ST. PETERSBURG STATE UNIVERSITY

D. R. Merkin, F. F. Afagh,
S. M. Bauer, A. L. Smirnov

Problems in Theory of Stability

St. Petersburg University Press
2000



BBK 22.21

M52

Pewewnsenron: upod. C.B. @upunnos, gou. M.A. Tlaceinkosa

M52

M52

(C.-TTerepb. roc. yn-T)

Ilevamaemcesa no nocmaHo8AEHUIO
Peda%uuonno—us()ame/zbcnoeo cosema

C.-Ilemepbypzckozo 20cydapcmeenHoz0 YHUBEPCUMENA

Mepkun [.P., Apa ®.®., baysp C.M., Cmupros A J1.

Bagaum 1o reopun ycroiuupocru. — CII6.: Uza-so C.-Ilerepo.
yH-Ta, 2000. — 116 c.

ISBN 5-288-02757-9

[anHoe y4yebHoe nocobue, pononustowee kypc [.P. Mepkunna "Introduction
to the Theory of Stability"(Springer-Verlag, 1996), ucnons3yetcs B Kypcax
nekumnii "Teopusi ycTORYMBOCTM"N YUTAEMbIX Ha AHFINACKOM $S3blke KYpCOB
nekynii "Numerical Methods in Vibrations"un "Theory of Stability".
MpenHa3Ha4yeHo ANs CTYAEGHTOB CTapLIMX KYPCOB OTAE/EHUSI MEXaHUKU MaTe-
MaTuMKO-MexaHu4eckoro cakynbreta. MoxkeT b6bITb MCNONBL30BAHO HA ApPYrux
hakynbTeTax yHUBEPCUTETA.

Merkin D. R., Afagh F. F., Bauer S. M., Smirnov A. L.

Problems in Theory of Stability. ~ Spb.: SPb. University Press,
2000. 116 p.

ISBN 5-288-02757-9

This manual presents the solutions for the problems provided in the book
entitled "Introduction to the Theory of Stability"by D.R. Merkin (Springer-
Verlag, 1996) as well as additional supplemental problems on structural
stability. It is used by the senior students from the Departments of Mechanics,
Faculty of Mathematics and Mechanics at St. Petersburg State University, who
take courses in Theory of Stability, Structural Stability and Numerical Methods
in Vibration. As such, it may also be recommended for students in Applied
Mathematics, Mechanics, Control, Aerospace and Mechanical Engineering at

various faculties and universities.
BBK 22.21

© D.R. Merkin, F.F. Afagh,
S.M. Bauer, A.L. Smirnov, 2000
(© St. Petersburg University

ISBN 5-288-02757-9 Press, 2000



From the Authors

In 1996 Springer Publishing Company issued the book entitled "The
Introduction to the Theory of Stability"written by Prof. D.R. Merkin
and translated and edited by Profs. F. Afagh and A. Smirnov. The
main advantage of the book is its simple yet simultaneously rigorous
presentation of the concepts of the theory, which often are presented in
the context of applied problems with detailed examples demonstrating
effective methods of solving practical problems.

The above features have made the Introduction to the Theory of
Stability of Motion the most popular textbook in its field at faculties of
mathematics and mechanics as well as engineering faculties in Russian
universities and now in the universities of the English speaking countries.

The examples constitute about 25% of the entire volume of the book
and cover various areas in science and engineering. Moreover, some of
the examples possess an independent value in that they could be used
in the analysis of various real structures and mechanisms. The problems
are supplied with the answers and some hints.

Using the same numeration as in Introduction to the Theory of
Stability, the present book contains a detailed solution and discussion
of all the problems of the text book. Moreover, the reported errors and
misprints of the text book have been corrected in the present volume.

Chapter 8 of this volume does not correspond to the respective
chapter in Introduction to the Theory of Stability. Instead, a new Chapter
8 entitled "Structural Stability"has been included where some classical
problems on stability of equilibrium states in elastic systems have been
presented.

The present book is a result of scientific cooperation of the Departments
of Theoretical and Applied Mechanics of the Faculty of Mathematics
and Mechanics at St. Petersburg State University in Russia and the
Department of Mechanical and Aerospace Engineering at Carleton University
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in Ottawa, Canada.

This work was supported in part by the Russian Foundation for
Basic Research under grant # 98-01-01010. A major part of Chapter
9 was prepared by Prof. A. H. Gelig. The help of Mrs. V. Sergeeva
and Mr. N. Filippov in typesetting the manuscript and preparing the
drawings is highly appreciated. The authors would also like to thank
their students for their input and suggestions as well as pointing out the
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Chapter 1

Formulation of the Problem

1.1. The perturbed motion of a system is defined by the following

equations:
3 3 3
i = axy + By /2] + 23,
. 3 3
By = —axy + Broy/xt + 25,

Determine the stability of the motion of this system. (In the book [11]
the “-” sign by 8 should be replaced by "+". )

Solution:
We multiply the first equation by 23 and the second equation by
x3, and add the corresponding terms of the resulting equations to get

4
x?i:l + x%jjg =7 (17411 + xé) 3
or
1d (
4 dt
Let 22 = y; and 23 = yo. Now, stability (or instability) of y; and yo
would mean the stability (or instability) of x; and x5 and visa versa.

Let r designate the distance between the point (y1, y2) and the reference
origin so that r? = y? + y3. Now, we have

vitaf) =B (ol +ad)’

1 dr?
4 dt

wloo

= Br
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or

1dr 5

a@ =t
From this it follows that

1dr

2,5 = Bdt,

which upon integration gives

3 2 3 _:2
—5r §+§r03:2ﬂ(t—t0),

and
2

3
r3 = ;0 )
1—3rg B (t—to)

Now, if 8 < 0, then r — 0 as ¢ — oo, and the solution is asymptotically
stable. )

On the other hand, if 8 > 0 and t — ¢y + %ro_g, we will have
r — 00, and the system is unstable.

For 8 = 0 the system is stable (cf. Example 1.1 in [11]).

[MIN)

1.2. The isotropic thin bar with mass m, length [, and horizontal
axis of rotation is retained in equilibrium by a spiral spring with stiffness
c. The spring is not deformed when the bar is in the upper vertical
position. Neglecting all frictional forces, derive the equation that depicts
the equilibrium states. Obtain the equation of perturbed motion near
the equilibrium state of the bar and the equation of first approximation
(see Fig. 1.1).

Solution:

In the state of equilibrium of the bar the torque cf, due to the spring
should be equal to the moment %mgl sin @, caused by the weight of the
bar, i. e. ,

1
cd = —mglsind,
2
or

sinf = k0, (1.1)

where
2c

mgl’



Figure 1.1 Problem 1.1.

As it can be seen in Fig. 1.2, for small k, the equation sinf = k0
has several solutions.

Let 6,, be one of the roots of this equation. Denote the change in
this angle due to a perturbation as x,. Then, considering the angular
momentum of the rod during this perturbation about the fixed axis O
at the support, we have

1l2d—2 =—c(On + )+l Isin (0, + z,,)
3m dthn— c(t, +x, 2mg sin (0, + x,,

Figure 1.2 Problem 1.2.
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or, in view of (1.1),

. 39 39 . _
Ty + ﬂk (0 + p) — 5 sin (0, + x,) =0,
so that the perturbed motion of bar is described by the equation
3
B+ 2—3’% (O + n) — sin (6n + 24)] = 0. (1.2)

Now, to get the equation of first approximation, let us expand
sin (0, + x,,) as the following series

sin (0, + ) = sinf,, + x,, cos O, + - - -

Then, considering only the first two terms of this expansion and
substituting it in equation (1.2), we get

3
Tn + Q_?[an + kap — sinby, — cos Opn] = 0.

Finally, noting that 6,, should satisfy (1.1), we obtain the equation
of first approximation as

39

Tt g

[kx,, — cosO,x,] = 0.

1.3. The ring M can move freely, without friction, along a circular
wire of radius a that is rotating uniformly about a vertical axis. Determine
the position of dynamic equilibrium of the ring. Derive the equation
of perturbed motion with respect to the equilibrium state and the
equation of first approximation. The angular velocity of the uniform
rotation of the wire is w (see Fig. 1.3).

Solution:

There are three forces, which act on the ring M. These are:
1) the weight mg of the ring that is directed downward along the
vertical axis;
2) the centrifugal force F. = maw? sin @ that is directed horizontally;
3) the reaction from the wire which is directed towards its centre.
In a state of equilibrium the resultant of the two first forces should be
equal and opposite to the reaction force. Therefore,
maw? sin 6
tanf = —.
mg



Figure 1.3 Problem 1.3.

From this it follows that

cosf = Lz
aw

Thus, the three angles at which equilibrium prevails are

g
0o = arccos —, 01 =0, 6=,
aw

where the last two correspond to the evident cases of when the second
force is equal to zero.

For the solution 8 = 6y we introduce the deviation x for the angle
fp. Then, to exclude the unknown reaction R from the wire, at point
M, we consider Newton’s second law in the tangential direction 7:

mai = maw? sin (g + ) cos (fp + ) — mgsin (fy + )

or
# — w?sin (O + ) cos (6 + =) + gsim(6‘0—i—;1c) =0. (1.3)
a

To get the equation of first approximation we can consider that

sin (0g + x) = sin 6y + x cos o,
cos (fp + x) = cos By — zsin .

Substituting these expressions in (1.3) while considering only the first
order terms and noting that

—w?sin g cos by + 9 sin 6y =0,
a
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we obtain the equation of first approximation for the perturbed motion
as g
I — (w2 cos 20y — = cos 90) z = 0.
a

1.4. The double pendulum depicted in Fig. 1.4 is maintained in
the upper vertical position by two spiral springs with stiffness ¢; and
ca. The pendulums have masses m; and ms and lengths [ and [s.
The spiral springs are not deformed when the pendulums are in upper
vertical position. Derive the equation for the perturbed motion in the

Figure 1.4 Problem 1.4.

first approximation with respect to the upper vertical position. Neglect
the mass of the bars and all frictional forces.

Solution:

This system has two independent variables. To write the equation
for the perturbed motion we use the Lagrange equation

dor 9T ol

e k=1,2). 1.4
o dpn O ) (1.4)

The kinetic energy T of the system is T = $miv? + $mov3, where vy
and vy are the velocities of mass points M7 and Ms. Using Fig. 1.4, we
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can find the coordinates (x1,y1) and (z2,y2) as follows:

x1 =l sinpy, xo = 11 sin @y + o sin o,
y1 = l1cos 1, y2 = [ cos 1 + l2 cos pa.

Now, upon differentiation we obtain

1 =11 cos 11, Ta = 11 cos 191 + 2 COS Papa,
3)1 = —ll sin (,01(/71, yg = —ll sin ng(;.?l — 12 sin QDQ(;.?Q.

Now, we have v? = 132, v3 = 12¢)3 4+ 2l113 cos (2 — @1) P1P2+1303.
Since the angles ¢1 and o are small we have cos (w2 — ¢1) = 1 and
since we are seeking the equation of first approximation the kinetic
energy 1" can be written as

12 , T | :
T = 51 (m1 —+ m2) (p% —+ m21112gﬁ1(p2 —+ Emglggag

The potential energy II of the system is due to both the elastic
energy of the springs and gravitational potential energy due to weights,
i.e.,

I = Je16} + 32 (92 — 1) — (ma + ma) gly (1 — cos 1) —
— magls (1 — cos ps),

or more simply,

1

1
o= 5[01 + co — (m1 +m2) glhleT — copr02 + 5[02 — magla] 3.

Thus, the Lagrange equations (1.4) become
(m1 +ma) 1§31+ malilags + [c1 + ca — (m1 +ma) ghler — capa = 0,

malila@1 + mal3@a — copr + (c2 — magls) pa = 0.

These two equations can be presented in the matrix form A® + C =0

where
P — (@1) A ((ml +m2)l§ mzlllz)
w2 )’ malila mal3 )’

C = (Cl +c2 — (M1 +ma)gh —C2 >
—Cy co —magly )
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Figure 1.5 Problem 1.5.

1.5. The rigid body M with mass m is fixed to the free end of
a compressed and twisted cantilever bar that has a uniform bending
stiffness (see Fig. 1.5) (see Section 2.12 of [2]) Neglecting the mass of the
bar and treating M as a point mass, obtain the equations of perturbed
motion near the equilibrium state for the first approximation.

Remarks: Two forces, located in the horizontal plane Oxy, are
applied to M under the problem conditions. The radial force F, is
directed from M to O, and the transverse force Fy, is perpendicular
to F,.. Both forces are proportional to the distance M O. Neglect any
vertical displacement of the rigid body M and all frictional forces.

Solution:

The bending force F,. and the twisting force F, that are mutually
perpendicular are applied to M (see Fig. 1.6). Both forces are proportional
to the distance r = OM (see Section 2.12 of [2]), i. e. ,

F.=cir, F,=cor.

or in projections on the axes

Fp = —crsina = —ciz, F,y=—circosa=—cyy,
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Figure 1.6 Problem 1.6.

F,r =carcosa=cay, F,y=—caorsina= —cax.
Invoking Newton’s second law and using the magnitudes of F,. and

F, we obtain the equations of perturbed motion for the first approximation

as
mr = —C1T + C2y,

miy = —Co — C1Y.

1.6. A rigid body with one fixed point moves inertially (the case of
Euler Poinsot). Prove that such a body can rotate uniformly around a
fixed axis that coincides in this motion with one of the principal axes
of inertia, for instance with z-axis. Considering

Wy =wy =0, w, =wpy = const,

derive the equation of the perturbed motion in terms of the components
of the angular velocity. Let the moments of inertia of the body with
respect to its principal axes of inertia x, y, z be designated as A, B, C,
respectively.

Solution:

Consider the following Euler equations for the given dynamic system:
Awy + (C — B)wyw, = M,
By + (A - C)w,w, = M, (1.5)
Cw, + (B — A) wyw, = M¢,
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where, according to the conditions of the problem, M7 = Mg = M7 =
0. The steady rotation is defined by

Wy =wy =0, w, =wy = const.

In the perturbed motion, let the deviations of the angular velocities
Wz, wy and w, be designated as 1, x2 and x3, respectively, i. e. ,

Wy =T1, Wy =2=2T2, Wy =Wwo+ T3.
Substitute these in equation (1.5), to get

Ail—F(C—B)IEQ(wO—FIg):O
B$2+(A—C)(wo+$3)$1 =0
C,’bg'ﬁ‘(B—A)fL'l:Ez =0.

1.7. Two boxes with two identical gyroscopes inside are shown in
Fig. 1.7. The boxes are connected by gears so that they can rotate
in different directions by an equal angle 3. The axis of rotation of
the external frame that contains the whole apparatus is free. A spiral
spring with stiffness ¢ is installed on the axis of rotation of one of
the boxes. Neglecting the mass of the external frame and the boxes
and all frictional forces, determine the condition of stationary motion
under which the angle g and the angular velocity & of the frame remain
constant. Derive the equation of perturbed motion with respect to the
stationary motion.

Solution:

The system consists of two connected identical gyroscopes that each
have a fixed point. For each gyroscope, let the mass moment of inertia
about each of its two axes = and y be denoted by A while the moment
of inertia with respect to the z axes is denoted by C. Then, the kinetic
energy T of the system will be

1 2 2 L o
T=2. <§A (Wi 4+ wp) + ngz . (1.6)

If one of the gyroscopes, for example the left one (see Fig. 1.8), is

rotated so that

Wy = _ﬂa
wy = & cos f,

w, = ¢+ dsin b,
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Figure 1.7 Problem 1.7.

then, for the one on the right we will have w, = B8, wy = —dccos 5. Here
¢ is the angular velocity of gyroscope.
Substituting the expressions for w;, wy, and w, in (1.6), we get

T = AB% + Ac® cos® B+ C (¢ + csin B)°. (1.7)

The potential energy II of the system is due to the torsional spring
and is

= %cﬁz. (1.8)

Since we are considering the steady rotation of the gyroscopes when
the induced moment M;Ot is equal to the resisting moment Mz, the
angle ¢ is a cyclic coordinate. Therefore, the generalised force Q, =
M;Ot — M7 corresponding to the coordinate ¢ is equal to zero.

Noting that in (1.7) the kinetic energy does not depend on the angle
v, the Lagrange equation with respect to ¢ becomes

dor _
dt 0p
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HA\B
NN c/ NN

s
m)/u_

Figure 1.8 Problem 1.7.

oT
Now, 2 = 2H , where H is the angular momentum of each gyroscope
14
(H = const).
Using (1.7), we note that

C (¢ + asinB) = H. (1.9)

This integral is called cyclic integral. Next, we can write the Lagrange
equation with respect to the 8 coordinate as
dor or oIl

—— = (1.10)
dt 9 9B o

Using relations (1.7), (1.8) and (1.9), we find

O _aap, 290 o,
o5 dt 0
or _ —2Ad&% cos Bsin B + 2H i cos 3, g_l[;l = cf.

ap

Substitution of these expressions into (1.10) results in the differential
equation )

2A83 4 2A62 sin Bcos f — 2Hdcos B = —cf. (1.11)

For the steady motion, we should have

B8 =B =const, B=0, &=w = const.

