g., [5-7]).

A new approach for constructing a family of smooth convex functions uniformly ap-
proximating a given convex function on a convex compact set is proposed. If the function
is finite on the whole Euclidean space, then it is shown that the epigraphs of the resulting
family are Kuratowski continuous.

The article is organized as follows. The most important properties of convex functions
and set-valued mappings which are applied in proving the main theorems are collected in
Section 1. The main results of this paper are presented in Sections 2 and 3. In Section 2, a
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family of approximation convex sets is constructed for an arbitrary closed set. Using this
family, we form a set-valued mapping and prove that any convex set from this family is
smooth and the set-valued mapping is Kuratowski continuous. In Section 3, an algorithm
for forming a family of smooth convex functions, which approximates a given convex
function is presented. The properties of this family are investigated. Some examples are
given.

2. The main theorems.

2.1. Notation. In the paper, the standard notation and terminology of Convex
Analysis (see, e. g., [1-3]), are used.

Let f:R" = RU{+oo} U{—oc}. A set domf = {z € R" | f(z) < +oo} is called an
effective domain of a convex function f. A set

epif = {(z,n) R x R | f(z) < 1}

is called an epigraph of f.

A convex function f is said to be proper if its epigraph is nonempty and contains no
vertical lines, i. e., if f(z) < +oo for at least one z and f(x) > —oo for every z. In the
future, we will consider only proper convex functions. For proper convex functions, it is
possible to give another definition, which equivalent to the above. A function f is called
closed, if its epigraph is a closed set. A proper convex function is called essentially smooth,
if it satisfies the following three conditions [3]:

e the set C' = int (domy) is not empty;

o f is differentiable for each x € C;

o if x1,x5,... is a sequence in C' converging to a boundary point x of C, then
lim [ f'()]| = +o0.

—400

Here and further, we will consider only the Euclidean norm ||z|| = +/{x,z). Note
that any smooth convex function on R™ will be essentially smooth, as the set of sequences
satisfying the last condition is empty.

The conjugate function of f is

fT(v) = sup {(z,v) = f(z)}, veR™

zER™

Clearly, the equality

fr(w)y= sup {(z,v) - f(x)}, veR",
zedomy

is true. Note some of the properties of the conjugate functions [3]:
e f* is closed and convex (even when f is not convex);
e the Fenchel inequality: the definition implies that

f@) + f*(v) = {x,v) VreR" VYveR"

e if f is a closed proper convex function, then f* is also a closed proper convex
function and the following equality f(z) = f**(x) is true.

2.2. Distance function and set-valued mappings. Let C(R™) be the collection
of nonempty closed subsets of R™. Take a set X € C(R™). In our case the distance function
d(-,X) : R™ — [0, +00) is defined by

X)=mi —z||.
(=, X) = min ||z — o]
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Let {X,} be a sequence of closed sets X,, € C(R") and X € C(R"). We will define
X, — X, if d(-, X,,) — d(-, X) pointwise [8].

For any sequence of sets {X,,}, X, € C(R™) and a set X € C(R™) define |9, 10] the
Kuratowski limit inferior (or lower closed limit) of X,, — X, n — 400, is

Li Xn:{xEX

n—-4oo

:{meX

the Kuratowski limit superior (or upper closed limit) of X,, = X, n — 400, is

limsupd(x, X,) = 0} =

n—-+oo

for all open neighbourhoods U of z,
UnNX, # O for large enough n ’

n——4oo

Ls X, = {meX
n—oo

:{xeX

liminf d(z, X,,) = 0} =

for all open neighbourhoods U of x,
U N X, # O for infinitely many n [~

If
Li X,= Ls X,,=X,
n—oo n—oo
then we say that {X,,} Kuratowski converges to X.
Let X C R” and Y C R™ be some sets. Denote by 2¥ the set of all nonempty subsets
of Y. Let ¢ : X — 2Y be set-valued mapping. A set-valued mapping v is called upper
semicontinuous at a point x € X, if from

