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From the AuthorsIn 1996 Springer Publishing Company issued the book entitled "TheIntroduction to the Theory of Stability"written by Prof. D.R. Merkinand translated and edited by Profs. F. Afagh and A. Smirnov. Themain advantage of the book is its simple yet simultaneously rigorouspresentation of the concepts of the theory, which often are presented inthe context of applied problems with detailed examples demonstratinge�ective methods of solving practical problems.The above features have made the Introduction to the Theory ofStability of Motion the most popular textbook in its �eld at faculties ofmathematics and mechanics as well as engineering faculties in Russianuniversities and now in the universities of the English speaking countries.The examples constitute about 25% of the entire volume of the bookand cover various areas in science and engineering. Moreover, some ofthe examples possess an independent value in that they could be usedin the analysis of various real structures and mechanisms. The problemsare supplied with the answers and some hints.Using the same numeration as in Introduction to the Theory ofStability, the present book contains a detailed solution and discussionof all the problems of the text book. Moreover, the reported errors andmisprints of the text book have been corrected in the present volume.Chapter 8 of this volume does not correspond to the respectivechapter in Introduction to the Theory of Stability. Instead, a new Chapter8 entitled "Structural Stability"has been included where some classicalproblems on stability of equilibrium states in elastic systems have beenpresented.The present book is a result of scienti�c cooperation of the Departmentsof Theoretical and Applied Mechanics of the Faculty of Mathematicsand Mechanics at St. Petersburg State University in Russia and theDepartment of Mechanical and Aerospace Engineering at Carleton University
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Chapter 1Formulation of the Problem
1.1. The perturbed motion of a system is de�ned by the followingequations:

ẋ1 = αx32 + βx1
3

√

x41 + x42,

ẋ2 = −αx31 + βx2
3

√

x41 + x42.Determine the stability of the motion of this system. (In the book [11]the �-� sign by β should be replaced by "+". )S o l u t i o n:We multiply the �rst equation by x31 and the second equation by
x32, and add the corresponding terms of the resulting equations to get

x31ẋ1 + x32ẋ2 = β
(

x41 + x42
)

4

3or
1

4

d

dt

(

x41 + x42
)

= β
(

x41 + x42
)

4

3 .Let x21 = y1 and x22 = y2. Now, stability (or instability) of y1 and y2would mean the stability (or instability) of x1 and x2 and visa versa.Let r designate the distance between the point (y1, y2) and the referenceorigin so that r2 = y21 + y22 . Now, we have
1

4

dr2

dt
= βr

8

3



6 Chapter 1. Formulation of the Problemor
1

2

dr

dt
= βr

5

3 .From this it follows that
1

2

dr

r
5

3

= βdt,which upon integration gives
−3

2
r−

2

3 +
3

2
r
− 2

3

0 = 2β (t− t0) ,and
r

2

3 =
r

2

3

0

1− 4
3r

2

3

0 β (t− t0)
.Now, if β < 0, then r → 0 as t→ ∞, and the solution is asymptoticallystable.On the other hand, if β > 0 and t → t0 + 3

4β r
− 2

3

0 , we will have
r → ∞, and the system is unstable.For β = 0 the system is stable (cf. Example 1.1 in [11]).1.2. The isotropic thin bar with mass m, length l, and horizontalaxis of rotation is retained in equilibrium by a spiral spring with sti�ness
c. The spring is not deformed when the bar is in the upper verticalposition. Neglecting all frictional forces, derive the equation that depictsthe equilibrium states. Obtain the equation of perturbed motion nearthe equilibrium state of the bar and the equation of �rst approximation(see Fig. 1.1).S o l u t i o n:In the state of equilibrium of the bar the torque cθ, due to the springshould be equal to the moment 1

2mgl sin θ, caused by the weight of thebar, i. e. ,
cθ =

1

2
mgl sin θ,or

sin θ = kθ, (1.1)where
k =

2c

mgl
.
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OFigure 1.1 Problem 1.1.As it can be seen in Fig. 1.2, for small k, the equation sin θ = kθhas several solutions.Let θn be one of the roots of this equation. Denote the change inthis angle due to a perturbation as xn. Then, considering the angularmomentum of the rod during this perturbation about the �xed axis Oat the support, we have

1

3
ml2

d2

dt2
xn = −c (θn + xn) +

1

2
mgl sin (θn + xn)

qk

nq qqsin Figure 1.2 Problem 1.2.



8 Chapter 1. Formulation of the Problemor, in view of (1.1),
ẍn +

3g

2l
k (θn + xn)−

3g

2l
sin (θn + xn) = 0,so that the perturbed motion of bar is described by the equation

ẍn +
3g

2l
[k (θn + xn)− sin (θn + xn)] = 0. (1.2)Now, to get the equation of �rst approximation, let us expand

sin (θn + xn) as the following series
sin (θn + xn) = sin θn + xn cos θn + · · ·Then, considering only the �rst two terms of this expansion andsubstituting it in equation (1.2), we get

ẍn +
3g

2l
[kθn + kxn − sin θn − cos θnxn] = 0.Finally, noting that θn should satisfy (1.1), we obtain the equationof �rst approximation as
ẍn +

3g

2l
[kxn − cos θnxn] = 0.1.3. The ring M can move freely, without friction, along a circularwire of radius a that is rotating uniformly about a vertical axis. Determinethe position of dynamic equilibrium of the ring. Derive the equationof perturbed motion with respect to the equilibrium state and theequation of �rst approximation. The angular velocity of the uniformrotation of the wire is ω (see Fig. 1.3).S o l u t i o n:There are three forces, which act on the ring M . These are:1) the weight mg of the ring that is directed downward along thevertical axis;2) the centrifugal force Fc = maω2 sin θ that is directed horizontally;3) the reaction from the wire which is directed towards its centre.In a state of equilibrium the resultant of the two �rst forces should beequal and opposite to the reaction force. Therefore,

tan θ =
maω2 sin θ

mg
.
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Figure 1.3 Problem 1.3.From this it follows that
cos θ =

g

aω2
.Thus, the three angles at which equilibrium prevails are

θ0 = arccos
g

aω2
, θ1 = 0, θ2 = π,where the last two correspond to the evident cases of when the secondforce is equal to zero.For the solution θ = θ0 we introduce the deviation x for the angle

θ0. Then, to exclude the unknown reaction R from the wire, at point
M , we consider Newton's second law in the tangential direction τ :

maẍ = maω2 sin (θ0 + x) cos (θ0 + x)−mg sin (θ0 + x)or
ẍ− ω2 sin (θ0 + x) cos (θ0 + x) +

g

a
sin (θ0 + x) = 0. (1.3)To get the equation of �rst approximation we can consider that

sin (θ0 + x) = sin θ0 + x cos θ0,
cos (θ0 + x) = cos θ0 − x sin θ0.Substituting these expressions in (1.3) while considering only the �rstorder terms and noting that
−ω2 sin θ0 cos θ0 +

g

a
sin θ0 = 0,



10 Chapter 1. Formulation of the Problemwe obtain the equation of �rst approximation for the perturbed motionas
ẍ−

(

ω2 cos 2θ0 −
g

a
cos θ0

)

x = 0.1.4. The double pendulum depicted in Fig. 1.4 is maintained inthe upper vertical position by two spiral springs with sti�ness c1 and
c2. The pendulums have masses m1 and m2 and lengths l1 and l2.The spiral springs are not deformed when the pendulums are in uppervertical position. Derive the equation for the perturbed motion in the

2
m

1
m

1
l

2
l

2
c

1
c

2

j

1

j

y

xFigure 1.4 Problem 1.4.�rst approximation with respect to the upper vertical position. Neglectthe mass of the bars and all frictional forces.S o l u t i o n:This system has two independent variables. To write the equationfor the perturbed motion we use the Lagrange equation
d

dt

∂T

∂ϕ̇k
− ∂T

∂ϕk
= − ∂Π

∂ϕk
(k = 1, 2) . (1.4)The kinetic energy T of the system is T = 1
2m1v

2
1 + 1

2m2v
2
2 , where v1and v2 are the velocities of mass points M1 and M2. Using Fig. 1.4, we



11can �nd the coordinates (x1, y1) and (x2, y2) as follows:
x1 = l1 sinϕ1, x2 = l1 sinϕ1 + l2 sinϕ2,
y1 = l1 cosϕ1, y2 = l1 cosϕ1 + l2 cosϕ2.Now, upon di�erentiation we obtain

ẋ1 = l1 cosϕ1ϕ̇1, ẋ2 = l1 cosϕ1ϕ̇1 + l2 cosϕ2ϕ̇2,
ẏ1 = −l1 sinϕ1ϕ̇1, ẏ2 = −l1 sinϕ1ϕ̇1 − l2 sinϕ2ϕ̇2.Now, we have v21 = l21ϕ̇

2
1, v22 = l21ϕ̇

2
1+2l1l2 cos (ϕ2 − ϕ1) ϕ̇1ϕ̇2+l

2
2ϕ̇

2
2.Since the angles ϕ1 and ϕ2 are small we have cos (ϕ2 − ϕ1) = 1 andsince we are seeking the equation of �rst approximation the kineticenergy T can be written as

T =
l21
2
(m1 +m2) ϕ̇

2
1 +m2l1l2ϕ̇1ϕ̇2 +

1

2
m2l

2
2ϕ̇

2
2.The potential energy Π of the system is due to both the elasticenergy of the springs and gravitational potential energy due to weights,i. e. ,

Π = 1
2c1ϕ

2
1 +

1
2c2 (ϕ2 − ϕ1)

2 − (m1 +m2) gl1 (1− cosϕ1)−
− m2gl2 (1− cosϕ2) ,or more simply,

Π =
1

2
[c1 + c2 − (m1 +m2) gl1]ϕ

2
1 − c2ϕ1ϕ2 +

1

2
[c2 −m2gl2]ϕ

2
2.Thus, the Lagrange equations (1.4) become

(m1 +m2) l
2
1ϕ̈1 +m2l1l2ϕ̈2 + [c1 + c2 − (m1 +m2) gl1]ϕ1 − c2ϕ2 = 0,

m2l1l2ϕ̈1 +m2l
2
2ϕ̈2 − c2ϕ1 + (c2 −m2gl2)ϕ2 = 0.These two equations can be presented in the matrix form AΦ̈ + C = 0where

Φ =

(

ϕ1

ϕ2

)

, A =

(

(m1 +m2)l
2
1 m2l1l2

m2l1l2 m2l
2
2

)

,

C =

(

c1 + c2 − (m1 +m2)gl1 −c2
−c2 c2 −m2gl2

)

.