3

Substitute (1.11) into (1.12), to obtain the condition for steady

motion as 1
Aw? cos B sin By — Hw cos By + 5050 =0. (1.12)
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To get the equations for perturbed motion, we consider
B=p0+z1, &=w+ums.

Substitute (1.14) into the expressions for kinetic and potential energy
(note that 8 = 1), then
T = Ai? + A(w + 22)° cos? (B + x1) +
C ¢+ (w =+ x2) sin(Bo + 21)]%, (1.13)

Hzg(ﬁo+$1)2-

Now the cyclic integral (1.9) reads as
O[QD + (w + .IQ) sin (ﬂo + .Il)] = H.
Next, considering the Lagrange equation for z1,

d oT oT o1l
- = = 1.14
dt 89’01 6,@1 (95[:1, ( )

by virtue of (1.13) we have

oT .
8—3‘;1 = 214.1[]1,
d oT .
@tos - AR
oT 9 .
o —2A (w+ x2)" cos (Bo + 1) sin (Bo+ = x1) + (1.15)
1
2H (w4 x2) cos (o + x1) ,
o1l
D21 =c(Bo+x1).

Moreover, the functions cos (8y + 1), sin (8o + 1), and (w + x2)” each
can be expanded into the following series:

COSs (ﬁO +.’II1) = COSﬁQ — SinBOxl + e
sin (8o + 1) = sin By + cos By + - - -, (1.16)
(W+$2)2=w2+2wx2+...7

where the dots denote the higher-order terms in z; and 5.
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Using (1.18) and (1.17) in (1.16), and after a brief manipulation we
get

A{fl + Aw? COSﬁQ Sinﬁo — Hwcos BO + %ﬁo—i—
(Aw? cos 28y + Hwsin By + 3¢1) 1 + (Awsin 28, — H cos o) x2 = X1.

Here X; represents all the terms that contain z; and zo in powers
higher than one.
By means of (1.13) we obtain the first equation of perturbed motion

as
Adq + (Aw2 cos 2y + Hwsin By + %cl) r1+

+ (Awsin 28y — H cos fy) 2 = X;. (1.17)

The « coordinate is also cyclic one, because according to (1.7) the
kinetic energy is a function of the velocity & only, while the potential
energy does not depend on « either. Thus, the differential equation for
a coordinate, and hence for x5, becomes

dor dorT
— = . 1.1
dt 0¢  dt Oxq 0 (1.18)

By means of (1.15) we have

oT
% = 2A (w —+ IQ) COS2 (ﬂo + .Il) —+ 2HSiIl (ﬂo + .Il) .
2

Substituting this into (1.20), we get

2Ad9 cos? (Bo + x1) — 4A (w + x2) cos (Bg + 1) =
sin (Bo + x1) 1 + 2H cos (Bo + x1) ©1 = 0.

Upon dividing this expression by 2 cos (5p + x1) and retaining only first
order terms in #; and &5 we obtain the second equation for perturbed
motion as

(H — 2Awsin fy) &1 + A cos foza = Xo. (1.19)

Equations (1.19) and (1.21) define the perturbed motion of the
system about the steady state motion.



Chapter 2

The Direct Liapunov Method.
Autonomous Systems

2.1. For the given equations of a perturbed motion,

i = —2] + 120,
o : (2.1)
T2 = —5172 — 3$1

determine the Liapunov function, and show that the unperturbed motion
x1 = w9 = 0 is stable in the large.
(There is a misprint in the second equation in the book [11].)

Solution:

Multiply the first equation by z1, and the second one by x5 and add
the corresponding terms of the resulting equations to get

T1d1 + Tado = — (2] + 22322 + 5a3)
or
Ld o o 4 2 2
St (961 + xQ) = — (wl + 2x722 + 5952) .

The function V = 22 + 23 is a positive definite function for all z; and
T9, and its derivative with respect to time,

— (:10‘1l + 22220 + 590%)

is negative definite for all 1 and xs.
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The function
o]+ 202xy + 52

satisfies the Sylvester criterion (see relations (2.9) in [11]) for all z; and

To because
11

A1:1>0, AQ—‘15

‘ —4>0.
Thus, according to Liapunov’s theorem of stability of motion system
(2.1) is stable asymptotically.

2.2. The following functions and their derivatives with respect to
time, as determined by virtue of the respective equations of perturbed
motion, are given as follows:

1. V=af+a3, V= —ab a3

2.V =5zt —dalxe + 23, V = —da] + 22300 — 3;
3. V=2af+323, V:—(az?—xg)z;

4. V =1z — 13, V = 423,

Can these functions be used to determine stability of motion?

Solution:

1. The function V = 2§+ 23 can not be used because the sign of this
function changes (for 1 = 0 and 2 > 0, V' > 0, while for x; = 0 and
zo < 0, V < 0). Moreover, its derivative V = —2$ — 23 is a negative
definite function.

2. The function V = 52} — 422wy + 23 is positive definite, because
the Sylvester criterion is satisfied ((2.9) in [11]):

Ay =5> 0,
5 —2
Az—‘_2 1 ‘—1>0.
Also, the derivative V = —4a} + 20322 — 23 is a negative definite

function, because the Sylvester criterion ((2.10) in [11]) is satisfied:
Al =—-4< 0,

—4 1

AQ“ 1 -1

'—3>0.
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Therefore according to Liapunov’s theorem the system is asymptotically

stable.
In applying Sylvester’s criterion we replace z; by z7.
3. The function V = 28 + 23 is positive definite, and it’s derivative

Vo= — (x? —x2)2 is negative semidefinite. Therefore, according to

Liapunov’s theorem the system is stable.

4. The function V = z; — a3 is positive for ; > 0 and x5 < 0 while
it’s derivative V = 423 > 0 for z; > 0. Thus according to Chetaev’s
theorem the system is unstable.

2.3. Show that the equations of the perturbed motion of a rigid
body in a uniform rotation (see Problem 1.6) have two integrals:

Az? + Ba3 + C (w3 + wo)® = const,
A%2? + B%22 + C? (23 + wg)® = const.

Give the physical meaning of these integrals; compose a bundle of
integrals, and prove that the uniform rotation about the large as well
as the small axis of the ellipsoid of moment of inertia (in this case,
respectively, C' < A < B and C > A > B) is stable.

Solution:

These two integrals could be obtained in the following manner.
Consider the equations derived in Problem 1.6. Multiply the first equation
by 1, the second equation by z2, and the third one by (x5 4+ wp) to get

AIlil = Bw(){ElIQ - OWOI1$2 + BIl.TEQIg - O.IlIQ.Ig,
BIQ(iQ = CCUO:El:EQ - AwofbliEQ + OIEliEQ:Eg — AIE1I25E3,
C (1'3 + OJQ) I3 = Ax12923 — Brixows + Awpr122 — Bwozi22.
Adding these equations gives
Axrit1 + Broio + C ($3 +wp) &3 =0,
so that upon integration one gets

Axz? + Ba2 + C (23 +wp)® = const, (2.2)

i.e., the first of the two integrals.
To get the second integral, again refer to the three equations given
in Problem 1.6. Multiply the first equation by Az, the second equation
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by Bz, and the third one by C(z3 + wp). Then, add all the resulting
equations to obtain a single equation. Integrate this equation to obtain
the second integral as

A?23 4 B%x3 4 C? (w3 + wp)? = const. (2.3)

We denote the integral in (2.2) by V1, and the one in (2.3) by V5.
Now, consider the bundle of integrals

1
V= Vet CVit = (Vi - Cuf)’,
0

1
where the coefficient — is introduced to retain the dimensional validity
w

0
of the equation. Upon substituting the expressions for V; and V,» and
regrouping of the terms, the bundle becomes:

V=A(C-A)zi+B(C - B) x%iiz (A2? + Ba3 + Ca? + 2Cwor3)”
wo
or,

V=A(C-A)z}+B(C—B)r; +4C%25+ -+, (2.4)

where higher order terms of zj are denoted by the dots.
First, we consider the ” + 7 sign in (2.4), i.e.,

V=A(C—-A)z} +B(C— B)x3 +4C%*x3 + -

If C > A, C > B and |z is small enough, then V' is positive definite
and its derivative is equal to zero. Thus, all the corresponding conditions
of Liapunov’s theorem are satisfied and for C > A and C' > B the
motion is stable.

Now we consider the minus sign in (2.4), i.e.,

V=A(C—-A)2?+B(C—B)a3 —4C%x2 +---

Here, for C < A and C < B the function V is negative definite, and
again according to Liapunov’s theorem the motion is stable.

2.4. The rotational motion of a rigid body in a gravitational field
about a fixed point O is considered. For a set of principal axes with the
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origin at O and attached to the rotating body, the equations of motion
are

Ay + (C — B)wyw, = yym, — 7,my,
Bwy + (A - C) WaWg = VMg — YoMz,
Cw, + (B — A) wewy = Yzmy — YyMyg,

where A, B, and C are principal mass moments of inertia of the body
with respect to the (z,y, z) set of axes; wy, wy, and w, are components
of the angular velocity w along the z, y, and z axes; my, m,, and m,
are the static moments of the weight of the rigid body m about the z, y,
and z axes; = is the vertical axis of the fixed coordinate system; and ~,,,
vy, and -, are components of the unit vector of v along the z, y, and z
axes (direction cosines). Staude and Mlodzeevsky have independently
proved that under some conditions a body can rotate with constant
angular velocity about an axis . A set of such axes forms a cone. Not
all rotations with constant velocity are stable.

Construct the motion integrals and using their bundle, prove stability
of rotation with constant angular velocity about that principal axis of
the rigid body with respect to which the mass moment of inertia of the
body is maximum.

Hint. The integrals of motion are

1
F = §wTJw—|—'mi= h, F, :'yTJw =L, F3=~vv=1,

where h and L are constants, and

w=|wy |, J=10BO0 ]|, m=|my |, v=1|%
W, 00C my Yz

If the mass moment of inertia is maximal with respect to the z-axis,
then stability has to be determined for this axis; in this case w, = wy =
0, my = my =0, 7, =7y, = 0. The following bundle of integrals can be
considered:

1
V(w,v)=F1 + \F> + E,qu,

where A and p are factors to be determined. Show that A = —|w|, and
that for the chosen axis the relation u = Aw? —m, holds. This can help
you to prove the stability of uniform rotation about the z-axis.
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Solution:

F1 = hisan energy integral, Fo = L represents an axes transformation,
and F3 expresses a simple well known condition of direction cosines.
None of these functions, when considered alone, can lead to a positive
definite Liapunov function. Therefore, we can construct the bundle of
integrals

1
V(w,v)=F1 + \F> + Equ'

Substitute the values of Fy, Fy and F3 into this bundle and evaluate
the first variation of the function V:

8V = dw (Jw + A\J7) + 5y (m + A\Jw + 11y) .

This variation vanishes if

J(w+Ay) =0,
m+ AJw + py = 0.

From here one concludes that
A= —|w|, p=w?C—-m,. (2.5)

In order to obtain the condition of positive definiteness for V' one
may consider the second variation of this function in the neighbourhood
of a constant set of definite positive we write the second variation of
this function in w, v :

62V = dwJdw + 2X6vyJdw + pd~ydy.

We note that F3 = v+ = 1 and hence vdv = 0. From here it follows
that in our case dv, = 0.
Then we get

5%V = Adw2+ Bow?+Cowl+2\ (Adve0we + By, dwy )+ (872 + 677) -
For this quadratic form in §v2, 575, Sw?, 6w§, dw? we write the

matrix of coefficients of the quadratic form as given in (2.7) of [11]:

w0 XA 0 0
0 p 0 ABO
M0 A 00
0AB O BO
000 0C
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Now, using Sylvester’s criterion ((2.9) in [11]) we get:

Ay =p>0,

Ay =p? >0,

As = p?A — N2pA% = A (u— )\2A) >0,
Ay =AB (u—NB) (n— AA) > 0.

Noting that m, > 0, in view of (2.5), the condition that Ay = >0
results in

2. M2
> . 2.6
W > (26)
From the condition that Ag > 0 it follows that
2 my
. 2.7
w” > C_A ( )

If the inequality (2.7) is satisfied, from the condition that Ay > 0

it follows that
2 My

> .

Y 7C-B

If C > B > A, then all conditions of stability for this rotation
reduce to the single inequality (2.8).

(2.8)



Chapter 3

Stability of Equilibrium States and
Stationary Motions of Conservative
Systems

3.1. The end B of a perfectly flexible, weightless, and inextensible cord
of length [ is fixed (see Fig. 3.1). At the other end a load P is attached.

Figure 3.1 Problem 3.1.
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Block D is fixed and block C can slide on the vertical line that
bisects the distance a between points B and D. Block C carries a load
Q. Neglecting the dimensions of blocks D and C and all resistant forces,
determine the equilibrium positions of the system and investigate the
stability of these positions.

Solution:

Let the coordinates of points C' and P be denoted by z; and 29,
respectively. From Fig. 3.1 we have

a

=2y —1-2
ATty 2= 2cosg’

The potential energy of the system is

H:_QZj_PZQ:_@tansD_P(l_ a4 )
2 cos ¢

11
In a state of equilibrium we should have 90 = 0, i.e. by Theorem 3.1:

¥
oIl 1 i
_:_@ asmgaz_ ¢ Q—Psimp =0.
Op 2 cos? cos2 ¢ cos?p \ 2
Hence,
. Q
sing = & (3.1

so that for Q > 2P equilibrium vanishes. Thus, if Q < 2P, then
equlibrium prevails for

®o = arcsin ﬁ .

This state is stable because

%11 Pa
¥ ) =gy €SP0

In evaluating the second derivative, equation (3.1) has been employed.

3.2. Ring A can slide over a smooth wire ring of radius R without
friction (see Fig. 3.2). The ring R lies in a vertical plane. Load P is
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Figure 3.2 Problem 3.2.

suspended from ring A by a perfectly flexible but inextensible cord.
The load @ is suspended from the other end C of the cord, which is
stretched over the infinitesimal block B. Block B lies on the horizontal
diameter of the wire ring R, and its weight is negligible. Determine the
equilibrium positions of ring A and investigate their stability.

Solution:

It should be noted that the load P is supported by a cord, the upper
end of which is attached to ring A. A second cord, which supports the
load @ is attached to the same ring. We write the potential energy of
the system for the position when ring A is in the upper half of the
ring R. The potential energy of P is equal to its weight multiplied by
Rsin g, i.e., the elevation of ring A. Similarly, the energy of @ is equal
to its weight @ multiplied by the length [ of the cord AB.

Noting that the angle BAO is equal to g, we get | = 2Rcos§.

Considering that the total length of the cord is constant, except for a
constant amount, the potential energy of the whole system when the
ring A is in the upper half is given as:

1= PRsing + 2QRCOS§
or

II=PR <sin<p+2%cos§> .
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o1l
For a state of equilibrium we should have — = 0. Upon differentiation

Op
we get
oIl Q . v
g - = Z ) =0. 2
90 PR (coscp sin 2) 0 (3.2)

2P 'n2£:1

Using the identity cos¢ = cos 5 si — 2sin? g we can

find an expression for sin% in the following manner:

1 — 2sin 5 " p n7—0
or 0 )

2% Qo eo 1

sin 5 +2Ps1n 5 5 0.

From which we get

pp__ 0 Jje 1
SIS = m1p TV 1eme T2

(only the "+"sign in front of the square root should be considered, since
sin 82 > 0).

From this expression the equilibrium position of the ring A in the
upper half is given by

sin%zio/g—zjts—%). (3.3)

In order to determine the stability of this position, the second
derivative of II should be determined. Using (3.2) we have

%11 1 1
8—902 =PR (—simp— 5%0%%) =—PR (singa+ E%COS‘%) .

For the upper half of the ring R we have 0 < p <7, or 0 < % < 3.

0211
In this interval sin ¢ > 0 and cosg > 0. Therefore, 557 < 0, implying
P
that the equilibrium position (3.3) is unstable.
From (3.3) it is clear that in the interval 0 < % < 00 the value £

varies from 7 to 0. Therefore, the angle g lies in the interval 0 < ¢ <
™

3
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Next, let us consider the case when the ring A is in the lower half
of the ring R, i.e., when

<< 2m, <§<7r.

2o

In this interval

sing < 0, sin% >0, cos Z<o. (3.4)

The potential energy of the system is given as (l = —2Rcos b > O)

II=PRsinp — QQRcosg = PR (sincp— Q%COS§>

(the energy associated with P is negative, while the potential energy
due to @ is positive). Now we have
g—g = PR (cosep + %sin%)
_ 2 @ 29 L QL@
= PR (cos* £ —sin” § +ﬁsm§)
_ 2 Q g
=PR(1—-2sin" % —|—ﬁs1n§3).