Tn =X, TR €X, Yn—Y, Yn € V(xn),

it follows y € 1(x). A set-valued mapping v is called upper semicontinuous, if it is upper
semicontinuous at each point z € X. A set-valued mapping v is called lower semiconti-
nuous at a point z € X, if that for any y € ¢ (z) and any sequence {z,}, z,, — z, x, € X,
there is such a sequence {y,}, yn € ¥(z,), that y, — y. A set-valued mapping ¢ is called
lower semicontinuous, if it is lower semicontinuous at each point x € X. If a set-valued
mapping ¥ is upper semicontinuous and lower semicontinuous at each point x € X, then
1 is Kuratowski continuous. If a set-valued mapping v is upper semicontinuous, then for
any x € X the set ¢ () is closed. A set-valued mapping « is called bounded, if it translats
bounded sets into bounded sets.
Denote by 6(X,Y) = sup inf ||z — y||. The function
reX YEY

pH(X’ Y) = sup{5(X, Y)’ 5(Y’ X)}

is called the Hausdorff distance between the convex sets X and Y. A set-valued mapping
1) is called Hausdorff continuous at a point z € X, if from z,, — z, x,, € X, it follows

pr((xn), () = 0.

A set-valued mapping 1 is called Hausdorff continuous, if it is Hausdorff continuous at
each point x € X. If a set-valued mapping ¢ is Hausdorff continuous on X, then it is
Kuratowski continuous. If a bounded set-valued mapping 1 is Kuratowski continuous on
X, then it is Hausdorff continuous.
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2.3. Infimal convolution of two convex functions. Let f1, fo : R" — RU{+00}
be proper convex functions. A function

f(z) = inf {fi(@1) + fa(z2)} = inf {fi(z1) + folz —21)}
T+ a9 =2 T ER
x1,x2 € R™

is called the infimal convolution of functions f1, fo and is denoted by f(z) = (f1 ® f2)(x).
It is known, that

e the function f is convex on R";

e the operation of taking the infimal convolution is commutative and associative;

e an infimal convolution is known as epigraphical addition. Because geometrically
performing the infimal convolution of the function f; using the function f;, we add the
epigraph of f; to the epigraph of fa:

(f1® f2)(@) =inf { p € R| (z,p) € epi f1 +epi fa }.

The infimal convolution f; @ f> is called exact at a point x = x1 + xo, if

fi(x1) + fa(z2) = min  {f1(y1) + fa(y2)}
Nty =2x

y1,y2 € R?

Note some properties of convex functions obtained as the result of the infimal convo-
lution operation. Let f; and fs be convex functions on R", then

e dom (f1 @ f2) = dom f1 + dom fo;

o the following equality

(e f) =H+1 (1)

holds

e if ri (dom f1) Nri (dom fo2) # O, then (f1 + f2)* = f1 @ f5;

e if ri (dom f1) Nri (dom f2) # @, and f; is essentially smooth, then fi; & fo is
essentially smooth;

e if the functions f; and f> are not identically equal +o00 and the infimal convolution
f1 fo is exact at a point x = x1 + x2, then

I(f1® f2)(z) = Of1(z1) N O fa(z2).

Let f1 be a continuous convex function on R" and fa(z) = 2(Mz, z), where M is a
definite positive matrix. The function

1) = (e 2w = it {70) + 5016 - - )

is called the Moreau — Yosida regularization.
Example 1. Let X C R” be a convex set, f1(z) = §(X,x) be the indicator function
of this set, fo(z) = [|z|[, x € R", then

F@) = (1 ® f2)(@) = inf_|lz— ]|

Example 2. Fix € > 0. Denote

—Vvet—(z,z), |z <e n
t = 2 ’ R™.
5(37) { +o0, HI'H >, T €
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The function t.(x) is determined only in a ball of radius € centered at the zero point and
it is essentially smooth, i. e., it is differentiable in each internal point z € int dom ¢,

and if x1,29,... is a sequence of elements of int dom t¢., which converges to the point
x ¢ int dom t., then li+m [|f/(z:)]| = +o0. It is easy to see that
1— 400

ti(v) =ey/14+ (v,v), veR", >0

Therefore, the effective domain of the conjugate function ¢} is the whole space R™.