12 Chapter 1. Formulation of the Problem

Figure 1.5 Problem 1.5.1.5. The rigid body M with mass m is �xed to the free end ofa compressed and twisted cantilever bar that has a uniform bendingsti�ness (see Fig. 1.5) (see Section 2.12 of [2]) Neglecting the mass of thebar and treatingM as a point mass, obtain the equations of perturbedmotion near the equilibrium state for the �rst approximation.Remarks: Two forces, located in the horizontal plane Oxy, areapplied to M under the problem conditions. The radial force Fr isdirected from M to O, and the transverse force Fϕ is perpendicularto Fr. Both forces are proportional to the distance MO. Neglect anyvertical displacement of the rigid body M and all frictional forces.S o l u t i o n:The bending force Fr and the twisting force Fϕ that are mutuallyperpendicular are applied toM (see Fig. 1.6). Both forces are proportionalto the distance r = OM (see Section 2.12 of [2]), i. e. ,
Fr = c1r, Fϕ = c2r.or in projections on the axes

Frx = −c1r sinα = −c1x, Fry = −c1r cosα = −c1y,
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Figure 1.6 Problem 1.6.
Fϕx = c2r cosα = c2y, Fϕy = −c2r sinα = −c2x.Invoking Newton's second law and using the magnitudes of Fr and

Fϕ we obtain the equations of perturbed motion for the �rst approximationas
mẍ = −c1x+ c2y,
mÿ = −c2x− c1y.1.6. A rigid body with one �xed point moves inertially (the case ofEuler�Poinsot). Prove that such a body can rotate uniformly around a�xed axis that coincides in this motion with one of the principal axesof inertia, for instance with z-axis. Considering

ωx = ωy = 0, ωz = ω0 = const,derive the equation of the perturbed motion in terms of the componentsof the angular velocity. Let the moments of inertia of the body withrespect to its principal axes of inertia x, y, z be designated as A, B, C,respectively.S o l u t i o n:Consider the following Euler equations for the given dynamic system:
Aω̇x + (C −B)ωyωz = M e

x,

Bω̇y + (A− C)ωzωx = M e
y , (1.5)

Cω̇z + (B −A)ωxωy = M e
z ,



14 Chapter 1. Formulation of the Problemwhere, according to the conditions of the problem, M e
x =M e

y =M e
z =

0. The steady rotation is de�ned by
ωx = ωy = 0, ωz = ω0 = const.In the perturbed motion, let the deviations of the angular velocities

ωx, ωy and ωz be designated as x1, x2 and x3, respectively, i. e. ,
ωx = x1, ωy = x2, ωz = ω0 + x3.Substitute these in equation (1.5), to get
Aẋ1 + (C −B) x2 (ω0 + x3) = 0
Bẋ2 + (A− C) (ω0 + x3)x1 = 0

Cẋ3 + (B −A)x1x2 = 0.1.7. Two boxes with two identical gyroscopes inside are shown inFig. 1.7. The boxes are connected by gears so that they can rotatein di�erent directions by an equal angle β. The axis of rotation ofthe external frame that contains the whole apparatus is free. A spiralspring with sti�ness c is installed on the axis of rotation of one ofthe boxes. Neglecting the mass of the external frame and the boxesand all frictional forces, determine the condition of stationary motionunder which the angle β and the angular velocity α̇ of the frame remainconstant. Derive the equation of perturbed motion with respect to thestationary motion.S o l u t i o n:The system consists of two connected identical gyroscopes that eachhave a �xed point. For each gyroscope, let the mass moment of inertiaabout each of its two axes x and y be denoted by A while the momentof inertia with respect to the z axes is denoted by C. Then, the kineticenergy T of the system will be
T = 2 ·

(

1

2
A
(

ω2
x + ω2

y

)

+
1

2
Cω2

z

)

. (1.6)If one of the gyroscopes, for example the left one (see Fig. 1.8), isrotated so that
ωx = −β̇,
ωy = α̇ cosβ,

ωz = ϕ̇+ α̇ sinβ,
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Figure 1.7 Problem 1.7.then, for the one on the right we will have ωx = β̇, ωy = −α̇ cosβ. Here
ϕ̇ is the angular velocity of gyroscope.Substituting the expressions for ωx, ωy, and ωz in (1.6), we get

T = Aβ̇2 +Aα̇2 cos2 β + C (ϕ̇+ α̇ sinβ)
2
. (1.7)The potential energy Π of the system is due to the torsional springand is

Π =
1

2
cβ2. (1.8)Since we are considering the steady rotation of the gyroscopes whenthe induced moment M rot

ϕ is equal to the resisting moment M res
ϕ , theangle ϕ is a cyclic coordinate. Therefore, the generalised force Qϕ =

M rot
ϕ −M res

ϕ corresponding to the coordinate ϕ is equal to zero.Noting that in (1.7) the kinetic energy does not depend on the angle
ϕ, the Lagrange equation with respect to ϕ becomes

d

dt

∂T

∂ϕ̇
= 0.
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a

b

b

c

H

HFigure 1.8 Problem 1.7.Now, ∂T
∂ϕ̇

= 2H , whereH is the angular momentum of each gyroscope(H = const).Using (1.7), we note that
C (ϕ̇+ α̇ sinβ) = H. (1.9)This integral is called cyclic integral. Next, we can write the Lagrangeequation with respect to the β coordinate as
d

dt

∂T

∂β̇
− ∂T

∂β
= −∂Π

∂β
. (1.10)Using relations (1.7), (1.8) and (1.9), we �nd

∂T

∂β̇
= 2Aβ̇,

d

dt

∂T

∂β̇
= 2Aβ̈,

∂T

∂β
= −2Aα̇2 cosβ sinβ + 2Hα̇ cosβ,

∂Π

∂β
= cβ.Substitution of these expressions into (1.10) results in the di�erentialequation

2Aβ̈ + 2Aα̇2 sinβ cosβ − 2Hα̇ cosβ = −cβ. (1.11)For the steady motion, we should have
β = β0 = const, β̈ = 0, α̇ = ω = const.Substitute (1.11) into (1.12), to obtain the condition for steadymotion as
Aω2 cosβ0 sinβ0 −Hω cosβ0 +

1

2
cβ0 = 0. (1.12)



17To get the equations for perturbed motion, we consider
β = β0 + x1, α̇ = ω + x2.Substitute (1.14) into the expressions for kinetic and potential energy(note that β̇ = ẋ1), then

T = Aẋ21 +A (ω + x2)
2
cos2 (β0 + x1) +

C [ϕ̇+ (ω + x2) sin(β0 + x1)]
2
, (1.13)

Π =
c

2
(β0 + x1)

2
.Now the cyclic integral (1.9) reads as

C[ϕ̇+ (ω + x2) sin (β0 + x1)] = H.Next, considering the Lagrange equation for x1,
d

dt

∂T

∂ẋ1
− ∂T

∂x1
= − ∂Π

∂x1
, (1.14)by virtue of (1.13) we have

∂T

∂ẋ1
= 2Aẋ1,

d

dt

∂T

∂ẋ
= 2Aẍ1,

∂T

∂x1
= −2A (ω + x2)

2
cos (β0 + x1) sin (β0+ = x1) + (1.15)

2H (ω + x2) cos (β0 + x1) ,

∂Π

∂x1
= c (β0 + x1) .Moreover, the functions cos (β0 + x1), sin (β0 + x1), and (ω + x2)

2 eachcan be expanded into the following series:
cos (β0 + x1) = cosβ0 − sinβ0x1 + · · · ,
sin (β0 + x1) = sinβ0 + cosβx1 + · · · , (1.16)

(ω + x2)
2
= ω2 + 2ωx2 + · · · ,where the dots denote the higher-order terms in x1 and x2.



18 Chapter 1. Formulation of the ProblemUsing (1.18) and (1.17) in (1.16), and after a brief manipulation weget
Aẍ1 +Aω2 cosβ0 sinβ0 −Hω cosβ0 +

1
2β0+

(

Aω2 cos 2β0 +Hω sinβ0 +
1
2c1
)

x1 + (Aω sin 2β0 −H cosβ0)x2 = X1.Here X1 represents all the terms that contain x1 and x2 in powershigher than one.By means of (1.13) we obtain the �rst equation of perturbed motionas
Aẍ1 +

(

Aω2 cos 2β0 +Hω sinβ0 +
1
2c1
)

x1+
+(Aω sin 2β0 −H cosβ0)x2 = X1.

(1.17)The α coordinate is also cyclic one, because according to (1.7) thekinetic energy is a function of the velocity α̇ only, while the potentialenergy does not depend on α either. Thus, the di�erential equation for
α coordinate, and hence for x2, becomes

d

dt

∂T

∂α̇
=

d

dt

∂T

∂x2
= 0. (1.18)By means of (1.15) we have

∂T

∂x2
= 2A (ω + x2) cos

2 (β0 + x1) + 2H sin (β0 + x1) .Substituting this into (1.20), we get
2Aẋ2 cos

2 (β0 + x1)− 4A (ω + x2) cos (β0 + x1) =
sin (β0 + x1) ẋ1 + 2H cos (β0 + x1) ẋ1 = 0.Upon dividing this expression by 2 cos (β0 + x1) and retaining only �rstorder terms in ẋ1 and ẋ2 we obtain the second equation for perturbedmotion as

(H − 2Aω sinβ0) ẋ1 +A cosβ0ẋ2 = X2. (1.19)Equations (1.19) and (1.21) de�ne the perturbed motion of thesystem about the steady state motion.



Chapter 2The Direct Liapunov Method.Autonomous Systems
2.1. For the given equations of a perturbed motion,

ẋ1 = −x31 + x1x2, (2.1)
ẋ2 = −5x2 − 3x21determine the Liapunov function, and show that the unperturbed motion

x1 = x2 = 0 is stable in the large.(There is a misprint in the second equation in the book [11].)S o l u t i o n:Multiply the �rst equation by x1, and the second one by x2 and addthe corresponding terms of the resulting equations to get
x1ẋ1 + x2ẋ2 = −

(

x41 + 2x21x2 + 5x22
)or

1

2

d

dt

(

x21 + x22
)

= −
(

x41 + 2x21x2 + 5x22
)

.The function V = x21 + x22 is a positive de�nite function for all x1 and
x2, and its derivative with respect to time,

−
(

x41 + 2x21x2 + 5x22
)is negative de�nite for all x1 and x2.



20 Chapter 2. The Direct Liapunov Method...The function
x41 + 2x21x2 + 5x22satis�es the Sylvester criterion (see relations (2.9) in [11]) for all x1 and

x2 because
∆1 = 1 > 0, ∆2 =

∣

∣

∣

∣

1 1
1 5

∣

∣

∣

∣

= 4 > 0.Thus, according to Liapunov's theorem of stability of motion system(2.1) is stable asymptotically.2.2. The following functions and their derivatives with respect totime, as determined by virtue of the respective equations of perturbedmotion, are given as follows:
1. V = x61 + x32, V̇ = −x61 − x42;

2. V = 5x41 − 4x21x2 + x22, V̇ = −4x41 + 2x21x2 − x22;

3. V = x61 + 3x22, V̇ = −
(

x31 − x2
)2

;

4. V = x1 − x32, V̇ = 4x31,Can these functions be used to determine stability of motion?S o l u t i o n:1. The function V = x61+x
3
2 can not be used because the sign of thisfunction changes (for x1 = 0 and x2 > 0, V > 0, while for x1 = 0 and

x2 < 0, V < 0). Moreover, its derivative V̇ = −x61 − x42 is a negativede�nite function.2. The function V = 5x41 − 4x21x2 + x22 is positive de�nite, becausethe Sylvester criterion is satis�ed ((2.9) in [11]):
∆1 = 5 > 0,

∆2 =

∣

∣

∣

∣

5 −2
−2 1

∣

∣

∣

∣

= 1 > 0.Also, the derivative V̇ = −4x41 + 2x21x2 − x22 is a negative de�nitefunction, because the Sylvester criterion ((2.10) in [11]) is satis�ed:
∆1 = −4 < 0,

∆2 =

∣

∣

∣

∣

−4 1
1 −1

∣

∣

∣

∣

= 3 > 0.



