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This work is a natural continuation of the authors’ research on flow phenomena in the di-
rection of increasing the dimensionality of the network-like domain of change of the space
variable. The possibility of practical use of the analysis of the stability of operator-difference
schemes to solve the issue of stability (stabilization) of wave phenomena in the engineering of
the process of transferring continuous media through network-like carriers (water pipelines,
gas and oil pipelines, industrial carriers of petroleum products) is shown. Namely, if the
scheme is stable, then sufficiently small changes in the initial data of the mathematical model
of the process imply small changes of the solution of the difference problem, i. e. in practice
do not lead to undesirable aftereffects. If the schema is unstable, then small changes to the
initial data can lead to arbitrarily large changes of the solution. In the process of exploitation
of industrial constructions of network-like carriers, wave phenomena inevitably arise, the
consequence of which are various kinds of instabilities that entail destruction of one nature
or another. It is possible to avoid or essentially reduce such undesirable oscillations using
the analysis of the stability properties of the mathematical model of the wave process. The
obtained results are used in the algorithmically and digitalization of modern technological
processes of the movement of fluid media and gases.

Keywords: network-like domain, domain adjoining surfaces, operator-difference scheme with
weights, stability scheme.

1. Introduction. In engineering practice, wave phenomena that occur in elastic in-
dustrial structures or during the transportation of a continuous medium through a network
or main pipeline [1-4] are defined as stable (stable with a steady mode), not exceeding a
certain level of intensity, if, with sufficiently small changes in the initial data, the quan-
titative characteristics of the process also change little. The paper examines the stability
of a set of three-layer operator-difference schemes with weight parameters o1, oo (two-
parameter family of schemes) for the hyperbolic equation

2
¥+ Ay = f(a1),

with a positive Sturm — Liouville-type elliptical operator A defined in the Hilbert space
of measurable functions with carriers in the network-like domain <& of Euclidean space R™
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(n>2)and at t € [0,T], T < co. The main part of the study is devoted to the analysis of

the operator-difference scheme obtained from this equation by replacing the derivative 2 dtQ
with a difference quotient = (Yk+1 — 2yk + Yr—1), determined with a step 7 for the points
ty =kr,k=0,1,..., K, of segment [0, T]. The theoretical basis of the presented study was
the general theory of stability of difference schemes, first of all schemes of practical interest
(see, for example, [5, p. 382]), with the only difference that the operator-difference system
is considered in the class of weak solutions [6]. The task of finding sufficient conditions
that guarantee the stability of all schemes of the system and determining the optimal
values of weight parameters is set and solved. The obtained results can be used to analyze
the optimization problems that arise when modeling network-like processes of transfer by
formalisms of operator-difference schemes.

2. Necessary designations, concepts and definitions. A network-like bounded
domain & C R™ with bound 93 consists of subdomains ; with bounds 93; (I = 1, N)
connected in a certain way among themselves in M nodal locus w; (j =1,M,1< MK

N-1):w j=T,M,1<M<N-1):3=%U&, S U\sl,w— Uw],\slﬂ\sl/—

(#1), wijNwy =0 (G #3) SiNw; =0 (I # ]) [3 4]. At each nodal locus wj
(j = 1, M) a certain number of subdomains 3; have common bounds that form the surface

of their adjoining S; (measS; > 0). The adjoining surface connects among themselves the
mj

adjacent to it 1 + m; subdomains ¥, and ¥y, (s =1,m;): S; = J Sjs (measS;s > 0),
s=1

S; C0F4,, Sjs C0F1, (s =1,m;). Thus, each nodal locus w; (j = 1, M) is defined by its
adjoining surface S, for which each surface S;s (s =1 mj) is also the adjoining surface
. to Sy,. It is clear that the boundary of the domain & does not contain a surface S;

(j=1,M): 03 = U O3k \ U S;. It should be noted that the structure of the domain &
k=1 Jj=1

coincides with the geometry of the graph-tree with internal nodes (vertices) w [2, 6], any
subdomain of the domain & also has a similar & structure with its own number of nodes.
Let’s agree to assume that the surfaces S; and S, (s = 1,m;, [ = 1, N) are differentiable,
and the domains &; — star-shaped relative to some ball, its own for each <.