3. Smooth approximation of convex sets. In this section, we will propose a
method for constructing a family of smooth convex sets approximating a given set.

Let K C R™ be a cone. A cone K* = {y € R" | (y,z) > 0 Vo € K} is
called a dual cone to K. Let X C R"™ be a closed and convex set. A set N(X,z) =
{y eR" | (y,z—x) <0 Vze X }is called a normal cone to the set X at z € X.

Note some properties of normal cones:

e the normal cone is a closed convex cone;

e let X C R" be a closed convex set. If z € X, then

N(X,z) = —[cone (X —z)]" = -T"(X,x),

where I'(X, z) is the cone of feasible directions at the point x. Here cone A denotes a
convex conical hull of a set A.

A closed convex set is called smooth, if for each one of its boundary point there is a
unique support hyperplane. Thus, if the normal cone at every boundary point of a closed
convex set consists of a single ray, then this set is smooth.

Let a set X C R” be closed and convex and assume that it does not coincide with
R™. Fix € > 0 and form a closed convex set

X(e) =X +eB1(0,),

where B, (z9) = {z € R" | ||z — zo|| < 7}.

Theorem 1. A normal cone to an arbitrary boundary point zo € bd X () of the set
X (e) consists of a single ray.

P roof. Fix ¢ > 0. Take a boundary point 2y € bd X (¢) and project it onto the set
X, 1. e., we find a point zg such that

xog = arg ;nelg [lz — zoll.
The point ¢ is unique and ||zg — 2o|| = €. Show that
N(X(g),z0)={yeR" ’ y=Azo—x9) YAZ=0}.
First, let us prove that (20 — xo) € N(X(¢), 20), i. e.
(z — 20,20 —x0) <0 Vze X(e).
Take a point z € X (¢). If z € X, then
(z — 20,20 — o) <—on—z0|\2:—€2<0. (2)

If = ¢ X, then there exist points z € X, p € R", ||p|| = 1, and a number &; € (0,¢] such
that z = x + 1p. In this case

(2 — 20,20 — 20) = (& +€1p — 20, 20 — T0) =
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= (x — 20,20 — 20) + €1{D, 20 — To) < —€* + €1 < 0. (3)
Thus, from (2) and (3) it follows that for each z € X (g) the inequality

(z — 20,20 — 20) <0

is satisfied. This means that the ray with a direction vector yo = zg — z¢ belongs to the
cone N (X (e),20).

Let us prove its uniqueness. Note that zg is a boundary point not only of the set X (),
but it is a boundary point of a closed ball B.(z¢) of radius € centered at . The vector
Yo is also normal to the tangent plane of the ball at the point zg. Therefore, if we assume
the existence of a vector

y1 € N(X(€),20), w1 # Mo YA=0,

then it should be normal to set B:(xp). The obtained contradiction completes the proof
of the theorem. |
In Figure 1 you can see an example of a rectangle smooth approximation.

————\

N\ ra—

Figure 1. The family X.

Corollary 1. Using this theorerm, it is not difficult to show the validity of the following
statements:

e for points xg, zg, from Theorem 1, the next inclusion
N(X(e),20) C N(X, )

is true;
e let X C R”™ be a closed convex set. For every ¢ > 0, the set X (¢) is smooth.
Let X C R™ be a closed convex set. Consider a set-valued mapping

P X(): (0,400) — 28",
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By using the results presented in the paper by G. Beer [9], it is easy to prove the
following theorem.