By considering 90 0, we can find an expression for sin b (note
2

that according to (3.4), we have sin LA 0):

Hence,

wo  Q Q? 1
2 _413“L 16P2+2

1 2
sin%_1<\/%+8+%>. (3.5)

This expression defines the state of equilibrium for the ring A in

or

o1l
the lower half of the ring R. From the first expression for — we get
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Q _  Cospg
(note, that % = —— 800)
sin —
2
01 1
8—902 = PR (—singpo+§%cos%) =
P=%o
. 1 cos g wo |
PR | —sinyg — §sin@ c057 =
2
$0
COS — 2 1
—PR @20 ((sin@) + —)
Sin7 2 2

From (3.4) it follows that gg > 0 and the equilibrium state
=0
in the lower half of the ring A is stable.
Since % > 0 then from (3.5) ‘/75 < sin 22 < 1 and the equilibrium

position of the ring A in this lower half lies in the interval 7 < g < 37”

3.3. Investigate the stability of the vertical state of the system of
pendula depicted in Fig. 3.3 along with all dimensions of the system.
The mass of each pendulum and the stiffness of each spring are equal

Figure 3.3 Problem 3.3.

to m and c, respectively. We neglect the mass of the rods and assume
that each m is a mass point. In the vertical state of the pendula the
springs are not loaded.
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Solution:

Let us consider the potential energy of the system for small angular
displacements . The deformations of the first, second and third spring
are 3hy1, 2h (p2 — 1), and h (w3 — @2), respectively. So that the total
energy of all springs becomes

1

1 1
Hspr = ¢ (3hy1)” + 3¢ 21 (02 — 1)) + 3¢ [h(p3 —@2))°.

The potential energy due to the weight of a mass of an inverted
pendulum of length I, when the bar is displaced an angle ¢ (see Fig. 3.3)

18
2

I, = —pl (1 — cosp) =~ —pl%.

So, the potential energy II,,, due to the weight of all masses in the
system becomes

1 1 1
My, = —54hpet — 5 3hpp; — 5 2hpe3.

Therefore, the overall total potential energy of the system II is
Lepr + 10, , ie.,

= %9ch2cp% + 24ch? (g2 — 91)” + Leh? (93 — p2)? —
34phet — 33phe3 — 52phys.

Rearranging the terms we get

211 = (13ch? — 4ph) ¢1 + (5ch? — 3ph) ¢3 + (ch? — 2ph) p3—
8ch®p1pa — 2ch?paps.

The necessary and sufficient condition for the potential energy of the
system to have a minimum is that Sylvester’s criterion must be satisfied
(cf. eq. (2.9) in [11]). The matrix of coefficients on the right-hand side
of the last equation reads as

13ch? — 4ph  —4ch? 0
—4ch®  5ch® —3ph —ch?
0 —ch®  ch? —2ph
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So we have
Ay = h(13ch — 4p),

13ch —4p —4ch

__ 12 _
Bo=h""" 5¢h—3p|

h? (49¢2h? — 59pch + 12p?) ,
13ch —4p —4ch 0
A3 =h3| —4ch 5ch—3p —ch
0 —ch ch—2p

= h® (36¢3h® — 153pc?h? 4 130p>ch — 24p?) .
From these we get the required conditions for stability as

13ch — 4p > 0,
49¢?h? — 59pch + 12p? > 0,
36c3h3 — 153pc?h? + 130p2ch — 24p® > 0.

3.4. Current 7; flows along a rectilinear vertical and fixed conductor
that attracts a parallel conductor AB (see Fig. 3.4). Current is flows
along conductor AB, and [ is the length of each conductor. A spring
with stiffness c¢ is suspended from conductor AB. If current doesn’t flow
along conductor AB, then the distance between the two conductors is
a. Find the equilibrium positions of the system and investigate their
stability.

Hi2;1t: The interaction force between the two parallel conductors is
F— 2112

is the distance between the two conductors, and [ is the length of each
conductor.

. Here i1 and iy are current flows in the two conductors, d

Solution:
The force acting on the conductor AB is
C 2ivial  2iyial

= -
d “r a—

Noting that a — x > 0, from here we obtain

(a —z) F = 2iyisl — acx + ca?
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Figure 3.4 Problem 3.4.

or
a xF::EQ—a:r—i—a, (3.6)

c

where o
27,17,21
o=

c

The equilibrium of the conductor AB corresponds to F' = 0. Setting
the right-hand side of (3.6) equal to zero, the roots of the resulting
equation will give the equilibrium positions of the conductor AB as:

a+ a? a a?
To — — — — xrK1 = — — — — (.
27TV T TNy

For positions of equilibrium these roots should be real, and therefore,
we must have % > o
The potential energy II of the force F; = “==F is Il = fFlda: or
using (3.6),
II= %1‘3 — %axz + ax (3.7)
A plot of (3.7) is shown in Fig. 3.5.
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Figure 3.5 Problem 3.4.

From this plot it can be observed that the potential energy I has a
minimum at x2 and a maximum at x1. Hence, x5 corresponds to a stable
equilibrium, while z; represents an unstable state. (The tangents at
x9 and x7 should be parallel to x-axis.) The same conclusions can be
arrived at by using a more analytical approach. From (3.7) we have

011 [a? [a?
e mzwz:@x—a)z:m:a—i—? I—a—a:2 I_Oé>07

i.e., at x = o the potential energy has a minimum, and this point

corresponds to a stable equilibrium state of the conductor AB. Similarly,
2

at © = x1 we have — < 0, and therefore, this point corresponds to
an unstable equilibrium state. (Note: the answer provided in the book
[11] is switched around.)

2

When % = « there is only one state of equilibrium z = g. This
state is unstable, because at this point d?TI/dz® = 0 and d°I1/dx> # 0,
which indicates that II is not a minimum at the point.

3.5. A solid oscillates freely about the horizontal axis NT' (see
Fig. 3.6). The axis NT can rotate around the vertical axis Oz with a
constant angular velocity w. Point G is the centre of mass, plane NTG
is a plane of symmetry, and axis OG is a principal axis of inertia. KL is
parallel to NT', and F' D, which passes through point O, is perpendicular
to NT and OG. The moments of inertia of the solid about OG, KL,
and F'D are equal to C, A, and B respectively; h is the length of OG
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Figure 3.6 Problem 3.5.

and M is the mass of the solid. Define the possible positions of relative
equilibrium of the solid and investigate their stability.

Solution:

The solid can rotate about the axis NT (see Fig. 3.6). Assume that
it has an angular velocity ¢ so that at any given instant the axis OG
makes an angle ¢ with the vertical z-axis.

The angular velocity ¢ is represented by a vector along the axis NT'.
Moreover, after OG and OD have rotated an angle ¢, the components
of the angular velocity w will be

woGg = —WCOosY, Wop = wsinp.

The mass moment of inertia of the body about the NT-axis is A+ M h?.
Therefore, the kinetic energy of the body is

1 1 1
T = 5 (A+ Mh?) ¢* + 5sz sin? ¢ + §Ow2 cos’ .

The potential energy due to the weight is IT = M gh (1 — cos p).
Moreover, from the expression for kinetic energy we have

Ty = % (A+ Mh*) ¢, Ti=0, Ty= %wz (Bsin® ¢ 4 C cos® ) .

(It is easy to show that in this example T}, = Rj. Cf. relations (3.12)
and (3.14) in [11].) The potential energy W of the generalised system
becomes (cf. equation (3.20) in [11])

W=1-T,
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or )
W = Mgh (1 —cosp) — §w2 (Bsin® ¢ + Ccos® ) .
Then, for a constant w we get:

ow

8—:Mghsincp—wzsingocosgo(B—C), (3.8)
¥
o*w
502~ Mghcos ¢ —w”® (B — C) (cos® ¢ — sin® p) .
¥
. . . - ow
The required condition for a stationary motion is to have B0 = 0.
¥
From equation (3.8) three states of equilibrium are deduced: ¢ = 0, p =
d Mgh__ et ider each stat tel
7, and p = arccos ——————. Let us consider each state separately.
1. ¢ = 0. In this case
o*wW
= Mgh—w®(B-0). 3.9
727 oo gh —w*( ) (3.9)

Obviously, for B < C' the second variation of W with respect to ¢
is positive for all w. Therefore, the state of equilibrium corresponding
to ¢ = 0 is stable for all w. From equation (3.9) we can see that for

2 9 Mgh
< =
Op? B-C

state of equilibrium is stable. For w? > the state of equilibrium

B > C we have In this case the

> 0 provided w
Mgh

becomes unstable.
2. ¢ = 7. In this case

O*wW

= —Mgh—uw?(B-0).
07 |y gh—w* (B -C)

2

Therefore, for B > C' we have
Op?

< 0 and the state of equilibrium

is unstable.

Mgh
If B < C the state of equilibrium is stable for w? > 9

C-B’
2

oW
- —gB (in the first case 8—g02 > 0, and in the

it is unstable for w? <
2

second case ——=
Op?

< 0).
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3. ¢ = arccos ﬁ In this case a state of equilibrium exists
if Mgh < |B — C|w?. Then sinp # 0, and we have
cosp = AL
2 2
.o 5 M2 g2 h2
sin® p = 1 — cos w_l_ﬁtc)?'
so that
82W M2 2h2 M2 2h2
5 :%—wQ(B—C) 2%—1
&p =3 w (B — C) w4 (B - C)
(3.10)
M2g2h2 9
= B-0C).
ZBoo B0
Provided that Mgh < w2 B—C| we will have M2¢%h2 < w* (B — C)*
or M <w?(B-0)
w?(B-0C) '
Then, from (3.10) we get
0*W
— > 0,
8@2 ’%’:9’33

for B > C, so that the state of equilibrium is stable.
However, for B < C we have

0*wW

— <0,
0p? ’4/7:903

and an unstable state of equilibrium.

3.6. In Fig. 3.7 the vertical axis AB is an axis of symmetry of
the thin homogeneous round disk with weight P and radius r. AB can
roll freely around the spherical bearing A. Two mutually perpendicular
springs BQ and BD in a horizontal plane hold the axis at point B. Both
springs have the same stiffness, i.e., ¢c; = co = ¢. They are attached to
the axis of the disk at a distance L from the bearing A. The disk is at
a distance [ from the bearing A. Determine the angular velocity of the
disk w for which the system is stable.
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Figure 3.7 Problem 3.7.

Solution:

Let us consider the fixed coordinate system Azyz where the z-axis
is pointed upward, and the z and y axes are parallel to springs BQ
and BD when the shaft AB is in a vertical position. Moreover, the
centroidal coordinate system of the disk is called («’y’z") which is taken
to be parallel to the (zyz)-system, when the axis of the disk is vertical.

The mass moment of inertia of the disk with respect to 2’ and y’ is the
2

mr
same and it is A = o With respect to z’-axis, the mass moment of

o mr? P . -
inertia is C' = 7 where m = — is the mass of the disk, and r is its
g

radius.

The mass centre of the disk lies at a distance [ from the bearing
A. Now, let us determine the kinetic energy of the disk. It consists of
the kinetic energy due to the displacement of the centre of mass of
the disk plus the kinetic energy due to the rotation of the disk. For a
displaced position of the shaft which is identified by the angles o and
B, the coordinates of the mass centre of the disk is denoted by = and y
(see Fig. 3.7).

Then, the kinetic energy of the disk is

1 1 . 1
T = 3m (;1'02 +y2) + §A (0'42cos2ﬁ+52> + §C(w+0}sinﬁ)2.
From Fig. 3.7 we can see that
i=1la, =185,

and if we assume that the angles o and  are small (cosa = 1, cos § = 1,
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sin 8 = ), we get
L oaf.2 1 2 42 1 - 2)2
T = Smi (a + 83 )+§A(a +8 ) +5C w+ap)’.
Using the expressions for the moments of inertia A and C, we have
1 2 . 2
T=:cm(2+1 (a2+ﬁ2) + I (wtap)?. (3.11)
2 4 4
Neglecting the terms with order higher than two, the spring deformations

are obtained to be La and LS, and the potential energy due to the
weight P becomes

—Pl(1—cosa+1—cosf) = —%Pl (a® +8%).

Then the total potential energy will be

Il = % (cL? = Pl) (0® + B%). (3.12)

Using equations (3.11) and (3.12) we get the Lagrange equation
with respect to coordinate « as

oT 5 T2 mr?
—=m (P +—)a+— (w+ap)s.
se = (] T w+aB)8

Considering that the term &f is negligible with respect to w, we
may differentiate this expression with respect to time ¢, and obtain
the derivatives of II with respect to a. In this way we can obtain the
equation of motion for « (a similar procedure will result in the equation
of motion for f3):

r2 2

m<12+z>d+%w[3+(CL2—Pl)a—O,

(3.13)

2 . 2
m<lz+%>ﬂ—%wéﬁ—(cLQ—Pl)ﬂ_O.

Now, assume o = De* and 8 = Fe. Substitute these in equation
(3.13) and divide by e to get

2

[m (12 +5) 32 + (e2? = P1)| D+ 22 wAE = 0,
—22WAD + [m (12 + ) A + (eI — PI)| E = 0.
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This is a system of homogeneous linear equations with respect to D
and F the determinant of which must vanish, i.e.,

m (1245 ) A2+ (cL? - PI) mr? )\

—0.
—mrf N m (12 + 5 ) A2+ (L - PI)

2

Expanding this determinant we get

4

m? (12 + %)2 Xt [2m (24 5) (eL? - PI) + 2570?32+
+ (cL — P1)* = 0.

This equation can be solved for \2:
] 2 2y
NM=————"3 2m z2+—) cL? — Pl) + wﬂj:
| (F ) e

mrt 2 m2r2
2 . 2 _ 2
Y 4m (l +3 ) (cL? — Pl) + Y

If Pl < cL?, then all terms are positive and both roots A\? and
A3 are negative and simple for any angular velocity w. This means
that for Pl < ¢L?, the vertical state of the shaft is stable in the first
approximation for any w.

Next assume Pl > cL?. Then, the first term under the square root
sign becomes negative and for stability to prevail it becomes necessary
for the angular velocity w to satisfy the condition that

4 cl?
2> —ql(4P+r) (1- =
W' el () (1=

2 cL?
2 4 p2
w>T2\/gl(4l —i—r)(l l>'

If w satisfies this condition, then for cL? < Pl there is a positive value
under the square root sign and both roots A\? and A3 are simple and
negative. Then, the stability of the disk in the first approximation is
proven.

or
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3.7. The mass point depicted in Fig. 3.8 moves over the smooth
surface of a torus given by the parametric equations

x =pcosy, y=psiny, z=>bsind,

p=a+bcos?,

where the z-axis is pointing upward. Find the possible motions of the

Figure 3.8 Problem 3.7.

point when the angle ¢ is a constant, and analyse the stability of these
motions.

Solution:

Let 1) = w = const. Therefore ¢ = wt. Then, we have
x = (a+bcos?) coswt,y = (a + bcos?) sinwt, z = bsin ),

from which

i = —bsin 99 coswt — w(a + bcos V) sinwt,
¢ = —bsin 99 sinwt + w(a + bcos ) cos wt,
Z = bcos 0.

Now, the kinetic energy of the mass is

1 1 .
T = 3" (i +9°+2%) = 3m [b2192 +w? (a+beos?)?|,
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and its potential energy is II = mgz = mbgsind. From the expression
for T we find that Ty = %mb21927 and Ty = %moﬂ(a—i—b cos)2. Therefore,
the potential energy of the generalised system becomes

1
W =1I — Ty = mbgsinv — §mw2(a + beos)?,

such that P
57 = mb [g cos ¥ + w?(a + beos) sind] (3.14)
0*W . 2; o2 2
52 =mb [—gsind — w?bsin® ¥ + w?(a + beos?) cos?|  (3.15)

We find the relative equilibrium from %—Vg = 0. Using (3.14), we get

gcost + w?(a + beosd) sindd = 0.

From here
a+bcosz9:—%cot19 (3.16)
w

or

b
14+ acosd =—Fcotd, a=-, ﬂ:% (3.17)
a aw

The two solutions of equation (3.17) can be easily obtained as
™ ™
—— <% <0, — <Y<
2 =" g 2T

In order to determine which of these is stable, let us consider the right-
hand side of (3.15).
First, we proceed as follows:

*W . 27 o2 2 2 2
50z = mb [—gsmﬁ — w“bsin“ ¥ + w*a + w*bcos 19]
or ,

9% =mb [—gsind + aw? + bw?(cos? ¥ — sin® ¥)| =

mb [—gsin¥ + aw?(1 + £ cos29)] .

In the interval —5 < 9 < 0 we know that sind < 0, therefore the first
term is positive. Moreover, we have 3 < 1, and |cos 29| < 1. Thus,
the second term is also positive, and hence the motion is stable when

¥ =.
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Next, we note that

O*W
092

=mb [—gsind — w?bsin® ¥ 4+ w?(a + bcos V) cosd] ,

so that using equation (3.16), we get

02w cos? ¥

092

=mb |—gsing — w?bsin? Y — g— .
sin v

Now, we have sin?) > 0 in the interval § < ¥ < w. Therefore, for
¥ =1
o*w
092

which means that the motion is unstable when 9 = 5.