Let Lo(£2) (2 € R™) is Hilbert space of real Lebesgues measurable functions u(x),
x = (x1, 22, ..., Ly ), the scalar product and the norm in Lo(£2) are defined by the equations
(u,v)o = [u(z)v(x)dz and |jullq = \/(u,u). Next, W3(2) is Hilbert space of elements

Q

u(z) € L2(Q), for which u,, (z) € L2(Q), & = 1,n. The scalar product and the norm in
W3(Q) are defined by the relations

ol = f (w0 £ weevn, ) do= [ (ulente) + £ D5 e
Q k=1

Q k=1
el = /(s w) @)
In connection to the network-like domain 3, we have [w(z)dz = Z f x)dz. The

i

representations of spaces Lo(S), W(S) and the relations (1), (2) take the form Ly(S) =
N

[T La2(Se), Wi(S) = H W(Sy), in addition

k=1
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In some cases, to simplify the writing, the symbol & in the notations of the scalar product
and norms will be omitted.

N
Next, let’s introduce other function spaces on the network-like domain & = |J Sy.
k=1
When describing such spaces, it is necessary to continue the elements u(z) from the domain
— N _
Sto = U Q-
k=1

Denote by C(9) a set of functions continuous in . Let’s agree to say that a function
u(z) € C (©) has a continuous to (2 a derivative if it for the points Q continues in continuity
on Q (topology on Q is induced by topology Q). Thus, it is possible to consider a set
C*(Q) of functions u(z) for which in Q there are continuous first derivatives on variables
T1, T2, ..., Tn, moreover the scalar product in C'(Q) defined by the relation (1), and the
norm — by the formula (2). The latter means that the following sets can be formed: a set
C(S) of continuous in ¥ functions u(z), sets C*(33) (k = 1, N) of functions from C(S), for
which under each fixed k in Sy, there are continuous derivatives ug, (2), Uz, (2),..., Uz, (2)

— N —
and a set C1(S) = [[ C*(Sx) with a scalar product and a norm defined by formulas
k=1
(3)—(5), respectively.

Let C(3) is set of functions u(z) € C1(T) for which there are adjacency conditions

Ou( a:)s

% s + 5 [ a Mlids =0, xSy, i=Tm;, ()

]7,

[ a(@)s,

S i=18;;

on surfaces S;, Sj; (i = 1,m;) of all nodal locus w;, j = 1, M. Here a(x) € Lo(J) and
a(z)s;, u(x)s;, a(r)s,,, u(z)s,, are narrowing of the functions a(z), u(x) on S; and Sj;,
vectors n; and n;; are external normals to S; and Sj;, respectively, i = 1,m;, j = 1, M. In
the future, to simplification the notation, the indexes that mean narrowing will be omitted
by us. B

Definition 1. The closure of the set C'(S) according to the norm (5) is called space

WS |- ligny = - Iwacey = - 14

— N _ —
The set C1(I) = [] C*(Sy) defines a singularity of a space W1 (). Namely, if u(z) €
k=1

Wl(%), then narrowing u(z)s, € W(Sx), k = 1, N. From 3y, € S (k = 1,N) and the
existence of a generalized derivative u, () in the domain 3 follows the existence of u, (),
in §%. This means that, given definition 1, it is possible to construct a space Wl(i‘s), for
the elements of which the adjacency conditions (6) take place on the boundary surfaces
of the nodal locus, and we get the ordinary (classical) situation, if only the generalized
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derivative is defined everywhere, except the boundaries of . The latter is taken into
account in the representations of the scalar product and the norm in W1(3).

Let us further Cl( ) is the set of elements from C(T) with a compact carrier in the
domain S, thus the elements of the set C 0(8) are zero near the boundary 0<.

Definition 2. Space W})(E‘s) is called the closure of the set CN'})(%) in the norm repre-
sented by the relation (5).