Theorem 2.

o The set-valued mapping vV is Kuratowski continuous.

o Let X C R™ be a compact convex set. Then pg(X(e),X) — 0, if ¢ — +0, where
pu (X (), X) is the Hausdorff distance.

4. Smooth approximation of convex functions. Let f : R™ - RU {+co}, fp :
R™ — R U {400} be real-valued functions. We say that the sequence {f,} epi-converges
to a function f if for each z € X:

lim+inf fo(zn) = f(x) for every z,, — x,
n—-+0oo

limsup f () < f(x) for some x,, — .
n—4oo

A collection 2 of real-valued functions on R™ is called pointwise equicontinuous [9],
if for each y € R™ and € > 0 there exists 6 > 0, depending on ¢ and y, such that whenever
d(z,y) < § then |f(z) — f(y)] < e for all f € Q.

The following theorem by G. Beer [9] establishes the relationship between the point-
wise convergence of distance functions and the convergence of distance functions of sets
in R™ x R.

Theorem 3 [9]. Let {f.} be a pointwise equicontinuous sequence of real-valued con-
tinuous functions on R™, and let f : R™ — R be continuous. The following statements are
equivalent:

o whenever {x,} is a sequence in R™ convergent to x, then

i fuea) = f(@);

o {fn} converges to f uniformly on compact subsets of R™;

e {fn} converges pointwise to f ;

e {fn} Kuratowski converges to f ;

o {fn} epi-converges to f.

Consider a convex function f:R"™ — R and a closed convex set D C R™. Denote

X =epif = {(z,p) €eR" xR | p> f(z), x€D}.
Construct families of convex closed sets
X(e) =X 4+eB1(0p41) CR" ., D(e) =D +¢eB(0,) CR", £>0,
and a family of convex functions

o) = { inf p, (x,pn) € X(e),

400, at other points.

It is not difficult to see that dom f. = D(e), and for each fixed £ > 0, the graph of the
function f. is the lower envelope of the corresponding set X ().
Fix € > 0. Let z € D. Consider a family of convex functions {¢.(z, z)}

goe(x,Z) = f(Z) + te(xvz)v
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where

o= { VT e

400, at other points.
Here B.(z) C D,. It is obvious that

dom . (-, 2) = B-(2), | B:(2) = D(e).
zeD

Denote H.(z) = epi ¢:(, z). Consider also functions
pe(z) = inf oc(,2)

and its epigraphs H. = epi ..

From the constructing of functions f. and . it is not difficult to prove that the
statements are true [11]:

e for any fixed point xg, there exists a unique point zy € D for which

pe(0) = f(20) + te(z0, 20);

H. =epip. = | epi (-, 2) = U He(2);

z€D z€D
He = X(e);
for any fixed € > 0, the following statement f.(z) = ¢<(z) holds;
fe(z) = (f ®tc)(x), where

te(x) = { ~VETER, lell <e,

+00, at other points.

Note the fact that t. is essentially smooth for every fixed positive €. Consider the
function f.(x) = (f @ te)(x). The function f; is convex and

frw) = f*(v) +ti(v), veR™

Then the next statements are true [11]:
e for the function f., the statements

dom fszdom f1+Bs(On)7 epi fs:epi f1+Bs(On+1)

hold, where B.(0,) = {z € R" | ||z]| < &}, Bc(0p41) = {z € R*" T | ||z|| < e};

e the function f. for any fixed ¢ > 0 is continuously differentiable at each interior
point of D(e);

e the set epi f C R™ X R is smooth for any positive number .

As the function ¢, is essentially smooth, then the function f. is also essentially smooth
[3]. Therefore it is continuously differentiable at any interior point of D..