<0,

3.8. The horizontal tube AB shown in Fig. 3.9 can rotate freely
about the vertical axis C'D. Inside the tube there is a spring with
stiffness ¢. The end of the spring is fixed to the tube wall at A. The

0
4 YW | B

b M

e

pELS
Figure 3.9 Problem 3.8.

solid M is attached to the free end of the spring. The mass of M is
m. When the system is at rest, the body M is at distance a from the
axis of rotation (@ > 0 or a < 0). During the free rotation of the tube
with an angular velocity w, the system attains a stationary motion
in which body M is at relative rest. Assume M is a mass point and
neglect any frictional forces and the mass of the spring. If the mass
moment of inertia of the tube with respect to the axis of rotation C'D
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is J, determine the parameters of stationary motion and analyse its
stability.

Solution:

The potential energy of the system is Il = %cx2 (for a > 0 and for
a < 0), while its kinetic energy is

1 1 1
T = §mjz2 + §mw2(a +z)+ §Jw2.
Hence, T> = imi?, and Ty = mw?(a+z)+ 3 Jw?. Thus, the potential
energy of the generalised system is
W =1I-Ty = 3cz* — imw?(a + 2)? — 3 Jw?,
W — cx —mw?(a+ ),

2
W = c—mw?.

The state of relative equilibrium is obtained from the equation

ow
—— =cx —mw*(a+ ) =0,
ox
from which
T - maw2
0= c—mw??
2
%TV;/ = ¢ — mw?.

W

If ¢ > mw?, then
¢ < mw?, then %ZVX < 0 and the relative equilibrium is unstable.

(In the book [11], in the following equation

5.z > 0 and the relative equilibrium is stable, if

2 2
A:J(l— e ) +m (a+ z)° (1+4mw ) .
c
should be replaced by ‘%;IVQV =c—mw?)

3.9. The rotor depicted in Fig. 3.10 is situated in a horizontal
plane and is rigidly mounted at its centre O on a flexible shaft which
is supported as shown. The centre of mass of the rotor is C, the mass
of the rotor is m, e = OC' is the eccentricity of the rotor which has a
mass moment of inertia equal to J with respect to the vertical axis. The
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Figure 3.10 Problem 3.9.

bending stiffness of the shaft is C' and the shaft is driven at a constant
angular velocity w. The shaft axis is bent due to centrifugal forces. One
can neglect the mass of the shaft and any frictional forces. In the fixed
coordinate system determine the position of point O for the stationary
motion and analyse its stability.

Solution:

The plane of rotor is horizontal. Point O represents the deflected
position of the flexible shaft which has a bending stiffness of ¢. The
mass centre of the rotor, point C, has an eccentricity e. Points O and
C are attached to the rotor. Let the z-axis of the coordinate system
O1zy be attached to the plane of the rotor and be parallel to OC. It
is required to determine the position of relative equilibrium of point
O and analyse its stability. Next, let  and y be the coordinates of
point O, then = + e and y are the coordinates of the centre of mass of
the rotor; and & and g are the components of the velocity of point C'
relative to O;. The constant velocity vector w is normal to Oy zy-plane.
The relative velocity of C' about point O is

t Jk
vi=wxr=| 0 Ow|,

rz+ey
ng:_wy, Ugy:w(l’*'e)-

The components and the magnitude of the absolute velocity of point
C are

vy =% —wy, vy, =y+w(x+e),
02 =02 + ) =i 49?2 — 2w(iy — x9) + w? [(z+e)® +32] .
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The kinetic energy of the rotor

1 1
T= §Jw2 + §m{x2 + 97 — 2w(dy — 29) + W [(z+e)* + ]},

where J is the moment of inertia of the rotor with respect to the axis
perpendicular to its plane at point O, and m is the mass of the rotor.
The potential energy of the elastic shaft is

1
In= 50(1:2 +92).

Thus, the Lagrange equations become

aor ot om
dt 9 Oz Oz’

where or 4 or
or o1

= mwy +mw?(z+e); G = ca.

Therefore, the equations of motion become

mi — 2mwy — mw?(z + e) = —cr,
(3.18)

mij + 2mwi — mw?y = —cy,

where the second equation is obtained in a manner analogous to the
first one.

For a state of relative equilibrium we should have & = § =0, 2 =
y = 0. By substituting these into (3.18), the coordinates x¢ and yo of
point O in relative equilibrium are obtained as

—mw?(zg +€) = —cxog, —mwyy = —cyo.
Hence,
2
mw?e
ro= = g =0 (3.19)
c— mw

These equations have simple physical interpretation and can be
obtained in a more direct way. In the state of relative equilibrium points
01, O and C should lie on the same line (yo = 0), and the elastic force
exerted by the flexible shaft, cxg, should be equal to the centrifugal
force mw?(xo + e). This corresponds to the first equation in (3.19).
(There is an error in the book [11] in the expression for zg.)
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To analyse for stability we consider
T=x0+€1, Y=1Yo+eE2=er.

In equations (3.18) we substitute the above expressions for x and y,
respectively, to get

mé — 2mwés — mw?(xo + &1 + €) = —c(zo + €1),
més + 2mwé, — mw?eq = —ceq

such that in view of (3.19), we get
méy — 2mwés + (¢ — mw?)e; =0,
(3.20)

méy + 2mwér + (¢ — mw?)ey = 0.

As a standard approach, we let 61 = Ae, g5 = BeM, and substitute
these expressions for €1 and e2 into equations (3.20). In the resulting
equation, after rearranging the terms and dividing by e** we get

[mA? + (¢ — mw?)] A — 2mwAB = 0,
2mwAA + [mA? + (¢ — mw?)] B = 0.

This is a linear system of homogeneous algebraic equations in A and
B whose determinant should vanish, i.e.,

mA2 + (¢ — mw?) —2mwA —0
2mwA mA\% + (c —mw?)|

Expanding this determinant, we have
m2\t 4 2m(c + mw?)A? + (¢ — mw?)? = 0.

From where,

1
A2 = — [—m(c + mw?) £ \/m2(c + mw?)?2 — m?(c — mw?)?
m

or

(Ve +wym)?. (3.21)

From (3.21) it follows that all four roots of the characteristic equations
are simple and pure imaginary. This means that the system is stable
for all ¢ and w and ¢ # mw? (there is an error in the answer given in

A2 =

1
m
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the book [11]). Moreover, for ¢ = mw? also the system is stable, but
this can not be concluded from (3.21). For this conclusion one has to
consider the matrix

mA\2 —2mw
A—)\E = ) (3.22)
2mwA  mA2

This matrix is the same as the one in (3.20) for ¢ = mw?. Simple
reductions of (3.22) will lead to

(g\)\()\2-(i)-4w2)>'

From this matrix we can see that the canonical variables should satisfy
the following:

51=0, 20=0, Z3=2wi, 2i=—2wi; i=+—1,

which means that solutions €1 = e3 = 0 of equations (3.20) are also
stable for ¢ = mw?.

We have considered the case when points Oy, O and C were not
collinear. Let us now consider the case when these points are collinear
— call this line the z-axis. Then the coordinates of points O and C are
x and x + e, respectively.

The velocity of the centre of mass, point C, is defined as

v? =% + Wiz +e)

The kinetic and potential energy of the system are

1 1 1
T= §Jw2+§m [P +w’(z+e)?], II= Ec;v2,
and the equation of motion becomes
mi — mw?(z +e) = —ca. (3.23)

The state of relative equilibrium at which & = 0 is defined by (3.19):

mw2e

To=——.
c— mw
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We can obtain the equation of the perturbed motion if we let z =
xo + € in (3.23). This will result in

mé + (¢ — mw?)e = 0.

From here, if ¢ > mw?, then the unperturbed motion is stable; whereas
if ¢ < mw?, then it is unstable.
So, the answer is the following: for the stationary motion the centre

O has the coordinates

mwze

pOZ c_mw27
Yo = wi.

If points O;, O and C are not colinear, then the relative state
equilibrium of point O is stable for all ¢ and w. If these points lie
on the same line, then for ¢ > mw? the relative equilibrium position of
point O is stable, and for ¢ < mw? it is unstable.

3.10. For the system given in Problem 1.7 prove that the stationary
motion is stable with respect to S, B and ¢.

Hint. For the system under consideration the potential energy of
the generalised system, W =1I — Ry, is

(n — Hsin [3)2

L o
W_Ecﬂ + 4A cos? 3

where n = 2A4d&cos? 8 + Hsin B is the integral corresponding to the
cyclic coordinate.

Solution:

From the solution of Problem 1.7 we obtain the kinetic and potential
energy of the system as
T = AB? + Acicos® B + C(p + ésin )2,
(3.24)

1
II = 5062,

where a and ¢ are cyclic coordinates, because T" and II contain only
the velocities & and ¢. Two cyclic integrals which correspond to these



o1

oT T

coordinates are — = n = const, and — = H = const. (Here it
e ap

should be noted that in problems dealing with Routh transform it is not

T oT
possible for the derivatives — and — to be constant with multipliers.

oc oL

For example, we can not say g—g = 2H, as we did in Problem 1.7.) Next,
from (3.24) we obtain

g—z =2Aécos? S+ Hsin 8 =n,
9% =20(p + asinf) = H.
Hence,

n— Hsin g
2Acos? B’

(3.25)

H
¢ =55 —dsin.

Substitute these into the expression for T' to get 7™ (we neglect the
2

. H
constant quantity E)
(n — H sin B)?
4Acos? 3

Compose the Routh function R (cf. (3.12) in [11]):

T = A% + (3.26)

R=T"—néa— Hp.
Using equations (3.26) and (3.25) we find

(n—HsinB)> n—Hsinf <H n_HSinﬂsinﬂ>

R= ApB? - _g (L _n-fbsmp
o+ 4A cos? 3 " 2Acos? 8 2C 2Acos? 3

so that after some simple manipulation and neglecting the constant
2

term 1) t
erm —— ), e get
20’ 8

(n — H sin B)?

_ 52
k=48 4Acos? B

= Aﬂz - R07

3.27
(n — H sin B)? 2

1
W =11 — Ry = =¢f*
0 2Cﬂ + 4A cos? 3
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(In the book [11] there is small error, the coefficient 4 in the dominator
is missing.)

We assume that the angle 3 is small so that sin 8 ~ 3, cos § ~ 1—%2.
Then, we have

1 1 1

1— =
2

where the terms with order higher than two have been neglected. Then,
(3.27) reads

(2AC + H?)B% — 2nH 3 + n?
4A

W= (1+5%)

Once again retaining only up to the second order terms, we get

W= ﬁ [(2AC + H? + n2)* — 2nHB + n?] |

From here, we have

%—Vg = ﬁ [(2AC’—|—H2 +n?)B —nH] ,
2
G = 34(2AC + H? +n%) > 0.
Setting the first equation equal to zero, we find the expression for
the angle of relative equilibrium as

nH

bo=acr iz

(3.28)
From the second equation we find, that this state is stable with
respect to the angle 5. From the stability of motion with respect to 8
and from (3.25) the stability with respect to & and ¢ follows.
Provided equation (3.28) is satisfied, the motion of the system consists
of a constant deviation of the axis of gyroscopes by the angle 5y and
the uniform rotation of the whole system with an angular velocity of

n — H sin By

U= 9 A cos? Bo
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Stability in First Approximation

4.1. Let the moments of inertia of a rigid body with respect to its
principal axes of inertia x, y, and z, be designated as A, B, and C,
respectively, such that either A < C' < B or A > C' > B. Prove that
the uniform rotation of the rigid body about the z-axis is unstable.

Solution:

From the equations of the perturbed motion obtained in Problem
1.6 obtain the following equations in first approximation:

: B-C

T1 = —x WoT2,
. _ C—A

T2 = —F Woll,
23 = 0.

Let 2, = Dpe (k = 1,2, 3), substitute for zj into these equations and
divide the resulting equations by e* to obtain

DlA)\ + DQ(C - B)wo = 0,
DQBA + Dl(A - O)WO = 0,
DsCA=0.

This is a system of linear homogeneous equations with respect to Dy,
the determinant of which must vanish in order to have any nontrivial
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solutions, i.e., we must have

AN (C — B)wo 0
(A—Cwy BA 0 |=0,
0 0 CA

or

CA[ABX* — (C - B)(A—C)wi] =0.

This equation has one root equal to zero, and for A < C < B or
A > C > B it has two real roots:

_ (C—B)(A—0)
A—i‘*’O\/T-

The existence of one positive root indicates that the uniform rotation
of the rigid body about the middle axis of moment ellipsoid, the z-axis,
is unstable.

4.2. Prove that the equilibrium of a point mass located on the end
of a compressed and twisted bar is unstable (see Problem 1.5).

Solution:

In Problem 1.5 we obtain the following differential equations of the
perturbed motion:
mi = —c1T + cay,
miy = —Co — C1Y.

Letting 2 = Ae* and y = Be, the following homogeneous linear
system of algebraic equations in A and B can be obtained:

mAN +c1A— ;B =0,
ca A+ mBN? + aB=0.

Setting the determinant of this system equal to zero, we have

m/\2 + 1 —C2 -0
co m\4+c1|
or
(mA? +c1)? +c2 =0.
Hence,

mA? 4 ¢4 = +ico, i=+v—1.
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At least one of the roots of this equation have positive real parts
which means that the equilibrium is unstable for x1 = x5 = 0.

4.3. The motion of a control system is described by the following
differential equations:

P — Q1 +72) = e,
1+ g2 + QY = —c172,
Y1+ W = —k(n1 — k),

where 71, 72, and 1 are the system coordinates, c1, co, k, and 2 are
system parameters, and k(t) is the driving force. Determine the required
condition for system parameters such that the motion caused by the
driving force x would be asymptotically stable.

Solution:

Multiply the first equation by —1 and rewrite all the equations in
the following form:

O+ (Q+c2)y2—v =0,
Y1 +92 +eve + QY =0,
Y+ kv + QY = kk.

The stability of this nonhomogeneous linear system can be determined
by considering its system of first approximation (cf. Example 1.4 in

[11]): |
Oy + (Q+c2)ye —9 =0,
1 +92 v+ QY =0,

A+ by 4+ = 0.

Let 41 = AeM, v = Be, and 1 = Ce*. Substitute these into the
above and divide the resulting equations by e* to obtain

QA+ (Q+c)B—AC =0,
A+ (A +c1)B+QC =0,
(A +k)A+9QC =0.

This homogeneous linear system of algebraic equations in A, B and C
must, have nontrivial solutions. So the determinant of the system must
vanish, i.e.,
Q Q) + co -2
A A+ Q=0
A+k 0 Q



56 Chapter 4. Stability in First Approximation

or after expansion

3
Z aiN¥ T = N (k) A2+ (2 + ke A+ (Q%¢1 + Q% 4 Qegk) = 0,
=0

(4.1)
where €, ¢1, co, and k which are the parameters of the system, all
are positive. Therefore, for asymptotic stability to prevail it is only
necessary to satisfy inequality (4.30) in [11], i.e.,

Ag = ajas — agaz > 0.

For the problem at hand the corresponding values of a; are obtained
from equation (4.1) to give

AQ = (k + Cl)(Q2 + kCl) — (9261 + Q2k + QCQk) > 0,
which can be reduced to

ke, + c% > Qes.

4.4. The top view schematic of a uniaxial trailer is shown in Fig. 4.1.
Here m is the mass of the trailer; .J is the polar inertia moment of the
trailer with respect to the vertical axis which is orthogonal to the plane
of motion at the hitch point of the tractor to the trailer; G designates
the mass centre of the trailer; v is the velocity of the tractor; and the
stiffness of the spring is c¢. If we neglect the nonholonomic reactive force
F at the hitch, then equations of motion of the trailer can be reduced
to the following equations in the first approximation

m(b—a)i + cbx + [ma(b—a) — J] $ =0,
T+ bp+vp =0,
where the second equation describes the nonholonomic constraint at

the hitch. Determine the stability conditions of the trailer.

Solution:

Determine the differential equations of the motion of the trailer.
Considering the moments with respect to the axis which is orthogonal
to the plane of motion at the mass centre G of the trailer, we have

J@ = —caxcosp+ F(b—a).
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Figure 4.1

The equation of the motion of the mass center in the direction parallel
to the displasement of the spring is
d2

mw(:zr + asing) = —cax — F cos p.

For small angles ¢ these equations become

Jp = —cax+ F(b— a),
mx + map = —cax — F.

Eliminating F' from the above set, we get
m(b— a)i + cbx + [ma(b — a) — J]g = 0. (4.2)

Since the trailer can not have a motion along its axle the following
condition applies:
Zcosp +bp+uvsing =0
or for small angles,
&+ bp+ v =0. (4.3)
In order to determine the stability conditions of the trailer the

characteristic equations of differential equations (4.2) and (4.3) are
considered:

m(b— a)\? + cb [ma(b — a) — J|\?