21Therefore according to Liapunov's theorem the system is asymptoticallystable.In applying Sylvester's criterion we replace x1 by x21.3. The function V = x61 + x22 is positive de�nite, and it's derivative
V̇ = −

(

x31 − x2
)2 is negative semide�nite. Therefore, according toLiapunov's theorem the system is stable.4. The function V = x1 − x32 is positive for x1 > 0 and x2 < 0 whileit's derivative V̇ = 4x31 > 0 for x1 > 0. Thus according to Chetaev'stheorem the system is unstable.2.3. Show that the equations of the perturbed motion of a rigidbody in a uniform rotation (see Problem 1.6) have two integrals:
Ax21 +Bx22 + C (x3 + ω0)

2
= const,

A2x21 +B2x22 + C2 (x3 + ω0)
2
= const.Give the physical meaning of these integrals; compose a bundle ofintegrals, and prove that the uniform rotation about the large as wellas the small axis of the ellipsoid of moment of inertia (in this case,respectively, C < A < B and C > A > B) is stable.S o l u t i o n:These two integrals could be obtained in the following manner.Consider the equations derived in Problem 1.6. Multiply the �rst equationby x1, the second equation by x2, and the third one by (x3 + ω0) to get

Ax1ẋ1 = Bω0x1x2 − Cω0x1x2 +Bx1x2x3 − Cx1x2x3,
Bx2ẋ2 = Cω0x1x2 −Aω0x1x2 + Cx1x2x3 −Ax1x2x3,

C (x3 + ω0) ẋ3 = Ax1x2x3 −Bx1x2x3 +Aω0x1x2 −Bω0x1x2.Adding these equations gives
Ax1ẋ1 +Bx2ẋ2 + C (x3 + ω0) ẋ3 = 0,so that upon integration one gets
Ax21 +Bx22 + C (x3 + ω0)

2
= const, (2.2)i.e., the �rst of the two integrals.To get the second integral, again refer to the three equations givenin Problem 1.6. Multiply the �rst equation by Ax1, the second equation



22 Chapter 2. The Direct Liapunov Method...by Bx2, and the third one by C(x3 + ω0). Then, add all the resultingequations to obtain a single equation. Integrate this equation to obtainthe second integral as
A2x21 +B2x22 + C2(x3 + ω0)

2 = const. (2.3)We denote the integral in (2.2) by V1, and the one in (2.3) by V2.Now, consider the bundle of integrals
V = −V2 + CV1 ±

1

ω2
0

(

V1 − Cω2
0

)2
,where the coe�cient 1

ω2
0

is introduced to retain the dimensional validityof the equation. Upon substituting the expressions for V1 and V2 andregrouping of the terms, the bundle becomes:
V = A (C −A)x21+B (C −B)x22±

1

ω2
0

(

Ax21 +Bx22 + Cx23 + 2Cω0x3
)2or,

V = A (C −A)x21 + B (C − B)x22 ± 4C2x23 + · · · , (2.4)where higher order terms of xk are denoted by the dots.First, we consider the ” + ” sign in (2.4), i.e.,
V = A (C −A) x21 +B (C −B)x22 + 4C2x23 + · · ·If C > A, C > B and |xk| is small enough, then V is positive de�niteand its derivative is equal to zero. Thus, all the corresponding conditionsof Liapunov's theorem are satis�ed and for C > A and C > B themotion is stable.Now we consider the minus sign in (2.4), i.e.,
V = A (C −A) x21 +B (C −B)x22 − 4C2x23 + · · ·Here, for C < A and C < B the function V is negative de�nite, andagain according to Liapunov's theorem the motion is stable.2.4. The rotational motion of a rigid body in a gravitational �eldabout a �xed point O is considered. For a set of principal axes with the



23origin at O and attached to the rotating body, the equations of motionare
Aω̇x + (C −B)ωyωz = γymz − γzmy,
Bω̇y + (A− C)ωzωx = γzmx − γxmz,
Cω̇z + (B −A)ωxωy = γxmy − γymx,where A, B, and C are principal mass moments of inertia of the bodywith respect to the (x, y, z) set of axes; ωx, ωy, and ωz are componentsof the angular velocity ω along the x, y, and z axes; mx, my, and mzare the static moments of the weight of the rigid bodym about the x, y,and z axes; γ is the vertical axis of the �xed coordinate system; and γx,

γy, and γz are components of the unit vector of γ along the x, y, and zaxes (direction cosines). Staude and Mlodzeevsky have independentlyproved that under some conditions a body can rotate with constantangular velocity about an axis γ. A set of such axes forms a cone. Notall rotations with constant velocity are stable.Construct the motion integrals and using their bundle, prove stabilityof rotation with constant angular velocity about that principal axis ofthe rigid body with respect to which the mass moment of inertia of thebody is maximum.Hint. The integrals of motion are
F1 =

1

2
ωTJω + γTm = h, F2 = γTJω = L, F3 = γγ = 1,where h and L are constants, and

ω =





ωx

ωy

ωz



 , J =





A 0 0
0 B 0
0 0 C



 , m =





mx

my

mz



 , γ =





γx
γy
γz



 .If the mass moment of inertia is maximal with respect to the z-axis,then stability has to be determined for this axis; in this case ωx = ωy =
0, mx = my = 0, γx = γy = 0. The following bundle of integrals can beconsidered:

V (ω,γ) = F1 + λF2 +
1

2
µF3,where λ and µ are factors to be determined. Show that λ = −|ω|, andthat for the chosen axis the relation µ = Aω2−mz holds. This can helpyou to prove the stability of uniform rotation about the z-axis.



24 Chapter 2. The Direct Liapunov Method...S o l u t i o n:
F1 = h is an energy integral, F2 = L represents an axes transformation,and F3 expresses a simple well known condition of direction cosines.None of these functions, when considered alone, can lead to a positivede�nite Liapunov function. Therefore, we can construct the bundle ofintegrals

V (ω,γ) = F1 + λF2 +
1

2
µF3.Substitute the values of F1, F2 and F3 into this bundle and evaluatethe �rst variation of the function V :

δV = δω (Jω + λJγ) + δγ (m+ λJω + µγ) .This variation vanishes if
J (ω + λγ) = 0,

m+ λJω + µγ = 0.From here one concludes that
λ = −|ω|, µ = ω2C −mz. (2.5)In order to obtain the condition of positive de�niteness for V onemay consider the second variation of this function in the neighbourhoodof a constant set of de�nite positive we write the second variation ofthis function in ω, γ :

δ2V = δωJδω + 2λδγJδω + µδγδγ.We note that F3 = γγ = 1 and hence γδγ = 0. From here it followsthat in our case δγz = 0.Then we get
δ2V = Aδω2

x+Bδω
2
y+Cδω

2
z+2λ (Aδγxδωx +Bδγyδωy)+µ

(

δγ2x + δγ2y
)

.For this quadratic form in δγ2x, δγ
2
y , δω

2
x, δω

2
y, δω

2
z we write thematrix of coe�cients of the quadratic form as given in (2.7) of [11]:













µ 0 λA 0 0
0 µ 0 λB 0
λA 0 A 0 0
0 λB 0 B 0
0 0 0 0 C













.



25Now, using Sylvester's criterion ((2.9) in [11]) we get:
∆1 = µ > 0,

∆2 = µ2 > 0,

∆3 = µ2A− λ2µA2 = µA
(

µ− λ2A
)

> 0,

∆4 = AB
(

µ− λ2B
) (

µ− λ2A
)

> 0.Noting that mz > 0, in view of (2.5), the condition that ∆1 = µ > 0results in
ω2 >

mz

C
. (2.6)From the condition that ∆3 > 0 it follows that

ω2 >
mz

C −A
. (2.7)If the inequality (2.7) is satis�ed, from the condition that ∆4 > 0it follows that

ω2 >
mz

C −B
. (2.8)If C > B > A, then all conditions of stability for this rotationreduce to the single inequality (2.8).



Chapter 3Stability of Equilibrium States andStationary Motions of ConservativeSystems
3.1. The end B of a perfectly �exible, weightless, and inextensible cordof length l is �xed (see Fig. 3.1). At the other end a load P is attached.

1
z

2z

B

P

D

Q

z

a

ϕ

C

g

Figure 3.1 Problem 3.1.



27Block D is �xed and block C can slide on the vertical line thatbisects the distance a between points B and D. Block C carries a load
Q. Neglecting the dimensions of blocksD and C and all resistant forces,determine the equilibrium positions of the system and investigate thestability of these positions.S o l u t i o n:Let the coordinates of points C and P be denoted by z1 and z2,respectively. From Fig. 3.1 we have

z1 =
a

2
tanϕ, z2 = l − 2

a

2 cosϕ
.The potential energy of the system is

Π = −Qz1 − Pz2 = −Qa
2

tanϕ− P

(

l − a

cosϕ

)

.In a state of equilibrium we should have ∂Π
∂ϕ

= 0, i.e. by Theorem 3.1:
∂Π

∂ϕ
= −Qa

2

1

cos2 ϕ
+ Pa

sinϕ

cos2 ϕ
= − a

cos2 ϕ

(

Q

2
− P sinϕ

)

= 0.Hence,
sinϕ =

Q

2P
< 1, (3.1)so that for Q ≥ 2P equilibrium vanishes. Thus, if Q < 2P , thenequlibrium prevails for

ϕ0 = arcsin
Q

2P
.This state is stable because

(

∂2Π

∂ϕ2

)

ϕ=ϕ0

=
Pa

cosϕ0
> 0.In evaluating the second derivative, equation (3.1) has been employed.3.2. Ring A can slide over a smooth wire ring of radius R withoutfriction (see Fig. 3.2). The ring R lies in a vertical plane. Load P is
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ϕ

A

B

P

O R D

C

Q

Figure 3.2 Problem 3.2.suspended from ring A by a perfectly �exible but inextensible cord.The load Q is suspended from the other end C of the cord, which isstretched over the in�nitesimal block B. Block B lies on the horizontaldiameter of the wire ring R, and its weight is negligible. Determine theequilibrium positions of ring A and investigate their stability.S o l u t i o n:It should be noted that the load P is supported by a cord, the upperend of which is attached to ring A. A second cord, which supports theload Q is attached to the same ring. We write the potential energy ofthe system for the position when ring A is in the upper half of thering R. The potential energy of P is equal to its weight multiplied by
R sinϕ, i.e., the elevation of ring A. Similarly, the energy of Q is equalto its weight Q multiplied by the length l of the cord AB.Noting that the angle BAO is equal to ϕ

2
, we get l = 2R cos

ϕ

2
.Considering that the total length of the cord is constant, except for aconstant amount, the potential energy of the whole system when thering A is in the upper half is given as:

Π = PR sinϕ+ 2QR cos
ϕ

2or
Π = PR

(

sinϕ+ 2
Q

P
cos

ϕ

2

)

.



29For a state of equilibrium we should have ∂Π
∂ϕ

= 0. Upon di�erentiationwe get
∂Π

∂ϕ
= PR

(

cosϕ− Q

P
sin

ϕ

2

)

= 0. (3.2)Using the identity cosϕ = cos2
ϕ

2
− sin2

ϕ

2
= 1 − 2 sin2

ϕ

2
we can�nd an expression for sin ϕ

2
in the following manner:

1− 2 sin2
ϕ0

2
− Q

P
sin

ϕ0

2
= 0or

sin2
ϕ0

2
+

Q

2P
sin

ϕ0

2
− 1

2
= 0.From which we get

sin
ϕ0

2
= − O

4P
+

√

Q2

16P 2
+

1

2(only the "+"sign in front of the square root should be considered, since
sin ϕ0

2 > 0).From this expression the equilibrium position of the ring A in theupper half is given by
sin

ϕ0

2
=

1

4

(
√

Q2

P 2
+ 8− Q

P

)

. (3.3)In order to determine the stability of this position, the secondderivative of Π should be determined. Using (3.2) we have
∂2Π

∂ϕ2
= PR

(

− sinϕ− 1

2

Q

P
cos

ϕ

2

)

= −PR
(

sinϕ+
1

2

Q

P
cos

ϕ

2

)

.For the upper half of the ring R we have 0 < ϕ < π, or 0 < ϕ

2
< π

2 .In this interval sinϕ > 0 and cos
ϕ

2
> 0. Therefore, ∂2Π

∂ϕ2
< 0, implyingthat the equilibrium position (3.3) is unstable.From (3.3) it is clear that in the interval 0 < Q

P < ∞ the value ϕ0

2varies from π
4 to 0. Therefore, the angle ϕ0 lies in the interval 0 < ϕ0 <

π
2 .