Theorem 4. Let a point x¢ € int D(e). Then there exists a unique point zo € D for
which

fi(0) € D (20),

where fl(xo) is the gradient of the function fe(xo) at xo, Of(20) is the subdifferential of
the function f at zg.
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P r o o f. Take a point z¢ € intD.. Then by using Theorem 1 for any point Ty =
(%0, fe(zo)), the normal cone N (X (¢€),Zo) to the set X (e) consists of the ray with the
direction vector

Yo = Zo — Zo = (@0 — 20, fe(20) — f(20)),

where Zy = arg minzex ||Z — Zo|| = [20, f(20)], and fe(zo) — f(20) < 0, that is,
N(X(&‘),i‘o) = {y e R*t! ‘ Y= )\(.fo — 50) V> 0}

As the set X is the epigraph of f, then by using one of the properties of the normal cone
to the epigraph of f at Zp, we have

(fi(z0),—1) € N(X(¢),Z0) C N(X, %).

Thus fl(xg) € 0f(z0). [ |
Note some properties of functions conjugate to the functions f and f.. Let f be a
closed proper convex function on R”. A set

domdf = {z € R" | 9f(zx) # O}

and

rangedf = U of(z)

zER™

are called, respectively, the effective set and the image of 9f. It is known [3], that
ri(dom f*) C range 0f C dom f*.

Since the function f. is the infimal convolution of the functions f and t¢., then by
using property (1) we have that at each point v € range 9 f. for every positive € > 0, the

next equality
fe(@) = f*(v) +ev/1+ |l

holds.
Take v € range 0f. C domf*. Then there exists a point = € domf, for which v €
dfc(x), therefore,

fe(@) + f2(v) = (z,0). (4)
Consider the point Z = (z, f-(x)). Find
Z = arg gél)r(le - ‘%H = (Z,f(Z)),
then v € 8f(2), T =z + ep(v)[v, —1], where p(v) = ﬁ From the equalities
r=z+ep(v), fo(z)=f(z)—epv) ()

hold. Thus, if a point = € int (dom f), then the function f; is differentiable at it. Therefore

1

VI+IIF@)IP

v=fi(x), nlv)= z=z+epv)fl(x).

Since v € 0f(z), then
f2)+ 5 (v) = (z,0).
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From this equality, from equalities (4) and (5) the next formula is true

WB ) = g, e e

Theorem 5. Let M* be the set of minimizers of the function f on the set D, and M}
be the set of minimizers of the function f- on the set D(g). The case when these sets are
empty is not excluded. The following statements are true:

e if the set D is convex compact, then

min f(z) = min fe(z) +¢;

e the next equality M* = M} holds;
e if M is not an empty set, then

f(z")=f(z")—e Vz"e M.

P r o o f. First, note that if a point z¢g ¢ D, but oy € D(e), then there exists a point
zg € D for which

fe(wo) = f(20) + te (w0, 20) > f(20) — € = fe(20)-

Therefore M} C D C int D(e).

Assume that the set M} is not empty and a point z* € M. Show that this set
belongs to the set M*. Consider a point zZ = (2%, f-(2*)) € X (¢). Then there exists a point
z e X, = (z, f(z)), for which

(2" ==, fo(2") — f(z)) € N(X(e), 2).
If a point z* is a minimizer of f. on D, then
(2" — =, fe(2") = f(z)) = €(0n, —1) C N(X(e),27),

where z* = [2*, f-(2*)]. Therefore z* = z and f.(z) — f(x) = —e. Hence z* € M*. The
inclusion of M} C M is proved.

Show the correctness of the inverse inclusion. Let z* € M*. Consider points zZ =
(z*, f(z*), Z = (2%, f-(2*)) and the vector g = 2 — z = (0,, fc(z*) — f(2*)). By
constructing the set X, we have ||g|| > ¢ and

fZ") = fe(z") 2 e

Suppose that f(z*) — f-(2*) > €. Then there exists a point z = (z, f(x)), x € D, for
which ||Z — Z|| = e. Hence |f(x) — fe(2*)| < €. From here we have

e <f(Z") - f(2") < f(Z7) +e— f(2).