A bA + v =0,
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which expands to
[m(b—a)® + J] A* +m(b— a)vA® + cb* X\ + cbv = 0.

For asymptotic stability all coefficients must be positive, i.e., we should
have
b>a, v>0. (4.4)

Besides this condition (4.30) in [11] must also be satisfied,
As = ajas — apaz = mcb*v(b — a) — cbv [m(b —a)?+ J] =
= cbv [ma(b—a) — J] > 0.
From here we obtain the additional condition
J <ma(b—a). (4.5)
If (4.4) and (4.5) are satisfied, then the motion of the trailer will be
asymptotically stable.

4.5. The follower force P is applied to the double pendulum depicted
in Fig. 4.2. Spiral springs each having a stiffness ¢ are used at support
point O and in joint O;. The length and mass of both pendulums (mass
points) are the same.

Figure 4.2

Neglecting the mass of the bars, obtain the equations of motion and
determine stability conditions of the motion with respect to 1, ¥1, 2,
and ¢s.
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Solution:

In this problem the force P is nonconservative, so for the generalised
forces we get

oIl oIl

Q1= _5—g01 +Q1p, Q2= _3—902 + Q2p, (4.6)

where II is the potential energy due to the springs and gravity, and Q1,
and ()2, are generalised forces due to P. We determine the potential
energy as

+ M + mgl(1 — cospr + 1 — cos p2).

1
IT= 5080%
Assuming that the angles 1 and @9 are small, we may consider the
following expansions in which only up to the second order terms are
retained:

i %3

1—cosp; ==, 1—cospy=-"——.

Y1 B) P2 B)

Then the expression for II can be written as

1 _ 2 2 2
melezy clp2 —@1)” mgle?2 + mgl (3 + 1)
2 2 2
or
3

IT = (¢ + mgl) gp? —cp1p2 + (¢ +mgl) ==
2 (4.7)

2
= (c+mygl) (cpf + %) — Cp1p2.

In order to evaluate @1, and @2, we consider the virtual work done
by the force P during a virtual displacement dr, where r is the radial
vector attached to the fixed support at the top that locates the point
of application of the load P. Now, we have

T =171+ 72,

where r; and 79 are vectors representing the length and the direction
of the two bars. Therefore, we have

or = 0rq1 + ors.
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It is necessary to take note that dr; and éro are orthogonal to the
vectors r1 and 7o, respectively. Next, we introduce a coordinate system
in the plane of the bars such that the z-axis is vertically downward and
the y-axis is horizontal and to the right. If we denote the components
of ér by dz and dy, then from the last equation we get

dx =1 (—sinp10p1 — sin p2d¢2) ,
0y = 1 (cos p16p1 + cos padps) .

The components of the force P are —P cos @ and — P sin 3, and
the virtual work is

O0W = Pyéx + P,dy = —Plcos pa(—sinp1dp1—
sin padpa) — Plsin g (cos p1dp1 + cos padps)

or, upon rearranging of terms,
OW = — Pl (cos @ sin @1 — sin pg cos 1) 0p1.
From here we have
Q1p = Plsin(p2 — ¢1), Q2p, =0.

Using relations (4.6) and (4.7), we find the generalised forces (based on
the assumption that angles ¢1 and o are small, i.e., sin (g2 — 1) ~

P2 — p1)
Q1= —2(c+mgl) o1 + cp2 + Pl (02 — 1), (4.8)
Q2= — (c+mgl) 2 + cp1.

Now we determine the kinetic energy of the system,

x1 = lcosp, xo = lcos gy + 1 cos pa,

BZ eI G (gsing + gasing)
g e Y2 = Isin gy + sin g,

Y1 = lp1 cos e, . . .

2 _ 2.2 Y2 = L ($1 o8 @1 + P2 cos pa),
vy = 71

vy = @5+ 93 = 17 [¢T + 2cos (2 — o1) 192 + 93] -
Again based on the assumption that angles ¢ and ¢ are small, i.e.,
cos (w2 — 1) =1, we get

vs =17 (&7 + 20102 + ¢5) -
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Thus, we have

1 1 1 . .. .
T = gmvf + gmvg = 5m12 (207 + 20162 + ¢3) -
Now, we can write the Lagrange equations

d or 0T

S 0 (=1,2
dtagbj &Pj Qj (3 )
S = mi? (251 + $2)
5o = mi® (2¢1 + @)
9T _ or _
Op1 ~ Op2

Using @1 from (4.8), the first equation becomes
mi? (2¢1 + @2) + 2Hp1 — cpa — Pl (p2 — ¢1) = 0, (4.9)

where
H = c+mgl.

In a similar fashion we obtain the second equation for ¢o as:
mi® (B1 + ¢2) + Hoa — cio1 = 0. (4.10)

Now, let @1 = AeM, gy = Be. Substitute these values into (4.9) and
(4.10), divide the resulting equations by e* to obtain two homogeneous
equations in A and B,

(2ml2/\2 +2H + Pl) A+ (le)\Q —c— Pl) B =0,
(mlz)\2 — c) A+ (mlzx\2 + H) B=0.

The determinant of this system must be equal to zero:

2mi?A2 + 2H + Pl mi?X? — ¢ — Pl —0
ml?A\? — ¢ miPX+H |7
or
2)\2+Il)\2—12 —0
)\2—13 /\2+I4 -
or

MAN2 (I + I+ I3+ 21) + [1 1y — I3 =0,
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where

2H + Pl c+ Pl c H
- - — L=

i =— = [

1 ml2 ) 2 ml2 ) 3 mlza

Note that I; + I + Is+21, >0 and I114 — I3 = (02 + ZCmgl +

m2g%12 + Pmgl?)/(mi?) > 0 always, and (I; + o+ I3 +214)* — 4(I I, —

Is13) > 0, so all four roots will be imaginary. Therefore the system is
stable in the vertical direction.

mi?

4.6. A two-rotor Anschiitz gyrocompass' with a viscous damper is
widely used in some countries. If this type of a gyroscope is mounted
in a ship whose northern component of velocity is constant, then the
differential equations of motion of the gyroscope are

k2 k2
_ — 1-— =X
U cos cpxz Ucosgo( p)Ts b
Z9 4+ U cos pr; = Xo,
ig —|—FI2—|—F$3 :Xg.

1

Here z1, x5 and x3 are variations of compass coordinates from its values
at dynamic equilibrium; k is the frequency of free vibrations of the
sensitive element (gyrosphere); U is the angular velocity of Earth’s
rotation; ¢ is latitude of the ship; F' is the factor of fluid flow in the
viscous damper; p=1— i; c and Pl are the norms of the moments of

the damper fluid and the gyrosphere, respectively; and X7, Xo, X3 are
terms of higher orders in x1, 2, x3 and @1, &2, T3.
Determine condition for asymptotic stability.

Solution:

Determine the equations of the first approximation. Let X1 = Xy =
X3 = 0. We get the following system of linear differential equations (in

the first equation the parameter p is replaced by p =1 — %)
. k2 k2 c 0
1 — Tro — — L =
" Ucosp ® Ucosp Pl ® ’
U cospxy + @2 = 0, (4.11)

Fxo + 123+ Faxs = 0.

1 In honour of the German engineer and industrialist who invented this

gyrocompass.
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We assume 77 = AeM, xo = BeM, and z3 = Ce*. Substitute
these expressions for xj into equation (4.11) and divide the resulting
equations by e* to obtain

2 2
AA - Ufosch - Ufoscp%c = 0’
UcospA+ AB =0,
FB+ (A F)C=0.

A, B and C can not be equal to zero simultaneously, hence, the determinant
of this system must vanish, i.e.,

k? K ¢
A " Ucosp Ucosg Pl
Ucosp A 0 =0,
0 F A+ F

or
N+ X+ A+ K2F (1- ) = 0.
The Hurwitz condition requires that all the coefficients and A, =

", . c
ajas — agag be positive. This means that Bl < 1, or ¢ < PI, so that

Ay = FK* — Fk? (1 - %) - Fk2% > 0. Thus the only required
condition is that we should have ¢ < PI.

4.7. A stable platform is a device which is sometimes used in
navigation to determine, simultaneously, the meridian and horizontal
plane for a sailing ship. For an anchored ship, the differential equations
of its perturbed motion can be reduced to two identical equations:

T1 + 2b121 + (V2 - Qz)xl — 205 = X1,
io 4 2bads + (V2 — Q%)za + 2Qid1 = Xo.

Here x7 is a quantity proportional to the angle of deviation from the
meridian plane; zo is the variation of the auxiliary variable, which is
associated with the constructive angle (see [4]); by > 0 and by > 0
are coefficients that characterise the dissipative forces; v = /g/R =
0.00124 1 /sec is Schuler frequency?; ) = Usin; U = 7.29 - 1075 1/sec
is the angular velocity of Earth’s rotation; ¢ is the latitude of the ship;
and X7 and X are terms of higher orders in x1, z2, @1, and 5.

2 Max Schuler was a German scientist who, in 1912, investigated the period of
unperturbed oscillations of the gyroscopic pendulum in a gyrocompass.
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In two other analogous differential equations of perturbed motion
x3 and x4 determine the angle of deviation from the horizontal plane
and the variation of the other auxiliary variable, which is associated
with the second constructive angle (see [4]).

Determine the condition for asymptotic stability of the device.

Solution:

Let X; = X5 = 0, then we get the system of the first approximation

i1+ 2bid1 + (v — )z — 2Qd =0, (41
4.12
20y + dip + 2bods + (1P — Q%) 22 = 0.

As usual, we take z; = AeM and zo = Be*; substitute these expressions
for z; and x5 into (4.12) and divide the resulting equations by e* to
obtain

[A2 4+ 201X + (12— Q%)] A= 2QAB =0,

200 + [X2 4 202X + (¥ — Q%) B =0.
A and B can not vanish simultaneously, so the determinant of the
system must be equal to zero, i.e.,

A 420 h + (VP - Q?) —2QA 0
20\ A2+ 200X+ (V2 -Q%) | T

or,
A+ 2(b1 +b2) A+ 2[ (V7 — Q) + 2b1by + 207 A +

(4.13)
2(by+bo) (V¥ — Q) A+ (¥ - 0?7 =

For asymptotic stability of the system under consideration which is
governed by (4.12), the necessary and sufficient condition is to satisfy
Hurwitz’s criterion (cf. (4.32) in [11]) as follows:

1. All the coefficients in (4.13) must be positive,

2. Az = ajazaz — apa3 — afay > 0. Az is obtained as

Az =8 (b + b2)2 [(v? — Q) + 2b1bs +202] (12 — Q2) —
4(by +by)? (V2 = Q2) — 4 (by + by)? (12 — 02)°

(b1 + b2 ( Qz) [ (V — Qz) + 4b1b2 + 492 —2 (V — Qz)] =
16 (b1 + bg) ( 2 92) (blbz + Q2)
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If v > Q, then A3 and all the coefficients in equation (4.13) are positive
and Hurwitz’s criterion is satisfied. Hence, it follows that the system
(4.2) is asymptotically stable, and therefore, according to Liapunov’s
theorem of stability in the first approximation (cf. Theorem 4.4 in [11])
the system under consideration, where X7 # 0 and Xy # 0, is stable.



Chapter 5

Stability of Linear Autonomous
Systems

5.1. Given the following equations of a perturbed motion:

T1= T+ T2 — T3,

x'g = —x1 + 3:172 — I3 — 2:174,
Lil'3 = 6$2 — 3$3 — 3$4,
T4 = —3x1 + 329 — 3y,

determine the roots of the characteristic equation and the stability of
the motion.

Solution:

Determine the A — E'X matrix for the given problem:

1-X 1 -1 0
-1 3-Xx -1 -2
0 6 -3-Xx -3
-3 3 0 —-3-A

A—AE =

The determinant of this matrix has four roots: \y = Ay = 0, A\3 =
A4 = —1. Executing the following elementary matriz operations: add
the third column to the second; multiply the third column by 1 — A and
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add the result to the first column; will result in

0 0 -1 0
29N 2-A -1 -2
A=A =1 g o i A23-A-3-) -3
3 30 —3-2\

Interchange the third column with the first one; multiply the first
column by —1; using elementary matrix operations obtain zeros for
all entries in column one except for the first entry:

1 0 0 0
02—\ =242 -2
03—-A—3+22+X -3
0 3 -3 —-3-A
Next, add the second column to the third column;
1 0 0 0
02—\ 0 -2
03—AAX(A+1) -3
0 3 0 —-3-A

Follow this by multiplying the second column by -1 and subtracting the
fourth column from the result to obtain

10 0 0
0A 0 —2
OAAA+1) -3
0AN 0 —3-2X

Subtract the second row from the third row; subtract the second row
from the fourth row:

10 0 0
0A 0 —2
00A(A+1) -1
00 0 —1-2x

Multiply the second column by 2; multiply the fourth column by A: add
the fourth column to the second column; change the sign of the fourth
column:

10 0 0
0 0 0 2
0 =X AQA+1) 1
0-AA+1) 0 142
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Divide the second row by 2; subtract the second row from the third
one; multiply the second row by 1+ A and subtract from the fourth:

10 0 0
0 0 0 1
0 =X AQX+1)0
0-A(A+1) 0 0

Interchange the second and fourth columns; multiply the third row A+1
and subtract the result from the fourth row;

10 0 0
01 0 0
00 AA+1) —A
00-A(A+1* 0

Interchange columns three and four; change the sign of the third and
the fourth column; multiply the third column by A + 1 and add the
result to the fourth column:

100 0
010 0
00\ 0
000A(N+1)°

Thus we get the Smith canonical form of the matrix. The roots are
A1 =0, A2 =0, A3 = —1, and A\y = —1. The following solutions in
normal coordinates corresponds to these roots:

—t —t
21 = 201, 22 = 202, 23 = 203€ , 24 = Zo4€ , (5.1)
where 291, 202, 203, and zg4 are the initial values of the corresponding

coordinates. Since solution (5.1) is stable with respect to normal coordinates,
the solution with respect to z-coordinates is also stable.

5.2. The following equations of a perturbed motion are given:

.fl = xr, — 2I2 + T4,
:1'52 = —x1 + 3ZE2 — I3 — 2:E4,
Lil'3 = 3$2 — 2$3 — 2$4,

Ty = —3x1 + 622 — w3 — 4dx4.
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Determine the roots of the characteristic equation and the stability
of the motion.

Solution:

Determine the A — EX matrix for the given equations:

1—X =2 0 1
-1 3-X -1 -2
A-AE= 0 3 —2—) =2
-3 6 -1 —4-

Multiply the last column by —(1 — A\) and add it to the first column;
then multiply the fourth column by 2 and add it to the second column;
next using elementary operations make all the entries in the fourth
column, except the first one, to vanish:

0 0 0 1
1-2x —-1-Xx -1 0
2 -2\ -1 -2-X0

1-32-X-2-2\ -1 0

Multiply the second and third columns by -1; interchange the first and
the fourth columns:

1 0 0 0
01+Xx 1 1-2A
0 1 2+X 2-2)
02422 1 1-3Xx—)\2

Subtract the second row from the fourth row:

10 0 0

0OI+X 1 1-2X
0 1 24X 2-2A
01+XA 0 —-A—)2

Subtract the fourth row from the second one:

1 0 0 0

0 0 1 1—=X4X
0 1 24X 2-2X

014+X 0 —X—-\2
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Interchange the second and the third columns:

1 0 0 0

0 1 0 1—X+)\2
02+X 1 2 — 2\
0 0 14+X —A—-)2

Multiply the second column by 1 — A + A? and substruct it from the
fourth column:

1 0 0 0

0 1 0 0
02+X 1 —A-X2-\
0 0 14+X —X-2)\°

Multiply the second row by the —(2 4+ A) and add it to the third row;
Multiply the fourth column by -1:

10 0 0

01 0 0
00 1 A4+X24+X
001+X X+

Multiply the third column by X 4+ A2 + A3 and subtract it from the
fourth column; multiply the fourth column by -1:

10 0 0
01 0 0
00 1 0

001+ AN +223 4+

Multiply the third row by —(1 + A) and add to the fourth row.

100 0
010 0
001 0

000 A2(\+1)2

Now we have the normal form of the matrix A — AE. We note that the
invariant factors are: By = 1, Ex = 1, B3 = 1, and E; = M2(\ + 1)2.
Therefore, the A — A\E matrix has two elementary divisors: A2, (A+1)2,
with the corresponding roots: Ay = Ao =0, A3 = Ay = —1.
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The equation of the perturbed motion (cf.[11]) in canonical variables
consists of two Jordan blocks (cf. normal Jordan form (5.40) in [11]):

21=0, 2=z, 2Z3=—23 Z4=23— 2.
From these it is easy to get the solution as:
—t —t
21 =201, %2 =201t + 202, 23 =203 ', 24 = (204 + 203t)e .