30 Chapter 3. Stability of ... Conservative SystemsNext, let us consider the case when the ring A is in the lower halfof the ring R, i.e., when
π < ϕ < 2π,

π

2
<
ϕ

2
< π.In this interval

sinϕ < 0, sin
ϕ

2
> 0, cos

ϕ

2
< 0. (3.4)The potential energy of the system is given as (l = −2R cos

ϕ

2
> 0
)

Π = PR sinϕ− 2QR cos
ϕ

2
= PR

(

sinϕ− 2
Q

P
cos

ϕ

2

)(the energy associated with P is negative, while the potential energydue to Q is positive). Now we have
∂Π
∂ϕ = PR

(

cosϕ+ Q
P sin ϕ

2

)

= PR
(

cos2 ϕ
2 − sin2 ϕ

2 + Q
P sin ϕ

2

)

= PR
(

1− 2 sin2 ϕ
2 + Q

P sin ϕ
2

)

.By considering ∂Π

∂ϕ
= 0, we can �nd an expression for sin ϕ

2
(notethat according to (3.4), we have sin ϕ

2
> 0):

sin2
ϕ0

2
− Q

2P
sin

ϕ0

2
− 1

2
= 0.Hence,

sin
ϕ0

2
=

Q

4P
+

√

Q2

16P 2
+

1

2or
sin

ϕ0

2
=

1

4

(
√

Q2

P 2
+ 8 +

Q

P

)

. (3.5)This expression de�nes the state of equilibrium for the ring A inthe lower half of the ring R. From the �rst expression for ∂Π
∂ϕ

we get



31(note, that Q
P = − cosϕ0

sin
ϕ0

2

)
∂2Π

∂ϕ2

∣

∣

∣

∣

∣

ϕ=ϕ0

= PR

(

− sinϕ0 +
1

2

Q

P
cos

ϕ0

2

)

=

PR



− sinϕ0 −
1

2

cosϕ0

sin
ϕ0

2

cos
ϕ0

2



 =

−PR
cos

ϕ0

2

sin
ϕ0

2

(

(

sin
ϕ0

2

)2

+
1

2

)

.From (3.4) it follows that ∂2Π
∂ϕ2

∣

∣

∣

ϕ=ϕ0

> 0 and the equilibrium statein the lower half of the ring A is stable.Since Q
P > 0 then from (3.5) √

2
2 < sin ϕ0

2 < 1 and the equilibriumposition of the ring A in this lower half lies in the interval π < ϕ0 <
3π
2 .3.3. Investigate the stability of the vertical state of the system ofpendula depicted in Fig. 3.3 along with all dimensions of the system.The mass of each pendulum and the sti�ness of each spring are equal

h

h

h

ϕ
P

ϕ
3

ϕ
2

ϕ
1

h

c

c

c

m

m

m

3h

2h

l

2

3

1

Figure 3.3 Problem 3.3.to m and c, respectively. We neglect the mass of the rods and assumethat each m is a mass point. In the vertical state of the pendula thesprings are not loaded.



32 Chapter 3. Stability of ... Conservative SystemsS o l u t i o n:Let us consider the potential energy of the system for small angulardisplacements ϕk. The deformations of the �rst, second and third springare 3hϕ1, 2h (ϕ2 − ϕ1), and h (ϕ3 − ϕ2), respectively. So that the totalenergy of all springs becomes
Πspr =

1

2
c (3hϕ1)

2
+

1

2
c [2h (ϕ2 − ϕ1)]

2
+

1

2
c [h (ϕ3 − ϕ2)]

2
.The potential energy due to the weight of a mass of an invertedpendulum of length l, when the bar is displaced an angle ϕ (see Fig. 3.3)is

Πp = −pl (1− cosϕ) ' −plϕ
2

2
.So, the potential energy Πpk

due to the weight of all masses in thesystem becomes
Πpk

= −1

2
4hpϕ2

1 −
1

2
3hpϕ2

2 −
1

2
2hpϕ2

3.Therefore, the overall total potential energy of the system Π is
Πspr +Πpk

, i.e.,
Π = 1

29ch
2ϕ2

1 +
1
24ch

2 (ϕ2 − ϕ1)
2
+ 1

2ch
2 (ϕ3 − ϕ2)

2 −
1
24phϕ

2
1 − 1

23phϕ
2
2 − 1

22phϕ
2
3.Rearranging the terms we get

2Π =
(

13ch2 − 4ph
)

ϕ2
1 +

(

5ch2 − 3ph
)

ϕ2
2 +

(

ch2 − 2ph
)

ϕ2
3−

8ch2ϕ1ϕ2 − 2ch2ϕ2ϕ3.The necessary and su�cient condition for the potential energy of thesystem to have a minimum is that Sylvester's criterion must be satis�ed(cf. eq. (2.9) in [11]). The matrix of coe�cients on the right-hand sideof the last equation reads as




13ch2 − 4ph −4ch2 0
−4ch2 5ch2 − 3ph −ch2

0 −ch2 ch2 − 2ph



 .



33So we have
∆1 = h (13ch− 4p) ,

∆2 = h2
∣

∣

∣

∣

13ch− 4p −4ch
−4ch 5ch− 3p

∣

∣

∣

∣

= h2
(

49c2h2 − 59pch+ 12p2
)

,

∆3 = h3

∣

∣

∣

∣

∣

∣

13ch− 4p −4ch 0
−4ch 5ch− 3p −ch
0 −ch ch− 2p

∣

∣

∣

∣

∣

∣

= h3
(

36c3h3 − 153pc2h2 + 130p2ch− 24p3
)

.From these we get the required conditions for stability as
13ch− 4p > 0,

49c2h2 − 59pch+ 12p2 > 0,

36c3h3 − 153pc2h2 + 130p2ch− 24p3 > 0.3.4. Current i1 �ows along a rectilinear vertical and �xed conductorthat attracts a parallel conductor AB (see Fig. 3.4). Current i2 �owsalong conductor AB, and l is the length of each conductor. A springwith sti�ness c is suspended from conductor AB. If current doesn't �owalong conductor AB, then the distance between the two conductors is
a. Find the equilibrium positions of the system and investigate theirstability.Hint. The interaction force between the two parallel conductors is
F =

2i1i2
d

l. Here i1 and i2 are current �ows in the two conductors, dis the distance between the two conductors, and l is the length of eachconductor.S o l u t i o n:The force acting on the conductor AB is
F =

2i1i2l

d
− cx =

2i1i2l

a− x
− cx.Noting that a− x > 0, from here we obtain

(a− x)F = 2i1i2l− acx+ cx2
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l

_ _

++

x

a

c

i i 12

B

A

l

Figure 3.4 Problem 3.4.or
a− x

c
F = x2 − ax+ α, (3.6)where
α =

2i1i2l

c
.The equilibrium of the conductor AB corresponds to F = 0. Settingthe right-hand side of (3.6) equal to zero, the roots of the resultingequation will give the equilibrium positions of the conductor AB as:

x2 =
a

2
+

√

a2

4
− α, x1 =

a

2
−
√

a2

4
− α.For positions of equilibrium these roots should be real, and therefore,we must have a2

4 > α.The potential energy Π of the force F1 = a−x
c F is Π =

∫

F1dx orusing (3.6),
Π =

1

3
x3 − 1

2
ax2 + αx (3.7)A plot of (3.7) is shown in Fig. 3.5.
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Figure 3.5 Problem 3.4.From this plot it can be observed that the potential energy Π has aminimum at x2 and a maximum at x1. Hence, x2 corresponds to a stableequilibrium, while x1 represents an unstable state. (The tangents at
x2 and x1 should be parallel to x-axis.) The same conclusions can bearrived at by using a more analytical approach. From (3.7) we have
∂2Π

∂x2

∣

∣

∣

x=x2

= (2x− a)x=x2
= a+ 2

√

a2

4
− α− a = 2

√

a2

4
− α > 0,i.e., at x = x2 the potential energy has a minimum, and this pointcorresponds to a stable equilibrium state of the conductorAB. Similarly,at x = x1 we have ∂2Π

∂x2
< 0, and therefore, this point corresponds toan unstable equilibrium state. (Note: the answer provided in the book[11] is switched around.)When a2

4
= α there is only one state of equilibrium x =

a

2
. Thisstate is unstable, because at this point d2Π/dx2 = 0 and d3Π/dx3 6= 0,which indicates that Π is not a minimum at the point.3.5. A solid oscillates freely about the horizontal axis NT (seeFig. 3.6). The axis NT can rotate around the vertical axis Oz with aconstant angular velocity ω. Point G is the centre of mass, plane NTGis a plane of symmetry, and axis OG is a principal axis of inertia. KL isparallel toNT , and FD, which passes through point O, is perpendicularto NT and OG. The moments of inertia of the solid about OG, KL,and FD are equal to C, A, and B respectively; h is the length of OG



36 Chapter 3. Stability of ... Conservative Systems
Figure 3.6 Problem 3.5.and M is the mass of the solid. De�ne the possible positions of relativeequilibrium of the solid and investigate their stability.S o l u t i o n:The solid can rotate about the axis NT (see Fig. 3.6). Assume thatit has an angular velocity ϕ̇ so that at any given instant the axis OGmakes an angle ϕ with the vertical z-axis.The angular velocity ϕ̇ is represented by a vector along the axisNT .Moreover, after OG and OD have rotated an angle ϕ, the componentsof the angular velocity ω will be

ωOG = −ω cosϕ, ωOD = ω sinϕ.The mass moment of inertia of the body about the NT -axis is A+Mh2.Therefore, the kinetic energy of the body is
T =

1

2

(

A+Mh2
)

ϕ̇2 +
1

2
Bω2 sin2 ϕ+

1

2
Cω2 cos2 ϕ.The potential energy due to the weight is Π =Mgh (1− cosϕ).Moreover, from the expression for kinetic energy we have

T2 =
1

2

(

A+Mh2
)

ϕ̇, T1 = 0, T0 =
1

2
ω2
(

B sin2 ϕ+ C cos2 ϕ
)

.(It is easy to show that in this example Tk = Rk. Cf. relations (3.12)and (3.14) in [11].) The potential energy W of the generalised systembecomes (cf. equation (3.20) in [11])
W = Π− T0,



37or
W =Mgh (1− cosϕ)− 1

2
ω2
(

B sin2 ϕ+ C cos2 ϕ
)

.Then, for a constant ω we get:
∂W

∂ϕ
=Mgh sinϕ− ω2 sinϕ cosϕ (B − C) , (3.8)

∂2W

∂ϕ2
=Mgh cosϕ− ω2 (B − C)

(

cos2 ϕ− sin2 ϕ
)

.The required condition for a stationary motion is to have ∂W
∂ϕ

= 0.From equation (3.8) three states of equilibrium are deduced: ϕ = 0, ϕ =

π, and ϕ = arccos
Mgh

ω2 (B − C)
. Let us consider each state separately.1. ϕ = 0. In this case

∂2W

∂ϕ2

∣

∣

∣

ϕ=0
=Mgh− ω2 (B − C) . (3.9)Obviously, for B < C the second variation of W with respect to ϕis positive for all ω. Therefore, the state of equilibrium correspondingto ϕ = 0 is stable for all ω. From equation (3.9) we can see that for

B > C we have ∂2W

∂ϕ2
> 0 provided ω2 <

Mgh

B − C
. In this case thestate of equilibrium is stable. For ω2 >

Mgh

B − C
the state of equilibriumbecomes unstable.2. ϕ = π. In this case

∂2W

∂ϕ2

∣

∣

∣

ϕ=π
= −Mgh− ω2 (B − C) .Therefore, for B > C we have ∂2W

∂ϕ2
< 0 and the state of equilibriumis unstable.If B < C the state of equilibrium is stable for ω2 >

Mgh

C −B
, andit is unstable for ω2 <

Mgh

C −B
(in the �rst case ∂2W

∂ϕ2
> 0, and in thesecond case ∂2W

∂ϕ2
< 0).