Remark 1. For elements u(z) of space WO( ) you can enter a other scalar product
and norm

N N n
1 1 Ou(x) Ov(x 1 1
w,0)§) = 3 0] = > ) X ) 20 g, Nl =\ ]

The equivalence of norms |[u|/") and HuHEl) is established by means of the Poincare —
Friedrichs inequality analogue f w?(z)de < C f u’(x)dx, C is constant, dependent only

\S
on the domain <, the proof of which is similar to that presented in [7, p. 62].

Granting W&(%) C W(S), it follows from definition 2 that Wé(%) is separable
Banach space. By virtue of the closure of the subspace of the Hilbert space, we obtain: it
follows from the weak convergence of the sequence in W§(S) that its limit element belongs
to this space.

Note that W§(S) it is used to analyze boundary problems with Dirichlet conditions,
W1(<\) it is used to study boundary problems with general boundary conditions.

3. Operator-difference scheme. In the following presentation used symbols and
concepts, are adopted in [5, p. 346]. In space WO( ) a set of three-layer operator-difference
schemes with weight parameters o1 and o2 (01, 02 are real numbers) are considered, on
the choice of which the stability and exactness of the schemes depends.

On the segment, introduce a uniform grid with step 7 = T/K: w, = {t, = k7, k =
0,1,..., K'}. Based on the simplicity of the results representation, for the functions y(k) :=
y(x; k), k = 0,1,..., K, let’s assume the notation, taking into account the boundaries of
the index change k:

y=y(k), §=ylk+1), j=y(k-1), )
))a yt:;(ﬂ—y)7 yt_:_(y_g) yo:ﬁ(ﬁ_y)a (7)
Vit = &= 25+ 9), YO = 015+ (1 01 — 02)y + 0

It is not difficult to verify the fairness of the following ratios:

Yo = Yo + 3Yis Yi = Ys — 3Yits

y=50+9) - 1@ -2 +9) = 50 +9) — Sva
z)=y+%(z)—ﬂ)+l(A—2y+3})=y+Tyo+§yzt7 (8)
J=y—30-9)+3@ —2y+y)—y—7yo+32yzt7

Y7102 =y + (0 — 02)7ys + (01 + 02) % = Yir-

In space W(S) enter the operator

Z 8:1: (am(x)g—;b),

K,t=1

Ay = *ain (am(x)g—;b) + b(x)u, % (am(x) )
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and consider a three-layer operator-difference scheme with weights o1, oo:

Y + Ayoo2) = f(k), k=1,K — 1,
y(0) = @o(z), y:(0) = ¢1(x),

where f(k) := f(x;k), k =1, K — 1. For each fixed k (k = 1, K — 1) function y(k + 1) €
W(S) is the solution of equation (9) and satisfies the boundary condition

(9)

y(k+1) lzeor =0, (10)

in addition y(1) = y(0) — 7y:(0) = wo(x) — Te1(x) and the conditions are assumed to be
fulfilled

ar.(7) = a,x(z), [b(z)| < B, TE€S,
L8 < Y a0 <a'&, &= &, (1
Kye=1 k=1

with fixed positive constants a., a*, 8 and arbitrary parameters &1, &o, ..., &,, besides
po(@), pi(@) € WH(S), f(k) = fla; k) € La(3) (k=T K — 1), (12)

€ W%(%), k=2,..,K, is called the weak
k) the identities

Definition 3. The set of functions y(k
solution of the system (9), (10) if for every y

)
[vn(@)de+ 6o ) = [ fEm@yda, k=TRK=T
y(0) = ¢o(2), y:(0) = 1 (2),

— —

(13)

an arbitrary function n(x) € W(l)(%) are satisfied, here ((y(71:72) 1) is determined by the ra-
tio

n o (01,02) - o1.0
g(y(al,az),n) — f ( Z amb(f)%%(n) +b($)y( 1, 2)77(x)> dx.