The canonical variables are unstable (22 — oo as t — o0), and therefore
the system is unstable.

5.3. The nonhomogeneous linear differential equations

i1 = —bx + 23 + 263 + 5t + 2,
&g = 41x1 + 5xo — 1923 — 193 — 412 — 10t + 2,
i3 = by 4 2w9 — 33 — 35 — 82 — 4t

have the particular solution
T =12, Ty=2t, T3=—t>

Determine the stability of this solution and construct the solution of
the equation of the perturbed motion in terms of canonical variables.

Solution:

The stability of the solution
xr1 = t2, To = 2t, T3 = —ts (52)

could be investigated using the homogeneous parts of the equations,
i.e., the equations (cf. Example 1.4 in [11]):

il = —5I1 + 2{E3,
j:2 = 41{E1 + 5I2 - 19I3,
T3 = bx1 + 229 — 3x3.
The A — AE matrix for this system of equations is

—5-X 0 2
A-XE=| 41 5-x -19 |. (5.3)
5 2 —(3+))
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Divide the third column by 2; interchange the first and the third columns:
1 0 -G+

-2 5-x 4
S 2 2

Multiply the first column by 5+ A and add to the third column; multiply
the third column by -2. Now, in the first column, except for the first
entry get all zeros:

1 0 0
05—X 13+19)
0 2 548N+

Divide the second column by 2; multiply the second column by —(5 +
8\ + A?) and add the result to the third column:

1 0 0
2 (A+1)3

057(2)

0 1 0

Multiply the third row by (5 — ) /2 and subtract it from the second
row; interchange the second and the third row:

10 0
01 0
00 (A+1)3

Matrix (5.3) is in normal diagonal form; it contains three invariant
factors
Ei=1, Ey=1, E3=(\+1)>
The root Ay = Ay = A3 = —1 is a root with a multiplicity 3 for the
invariant factor F3 as well as the equation. Therefore, the differential
equations or the canonical variables are (cf. equation (5.52) in [11])

21 =—2z1, Z2=21—2, Z23=22— 23

The solution is

2

—t —t —t
z1=z01€ ", 22 = (2020+zo1t) e, z3= (Zo3 + zp2t + Zm;) e .

This solution is stable, therefore partial solution (5.2) is asymptotically
stable.
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The Effect of Force Type on Stability
of Motion

6.1. Determine the differential equations which govern the motion in
Problem 3.9 and show that they contain gyroscopic forces. For the
unstable case when points O, O and C are collinear and mw? > ¢,
determine the degree of instability and show that the system may be
stabilised by gyroscopic forces.

Solution:
1. In Problem (3.9), we consider the equations corresponding to

equation (3.18). In these equations, those terms that contain the derivatives
in the first power, i.e., 2mwy and 2mwz, lead to matrix of coefficients

0 —2mw
2mw 0
which is a skew-symmetric matrix, indicating that these terms are
gyroscopic forces.

2. For the unstable case the degree of instability should be equal
to 2. This follows from the observation that

1 —Cy = (c—mw2)2 > 0.
for all ¢ and w (refer to the solution for Problem 3.9).

6.2. Using the previous problem show the validity of Thomson
Tait—Chetaev Theorems 6.5 and 6.6.
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Solution:

If we take into account the resistance forces —bi and —by, then
Hurwitz’s criterion is satisfied for mw? < ¢, and the stable system
becomes asymptotically stable. For mw? > ¢ Hurwitz’s criterion is not
satisfied and the stable system becomes unstable.

6.3. Two unstable potential systems are given:

I)igr— g1 +2q2 +3¢3 =0, 11) 1 — q1 +2¢2 +3¢g3 =0,
Go +2q1 + qo =0, Go +2q1 + g3 =0,
Gs +3q1 + g3 =0; G3+31 +q2 +q3=0.

Why are the systems potential? Why are they unstable? Is it possible
to stabilise them by gyroscopic forces?

Solutions:

1. Both systems are potential because the coordinate matrices are
symmetric.

2. In each case, to determine the stability of the system, Hurwitz’s
criterion is examined.

For the first system, we have

—14+X 2 3
2 14X 0
3 0 1+ X2

For A = 0, the determinant of this matrix is evaluated to be -14.
Then, based on Hurwitz’s theorem, we can conclude that the first
system is unstable and could not be stabilised by adding gyroscopic
forces.
For the second system when A = 0 we have the determinant

-123
201}=9>0.
311

For all other A, this determinant becomes

—1+X 2 3
2 A\ 1 =
3 11+

N = 1)+ 64+6—-3X2— (A2 —1)—4(1+A2) =2 —9\2 +9.
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The negative sign in front of A\? indicates that the system is unstable,
but it could be stabilised by adding gyroscopic forces to the system
(cf. Problem 3.9, where, for ¢ < mw?, in the absence of the gyroscopic
forces —2mwy and 2mwz the system would be unstable. In fact, the
presence of these gyroscopic forces has made the system stable for all
¢ and w.)

6.4. Kinetic and potential energies of a gyroscopic pendulum at
the upper vertical position of its axis of symmetry are, respectively,

T = 1 J.(cos?a B2 + a?) + R ACE Bsina)?,

II= 2Pl cosf3 cosa,
where a and [ are the angles which define the position of the axis of
gyroscope with respect to a vertical axis, ¢ is the angle of rotation
of the gyroscope, J, and J, are principle moments of inertia of the
gyroscope, P is its weight, and [ is the distance from its centre of mass
to its point of suspension.
Using the cyclic integral:

oT .
— = J, (¢ — Bsina) = H = const,
e = (¢ — Bsina)

determine differential equations governing the motion of the gyroscopic
pendulum and find that value of the angular momentum H, for which
the upper position of the pendulum can be stabilised by gyroscopic
forces.

Solution:

Assuming small angles o and 3, the kinetic and potential energy of
the system are:

T =17, (a2 4+ 42) + 3. (¢ - Ba),
H:Pz(1—a§) (1—%2):—%Pl(a2+[32).

Pl
where the constant quantity > isignored. Then, the Lagrange equations

read as .
Jzé — HB — Pla =0,
J.8+ Ha— Pl =0,

H= g—ngz(gb—gbsina)
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with the characteristic equation

J A2 =Pl —H)
HX  J)\% - Pl

o

or

JIN + (H? — 2J,Pl) X + P?1? =0,

— (H? = 27,Pl) £/ (H? - 27, P1)* — 4J2P212
2.2 -

— (H? - 2J,Pl) £ VHT — 4H2J,PI
2.2 '

A2 =

When H > 2+/J,Pl, the expression under the square root sign will be
positive and both values of A\? will be real and negative, and therefore
the pendulum will be stable in the first approximation.

6.5. The differential equations of a perturbed motion are:
AGg+ HGqg+ Cq=0.

Here A, G, and C are square (n X n) matrices of constants. Moreover,
A=A"isa positive definite symmetric matrix, composed from inertia
coefficients of the system; G = —G'is a skew-symmetric matrix of
gyroscopic forces; C' = C'isa symmetric matrix of potential forces; q
is a column matrix; H is a positive parameter. For H = 0 the system
is unstable.

Prove the following theorem. If gyroscopic forces satisfying the following
conditions:

1) detG # 0,

2) the precession system HG ¢ + Cq = 0 is stable,

3) the roots of the characteristic equation are simple,
are applied to the unstable potential system, then for rather large values
of H, the unstable motion can be stabilised by these gyroscopic forces
[4].

(This is a rather difficult problem, and its solution of requires a
good level of insight.)
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Solution:

Recall that for skew-symmetric matrices the determinant of an odd
order matrix vanishes, whereas for an even order matrix the determinant
is equal to the square of a rational function of its elements. Therefore,
the determinant of an odd order skew-symmetric matrix whose elements
are real numbers must be nonnegative (cf. Section 5.2 Matrices and
Basic Operations, a) General definitions in [11]).

First, let us consider the equation

Ag+ HGg+ Cq =0, (6.1)
and show that its characteristic equation
|AN? + HGA 4 C| = 0, (6.2)

contains only the even powers of the unknown parameter A. To this
end, denote the determinant in (6.2) as A(X). Then, replacing A by
—\, we have

A(=)) = |[AN* — HGA + C.

Since interchanging the columns and rows will not change the determinant,
we have:

A(=N) = |ATN — HG"A+ C7].

Matrices A and C are symmetric, therefore, AT = A and CT = C.
Matrix G is skew-symmetric, so that G = —G (cf. equation (5.16) in
[11]). Therefore, we can write

A(=X) = |AN* + HGA + C| = A(N).

This expression proves that in the determinant given by (6.2) A appears
only in the even powers.

From the condition that |G| # 0 it follows that n, the order of
this matrix, is an even number. Now, let n = 2s. Now, based on the
condition stated in the problem, the system (6.1) is unstable when
H = 0. To prove that for large H this system becomes stable, it is
necessary and sufficient to show that for large H all roots of equation
(6.2) are pure imaginary, and all A\? are real negative numbers.

To this end, for a large H, we introduce the small parameter u =
H~1, and let

)\:%:Vu.
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Then equation (6.2) becomes
Av, p) = ‘IU,QAI/2 +Gr+ C’| =0, (6.3)
so that for u =0, we get
A(v,0) = |Gv +C| =0. (6.4)

Expanding the determinant (6.3) in powers of 2, the coefficients of
the resulting equation will depend on the small parameter u. Recalling
the theorem that asserts the continuous dependence of the roots of
an equation on its coefficients, we observe that for sufficiently small
values of u, i.e., for large H, each of the n roots of the characteristic
equation (6.2) that corresponds to differential equation (6.1), is in
the neighbourhood of the corresponding roots of equation (6.4). The
roots of this latter equation are pure imaginary since this equation
contains only the even powers of v (this can be shown by using the
same approach as was used for equation (6.2)). Thus, under the stated
conditions system (6.2) is stable.

Denoting these roots by vy, each will correspond to a A\g. Then, for
large H the n roots of equation (6.2) are in the vicinity of the following

roots

A,ﬁ”:i%i (k=1,....n). (6.5)

Next, let
AN=Hy=pu"y. (6.6)
Substitute this expression for A into equation (6.2), and divide the
resulting equation by ©~2". As the result the characteristic equation
becomes

Ay, p) = |Ay* + Gy + p*C| = 0.
Upon dividing by +", for u = 0, we get
A(v,0) = |Ay+ G| =0. (6.7)

In a similar manner we can show that the n roots of equation (6.2)
are in the neighbourhood of the pure imaginary roots of (6.7). It should
be noted that equation (6.7) is not very different from equation (6.4),
and unlike matrix C', matrix A is positive definite. Denoting the roots
of (6.7) as ~xi, they are related to Ax by means of (6.6). Thus, the n
roots of equation (6.2) will be in the vicinity of the following roots

A =t Hyi (k=1,...,n). (6.8)
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Expressions (6.5) and (6.8) prove that for large H the unstable system
(6.1) may be stabilised by gyroscopic forces.

The following two remarks are in order:

1. The roots must be simple because in moving from equation (6.3)
to (6.4) if the roots of the characteristic equations (6.3) are not simple
then the roots of equation (6.4) can have small real parts.

2. The quantities V—; in (6.5) and H~ in (6.8) are the frequencies

of harmonic vibrations. The parameter H in a gyroscopic system is
proportional to the angular velocity of the gyroscope, which is very
large (150000-200000 rev./min). The equations obtained for frequencies
show that the frequencies (”—H’“) are very small, with very large periods.
These represent the system precessions which can be damped slowly
in the presence of dissipative forces. The remaining frequencies (H~y),
are very large with small periods. These represent the nutations of the
system which are damped very quickly in the presence of dissipative
forces. In practical application of theory of gyroscopes, as a rule, the
nutations are ignored.



Chapter 7

The Stability of Nonautonomous
Systems

7.1. The differential equation of a perturbed motion is
i+ ai + (2— N sin3t>:v:O,

where a = const.
What condition has to be satisfied by a, to ensure asymptotic stability
of the system with respect to x and &7

Solution:

This equation is similar to equation (7.23) in [11]. For a(t, z,2) =
const, this system is stable provided condition (7.43) in [11] is satisfied,
where B and b are the maximum and minimum of the function 8(¢, z, ).
In Problem 7.1 this function is

B=2—+1—2a2sin®t.
Obviously, B =3 (for x =0 and ¢t = 7), and b = 1 (for z = 0 and

t = %). Thus, in view of (7.43) in [11], the system is asymptotically
stable for a > v/3 — 1.

7.2. A perturbed motion is defined by the following set of homogeneous
linear differential equations with periodic coefficients

.fl = —T1 +sin ¢t - X2,
To =cost-xy —x9 —sin t-x3
T3 = cost-xo —Ts3.
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Develop a computer program to integrate these equations over the time
interval [0, 27r] with initial conditions

k=
M0,k £0
Obtain the fundamental matrix A. Find the roots of the characteristic

equation. Check your results for these roots and analyze the stability
of the system.

Solution:

This system of linear differential equations with periodic coefficients
(the period is equal to 27) should be integrated numerically using any
appropriate computer code. The interval of integration is [0, 27] with
the given initial conditions. Then we can get the matrix corresponding
to (7.61) and an equation similar to (7.64) in [11]. Solving this equation
we obtain the roots of the characteristic equation:

p1 = 2.566519 - 1077, p2,3 = 0.008405 £ 0.013532 4.

Since the moduli of these roots are less than one then the system is
asymptotically stable.
Using

27
P1p2p3 = GXP/ (=3)dt
0

the accuracy or correctness of the results can be checked. The check
gives good agreement

p1paps = 6.512428 - 1077,  exp —67 = 6.512412-107°.

7.3. The equations of a perturbed motion are
i = —2% + cos2t - x143,
To = (1 + sin® t) 3:%3:% — 21:2.

It is required to investigate the stability of the unperturbed motion
x1 = z2 = 0. (In the book [11], there is an error in the second equation.
The last term in this equation must have a coefficient of 2.)
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Solution:

We consider the following Liapunov function for this system:

V=< (27 423).

N~

This is a positive definite function and it is an implicit function of
time. Its derivative with respect to time is

V= T1T1 + Taka.
Substitute the expressions for #; and #2 from (7.1) to get
V= —27 4 cos 2ta?ad + (1 + sin? t) 22xd — 25
in which after replacing cos 2t by cos?t — sin®t we can obtain
V=—ai+ (14 cos®t) z7a3 — 28, (7.1)

The expression in (7.1) is a quadratic function in terms of z7 and

x3. Let us prove that V is a negative definite function. To this end we
use Sylvester’s criterion. The matrix of coefficients for the variables z%

and 3 is
B -1 7 (1 + cos?t)
Alz,t) = (%(1+cos2t) ? -2 )

From which we have

1
Al =ay] = —1, A2 = 11022 — A12021 = 2— Z (1 + COS2 t)2 .

Thus,
A1 <4 =-1<0, A>0=1>0 (fort=mn, n=0,1,2,...).

These inequalities show that conditions (7.7) in [11] are satisfied,
and therefore, V is a negative definite function with respect to x?
and 3, and hence with respect to z; and z2. Thus, V is positive
definite, whereas its derivative with respect to time is negative definite.
Therefore, for the system given in (7.1) all conditions of Liapunov’s

theorem of asymptotic stability are satisfied.
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7.4. Investigate the stability of a perturbed motion which is governed
by the following equations:

. cos?t 9 3:1:133

xr1 = 5 Ty — 5
\/142_sin t V14 cos?t

. fElfL'Q 2

Ty = ——— —T5

V14 cos?t

Solution:

Let us consider the positive definite function V = 3 (23 + 23). By
virtue of the given expressions, the time derivative of this function is

2
cos* t 3 3

— T — T3
VvV 1+sin“t

The function V' is positive definite in the whole 1, zo-plane, while
its derivative is positive, in the sense of Chetaev, in the domain z; > 0,
x9 < 0. Thus, the equilibrium positions 1 = 0 and x5 = 0 are unstable
(Chetaev Theorem).

V:

7.5. The equation of a perturbed motion is
i+ (k—2cos’0.05¢) x = 0. (7.2)
Determine for what values of k parametric resonance occurs.

Solution:

This equation could be easily transformed into Mathieu’s equation
(7.89) in [11]. To this end, we use

2cos? a = 1 + cos 2a.

Then (7.3) can be written as

Cr ko1 0.18)z =0 (7.3)
— —1—cos0.1t)x = 0. .
dt?
Now, let us introduce the nondimensional time, 7 = 0.1t, so that
dr __
7 = 0.1,
s dxr _ dxdr __ dx
=g = ara = 0l
.. 21
i =0.0122.

dr
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Then equation (7.4) can be written as

d2
d—ri + (6+ecosT)z =0,

where

;¢ =—0.01.

2
n
For small & parametric resonance occurs at the points § = T These
2
n
points correspond to k =1+ ZO'Ol (n=0,1,2,3,...).