38 Chapter 3. Stability of ... Conservative Systems3. ϕ = arccos
Mgh

(B − C)ω2
. In this case a state of equilibrium existsif Mgh < |B − C|ω2. Then sinϕ 6= 0, and we have

cosϕ = Mgh
ω2(B−C) ,

cos2 ϕ = M2g2h2

ω4(B−C)2
,

sin2 ϕ = 1− cos2 ϕ = 1− M2g2h2

ω4(B−C)2
.so that

∂2W

∂ϕ2

∣

∣

∣

ϕ=ϕ3

=
M2g2h2

ω2 (B − C)
− ω2 (B − C)

[

2
M2g2h2

ω4 (B − C)
2 − 1

](3.10)
= − M2g2h2

ω2 (B − C)
+ ω2 (B − C) .Provided thatMgh < ω2|B−C| we will haveM2g2h2 < ω4 (B − C)

2or M2g2h2

ω2 (B − C)
< ω2 (B − C).Then, from (3.10) we get

∂2W

∂ϕ2

∣

∣

∣

ϕ=ϕ3

> 0,for B > C, so that the state of equilibrium is stable.However, for B < C we have
∂2W

∂ϕ2

∣

∣

∣

ϕ=ϕ3

< 0,and an unstable state of equilibrium.3.6. In Fig. 3.7 the vertical axis AB is an axis of symmetry ofthe thin homogeneous round disk with weight P and radius r. AB canroll freely around the spherical bearing A. Two mutually perpendicularsprings BQ and BD in a horizontal plane hold the axis at point B. Bothsprings have the same sti�ness, i.e., c1 = c2 = c. They are attached tothe axis of the disk at a distance L from the bearing A. The disk is ata distance l from the bearing A. Determine the angular velocity of thedisk ω for which the system is stable.



39
Figure 3.7 Problem 3.7.S o l u t i o n:Let us consider the �xed coordinate system Axyz where the z-axisis pointed upward, and the x and y axes are parallel to springs BQand BD when the shaft AB is in a vertical position. Moreover, thecentroidal coordinate system of the disk is called (x′y′z′) which is takento be parallel to the (xyz)-system, when the axis of the disk is vertical.The mass moment of inertia of the disk with respect to x′ and y′ is thesame and it is A =

mr2

4
. With respect to z′-axis, the mass moment ofinertia is C =

mr2

2
, where m =

P

g
is the mass of the disk, and r is itsradius.The mass centre of the disk lies at a distance l from the bearing

A. Now, let us determine the kinetic energy of the disk. It consists ofthe kinetic energy due to the displacement of the centre of mass ofthe disk plus the kinetic energy due to the rotation of the disk. For adisplaced position of the shaft which is identi�ed by the angles α and
β, the coordinates of the mass centre of the disk is denoted by x and y(see Fig. 3.7).Then, the kinetic energy of the disk is

T =
1

2
m
(

ẋ2 + ẏ2
)

+
1

2
A
(

α̇2 cos2 β + β̇2
)

+
1

2
C (ω + α̇ sinβ)2 .From Fig. 3.7 we can see that

ẋ = lα̇, ẏ = lβ̇,and if we assume that the angles α and β are small (cosα = 1, cosβ = 1,
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sinβ = β), we get

T =
1

2
ml2

(

α̇2 + β̇2
)

+
1

2
A
(

α̇2 + β̇2
)

+
1

2
C (ω + α̇β)

2
.Using the expressions for the moments of inertia A and C, we have

T =
1

2
m

(

l2 +
r2

4

)

(

α̇2 + β̇2
)

+
mr2

4
(ω + α̇β)2 . (3.11)Neglecting the terms with order higher than two, the spring deformationsare obtained to be Lα and Lβ, and the potential energy due to theweight P becomes

−Pl (1− cosα+ 1− cosβ) = −1

2
Pl
(

α2 + β2
)

.Then the total potential energy will be
Π =

1

2

(

cL2 − Pl
) (

α2 + β2
)

. (3.12)Using equations (3.11) and (3.12) we get the Lagrange equationwith respect to coordinate α as
∂T

∂α̇
= m

(

l2 +
r2

4

)

α̇+
mr2

2
(ω + α̇β)β.Considering that the term α̇β is negligible with respect to ω, wemay di�erentiate this expression with respect to time t, and obtainthe derivatives of Π with respect to α. In this way we can obtain theequation of motion for α (a similar procedure will result in the equationof motion for β):

m

(

l2 +
r2

4

)

α̈+
mr2

2
ωβ̇ +

(

cL2 − Pl
)

α = 0, (3.13)
m

(

l2 +
r2

4

)

β̈ − mr2

2
ωα̇+

(

cL2 − Pl
)

β = 0.Now, assume α = Deλt and β = Eeλt. Substitute these in equation(3.13) and divide by eλt to get
[

m
(

l2 + r2

4

)

λ2 +
(

cL2 − Pl
)

]

D + mr2

2 ωλE = 0,

−mr2

2 ωλD +
[

m
(

l2 + r2

4

)

λ2 +
(

cL2 − Pl
)

]

E = 0.



41This is a system of homogeneous linear equations with respect to Dand E the determinant of which must vanish, i.e.,
∣

∣

∣

∣

∣

∣

m
(

l2 + r2

4

)

λ2 +
(

cL2 − Pl
)

mr2

2 ωλ

−mr2

2 ωλ m
(

l2 + r2

4

)

λ2 +
(

cL2 − Pl
)

∣

∣

∣

∣

∣

∣

= 0.Expanding this determinant we get
m2
(

l2 + r2

4

)2

λ4 +
[

2m
(

l2 + r2

4

)

(

cL2 − Pl
)

+ m2r4

4 ω2
]

λ2+

+(cL− Pl)
2
= 0.This equation can be solved for λ2:

λ2 =
−1

2m2
(

l2 + r2

4

)

{

[

2m

(

l2 +
r2

4

)

(

cL2 − Pl
)

+
m2r4

4
ω2

]

±

m2r4

4
ω2

√

4m

(

l2 +
r2

4

)

(cL2 − Pl) +
m2r2

4
ω2

}

.If Pl < cL2, then all terms are positive and both roots λ21 and
λ22 are negative and simple for any angular velocity ω. This meansthat for Pl < cL2, the vertical state of the shaft is stable in the �rstapproximation for any ω.Next assume Pl > cL2. Then, the �rst term under the square rootsign becomes negative and for stability to prevail it becomes necessaryfor the angular velocity ω to satisfy the condition that

ω2 >
4

r4
gl
(

4l2 + r2
)

(

1− cL2

Pl

)or
ω >

2

r2

√

gl (4l2 + r2)

(

1− cL2

Pl

)

.If ω satis�es this condition, then for cL2 < Pl there is a positive valueunder the square root sign and both roots λ21 and λ22 are simple andnegative. Then, the stability of the disk in the �rst approximation isproven.



42 Chapter 3. Stability of ... Conservative Systems3.7. The mass point depicted in Fig. 3.8 moves over the smoothsurface of a torus given by the parametric equations
x = ρ cosψ, y = ρ sinψ, z = b sinϑ,

ρ = a+ b cosϑ,where the z-axis is pointing upward. Find the possible motions of the

Figure 3.8 Problem 3.7.point when the angle ϑ is a constant, and analyse the stability of thesemotions.S o l u t i o n:Let ψ̇ = ω = const. Therefore ψ = ωt. Then, we have
x = (a+ b cosϑ) cosωt, y = (a+ b cosϑ) sinωt, z = b sinϑ,from which

ẋ = −b sinϑϑ̇ cosωt− ω(a+ b cosϑ) sinωt,

ẏ = −b sinϑϑ̇ sinωt+ ω(a+ b cosϑ) cosωt,

ż = b cosϑϑ̇.Now, the kinetic energy of the mass is
T =

1

2
m
(

ẋ2 + ẏ2 + ż2
)

=
1

2
m
[

b2ϑ̇2 + ω2 (a+ b cosϑ)
2
]

,



43and its potential energy is Π = mgz = mbg sinϑ. From the expressionfor T we �nd that T2 = 1
2mb

2ϑ̇2, and T0 = 1
2mω

2(a+b cosϑ)2. Therefore,the potential energy of the generalised system becomes
W = Π− T0 = mbg sinϑ− 1

2
mω2(a+ b cosϑ)2,such that

∂W

∂ϑ
= mb

[

g cosϑ+ ω2(a+ b cosϑ) sinϑ
]

, (3.14)
∂2W

∂ϑ2
= mb

[

−g sinϑ− ω2b sin2 ϑ+ ω2(a+ b cosϑ) cosϑ
] (3.15)We �nd the relative equilibrium from ∂W

∂ϑ = 0. Using (3.14), we get
g cosϑ+ ω2(a+ b cosϑ) sinϑ = 0.From here

a+ b cosϑ = − g

ω2
cotϑ (3.16)or

1 + α cosϑ = −β cotϑ, α =
b

a
, β =

g

aω2
(3.17)The two solutions of equation (3.17) can be easily obtained as

−π
2
< ϑ1 < 0,

π

2
< ϑ2 < π.In order to determine which of these is stable, let us consider the right-hand side of (3.15).First, we proceed as follows:

∂2W

∂ϑ2
= mb

[

−g sinϑ− ω2b sin2 ϑ+ ω2a+ ω2b cos2 ϑ
]or

∂2W
∂ϑ2 = mb

[

−g sinϑ+ aω2 + bω2(cos2 ϑ− sin2 ϑ)
]

=

mb
[

−g sinϑ+ aω2(1 + b
a cos 2ϑ)

]

.In the interval −π
2 < ϑ < 0 we know that sinϑ < 0, therefore the �rstterm is positive. Moreover, we have b

a < 1, and | cos 2ϑ| < 1. Thus,the second term is also positive, and hence the motion is stable when
ϑ = ϑ1.



44 Chapter 3. Stability of ... Conservative SystemsNext, we note that
∂2W

∂ϑ2
= mb

[

−g sinϑ− ω2b sin2 ϑ+ ω2(a+ b cosϑ) cosϑ
]

,so that using equation (3.16), we get
∂2W

∂ϑ2
= mb

[

−g sinϑ− ω2b sin2 ϑ− g
cos2 ϑ

sinϑ

]

.Now, we have sinϑ > 0 in the interval π
2 < ϑ2 < π. Therefore, for

ϑ = ϑ2
∂2W

∂ϑ2
< 0,which means that the motion is unstable when ϑ = ϑ2.3.8. The horizontal tube AB shown in Fig. 3.9 can rotate freelyabout the vertical axis CD. Inside the tube there is a spring withsti�ness c. The end of the spring is �xed to the tube wall at A. The
a

D

A

a x

B

C

M

Figure 3.9 Problem 3.8.solid M is attached to the free end of the spring. The mass of M is
m. When the system is at rest, the body M is at distance a from theaxis of rotation (a > 0 or a < 0). During the free rotation of the tubewith an angular velocity ω, the system attains a stationary motionin which body M is at relative rest. Assume M is a mass point andneglect any frictional forces and the mass of the spring. If the massmoment of inertia of the tube with respect to the axis of rotation CD



45is J , determine the parameters of stationary motion and analyse itsstability.S o l u t i o n:The potential energy of the system is Π = 1
2cx

2 (for a > 0 and for
a < 0), while its kinetic energy is

T =
1

2
mẋ2 +

1

2
mω2(a+ x) +

1

2
Jω2.Hence, T2 = 1

2mẋ
2, and T0 = 1

2mω
2(a+x)+ 1

2Jω
2. Thus, the potentialenergy of the generalised system is

W = Π− T0 =
1
2cx

2 − 1
2mω

2(a+ x)2 − 1
2Jω

2,

∂W
∂x = cx−mω2(a+ x),

∂2W
∂x2 = c−mω2.The state of relative equilibrium is obtained from the equation

∂W

∂x
= cx−mω2(a+ x) = 0,from which

x0 = maω2

c−mω2 ,

∂2W
∂x2 = c−mω2.If c > mω2, then ∂2W

∂x2 > 0 and the relative equilibrium is stable, if
c < mω2, then ∂2W

∂x2 < 0 and the relative equilibrium is unstable.(In the book [11], in the following equation
∆ = J