23 Kye=1

Remark 2. With each fixed k& (k = 1,2, ..., K —1) ratio (9) in space Wé(%) describes
the boundary value problem relative to y(k + 1) (y(k 4+ 1) = g).
Theorem 1. Let the conditions (11), (12) be satisfied, then the system (9), (10) at a

sufficiently small T and o1 > 0 uniquely weakly solvable in space Wé(i‘s)
P r o of. Similar to the reasoning given in the works [8, 9] the property of completeness

and basis of the system of generalized eigenfunctions of the operator A in spaces Wé(i‘s)
and Lo(S) is established. In this case, the eigenvalues of the operator A are real, finite
multiplicity and have a limit point on +o0o. This means that for a boundary value problem
Au = du+ g in weak formulation () is constant, g € Lo(T")) the statements of Fredholm
alternative in space W(l)(%) are valid.

Putting in (9) £ = 1, we get in W(l)(i‘s) relatively y(2) := y(z; 2) a boundary value
problem in weak formulation

71AY(2) + =y(2) = F(po(x), ¢1(2)),

F(po(2), p1(2)) = (01 = DAgo(z) = (01 + 02 = )T Ap1(x) + f(1),

which, with o7 > 0 and small enough 7, is uniquely weakly solvable.
The same statement remains true if you put £k =2,3,..., K — 1. (]
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For the operator-difference scheme (9) and its weak solution determined by identity
(13), we obtain sufficient stability conditions and a priori estimates for various norms of
functions y(k), k = 0,1, ..., K, of space W})(E‘s)

Beforehand we bring the scheme (9) about the canonical form. Introducing operator
notation in W}(S)

Bu = (01 — 02)7Au, Du= (I + (o1 + 02)%2A>u

(I is unit operator) and taking into account the ratios (7), (8), we get

Byft + Dyft + Ay = f(k)a k = 172a aK - 1a
y(0) = po(2), %:(0) = ¢1(z).

The introduction of weights o1, o2 in the description of the scheme (9) and further (14)
caused the dependence on them of the operator coefficients B, D. The latter opens up the
possibility of covering with analysis a fairly wide family of three-layer operator-difference
schemes, in the generally case asymmetrical.

Definition 4. The family of three-layer operator-difference schemes (14) will be called
the basic family, if o1 — o9 > 0, thus, the operator B is non-negative.

Everywhere below, the basic family of three-layer operator-difference schemes is con-
sidered, all statements are formulated for (14), obviously, they remain valid for (9). The
analysis of the scheme (14) (see proof of Theorem 2 below) is similar to that presented in
the monograph [5, p. 398] with the only difference that all considerations are carried out
for operators B, D in the Sobolev space W}(S).

Remark 3. Under o1 = 03 = o a three-layer operator-difference scheme (14), defines
the classical symmetric canonical form

Dy + Ay = f(k), k=1,2,..., K — 1,
y(0) = @o(), y:(0) = p1(x),

with weight o, in addition y(*) = o+ (1 —20)y + 09 = y+o7%yz, B =0, D = I+ 072A.
Such a scheme belongs to a narrower class, its analysis is a direct consequence of the
statements of the Theorem 2 below. .

Definition 5. The set of functions y(k) € W{(S), k = 2,..., K, is called the weak
solution of the system (10), (14) if for each y(k) and any function n(zx) € W(l)(%) the
tdentities

(14)

f(Byz + Dyg)n(x)de + Ly, n) = [ f(k)n(z)dz, k=1,K —1 (15)
) y(0) = m ) y<f> o <x>

are satisfied.
4. Energy identity. Considering the following of the (7) ratio y = 3(§+ ) — 3(J —

2y+79) = %(Q +9) — T;ygt , we convert the schema (14) to the form
2 A~ ~
By + (D~ 5A) g+ SAG +9) = f(K), k=12, K1,
y(0) = po(x), y(1) = p1(2).
Multiply scalar both parts (16) by 27y; = 7(y+ +yz) = § — ¢ and, given (see (7))
TYi = Yt — Yi, wWe get
2 ~ - ~ -
27(Bys, yo) + (D — T A)(ye — i), e +y0) + 3(AG +9), 5 —9) =
= 2T(f(k)> y;)a
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here and everywhere below through (-, -) indicated scalar product in space L2(S). Since
A and D are self-conjugate Lagrange operators, there are relations:

(R = 3A) (Y — vp), (: + 7)) = (R = 3A)y:, ye) — (R — 3A)y;, vi),
(C(yt — ve),yt + ve) = (Cys, yt) — (Cu, vi), (18)
(A +9), 9—9) = [(Ag, 9) + (Ay, y)] — [(Ay, y) + (A7, 7)].