Chapter 8

Structural Stability

Buckling analysis is an important consideration in the design of elastic
structures in various branches of engineering such as naval architecture,
missile and rocket manufacturing, and civil and mechanical structures.
In this Chapter the stability of elastic structures under static loading
is investigated. Three main methods used in such an investigation
are discussed briefly!. Using these approaches stability of equilibrium
states under conservative and non-conservative loads can be analyzed
by considering the corresponding critical loads.

Equilibrium method of stability analysis. Euler approach

In classical problems of linear elasticity where infinitely small deformations
are assumed, the equilibrium conditions are assumed to be satisfied by
the forces acting on the undeformed elastic system. This assumption
which is essential for Kirchhoff’s general uniqueness theorem [9, 12]leads
to unique solutions for such linear problems. On the other hand, in
formulating buckling problems this assumption is dropped and the
equilibrium conditions are satisfied by the forces acting on the deformed
elastic system. This leads to an essentially nonlinear formulation of such
problems in the sense that displacements are not linearly proportional
to the externally applied loads, and, in fact, often the deformation of a
structure will not be uniquely determined by the applied loading.

According to Kirchhoff’s theorem there is only one set of solutions of
stresses, strains, and displacements for an elastic body in equilibrium,

! In some literature a fourth method, called "imperfection method"is also
considered [14].

85
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satisfying all basic equations of linear elasticity for a given body force
and boundary conditions. In fact, any two sets of solution for the same
body force and boundary conditions, at most may differ only by the
rigid body displacement of the system, i.e., the difference in any two sets
of solution describes the rigid body motion of the system. Therefore,
the solution of the such a linearly formulated problem is always stable.
The sufficient condition required for satisfying Kirchhoff’s theorem is
that the potential energy of the elastic system should be a positive
definite function.

Buckling equations are obtained by considering variations of the
nonlinear equations. To this end, each unknown z in these equations is
replaced by 2 +6z. Here, the 2 describe the "initial equilibrium"state.
The stability of this initial state which satisfies the nonlinear system of
equations is to be investigated. The dx describe adjacent equilibrium
states that are infinitesimally close to the initial state. They satisfy
the linear homogeneous equations (the buckling equations) and the
homogeneous boundary conditions, that are obtained as the result of
linearizing the initial nonlinear equations by dx (see Section 1.1 in [11]).
Then, considering the non-trivial solutions of the buckling equation the
critical load(s) may be determined. In dealing with buckling problems
it is convenient to assume that the load varies proportionally to a
loading parameter A > 0. Then, the variables xy describing the initial
equilibrium state and the coefficients of the buckling equation depend
on A. In this way, the buckling problem is reduced to an eigenvalue
problem. The least (positive) eigenvalue is taken as the first critical
value A = A\, leading to the corresponding buckling mode. Such an
approach is called equilibrium or Euler analysis of stability due to
L. Euler who in 1744 used this approach to study the stability of axially
compressed bars. His paper [7] is considered to be the first work on
structural stability.

Example 8.1

Apply Euler analysis to obtain the critical buckling load for a simply
supported bar under axial compression (Fig. 8.1).
Here F is Young’s modulus, [ is the moment of inertia of the cross-

section of the bar with respect to the axis about which the buckling is
being considered, [ is the bar length, and P is the axial force.
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Figure 8.1 Problem 8.1.

Solution:

The equilibrium of the bar is governed by the equation

d* e
d—;f +pP2Y (8.1)

EI —_—
dx?

where w is the lateral displacement of the bar. The boundary conditions
for a simply supported bar are

2w 2w

We seek those values of P for which the system admits nontrivial
equilibrium states. To this end, we consider the solution of (8.1) in the
form

w(x) = Asinkx + Bceoskx + Cx + D (8.2)

where

P
- EI
Substituting (8.2) into the boundary conditions we get

k? oo P=EFEIk.
B=C=D=0, sinkl=0. (8.3)
The lowest non-zero value of kl satisfying (8.3) is w. Therefore,

mEl

Pcr: 12
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This approach suffers from a few shortcomings that need to be
pointed out. Firstly, this approach does not address the question of
stability of a structure directly. It deals with this question in a rather
indirect manner by seeking the loading(s) at which there exist infinitesimally
close adjacent equilibrium states. Secondly, the Euler approach can
not consider the mass distribution in the system. Finally, under some
circumstances it may provide the wrong results. Examples of such cases
are either

1) when the initial equilibrium state becomes unstable without any
infinitesimally close equilibrium states appearing, and the system starts
to experience flutter (see second part of solution of Problem 8.1);

2) when the equilibrium state under investigation is stable and the
close equilibrium states exist, yet they are unstable (see [14]). Moreover,
for many non-conservative systems the results obtained by means of
equilibrium approach are not correct (for example, stability analysis
of a bar under an axial compressive follower force). Nevertheless, for
a large number of conservative systems this approach provides correct
results. Unfortunately, to date no reliable criteria have been established
that can be used to classify the type of problems or the conditions for
which equilibrium method will yield the correct results.

Energy method of stability analysis. Lagrange—Dirichlet
approach.

In the stability analyses of an equilibrium state it is convenient
to make use of energy principles. These are based on the Lagrange
Dirichlet theorem that states: If for a mechanical system under static
conservative forces with ideal holonomic constraints? the potential energy
at an equilibrium state attains a strict minimum (i.e., is positive definite)
then this state is stable. For example, to prove that a system with one
degree of freedom has a stable equilibrium state, we should evaluate the
potential energy of the system II, and prove that II' = 0 and II” > 0
at this state.

3

Example 8.2

Investigate the stability of the buckled bar given in Example 8.1.
Such a buckled form represents the post-buckling state of the bar.

2 The work done by ideal constraints during any virtual displacements is zero.
Holonomic constraints do not depend on velocities and accelerations.
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Solution:

When one end of the bar is allowed to be displaced only in the
axial direction, then the main post-buckling deformation is of bending
form. We assume that the bar is inextensible along its longitudinal axis
(elastic axis). Then, the axial displacement u(s) is

u(s) _—/0s (1 —cos0)ds,

d
where s is the length along the elastic axis (Fig. 8.1), and 6 = M s

ds
the slope of the buckled bar.
The bending moment is

df
M=FEI—
ds’

so that the potential energy of the bar becomes

H_/Ol[%EI <£)2—P(1—c0s9)}ds

For small, yet finite deformations the deformed elastic curve may be
s
approximated by the first mode, i.e., w; = sin T Then, the solution

for the buckled bar in the first approximation can be given as

0(s) =chi(s), where 60;(s)=cos s

l
Since 6 is small we have
cos@:l—%92+ﬁ94—~-~,
1—cosf = 36%— Lo — ..

Then,

I ~ EI71'202_P62l+PC4Z _ E[C2— P N P 04}, P, - 2 El
41 4 64 41 P, 16P,, 2

and

ET P P
"~ _ 3
IT), ~ v {26 <1 cr> + 1 crc }, (8.4)
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H’C’zﬂp(l— P)—i— 3Pc2}

4l P(;'r‘ 4PC’I"

Equation (8.4) has two roots: ¢; = 0 which corresponds to the undeformed
P— Pcr . -

bar, and ¢y = +2v/2 (7]D)wh1ch exists only for P > P,., and

corresponds to the buckled form represented by the first mode.

Forc=0 Bl P
H//:_ 1_
=y ()

is positive only when P < P,,, i.e., the undeformed bar is stable for all

P less than the critical load while it is unstable for all P > P,,.. For
2 8(P—P.)

P
H”:EP P 3P 8(P—PCT)}N4EI(P—PCT)
R/ Per 4Py Pe 1 P,

is positive when P > P.., i.e, the buckled bar is stable for all P >
P.,.. For a more detailed treatment of this problem one may refer to
[1, 14, 5, 3].

Kinetic method of stability analysis. Lagrange—Liapunov
approach

The most general approach to stability analysis is to consider the
free vibration of the elastic system about its equilibrium state and
investigate the perturbation of this motion. This method, referred to
as the kinetic method of stability analysis, was initially proposed by
Lagrange for conservative mechanical systems. Later on, A.M. Liapunov
developed a rigorous mathematical theory of stability of motion. To this
end, he proposed that the equilibrium state (or equilibrium motion) of
a mechanical system is considered stable if the deviation from this state
is as small as desired for any sufficiently small perturbation. The kinetic
analysis can be applied to determine the stability of equilibrium state
in any structural problem, but it should be noted that the stability
analysis of a perturbed motion is a much more difficult problem than
that considered in the Euler approach in which one determines those
loading conditions for which the system admits nontrivial equilibrium
states.

Therefore, unless absolutely necessary, the kinetic analysis is rarely
used in the stability analysis of equilibrium states. It is important to
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note, however, that for certain stability problems this method is the
only viable and reliable approach. Examples of such problems are the
stability analysis of motion under dynamic and or non-conservative
loads, such as the motion of an elastic body in a gas flux, and analysis
of problems due to parametric instability.

A load is considered to be conservative, if the work done by it
during a deformation depends only on the two initial and final states of
deformation and is independent of its path. In particular, a load that
does not change in magnitude and direction is conservative. However,
these loads do not comprise the entire class of conservative loads. Hydrostatic
pressure forces, the direction of which depend on the deformation state,
are also conservative. Note that only the dynamic analysis will yield
correct results when non-conservative forces are involved?.

Example 8.3

Using kinetic analysis investigate the stability of the equilibrium
state w = 0 for the simply supported bar under axial compression
(Fig. 8.1). The bar has a material density of p. (Note that, unlike in
equilibrium method, using the kinetic approach one needs to know the
mass distribution of the system.)

Solution:

The small free vibrations of the bar near the equilibrium state w = 0
are given by
0*w n PaQw n 0w
Fr R T

where ¢ is time. The general solution of (8.5) has the form

EI =0, (8.5)

w(x,t) = Asin (wt + o) W (z),
where A and o may be found from the initial conditions. The equilibrium

state is stable if the frequency w is real. Otherwise we have two complex
conjugate frequencies that correspond to two solutions one of which

3 According to [11] (see Section 6.2) a force R = —Pq whose components are
linear functions of the generalized coordinates q with a skew-symmetric matrix of
coefficients P = (pg;) is called a non-conservative force.
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increases unbounded with time. To determine W (z) we consider the
equation

d*W d*W
El—— + P— — pu*W =0 8.6
h TPy ; (8.6)
with the boundary conditions
d*wW d*w
wW(0)=0, —s =0, W({)=0, —s =0.
( ) 7 dx? =0 7 () , dx? =l
The characteristic equation of (8.6) is
P P
k4 k2 _ Q2 — — Q2 — 2
+ A 0, A Vol w T

and its solution has the general form
W (z) = Asinh kox + Bcoshkax + Csinkix + D cos ki z, (8.7)

where k¥ = 3 (VA2 +4Q2 + \), and k3 = 3 (VA2 + 492 — )). Substituting
(8.7) into the boundary conditions we get B = D = 0, and

sinh le, sin kll

k2 sinh kol, —k2sinkyl| — 0-

The lowest non-zero solution of this equation is k1l = . We note

2
that Q is real if Q% = k7 (kf — X) >0, ie., if A <k} = 7;—2 Then the
critical load corresponds to the largest A for which the last inequality

. m2EI ey . .
holds, i.e., P.. = — The equilibrium state is stable if P < P,.,.

l

Problems

8.1. The horizontal pipe AB carries a fluid as shown in Fig. 8.2.
The pipe has a length L, modulus of elasticity of E, and the moment
of inertia I. The velocity of the flow is V with a mass of m per second
flowing through the pipe. Determine the stability of the tube if:

1) both ends of the pipe are simply supported;

2) one end of the pipe is fixed with the other end being free.

Solution:
The equilibrium equation of the pipe is
d*y

BreY @y _ _
7t +mV 72 0 (8.8)
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w w

Figure 8.2 Problem 8.1.

or . )
dy 2 dy
— 4+ K°—= =0
i + dx? ’
where K2 = %—‘I/
The solution of this equation has the form

y=Asin Kz + BcosKz+ Czx + D.

1) If both ends of the pipe are simply supported then the boundary
conditions are:
d?y
0)=0 —
y(0)=0, —3

From these conditions it follows that

d*y
|z:0 = 0, Yy (L) = 0, Wb:[‘ = O

B=0, C=0, D=0

and sin K L = 0. This means that the critical value of the flow parameter
is
m2EI
L2 -
2) If one end of the pipe is fixed with the other end being free, then
the boundary conditions become:
dy d?y d3y
0)=0, —|z=0=0, —=—|s= =0 —%|,=r =0. 8.9
y ( ) ? de 0 de2 | L deg | L ( )

(mV) |cr =

In this case, no non-trivial solution to equation (8.8) is available that
can satisfy the boundary conditions (8.9). Hence, in this case we should
consider the equation of perturbed motion:

m 0%y 0%y oty
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or
o V 0? 0?
_y + m__y + ﬂ_y =0
ox*  EI 0z2 EIV 0t?
Using separation of variables y (z,t) = X () T (t), we get
1 d*X K2d2X __.m ECF_T: 9
X \ dx? dz? EIV T di? '
From these two equalities we conclude that
d’T AEI AET
— —VT:O, T = Asin (wt +a), w?= 4
dt? m m
and d*X d’X
—— +K’— —AX =0. 8.10
dx? + dx? (8.10)

The characteristic equation of (8.10) is
'+ K2%2 - A =0

with the roots

s VEK*+4A-K? VKT +4A + K2
s1 = 5 s SS9 = —89 = 2 ’ (8]‘]‘)

so that the solution of equation (8.10) can be given as
X (z) = Asin §ax + B cos $o + C'sinh sy + D cosh sy .
From boundary conditions (8.9) we have

dX (0) d*X (L) d*X (L)
X = = = = .
(0)=0, dz 0, dx3 0 dz? 0

Using these we get
B=-D, A3 =-Cs;
and
C's1 (S2sin (82L) + sy sinh (s1L)) + D (35 cos (52L) + s7 cosh (s1L)) =0

Csy (35 cos (32L) + s7 cosh (s1L))+D (s7sinh (s1L) — 53 sin (52 L)) = 0.
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The last two equations constitute a system of linear homogeneous
equations in C and D, the determinant of which must vanish in order
to provide a non-trivial solution, i.e., characteristic equation of the
perturbation becomes:

s1+53+25753 cos (32L) cosh (s1 L) —s1 32 (s7 — 33) sinh (s1L) sin (52L) = 0.
Now from relations (8.11) we get
sT+5=K*"+2A, si&%=A, 3§ —si=K>
Using these expressions the characteristic equation reduces to
F(K,A) = K*+2A+2A cos§yL cosh s; L++vVAK?sinh sy Lsin§,L = 0,
or in dimensionless form to
F (K,R) = K>+ 2A + 2A cos 53 cosh 51 + V/AK sinh 5, sin 53 = 0.

Here
5o = SoL, $1=s1L,

with the nondimensional frequency parameter A, and the nondimensional
parameter K that characterizes the flow, defined as

- 4 2mL4 _ 9.9 mV L?
A=AL"=w TV K=K‘L*= 5T

The dependence of K on the frequency parameter A is shown in
Fig. 8.3.

At the limit point N (K, ~ 20.19) the first and the second frequencies
of the system coalesce and for K > K, the system becomes unstable.
Hence, the critical parameter of the flow is

20.19E1

(mV) |CT ~ T
8.2. Use the kinetic approach to investigate the stability of the
equilibrium state w = 0 of a massless bar when subjected to the axial

follower force. The bar is clamped at the bottom but it carries a mass
m at its top (Fig. 8.4).
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Figure 8.3 The dependence of K on the frequency parameter A.

Solution:

The governing differential equation of the beam is

d*w d?w
2y, p2”
dat + dx?

with the boundary conditions

EI =0 (8.12)

2
w
w=w =0 at z=0; and w” =0, Elw’”zmﬁ at =1

We consider the solution in the form
w(x,t) = f(x)sin(\t + ), (8.13)
where A is the frequency, and f(x) and e are unknowns. Substituting
(8.13) into (8.12) we get
P

1V k2 l/:0 k2:—.
VAR =0, K=

Hence, the solution has the form
f(z) = A+ Bx + Ccoskx + Dsinkz

Substituting this into the boundary conditions we get the characteristic
equation from which we get
\2 K3EI 1

ml3 sinkl — klcoskl’
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S

Figure 8.4 Problem 8.2.

Then the displacement of the bar is given by
w(x,t) = C(tan kl — kx + sin kz — tan kl cos kz) sin(At + €).

When ) is real the beam oscillates about the equilibrium state w =
0, otherwise it will diverge from this state. Therefore, the system is

stable if
KEI 1

> 0.
ml® sinkl — klcoskl —
Letting z = ki, the following inequality will be satisfied

sinz > zcosz

when 0 < z < 4.493. The critical load corresponds to the largest value
of z for which the above inequality holds, i.e.,

 20.19E1

PCT 12

For P < P, the system is stable.
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8.3. The equilibrium equation for a cylindrical shell spinning with
a constant angular velocity around its axis of symmetry is:

LoU 4 2wQL.U + Q2LoU + w?U =0,

where
000 —-m? 0 0
L.=1001 Lo = 0 —m? 2m
010 0 2m —m?