(

1− mω2

c

)

+m (a+ x0)
2

(

1 + 4
mω2

c

)

.should be replaced by ∂2W
∂x2 = c−mω2.)3.9. The rotor depicted in Fig. 3.10 is situated in a horizontalplane and is rigidly mounted at its centre O on a �exible shaft whichis supported as shown. The centre of mass of the rotor is C, the massof the rotor is m, e = OC is the eccentricity of the rotor which has amass moment of inertia equal to J with respect to the vertical axis. The
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Figure 3.10 Problem 3.9.bending sti�ness of the shaft is C and the shaft is driven at a constantangular velocity ω. The shaft axis is bent due to centrifugal forces. Onecan neglect the mass of the shaft and any frictional forces. In the �xedcoordinate system determine the position of point O for the stationarymotion and analyse its stability.S o l u t i o n:The plane of rotor is horizontal. Point O represents the de�ectedposition of the �exible shaft which has a bending sti�ness of c. Themass centre of the rotor, point C, has an eccentricity e. Points O and

C are attached to the rotor. Let the x-axis of the coordinate system
O1xy be attached to the plane of the rotor and be parallel to OC. Itis required to determine the position of relative equilibrium of point
O and analyse its stability. Next, let x and y be the coordinates ofpoint O, then x+ e and y are the coordinates of the centre of mass ofthe rotor; and ẋ and ẏ are the components of the velocity of point Crelative to O1. The constant velocity vector ω is normal to O1xy-plane.The relative velocity of C about point O is

ve
c = ω × r =

∣

∣

∣

∣

∣

∣

i j k

0 0 ω
x+ e y 0

∣

∣

∣

∣

∣

∣

,

vecx = −ωy, vecy = ω(x+ e).The components and the magnitude of the absolute velocity of point
C are

vx = ẋ− ωy, vy = ẏ + ω(x+ e),
v2 = v2x + v2y = ẋ2 + ẏ2 − 2ω(ẋy − xẏ) + ω2

[

(x+ e)2 + y2
]

.



47The kinetic energy of the rotor
T =

1

2
Jω2 +

1

2
m{ẋ2 + ẏ2 − 2ω(ẋy − xẏ) + ω2

[

(x+ e)2 + y2
]

},where J is the moment of inertia of the rotor with respect to the axisperpendicular to its plane at point O, and m is the mass of the rotor.The potential energy of the elastic shaft is
Π =

1

2
c(x2 + y2).Thus, the Lagrange equations become

d

dt

∂T

∂ẋ
− ∂T

∂x
= −∂Π

∂x
,where

∂T
∂ẋ = mẋ−mωy; d

dt
∂T
∂ẋ = mẍ−mωẏ,

∂T
∂x = mωẏ +mω2(x+ e); ∂Π

∂x = cx.Therefore, the equations of motion become
mẍ− 2mωẏ −mω2(x+ e) = −cx, (3.18)

mÿ + 2mωẋ−mω2y = −cy,where the second equation is obtained in a manner analogous to the�rst one.For a state of relative equilibrium we should have ẍ = ÿ = 0, ẋ =
ẏ = 0. By substituting these into (3.18), the coordinates x0 and y0 ofpoint O in relative equilibrium are obtained as

−mω2(x0 + e) = −cx0, −mω2y0 = −cy0.Hence,
x0 =

mω2e

c−mω2
, y0 = 0 (3.19)These equations have simple physical interpretation and can beobtained in a more direct way. In the state of relative equilibrium points

O1, O and C should lie on the same line (y0 = 0), and the elastic forceexerted by the �exible shaft, cx0, should be equal to the centrifugalforce mω2(x0 + e). This corresponds to the �rst equation in (3.19).(There is an error in the book [11] in the expression for x0.)



48 Chapter 3. Stability of ... Conservative SystemsTo analyse for stability we consider
x = x0 + ε1, y = y0 + ε2 = ε2.In equations (3.18) we substitute the above expressions for x and y,respectively, to get

mε̈1 − 2mωε̇2 −mω2(x0 + ε1 + e) = −c(x0 + ε1),
mε̈2 + 2mωε̇1 −mω2ε1 = −cε1such that in view of (3.19), we get

mε̈1 − 2mωε̇2 + (c−mω2)ε1 = 0, (3.20)
mε̈2 + 2mωε̇1 + (c−mω2)ε2 = 0.As a standard approach, we let ε1 = Aeλt, ε2 = Beλt, and substitutethese expressions for ε1 and ε2 into equations (3.20). In the resultingequation, after rearranging the terms and dividing by eλt we get
[

mλ2 + (c−mω2)
]

A− 2mωλB = 0,
2mωλA+

[

mλ2 + (c−mω2)
]

B = 0.This is a linear system of homogeneous algebraic equations in A and
B whose determinant should vanish, i.e.,

∣

∣

∣

∣

mλ2 + (c−mω2) −2mωλ
2mωλ mλ2 + (c−mω2)

∣

∣

∣

∣

= 0.Expanding this determinant, we have
m2λ4 + 2m(c+mω2)λ2 + (c−mω2)2 = 0.From where,

λ2 =
1

m2

[

−m(c+mω2)±
√

m2(c+mω2)2 −m2(c−mω2)2
]or

λ2 = − 1

m

(√
c± ω

√
m
)2
. (3.21)From (3.21) it follows that all four roots of the characteristic equationsare simple and pure imaginary. This means that the system is stablefor all c and ω and c 6= mω2 (there is an error in the answer given in



49the book [11]). Moreover, for c = mω2 also the system is stable, butthis can not be concluded from (3.21). For this conclusion one has toconsider the matrix
A− λE =





mλ2 −2mωλ

2mωλ mλ2



 . (3.22)This matrix is the same as the one in (3.20) for c = mω2. Simplereductions of (3.22) will lead to
(

λ 0
0 λ(λ2 + 4ω2)

)

.From this matrix we can see that the canonical variables should satisfythe following:
ż1 = 0, ż2 = 0, ż3 = 2ωi, ż4 = −2ωi; i =

√
−1,which means that solutions ε1 = ε2 = 0 of equations (3.20) are alsostable for c = mω2.We have considered the case when points O1, O and C were notcollinear. Let us now consider the case when these points are collinear� call this line the x-axis. Then the coordinates of points O and C are

x and x+ e, respectively.The velocity of the centre of mass, point C, is de�ned as
v2 = ẋ2 + ω2(x+ e)2.The kinetic and potential energy of the system are

T =
1

2
Jω2 +

1

2
m
[

ẋ2 + ω2(x + e)2
]

, Π =
1

2
cx2,and the equation of motion becomes

mẍ−mω2(x+ e) = −cx. (3.23)The state of relative equilibrium at which ẍ = 0 is de�ned by (3.19):
x0 =

mω2e

c−mω2
.



50 Chapter 3. Stability of ... Conservative SystemsWe can obtain the equation of the perturbed motion if we let x =
x0 + ε in (3.23). This will result in

mε̈+ (c−mω2)ε = 0.From here, if c > mω2, then the unperturbed motion is stable; whereasif c < mω2, then it is unstable.So, the answer is the following: for the stationary motion the centre
O has the coordinates

ρo =
mω2e

c−mω2
,

ϕo = ωt.If points O1, O and C are not colinear, then the relative stateequilibrium of point O is stable for all c and ω. If these points lieon the same line, then for c > mω2 the relative equilibrium position ofpoint O is stable, and for c < mω2 it is unstable.3.10. For the system given in Problem 1.7 prove that the stationarymotion is stable with respect to β, β̇, and α̇.Hint. For the system under consideration the potential energy ofthe generalised system, W = Π−R0, is
W =

1

2
cβ2 +

(n−H sinβ)
2

4A cos2 β
,where n = 2Aα̇ cos2 β + H sinβ is the integral corresponding to thecyclic coordinate.S o l u t i o n:From the solution of Problem 1.7 we obtain the kinetic and potentialenergy of the system as

T = Aβ̇2 +Aα̇ cos2 β + C(ϕ̇+ α̇ sinβ)2, (3.24)
Π =

1

2
cβ2,where α and ϕ are cyclic coordinates, because T and Π contain onlythe velocities α̇ and ϕ̇. Two cyclic integrals which correspond to these



51coordinates are ∂T

∂α̇
= n = const, and ∂T

∂ϕ̇
= H = const. (Here itshould be noted that in problems dealing with Routh transform it is notpossible for the derivatives ∂T

∂α̇
and ∂T

∂ϕ̇
to be constant with multipliers.For example, we can not say ∂T

∂ϕ̇ = 2H , as we did in Problem 1.7.) Next,from (3.24) we obtain
∂T
∂α̇ = 2Aα̇ cos2 β +H sinβ = n,

∂T
∂ϕ̇ = 2C(ϕ̇+ α̇ sinβ) = H.Hence,

α̇ =
n−H sinβ

2A cos2 β
, (3.25)

ϕ̇ =
H

2C
− α̇ sinβ.Substitute these into the expression for T to get T ∗ (we neglect theconstant quantity H2

4C
):

T ∗ = Aβ−2 +
(n−H sinβ)2

4A cos2 β
. (3.26)Compose the Routh function R (cf. (3.12) in [11]):

R = T ∗ − nα̇−Hϕ̇.Using equations (3.26) and (3.25) we �nd
R = Aβ̇2+

(n−H sinβ)2

4A cos2 β
−nn−H sinβ

2A cos2 β
−H

(

H

2C
− n−H sinβ

2A cos2 β
sinβ

)

,so that after some simple manipulation and neglecting the constantterm H2

2C
), we get

R = Aβ̇2 − (n−H sinβ)2

4A cos2 β
= Aβ̇2 −R0, (3.27)

W = Π−R0 =
1

2
cβ2 +

(n−H sinβ)2

4A cos2 β
.



52 Chapter 3. Stability of ... Conservative Systems(In the book [11] there is small error, the coe�cient 4 in the dominatoris missing.)We assume that the angle β is small so that sinβ ' β, cosβ ' 1− β2

2 .Then, we have
1

cos2 β
' 1
(

1− β2

2

)2 ' 1

1− β2
= (1− β2)−1 = 1 + β2where the terms with order higher than two have been neglected. Then,(3.27) reads

W =
(2AC +H2)β2 − 2nHβ + n2

4A
(1 + β2)Once again retaining only up to the second order terms, we get

W =
1

4A

[

(2AC +H2 + n2)β2 − 2nHβ + n2
]

.From here, we have
∂W
∂β = 1

2A

[

(2AC +H2 + n2)β − nH
]

,
∂2W
∂β2 = 1

2A (2AC +H2 + n2) > 0.Setting the �rst equation equal to zero, we �nd the expression forthe angle of relative equilibrium as
β0 =

nH

2AC +H2 + n2
. (3.28)From the second equation we �nd, that this state is stable withrespect to the angle β. From the stability of motion with respect to βand from (3.25) the stability with respect to α̇ and ϕ̇ follows.Provided equation (3.28) is satis�ed, the motion of the system consistsof a constant deviation of the axis of gyroscopes by the angle β0 andthe uniform rotation of the whole system with an angular velocity of

α̇0 =
n−H sinβ0
2A cos2 β0

.