Besides, for any w, z € W(l)(i‘s)

(Aw, w) + (Az, 2) = $[(Aw, w) + 2(Aw, z) + (Az, 2)]+
+ 1[(Aw, w) — 2(Aw, 2) + (Az, 2)] =
=1A(w+2), w+z)+iAw-2), w-2).

Assuming in the obtained relation w = ¢, z = y, and then w = y, z = ¢, we transform the
expression (A(§ + ¢), § — §), using the last relation in (18):

AG+9),9-9)=3[(AG+y), 9+y) + (AG—y), §—y)] -
— AW +9), y+9) + Ay —9),y— ).

Substituting this relation together with the first two relations from (18) to equality (17),
taking into account (A(§ —y), § —y) = 7°(Ays, y¢) and (A(y — 9), y — §) = 7°(Ayz, vp),
we come to the basic energy identity for the three-layer scheme (14):

2r(Bys, v2) + [H(AG+9), §+9) + (D — T A, )| =
= [HAw+9), v+ 9+ (D= F A 9] +27(F(R), w5),

which is an analogue of the energy balance equation for an evolutionary system with
distributed parameters in the domain < x (0,T) of variable change = and t [5, p. 381] (see
also [7, p. 201]).

5. Stability of the operator-difference scheme. All subsequent claims are pre-
sented for the scheme (14) and its weak solution determined by identity (15), evidently
they have occur for (9). Let’s define the concept of stability of a three-layer operator-
difference scheme (14) using the linearity property of the scheme (14) (A, B, D are linear
operators). At the same time, we will use a special norm (in the terminology [5, p. 383] —
composite norm) of the form

1Y (k+DII* = Zlly(k + 1) + y(®B) 1) + ly(k + 1) = y(0) 17y + llvellts) (20)

(19)

for elements Y (k+ 1) of space W3(S) ® W(S), where y(k+1), y(k) are elements of space
W) 11 lays | - llg2) and || - [|(s) are some norms W§(S) and Lo(S), respectively.

Due to the linearity of the operator-difference system (14), its weak solution is rep-
resented as y(k) = yo(k) + ys(k), k = 2,3, ..., K, where y,(k) € W})(%) is solution of a
homogeneous problem

By +Dyp + Ay =0, k=1,2,...,.K — 1,

21
y(0) = 90(2), w(0) = 1(v), 21

and yy(k) € WL(S) is solution to nonhomogeneous problem
Byft+Dyft+Ay:f(k)a k= 1,23"'3K71a (22)

y(0) = %(0) =0,
under considering equations (21) and (22) for each fixed k (k =1,2,..., K — 1).
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Let us introduce the definition of the stability of the operator-difference scheme (14)
(it means (9)) as a property of a continuous dependence uniform on 7, the weak solution
of the system (9), (10) on input data ¢o(z), ¢1(z) and f(k) = f(x;k). In this case,
the concepts of stability are used on the initial data ¢o(z), p1(z) and on the right side
f(k) :== f(x; k), similar to those adopted in [5, p. 385]).

Definition 6. The operator-difference scheme (14) is called stable:

a) on the initial data @o(x),v1(x), if a priori estimate

ly(k + D1y < Cillpoll) + Collenlls), k=1,K—1,

is valid for the problem (21) for any @o(x) and ¢1(z) from Wé(%),

b) on the right side f(k), if a priori estimate

ly(k+ Dy < CsllF(F)ll), k=1,K -1,

is valid for the problem (22) for any f(k) € Lo(S) (k =1, K —1). Here ||-||(1), ||-llc2)> I |3
and || - ||(4) are some norms in space W (S) and Ly(S), respectively. Positive constants
Cy, Cy and C3 do not depend on T and choice po(x), p1(x) and f(k), k=1,K — 1.