Or f(z*) > f(x). However, this inequality contradicts with the fact that z* is a minimizer
of the function f on D. |
Example 3. Let we have

1
f(z) :max{—?x—6,—§x—3,2x—8}, r € R,
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or
—2r—6, z€(—o00,—2),
f(l') = —%33—3, T E [_272)7
2r -8, x€[2,+0).

Consider two variants.
Variant 1. Let the set D be the Euclidean space R. Then the set of minimizers of this

function consists of a single point z* = 2 and f(2) = —4. Fix an arbitrary positive € > 0.
Then
_2x—6—\/5€, xe(—oo,—2—25ﬁ>,
- ISR ae|-2-2E 2o 4F)
L) = —de-s-E ae[-2- B ),
- VETGIIR, e [2- Y24 2E),
2z — 8 — /be, xeé—&—@,—&—oo).
The function f. is continuously differentiable on R -and
-2, HAS (—oo, -2 - %),
T, we —2- 2 g E),
‘@) ={ 1, ve|-2- oo V),
T v€ 2o R M),
2, ze 2+ 24 1o0).

Hence f1(2) = 0 and f.(2) = —4 — e. We have

—20+2, ve[-2,-3),
ffo)=9 2v+4, vel[-31,2],
~+00, at other points.

Variant 2. Consider the case when the set D is the segment [—3, 0] and the functions

1
fx) :max{—Qm—G,—ix—S}, x €[-3,1] CR,

~+00, x € (—o0,—2),
. 22 -6, x€[-2,—1),
f(x) = 1 1 2

—537—37 xe[—§,0],

+00, T e (—%,—Foo)

Then D, = [-3 — ¢, ¢] (Figure 2) and the function
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oo v € (~o0, =3 —2),

—\/e2 = (z +3)2, z € »_3_57_3_%&)»

—22 — 6 — /be, x € __3_#’_2_%)’
E={ —=2-VP—@T2P, ve|-2-2fe 2 )

s B acfa o )

—3—m, T € _—\/455,5},

+00, T € (-6,—|—oo).

The function f. is continuously differentiable for all z € (=3 —¢,¢) and f/(0) = 0. As

fe(0)=-3—¢, fu(-3-2)=0, f(e)=-3,

then

nin fe(z) = -3 —e.

Figure 2. Family f-(z) (I) and f-(x) (II)
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Wcnonp3ys omeparuio nuaduMaIbHOM KOHBOJIIOINH, A1 IIPON3BOILHON HETJIaIKON BHIITY KJIOH
GYHKIUN CTPOUTCS ANMIPOKCUMUPYIONIEE CEMENCTBO HEMPephIBHO Aud (HepeHITpyEeMbIX BbI-
myKaeix Gyakiumi. [locTpoerHoe anmpoKCHMupYIONee CeMeHCTBO TJIAIKNX BBITYKJIBIX (DYHK-
it cxoautes o Kyparosckomy K paccmarpuBaeMoil dyukiuu. Eciin MHOXKECTBO ompenese-
HUS JAHHON (DYHKIUN KOMIIAKTHO, TO TaKWe TJIAKUE BHIMYKJIbIE MPUOJINKEHUsT HEITPEPHIB-
HBI B MeTpuKe Uebbinena. Takzxke pacCMaTpUBAETCS AIIPOKCUMAIINS HETJIQIKOTO BBITYKJIOTO
MHO2KECTBa CEMEUCTBOM IVIAQ/IKMX BBIILYKJ/IBIX MHOXKECTB.

Karowesoie cao6a: MHOTO3HATHOE OTODParKeHNe, IOy HEIIPEPHIBHOE 0TOOPAYKEeHNE, COIIPSIKEH-
Hag ynkusa, cxogumocts 110 Kyparosckomy, onepanus nabUMaIbHON KOHBOJIIONUY, TJIA/I-
Kad allIPOKCHUMAIINd.
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