Here m is the circumferential wave number, {2 is the angular velocity
of the spin , w is the natural frequency of shell vibrations, and U =
(u, v, w) is the displacement vector with (u, v, w) being the displacement
components in the local coordinate system along the axial, circumferential
and normal directions, respectively. Lg is a linear differential operator
describing the non-spinning shell. Investigate the stability of the shell.

Solution:

We will use the static analysis, i.e., we will try to determine if there
exist any angular velocities (critical speeds) for which the frequency w
would vanish. Consider the non-spinning shell, the equilibrium of which
is described by

LoUp + wjlUo = 0,
where Uy and wq denote, respectively, the mode shape and the natural
frequency of the non-spinning shell. Assuming that the displacements of

the spinning shell are approximately equal to those of the non-spinning
shell, we have

2wQLU + LU + w?U — wilU = 0.
The characteristic equation of this is

|20QL. + Q? Lo + w?I — w2l =0,
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where I is the identity matrix. This equation has six roots:

w= /T,
= ST,
w:—Q—\/Q2(1—m)2+w§,
w= Q4 (1 m)® +
oJ:Q—\/QQ(l—i-m)Q—i-wg,
w=Q+\/§22(1+m)2+w3.

When Q # 0, and w # 0, only the fourth root will vanish provided
m = 1. Thus, the critical speed is equal to wg. A similar result can be
obtained for spinning shafts.

8.4. The critical axial compressive load for a cylindrical shell of
medium height, i.e., when /h/R < L/R < y/R/h, where h is the
shell thickness, L is the shell height and R is the shell radius, can
be determined by using the equations of shallow shells. Using non-
dimensional variables the governing differential equations of a cylindrical
shell with an initial imperfection @ are ([6]):

9*®
2 ~ _
(8.14)
A2<I>+82—w+1L(w w) 4+ L (0, w) =0
a‘rz 2 ) ) - )
where w is the deflection function, ® is the force function and,
0? 0? 0%u 0%v  0%v 0%u 0%u 0%

A=——+ = Luv)=—-sm"s+—-——"=-s— .
ox? = Oy? 0x2 9y?  Ox? Oy>? Oxdy Oxdy

Here z and y represent the coordinates in the axial and circumferential
directions, respectively. Moreover, the non-dimensional variables are
related to their corresponding physical variables (*) as follows:

_w'c . w'c (a2t %) Ve D
w = hu w = hu (l',y)— \/ﬁ I (I)_Ehga

where E is Young’s modulus, v is Poisson’s ratio, and ¢ = 12 (1 — v?).
The resultant force T', representing the load parameter, is
B 0%® _ T"Rc

7=22 L ae
oy?’ Eh?
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1) Determine the stability of a simply supported shell. (Ignore the
boundary conditions in the circumferential direction.)

2) For a cylindrical shell with an axisymmetric imperfection @ =
£ cosx, investigate its bifurcation into a non-axisymmetric form with
equal wavelengths in the axial and circumferential directions.

Solution:
. Ty?
1) We represent the stress function as ® = > + ®,, where ®,
is some additional stress function. Next, linearizing system (8.14) gives
the governing differential equations for a shell without the initial imperfections,
i.e., for a shell with w = 0,

0?d 9w 9w
2 — @ — —_ = 2 _— =
A“w 92 922 0, A“D, + 922 0,
o 0? 0? 0?
P w w
4, A2 a 2 _ 26 — _ .
A*w—A oz TA e 0, A“d, 922

and finally as
Pw  0tw
Atw —TA — + —
v Ox? + 0z
First, we assume that the buckling mode of the shell is axisymmetric.
Then equation (8.15) becomes

=0. (8.15)

dBw v d*w —0 (8.16)
dx8 dxb  dzt '
and we seek the solution of this equation as
Tnx* vV hR

w = W sin =Wsin Az, with A=

Lve

where n is wave number in the axial direction, and

w(0) = w (L) = d;”xgo) _ ¢ ;"x(f).

Substituting the assumed solution into equation (8.16) we get

WE+TA + 2] =0, or T=-(\+172),
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so that the critical load (min|T|) is equal to —2 for A = 1. In terms of
Eh?
dimensional variables T,, = ————.
V3(1—-v?)R
Next, we assume that the buckling mode is non-axisymmetric, i.e.,
w = Wsin(px + a) sin(qy 4+ (), where « and 3 can be equal to either 0

or 7. Then, after substitution into equation (8.15), we obtain

W +¢)" +T (1* +¢°)°p* +p'] =0, or
2, 2)\2 .
-T= f(p7 Q) = (P —;:211 ) + (pzizqzy

In our investigation of buckling, we are interested only in the lowest
eigenvalue. Therefore,

T., = —2 when p?+¢*>=p. (8.17)

Thus, according to the classical shell theory there exist an infinite
number of buckling modes that are characterised by the wave length
parameters p and ¢ in the axial and circumferential directions, respectively.
These parameters must satisfy the relation p? + ¢> = p. For example,

a pair (p,q)=(1,0) determines an axisymmetric mode.

Experimental results have indicated that for buckling of shells the
wavelength parameters in the axial and circumferential directions are
close to each other [13]. The "squares"form with p ~ ¢ is the most
sensitive to the imperfections ( [10, 8]).

2) Here we consider a cylindrical shell with an initial axisymmetric
imperfection @ = £ cosx that buckles into a non-axisymmetric form
with equal wavelengths in the axial and circumferential directions. In
this case, the pre-buckling axisymmetric deformation wq of the shell
may be obtained from the equations

d4w0 _ Td2 (’wo + ’LZ}) _ d2q)0 . d4q)0 d2w0 -0
dzt dx? d2z2 7 dxt de2
o d* d? d?w T
wWo wo w —
dz* _Td;v2 +U10:_TW’ o= g YR

For the non-axisymmetric component of the deflection function, ws,
and the load function, @4, we get from (8.14)

8211)1 82‘1)1 82‘1)1 25 Tf 82101
— COS T
Ox? Ox? oy? \2+4T

24T 8y
(8.18)

A2w1 -T
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2 2 2
A%D; + 86;1)21 — 86;;1 (2 —|—§T> cosz = 0. (8.19)

According to (8.17), if the non-axisymmetric form has equal wavelengths
in the axial and circumferential directions, then p = ¢ = 1/2, and we
should seek the buckling mode in the form w = Wjcos 3 cos§. In
[10, 8] it is shown that the lowest buckling load corresponds to this

mode. Equation (8.19) gives

3
<I>1:Flcosgcos%+Fgcos§cosg+---, Fi ~W; <1_2+LT>'

Substitution into equation (8.18) results in

1 2 T¢
Wy 14T +1— =0
riie 2+T+2(2+T)] ’

or, considering that T is close to the classical load —2, for £ < 1

3¢
24T ———=0 T=-2 3¢.
+ 51T , or + /3¢
Hence, if the amplitude of the initial axisymmetric imperfection is
equal to £, then the absolute value of the critical load (bifurcation load)
decreases by /3¢, or, in dimensional variables,

Eh? 33/4(1 _ I/2)1/4§*1/2
Top = ————|1- )
V30 =R 2h1/?
§c

where £ = o



Chapter 9

Frequency Method of Stability
Analysis

9.1. The governing differential equations of a gyroscope are

dd

w0

do
E_ﬁ—f—o—cp(o),

where 1 is the roll angle of the plant, o is a parameter which is proportional
to the angle of rotation of the inner gimbals of the gyroscope, ¢(o) is
the function that describes the change of the control moment, i. e., and
satisfies the following conditions:

¢(0) =0, ¢(0)o>0 for o#0, /’¢@M02m.
0
Investigate the stability of the system.

Solution:
Find the transfer function (from the input —¢ to the output o):
p¥ = —9 — o,
po=19+0— .
To eliminate 1, from the first equation we have
o

)9 =0, V=——"
(p+1) o o

103
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which upon substitution into the second equation gives

g
pr=— g to =y
or,
(P’ +p)o=—c+pot+o—(p+1)e.
Therefore,
o —p;l% W(p) = p;l

We have the critical case with two zero poles. Using Theorem 9.3
of the book [11], we get

a:;];li%p 2 =1>0,
. od | 4p+1
“img ] 1o
1 1
W(zw):w—:, SW (iw) = ——, w(w)zw(——>=—1<0
— w

Thus the given system is absolutely stable.

9.2. The behaviour of a gyroscopic system that controls the orientation
of a spaceship in the pitch plane is described by the following equations:

au + Hv =0,
by — Hu + ev = ¢(0),

0 =u.

Here H is the angular momentum of the gyroscope about its axis
of rotation, ¢ is the pitch angle, v = [, is the precession angle of
the gyroscope, € is the coefficient of viscous friction, a and b are the
principal moments of inertia, ¢(o) is the nonlinear characteristic of the
control moment that satisfies the following conditions (see Fig. 9.1 and
(9.13) of the book [11]):

»(0) =0, 0<m<k§+oo, o #0.
o

Determine the conditions for absolute stability.
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Solution:

Find the transfer function (from the input —¢ to the output o):

apu + Hv =0,
bpv — Hu + ev = ¢,
po = u.

To eliminate v and v, from the first and the third equations we have

u=po, V=-——U=——+0,
which after substituting into the second equation we get

abp? aep

—TU—HPO'— 7 o=
_ H
N abp?’—l—aap?—i—H?p(p’
H
W(p) =

abp’ + aep? + H2p’
We have the critical case with a single zero pole. Using Theorem 9.2,

we get

, 1
p=limpW(p) = 4 >0

H . —aew? 4 iw (abw? — H?)
—asw? +iw (H? — abw?) 7 2e2wt + w? (H? — abw?)?’

W (iw) =
Now, we check frequency condition (9.14) in [11]:

% FR[(1+ iwd) W (iw)] > 0.

Letting ﬁ = i, this condition becomes

1 [a252w4 + w? (H2 — abo.)?)?} +
R [(1+iwd) (—aew? + iw (abw? — H?))] > 0

)

or

pale?wt + pa®b?w’ — 2uH?abw* + pH*w? — acw? + Y H?*w? — Yabw* > 0.
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Dividing by w?, and denoting w? = ¢, we have
pa’b*t? + (,uazez — 2uH?ab — 19ab) t+ pH* + 9H? — ae > 0.
Next, we obtain the determinant

D = (pa*e? — 2puH?ab — 19ab)2 — 4pa®y?® (nH* + 9H? — ag) =
plate + 4p? H*a?b? + 92ab? — 4p? H?a3be? — 2p9a3be?
+4pH?*a?b? — 42 H*a?b? — 4H? 1da®b? + 4pabe =
a?b29% — 2ua3be®V + pae(pac® + 4b% — 4pH?be) < 0.

It is necessary to find a ¥ such that D < 0. Here D is a quadratic

polynomial in terms of ¢, so that D — oo as |9 — oo. If A > 0, we
need to find a real ¢ such that D < 0:

A = 4p2a5b%e* — 4a”b? (u2a464 + 4pab’e — 4;L2H2a3b62) >0,
or
4P H?aPbe? — 4pab®e > 0,
or

1
pH?c > b, or ﬁH2E>b'

Thus, for a nonlinear system, we obtained the following sufficient condition
for absolute stability
He > kb

which satisfies condition (9.13) in [11],i. e, 0 < #lo) < k for o # 0,
o
©(0) = 0.
It’s easy to check, that the condition
He > kb (9.1)

is necessary for absolute stability under condition (9.13) in [11]. In
fact, if we consider ¢(o) = Ao, then we have a linear system whose
characteristic polynomial,

abp® 4 agp® + H?p + H\

satisfies Hurwitz’s condition for acH? > abHM, i. e., He > b)\. If
condition (9.1) does not hold, then there exists a A € (0,k) such that
He < b, and the linear system is not asymptotically stable.
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9.3. Consider the control system of a steam turbine with a hydraulic
amplifier. The feedback is by means of a slider with friction. Under some
simplifying assumptions the control system is described by following
equations:

é:W27

n= ¢+ e(n),
T +m = -,
Tafl2 + N2 = M.

The second equation describes the behaviour of the intermediate
amplifier; ¢, 71, 72, and 7 are variable parameters that describe the
state of the system; 71 and 79 are the relative time constants; (7)) is
the characteristic of the frictional force that satisfies the conditions

©(0) =0, @(n2)nz >0 for 1y #0.

Determine under what conditions absolute stability prevails.

Solution:

Find the transfer function (from the input —¢ to the output 75):

pC=mn2, (mp+1)m=—C—wn2), (rep+1)n2=m.
Eliminate ¢ and n; to get

(ip+1) (rop + 1) 2 = —% —p

p
nrpd 4+ (n+n)p2+p+ 1%

p
W =
(p) 05p3+ﬂp2+p+17

2 =

where o = 772, f = 71 +72. In Example 9.4 in [11] it is shown that this
transfer function satisfies the frequency condition (9.14) of Theorem 9.1
for 7 + 1 > TTo.

9.4. Consider a control system of a steam turbine with two amplifiers
connected in series and the steam boiler. The piston of the system
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actuator is subjected to a nonlinear friction. The equations of the

system are
é: -,
¢n77 = C -,
éZQO(O'), 0':77_57
Ypt +m =E.

In these equations, ¢, 7, £, and 7 are relative coordinates of the machine,
the preliminary amplifier, the actuator and steam pressure, respectively,
¥y and 1Y, are the relative positive time constants of the preliminary
amplifier and the steam boiler. The nonlinear friction satisfies the conditions

©(0)=0, for o#0 ¢(o)oc>0, / p(o)do = +oo.
0
Determine the domain of absolute stability.

Solution:

Find the transfer function (from the input —¢ to the output o):
pC=—m, Yypn=C =1, pE= ¢,
(¢ﬂp+1)ﬂ-:§a O':T]_g

Eliminate all variables except ¢ and ¢:

= a_ £ _ ®
p’ Vap+1  pWap+1)
- ¢ __ _ 2
Yyp +1 p (e +1) P2 (Yrp+ 1) (Pyp + 1)’
1 1
o=n-§ + = ¥

p?(vp*+pp+1)  p

where v = Y1), and p = Py, + YPr.
Therefore
vp® + up? +p+1

P (vp? +pup+1)°
We have the critical case with two zero poles. Using Theorem 9.3, we
have

W(p) =

a = lim p*W(p) =1 > 0.
p—0
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CLd oy o l-p
p—z{lg%)d—p(p W(p))—w—l—uﬂl

Now, the following conditions should be satisfied:

pw<l (or v+, <1); (9.2)
W (i) = 1= pw? +iw(1 - vw?)
w2(1 — vw? + iwp)
—pw?) (—pw)+w(l—vw?)?
%W(’LW) = _w_12 Ly (1)_(1/(52))21“)(21“2 )

_ 1 p(—pe?)— (1—vw?)?
T w (I-vw2)24wZpz

ol ) — (1 - )
(1 —vw?)2 + w22

m(w) <0, w?=t,
pw—pit—(1—vt)? <0,
VA% + (u2 = 20)t+1—p > 0. (9.3)
Since 2 — 2 = (Yr +¥y)” — 20nthy = Y2 + Y2 > 0, it follows from

condition (9.2) that condition (9.3) is satisfied for all ¢ > 0. Also due
to (9.2) we have

Thus, according to Theorem 9.2 in [11], (9.1) is a sufficient condition
for absolute stability of the system.

9.5. Consider a gyrostabiliser with forced rotation of its gimbals.
Assume friction in the precession axis. The behaviour of this gyrostabiliser
is described by the following equations:

01 = —V0o1 + v + o2,
by = —01 — ¢(02),
1.)20'2.

Here, 01, 02, and v are relative coordinates of the gyrostabiliser, v and
p are constant positive parameters, and the nonlinear function ¢(o9)
satisfies the conditions

©(0)=0, for o2#0 ¢(o2)o2 >0,
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Determine under what conditions the gyrostabiliser is absolutely
stable.

Solution:

Find the transfer function (from the input —¢ to the output o9):

(p+v)or = pv + o2,
poy = —o1 — (02),
pU = O3.
Eliminate v and o:
_ 02 _ po2 o2  ptp
V= —, O01= + - 02,
p (p+v)p p+v pp+v)
pos = ——LE o (o)
p(p+v) ’
- plp+v)
g9 = — ’
PP +pvtptp
plp+v)
W(p) =

PPt
Let v > u, then we have a non-critical case. Using Theorem 9.1
when k = oo, ¥ = 0, we have

vwi — w? vw? — pw? + vw?(1 — w?)
RW (iw) =R = >0
(iw) p—rvw?+iw(l —w?) (p—rw?)?+w(l —w?)2 =7

where (v — p)w? > 0 is satisfied for v > p. Thus, the condition for
absolute stability is v > pu.
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