Based on the representation of the composite norm (20) and the assumption of non-
negativity of the operator D — %fA, the identity (19) will take the form

2 (Byg, y;) + [V (k + DI = [V (R + 27(F(F), 35, (23)

where
1Y (k+DI” = ;(A(y(k + 1)
( T

+((D )
1Y (k)[? = (A(y(k) y(k=1)), y(k) +y(k = 1)) + (24)
+((D = TA)yz, ys),
1Y (1)) = $(A(y(1) +5(0)), y(1) + y(0)) +

+ (D = T A)ye(0), £(0)), ve(0) = (1) —y(0)).

Composite norms ||Y|| defined by formulas (24) are very natural when using relations
connected to energy identity (19). In the analysis of controllability issues by operator-
difference systems of type (10), (14), as well as in the analysis of applied problems (prob-
lems of optimal control, stabilization, etc.), a priori estimates in the energy norm || - ||.4
are of particular importance.

In further study, we add to o1 — 02 > 0 the condition o1 + o2 > 0, giving operator
relations

B=71(01—02)A>20, D=1+ (0} —|—02)72—2)A>07 (25)
in addition the case 07 — 02 = 0 mentioned in comment 2 will be considered separately.

Theorem 2. Let the conditions o1 — o2 > o (6 > 0), o1 + o2 > 0 be fulfilled and let

D > 2724, (26)

where o is arbitrary positive number that does not depend on 7, then the operator-difference
scheme (14) is stable on the initial data and on the right side, for a weak solution of the

problem (14) in space W}(SJ) there are estimates
k
ot + Dl < /2 (lolla + lorllo + 3 717G,

A (27)
ly(k+ Dlla + Iyl < /5 (2||soo||A +2lerllp + kngIf(k’ll) .
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P r 0 o f. Under proving the theorem, we proceed from energy identity (23) and
inequalities (25).

Stability on initial data. By virtue of part 1 of Definition 6 (f(k) = 0) and the
conditions of the theorem, inequality

Y (k+ DI < Y (28)
follows from the energy identity (23). Indeed, when B > 0 with (23), it follows:
Y (k+DI* < Y@, 1Y E+DI< YR <. < YD,

here |Y(k+1)|, k= 1,2,..., K — 1, by virtue of the ratios (24) can be represented in terms
of the energy norm || - || a:

1Y (k+ )| = L(lly(k + 1) + y(k) % + (D — T A)ye, we), (29)
1Y (@)% = L(lly(1) + y(0)l[2 + (D — T A)yz(0), y¢(0)), (30)
y:(0) = L(y(1) — y(0)).

Let’s denote Y = ||Y (k + 1)||? and, taking into account the ratios (8), transform (29)
to the form

2
= 115+ yllz + (D = T A)ys, i)
Note that

= 1(lylx +2(Ay, DlI9lA) — FUyla —2(Ay, DIIFlA) + Dy, ye) =
= (Ay, ) + llyel-

We substitute § = y + 7y, in the obtained ratio, granting the inequality |y[la <
%m“ytﬂn flow aut (26):

= (Ay, y) +7(Ay, yo) + lwelld < lvlA + A vl alyelo + vl <
< (lylla + llyellp)?.