Chapter 4Stability in First Approximation
4.1. Let the moments of inertia of a rigid body with respect to itsprincipal axes of inertia x, y, and z, be designated as A, B, and C,respectively, such that either A < C < B or A > C > B. Prove thatthe uniform rotation of the rigid body about the z-axis is unstable.S o l u t i o n:From the equations of the perturbed motion obtained in Problem1.6 obtain the following equations in �rst approximation:

ẋ1 = B−C
A ω0x2,

ẋ2 = C−A
B ω0x1,

ẋ3 = 0.Let xk = Dke
λt (k = 1, 2, 3), substitute for xk into these equations anddivide the resulting equations by eλt to obtain

D1Aλ+D2(C −B)ω0 = 0,

D2Bλ+D1(A− C)ω0 = 0,

D3Cλ = 0.This is a system of linear homogeneous equations with respect to Dkthe determinant of which must vanish in order to have any nontrivial



54 Chapter 4. Stability in First Approximationsolutions, i.e., we must have
∣

∣

∣

∣

∣

∣

Aλ (C −B)ω0 0
(A− C)ω0 Bλ 0

0 0 Cλ

∣

∣

∣

∣

∣

∣

= 0,or
Cλ
[

ABλ2 − (C −B)(A− C)ω2
0

]

= 0.This equation has one root equal to zero, and for A < C < B or
A > C > B it has two real roots:

λ = ±ω0

√

(C −B)(A− C)

AB
.The existence of one positive root indicates that the uniform rotationof the rigid body about the middle axis of moment ellipsoid, the z-axis,is unstable.4.2. Prove that the equilibrium of a point mass located on the endof a compressed and twisted bar is unstable (see Problem 1.5).S o l u t i o n:In Problem 1.5 we obtain the following di�erential equations of theperturbed motion:

mẍ = −c1x+ c2y,
mÿ = −c2x− c1y.Letting x = Aeλt and y = Beλt, the following homogeneous linearsystem of algebraic equations in A and B can be obtained:

mAλ2 + c1A− c2B = 0,
c2A+mBλ2 + c1B = 0.Setting the determinant of this system equal to zero, we have
∣

∣

∣

∣

mλ2 + c1 −c2
c2 mλ2 + c1

∣

∣

∣

∣

= 0,or
(mλ2 + c1)

2 + c22 = 0.Hence,
mλ2 + c1 = ±ic2, i =

√
−1.



55At least one of the roots of this equation have positive real partswhich means that the equilibrium is unstable for x1 = x2 = 0.4.3. The motion of a control system is described by the followingdi�erential equations:̇
ψ − Ω(γ1 + γ2) = c2γ2,
γ̇1 + γ̇2 +Ωψ = −c1γ2,

γ̇1 +Ωψ = −k(γ1 − κ),where γ1, γ2, and ψ are the system coordinates, c1, c2, k, and Ω aresystem parameters, and κ(t) is the driving force. Determine the requiredcondition for system parameters such that the motion caused by thedriving force κ would be asymptotically stable.S o l u t i o n:Multiply the �rst equation by −1 and rewrite all the equations inthe following form:
Ωγ1 + (Ω + c2)γ2 − ψ̇ = 0,
γ̇1 + γ̇2 + c1γ2 +Ωψ = 0,

γ̇1 + kγ1 +Ωψ = kκ.The stability of this nonhomogeneous linear system can be determinedby considering its system of �rst approximation (cf. Example 1.4 in[11]):
Ωγ1 + (Ω + c2)γ2 − ψ̇ = 0,
γ̇1 + γ̇2 + c1γ2 +Ωψ = 0,

γ̇1 + kγ1 +Ωψ = 0.Let γ1 = Aeλt, γ2 = Beλt, and ψ = Ceλt. Substitute these into theabove and divide the resulting equations by eλt to obtain
ΩA+ (Ω + c2)B − λC = 0,
λA+ (λ+ c1)B +ΩC = 0,

(λ+ k)A+ΩC = 0.This homogeneous linear system of algebraic equations in A, B and Cmust have nontrivial solutions. So the determinant of the system mustvanish, i.e.,
∣

∣

∣

∣

∣

∣

Ω Ω+ c2 −λ
λ λ+ c1 Ω

λ+ k 0 Ω

∣

∣

∣

∣

∣

∣

= 0,



56 Chapter 4. Stability in First Approximationor after expansion
3
∑

i=0

aiλ
3−i = λ3 + (k+ c1)λ

2 + (Ω2 + kc1)λ+(Ω2c1 +Ω2k+Ωc2k) = 0,(4.1)where Ω, c1, c2, and k which are the parameters of the system, allare positive. Therefore, for asymptotic stability to prevail it is onlynecessary to satisfy inequality (4.30) in [11], i.e.,
∆2 = a1a2 − a0a3 > 0.For the problem at hand the corresponding values of ak are obtainedfrom equation (4.1) to give

∆2 = (k + c1)(Ω
2 + kc1)− (Ω2c1 +Ω2k + Ωc2k) > 0,which can be reduced to
kc1 + c21 > Ωc2.4.4. The top view schematic of a uniaxial trailer is shown in Fig. 4.1.Here m is the mass of the trailer; J is the polar inertia moment of thetrailer with respect to the vertical axis which is orthogonal to the planeof motion at the hitch point of the tractor to the trailer; G designatesthe mass centre of the trailer; v is the velocity of the tractor; and thesti�ness of the spring is c. If we neglect the nonholonomic reactive force

F at the hitch, then equations of motion of the trailer can be reducedto the following equations in the �rst approximation
m(b − a)ẍ+ cbx+ [ma(b− a)− J ] ϕ̈ = 0,

ẋ+ bϕ̇+ vϕ = 0,where the second equation describes the nonholonomic constraint atthe hitch. Determine the stability conditions of the trailer.S o l u t i o n:Determine the di�erential equations of the motion of the trailer.Considering the moments with respect to the axis which is orthogonalto the plane of motion at the mass centre G of the trailer, we have
Jϕ̈ = −cax cosϕ+ F (b − a).
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Figure 4.1The equation of the motion of the mass center in the direction parallelto the displasement of the spring is
m
d2

dt2
(x+ a sinϕ) = −cax− F cosϕ.For small angles ϕ these equations become

Jϕ̈ = −cax+ F (b − a),
mẍ+maϕ̈ = −cax− F.Eliminating F from the above set, we get

m(b − a)ẍ+ cbx+ [ma(b − a)− J ]ϕ̈ = 0. (4.2)Since the trailer can not have a motion along its axle the followingcondition applies:
ẋ cosϕ+ bϕ̇+ v sinϕ = 0or for small angles,

ẋ+ bϕ̇+ vϕ = 0. (4.3)In order to determine the stability conditions of the trailer thecharacteristic equations of di�erential equations (4.2) and (4.3) areconsidered:
∣

∣

∣

∣

m(b − a)λ2 + cb [ma(b− a)− J ]λ2

λ bλ+ v

∣

∣

∣

∣

= 0,



58 Chapter 4. Stability in First Approximationwhich expands to
[

m(b− a)2 + J
]

λ3 +m(b − a)vλ2 + cb2λ+ cbv = 0.For asymptotic stability all coe�cients must be positive, i.e., we shouldhave
b > a, v > 0. (4.4)Besides this condition (4.30) in [11] must also be satis�ed,

∆2 = a1a2 − a0a3 = mcb2v(b − a)− cbv
[

m(b− a)2 + J
]

=
= cbv [ma(b− a)− J ] > 0.From here we obtain the additional condition

J < ma(b− a). (4.5)If (4.4) and (4.5) are satis�ed, then the motion of the trailer will beasymptotically stable.4.5. The follower force P is applied to the double pendulum depictedin Fig. 4.2. Spiral springs each having a sti�ness c are used at supportpoint O and in joint O1. The length and mass of both pendulums (masspoints) are the same.

Figure 4.2Neglecting the mass of the bars, obtain the equations of motion anddetermine stability conditions of the motion with respect to ϕ1, ϕ̇1, ϕ2,and ϕ̇2.



59S o l u t i o n:In this problem the force P is nonconservative, so for the generalisedforces we get
Q1 = − ∂Π

∂ϕ1
+Q1p, Q2 = − ∂Π

∂ϕ2
+Q2p, (4.6)where Π is the potential energy due to the springs and gravity, and Q1pand Q2p are generalised forces due to P . We determine the potentialenergy as

Π = 1
2 cϕ

2
1 +

c(ϕ2−ϕ1)
2

2 +mgl(1− cosϕ1 + 1− cosϕ2).Assuming that the angles ϕ1 and ϕ2 are small, we may consider thefollowing expansions in which only up to the second order terms areretained:
1− cosϕ1 =

ϕ2
1

2
, 1− cosϕ2 =

ϕ2
2

2
.Then the expression for Π can be written as

Π =
1

2
cϕ2

1 +
c(ϕ2 − ϕ1)

2

2
+mglϕ2

12 +mgl
(ϕ2

2 + ϕ2
1)

2
,or

Π = (c+mgl)ϕ2
1 − cϕ1ϕ2 + (c+mgl)

ϕ2
2

2 (4.7)
= (c+mgl)

(

ϕ2
1 +

ϕ2
2

2

)

− cϕ1ϕ2.In order to evaluate Q1p and Q2p we consider the virtual work doneby the force P during a virtual displacement δr, where r is the radialvector attached to the �xed support at the top that locates the pointof application of the load P . Now, we have
r = r1 + r2,where r1 and r2 are vectors representing the length and the directionof the two bars. Therefore, we have

δr = δr1 + δr2.



60 Chapter 4. Stability in First ApproximationIt is necessary to take note that δr1 and δr2 are orthogonal to thevectors r1 and r2, respectively. Next, we introduce a coordinate systemin the plane of the bars such that the x-axis is vertically downward andthe y-axis is horizontal and to the right. If we denote the componentsof δr by δx and δy, then from the last equation we get
δx = l (− sinϕ1δϕ1 − sinϕ2δϕ2) ,
δy = l (cosϕ1δϕ1 + cosϕ2δϕ2) .The components of the force P are −P cosϕ2 and −P sinϕ2, andthe virtual work is

δW = Pxδx+ Pyδy = −Pl cosϕ2(− sinϕ1δϕ1−
sinϕ2δϕ2)− Pl sinϕ2 (cosϕ1δϕ1 + cosϕ2δϕ2)or, upon rearranging of terms,

δW = −Pl (cosϕ2 sinϕ1 − sinϕ2 cosϕ1) δϕ1.From here we have
Q1p = Pl sin (ϕ2 − ϕ1) , Q2p = 0.Using relations (4.6) and (4.7), we �nd the generalised forces (based onthe assumption that angles ϕ1 and ϕ2 are small, i.e., sin (ϕ2 − ϕ1) '

ϕ2 − ϕ1)
Q1 = −2 (c+mgl)ϕ1 + cϕ2 + Pl (ϕ2 − ϕ1) , (4.8)
Q2 = − (c+mgl)ϕ2 + cϕ1.Now we determine the kinetic energy of the system,

x1 = l cosϕ1,
ẋ1 = −lϕ̇1 sinϕ1,
y1 = l sinϕ1,
ẏ1 = lϕ̇1 cosϕ1,
v21 = l2ϕ̇2

1.

x2 = l cosϕ1 + l cosϕ2,
ẋ2 = −l (ϕ̇1 sinϕ1 + ϕ̇2 sinϕ2) ,
y2 = l sinϕ1 + l sinϕ2,
ẏ2 = l (ϕ̇1 cosϕ1 + ϕ̇2 cosϕ2) ,

v22 = ẋ22 + ẏ22 = l2
[

ϕ̇2
1 + 2 cos (ϕ2 − ϕ1) ϕ̇1ϕ̇2 + ϕ̇2

2

]

.Again based on the assumption that angles ϕ1 and ϕ2 are small, i.e.,
cos (ϕ2 − ϕ1) = 1, we get

v22 = l2
(

ϕ̇2
1 + 2ϕ̇1ϕ̇2 + ϕ̇2

2

)

.