From the latter inequality follows the estimate
1Y (k+ DIl < ly(F)lla + [[yellp- (31)
Next, substitute y = § — 7y, in the ratio Y = (Ay, §) + ||y||%, then
= (A9, 9) — T(AG, ye) + %]l
Using inequality (Ag, y:) < [|7]|lallylla, we get

Y =914 — 9l allyella+ vl > 1913 — Allollallyellp + Iyl

Having applied inequality —2— |3/l allyelp < plll2 + ik llvelb (here > 0), we come
to the relation
Y2 (1=l + (1 g ) lell3 (32)

Putting pu = we get Y > %Hy” from where the estimate follows

1
1+o’
Y (k+ DI > /155 lly(k+ Dlla. (33)
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If in inequality (32) put the number u so that 1 —p=1— m, that is p = T

then

17 :17 1 :\/14’971: 0 > 0
K Jite ~  JVite ViTe(/Ire+D) ~ 2(1+o)

(used inequality used inequality in anyy/T+ ¢ < 1+ ¢ in any ¢ > 0). As a result, from
(32) follows

~ ~ 2
Y 2 5ty (191A + 9el1B) = %z (19lla + llvellp)”

hence, the evaluation

1Y (k+ 1)l > 31/ 155 (ly(E+1Dlla + llyellp) - (34)

Substituting the ratios (30), (31), (33), (34) into inequality (28) we get, taking into
account y;(0) = ¢1(z), estimates of the energy norm of a weak solution to the problem
(21):

ly(k +D)lla < 4/752 (leolla + llelp)

(35)
ly(k +Dlla + lgellp < 24/55% (Ieolla + llelp),

at any oo(x) and ¢;(x) out of space Wé(%) Thus proved the stability of the operator-
difference scheme (14) on the initial data g (), p1(z).

Stability on the right side. Let’s turn to the analysis of the problem (22) and
conduct reasoning under the conditions of y(0) = y.(0) = 0.

Following [5, p. 401], we will look for a weak solution from space W&,(%) the problem
(22) in the form

k
Y= > TYrw, k=1,K—1, y0=0, (36)
k'=1

where yg 1/, being a function k (k = 1,2, ..., K — 1), under any fixed £’ = 1,2 is a weak
solution of the equation
Bys + Dys + Ay = f(k)

with initial conditions
(7B + D) B — (1) 0 =0, (1)

Due to B > 0, D > I for a weak solution of equation (37), there is inequality Dy(¢), & <
f(K') and a fair estimate ||y(¢)x & |[D < || f(K')||- Given the first inequality (35), we get

lywplla < /222 ly@rwllo < /L 1FE)],

hence, from the ratio (36) and the triangle inequality for a weak solution of the problem
(22) we get the following estimate:

k
lyerilla < /552 2 T (38)

Summing the results of the stability of the schemes (21) and (22) on the initial con-
ditions and on the right side (i. e. the ratios (35) and (38)), we get estimates (27). O
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Remark 4. The sufficient stability condition (26) can be conveniently inter-
pret in terms of weight parameters o; and og: the relation (26) is satisfied, if T >
(# — @t%2) r2A i e. when 1 > (% — 24923 72| A||. The latter establishes sufficient
conditions for the stability of the family of operator-difference schemes:

1
01— 09 >0, %2%—ﬁ~ (39)

Consider the basic schema family (14) in the case o1 = g2 = 0 > 0 (see Remark 2).
The stability condition D > £3¢72A (see ratio (26)) is met at I > 17272A or

1+ 1
e e TR (40)

A priori estimates of a weak solution remain similar (27). It should be noted that in the
case of an explicit scheme (o = 0, B = 0, D = I, the operator-difference scheme (14) takes
the form yz; + Ay = f(k)) the stability condition of the scheme is determined, as follows
from (40), by the choice of step 7:

2

<2
TS oAl (41)

6. Conclusion. In the paper, the conditions of stability of the set of operator-
difference schemes (9) (or (14)) are obtained both in terms of the elliptical operator

Au=—3= (am(x)%) +b(x)u in space W(S) (26), and in terms of weight parameters

o1 and o9 — ratio (39)-(41). At the same time, a priori estimates of the norms of weak
solutions of these schemes are presented (27), which represent an effective instrument not
only for finding the conditions for the uniqueness solvability of the scheme, but also its con-
tinuity on the initial data. In addition, the ground of the method of semi-sampling by the
time variable of the evolutionary differential system is obtained: a) reduction of this system
from a spatial variable changing in a network-like domain to an operator-difference system
(9), (10); b) sufficient conditions under which the properties of the operator-difference sys-
tem are transferred to the differential system. The use of the operator-difference system
for the analysis of the evolutionary differential system the way of algorithmization of the
results obtained, which is necessary when solving applied problems. It should be noted
that the results presented in the work can be used in the analysis of control problems
[8-11], stabilization [12, 13] of differential systems, as well as in the study of various kinds
of network-like processes of an applied nature [14-19].
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difference schemes with weights for the hyperbolic equation in the space of summable functions
with carriers in the network-like domain // Becrauk Cankr-Ilerep6yprckoro yausepcurera. [Ipn-
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Hacrosmas pabora siBAsSeTCS TPOMOJIKEHUEM WCCJIEIOBAHNN aBTOPAMM TOTOKOBBIX SIBJIE-
HUII B HAITPABJIEHUU yBEJIUYEHNUsT PA3MEPHOCTH CETENnoN00HO0M 06/1acTh n3MeHeHus ITPOCTPAH-
crBeHHON mepemenHoil. [lokazana BO3MOXKHOCTb HPAKTUYECKOTO KCIOJIb30BAHUS AHAIM3A
YCTOWYMBOCTH OTIEPATOPHO-PA3HOCTHBIX CXEM JJIsl PEIIEHUsT BOTIPOCA, yCTOHIUBOCTH (CTabm-
JIN3anuy) BOJIHOBBIX ABJICHHWN TIPU MHKWHUPWHTE IPOIECCA MEPEHOCA CIUIONIHBIX CPe Io
cerenomoGHBIM HOCUTENAM (BOJOBOMBI, Ta30- W HEMTENPOBOIBI, IPOMBINLIEHHBIE HOCUTEIN
HeDTETPOAYKTOB). A WMEHHO, €CJIM CXeMa yCTOWYIMBA, TO JOCTATOYHO HEGOJIBITUE M3MEHe-
HU$ UCXOHBIX JAHHBIX MATEMATUYECKON MOJIEIU U3ydaeMOro IIPOIEcca MPUBOAAT K MAJIbIM
M3MEHEHUAM PelleHns PA3HOCTHON 33/1a49m, T. €. Ha IPAKTUKE HE BbI3bIBAIOT HEXKeIaTe/bHbIe
TIOCJIEJICTBUST; €CJIN YKe CXeMa HEeyCTONYMBA, TO MaJjIble W3MEHEHUs] MCXOMHBIX JTAHHBIX MO-
IyT IPUBOJAUTH K CKOJIb YIOIHO GOJIBIINM M3MEHEHUsM pelieHus. B mporecce sKCIryaTanmum
MPOMBIIILJIEHHBIX KOHCTPYKIINI CeTENO00HBIX HOCUTEIEH HEITPEMEHHO BOSHUKAIOT BOJTHOBbBIE
SIBJIEHUS, CJIEJICTBUEM KOTOPBIX SIBISIOTCS PA3JIMIHOTO POJA HEYCTOWYMBOCTHU, BJIEKYIINE 33
coboii pa3pyIieHns TOTO WM WHOTO XapakTepa. V36exkaTh WIn CyIeCTBEHHO YMEHBIIUTH
TaKWe HeXKeJIaTeIbHbIE KOJTeOaH!si BOBMOXKHO, TPUMEHSsISI aHAJIU3 CBOMCTB yCTOMYINBOCTH Ma-
TEMATUIECKONW MOJIEJIM BOJIHOBOTO Tiporiecca. llosiydeHmble pe3y/IbTaThl UCIOIB3YIOTCS TPU
ajropuTMu3anuu U nupPOBU3AIUU COBPEMEHHBIX TEXHOJOIMYECKUX IPOIECCOB IMEPeMele-
HUS JKUJIKUX CPEJT U Ta30B.

Karouesvie caosa: ceremnomobHasi 0071aCTh, IIOBEPXHOCTH IIPUMbBIKAHUS M0100/1aCTel, omepa-
TOPHO-PA3HOCTHASA CXEMa C BECAMU, YCTONUIMBOCTD CXEMBbI.
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