61Thus, we have
T =

1

2
mv21 +

1

2
mv22 =

1

2
ml2

(

2ϕ̇2
1 + 2ϕ̇1ϕ̇2 + ϕ̇2

2

)

.Now, we can write the Lagrange equations
d

dt

∂T

∂ϕ̇j
− ∂T

∂ϕj
= Qj (j = 1, 2)

∂T
∂ϕ̇1

= ml2 (2ϕ̇1 + ϕ̇2)

d
dt

∂T
∂ϕ̇1

= ml2 (2ϕ̈1 + ϕ̈2)

∂T
∂ϕ1

= ∂T
∂ϕ2

= 0.Using Q1 from (4.8), the �rst equation becomes
ml2 (2ϕ̈1 + ϕ̈2) + 2Hϕ1 − cϕ2 − Pl (ϕ2 − ϕ1) = 0, (4.9)where

H = c+mgl.In a similar fashion we obtain the second equation for ϕ2 as:
ml2 (ϕ̈1 + ϕ̈2) +Hϕ2 − cϕ1 = 0. (4.10)Now, let ϕ1 = Aeλt, ϕ2 = Beλt. Substitute these values into (4.9) and(4.10), divide the resulting equations by eλt to obtain two homogeneousequations in A and B,

(

2ml2λ2 + 2H + Pl
)

A+
(

ml2λ2 − c− Pl
)

B = 0,
(

ml2λ2 − c
)

A+
(

ml2λ2 +H
)

B = 0.The determinant of this system must be equal to zero:
∣

∣

∣

∣

2ml2λ2 + 2H + Pl ml2λ2 − c− Pl
ml2λ2 − c ml2λ2 +H

∣

∣

∣

∣

= 0,or
∣

∣

∣

∣

2λ2 + I1 λ
2 − I2

λ2 − I3 λ2 + I4

∣

∣

∣

∣

= 0,or
λ4 + λ2 (I1 + I2 + I3 + 2I4) + I1I4 − I2I3 = 0,



62 Chapter 4. Stability in First Approximationwhere
I1 =

2H + Pl

ml2
, I2 =

c+ Pl

ml2
, I3 =

c

ml2
, I4 =

H

ml2Note that I1 + I2 + I3 + 2I4 > 0 and I1I4 − I2I3 = (c2 + 2cmgl +
m2g2l2+Pmgl2)/(ml2) > 0 always, and (I1+I2+I3+2I4)

2−4(I1I4−
I2I3) > 0, so all four roots will be imaginary. Therefore the system isstable in the vertical direction.4.6. A two-rotor Ansch�utz gyrocompass1 with a viscous damper iswidely used in some countries. If this type of a gyroscope is mountedin a ship whose northern component of velocity is constant, then thedi�erential equations of motion of the gyroscope are

ẋ1 −
k2

U cosϕ
x2 −

k2

U cosϕ
(1 − ρ)x3 = X1,

ẋ2 + U cosϕx1 = X2,
ẋ3 + Fx2 + Fx3 = X3.Here x1, x2 and x3 are variations of compass coordinates from its valuesat dynamic equilibrium; k is the frequency of free vibrations of thesensitive element (gyrosphere); U is the angular velocity of Earth'srotation; ϕ is latitude of the ship; F is the factor of �uid �ow in theviscous damper; ρ = 1− c

P l
; c and Pl are the norms of the moments ofthe damper �uid and the gyrosphere, respectively; and X1, X2, X3 areterms of higher orders in x1, x2, x3 and ẋ1, ẋ2, ẋ3.Determine condition for asymptotic stability.S o l u t i o n:Determine the equations of the �rst approximation. Let X1 = X2 =

X3 = 0. We get the following system of linear di�erential equations (inthe �rst equation the parameter ρ is replaced by ρ = 1− c

P l
):

ẋ1 −
k2

U cosϕ
x2 −

k2

U cosϕ

c

P l
x3 = 0,

U cosϕx1 + ẋ2 = 0, (4.11)
Fx2 + ẋ3 + Fx3 = 0.1 In honour of the German engineer and industrialist who invented thisgyrocompass.



63We assume x1 = Aeλt, x2 = Beλt, and x3 = Ceλt. Substitutethese expressions for xk into equation (4.11) and divide the resultingequations by eλt to obtain
λA− k2

U cosϕB − k2

U cosϕ
c
PlC = 0,

U cosϕA+ λB = 0,
FB + (λ+ F )C = 0.

A,B and C can not be equal to zero simultaneously, hence, the determinantof this system must vanish, i.e.,
∣

∣

∣

∣

∣

∣

λ − k2

U cosϕ − k2

U cosϕ
c
Pl

U cosϕ λ 0
0 F λ+ F

∣

∣

∣

∣

∣

∣

= 0,or
λ3 + Fλ2 + k2λ+ k2F

(

1− c

P l

)

= 0.The Hurwitz condition requires that all the coe�cients and ∆2 =

a1a2 − a0a3 be positive. This means that c

P l
< 1, or c < P l, so that

∆2 = Fk2 − Fk2
(

1− c

P l

)

= Fk2
c

P l
> 0. Thus the only requiredcondition is that we should have c < P l.4.7. A stable platform is a device which is sometimes used innavigation to determine, simultaneously, the meridian and horizontalplane for a sailing ship. For an anchored ship, the di�erential equationsof its perturbed motion can be reduced to two identical equations:

ẍ1 + 2b1ẋ1 + (ν2 − Ω2)x1 − 2Ωẋ2 = X1,
ẍ2 + 2b2ẋ2 + (ν2 − Ω2)x2 + 2Ωẋ1 = X2.Here x1 is a quantity proportional to the angle of deviation from themeridian plane; x2 is the variation of the auxiliary variable, which isassociated with the constructive angle (see [4]); b1 > 0 and b2 > 0are coe�cients that characterise the dissipative forces; ν =

√

g/R =
0.00124 1/sec is Schuler frequency2; Ω = U sinϕ; U = 7.29 · 10−5 1/secis the angular velocity of Earth's rotation; ϕ is the latitude of the ship;and X1 and X2 are terms of higher orders in x1, x2, ẋ1, and ẋ2.2 Max Schuler was a German scientist who, in 1912, investigated the period ofunperturbed oscillations of the gyroscopic pendulum in a gyrocompass.



64 Chapter 4. Stability in First ApproximationIn two other analogous di�erential equations of perturbed motion
x3 and x4 determine the angle of deviation from the horizontal planeand the variation of the other auxiliary variable, which is associatedwith the second constructive angle (see [4]).Determine the condition for asymptotic stability of the device.S o l u t i o n:Let X1 = X2 = 0, then we get the system of the �rst approximation

ẍ1 + 2b1ẋ1 +
(

ν2 − Ω2
)

x1 − 2Ωẋ2 = 0, (4.12)
2Ωẋ1 + ẍ2 + 2b2ẋ2 +

(

ν2 − Ω2
)

x2 = 0.As usual, we take x1 = Aeλt and x2 = Beλt; substitute these expressionsfor x1 and x2 into (4.12) and divide the resulting equations by eλt toobtain
[

λ2 + 2b1λ+
(

ν2 − Ω2
)]

A− 2ΩλB = 0,
2ΩλA+

[

λ2 + 2b2λ+
(

ν2 − Ω2
)]

B = 0.

A and B can not vanish simultaneously, so the determinant of thesystem must be equal to zero, i.e.,
∣

∣

∣

∣

λ2 + 2b1λ+
(

ν2 − Ω2
)

−2Ωλ
2Ωλ λ2 + 2b2λ+

(

ν2 − Ω2
)

∣

∣

∣

∣

= 0,or,
λ4 + 2 (b1 + b2)λ

3 + 2
[(

ν2 − Ω2
)

+ 2b1b2 + 2Ω2
]

λ2 + (4.13)
2 (b1 + b2)

(

ν2 − Ω2
)

λ+
(

ν2 − Ω2
)2

= 0.For asymptotic stability of the system under consideration which isgoverned by (4.12), the necessary and su�cient condition is to satisfyHurwitz's criterion (cf. (4.32) in [11]) as follows:1. All the coe�cients in (4.13) must be positive,2. ∆3 = a1a2a3 − a0a
2
3 − a21a4 > 0. ∆3 is obtained as

∆3 = 8 (b1 + b2)
2 [(

ν2 − Ω2
)

+ 2b1b2 + 2Ω2
] (

ν2 − Ω2
)

−
4 (b1 + b2)

2 (
ν2 − Ω2

)2 − 4 (b1 + b2)
2 (
ν2 − Ω2

)2
=

4 (b1 + b2)
2 (
ν2 − Ω2

) [

2
(

ν2 − Ω2
)

+ 4b1b2 + 4Ω2 − 2
(

ν2 − Ω2
)]

=

16 (b1 + b2)
2 (
ν2 − Ω2

) (

b1b2 +Ω2
)

.



65If ν > Ω, then ∆3 and all the coe�cients in equation (4.13) are positiveand Hurwitz's criterion is satis�ed. Hence, it follows that the system(4.2) is asymptotically stable, and therefore, according to Liapunov'stheorem of stability in the �rst approximation (cf. Theorem 4.4 in [11])the system under consideration, where X1 6= 0 and X2 6= 0, is stable.



Chapter 5Stability of Linear AutonomousSystems
5.1. Given the following equations of a perturbed motion:

ẋ1 = x1 + x2 − x3,
ẋ2 = −x1 + 3x2 − x3 − 2x4,
ẋ3 = 6x2 − 3x3 − 3x4,
ẋ4 = −3x1 + 3x2 − 3x4,determine the roots of the characteristic equation and the stability ofthe motion.S o l u t i o n:Determine the A− Eλ matrix for the given problem:

A− λE =









1− λ 1 −1 0
−1 3− λ −1 −2
0 6 −3− λ −3
−3 3 0 −3− λ







The determinant of this matrix has four roots: λ1 = λ2 = 0, λ3 =
λ4 = −1. Executing the following elementary matrix operations: addthe third column to the second; multiply the third column by 1−λ and66



67add the result to the �rst column; will result in
A− λE →









0 0 −1 0
−2 + λ 2− λ −1 −2

−3 + 2λ+ λ2 3− λ −3− λ −3
−3 3 0 −3− λ







Interchange the third column with the �rst one; multiply the �rstcolumn by −1; using elementary matrix operations obtain zeros forall entries in column one except for the �rst entry:








1 0 0 0
0 2− λ −2 + λ −2
0 3− λ −3 + 2λ+ λ2 −3
0 3 −3 −3− λ







Next, add the second column to the third column;








1 0 0 0
0 2− λ 0 −2
0 3− λ λ (λ+ 1) −3
0 3 0 −3− λ







Follow this by multiplying the second column by -1 and subtracting thefourth column from the result to obtain








1 0 0 0
0 λ 0 −2
0 λ λ (λ+ 1) −3
0 λ 0 −3− λ







Subtract the second row from the third row; subtract the second rowfrom the fourth row:








1 0 0 0
0 λ 0 −2
0 0 λ (λ+ 1) −1
0 0 0 −1− λ







Multiply the second column by 2; multiply the fourth column by λ: addthe fourth column to the second column; change the sign of the fourthcolumn:








1 0 0 0
0 0 0 2
0 −λ λ (λ+ 1) 1
0 −λ (λ+ 1) 0 1 + λ











68 Chapter 5. Stability of Linear Autonomous SystemsDivide the second row by 2; subtract the second row from the thirdone; multiply the second row by 1 + λ and subtract from the fourth:








1 0 0 0
0 0 0 1
0 −λ λ (λ+ 1) 0
0 −λ (λ+ 1) 0 0







Interchange the second and fourth columns; multiply the third row λ+1and subtract the result from the fourth row;








1 0 0 0
0 1 0 0
0 0 λ(λ + 1) −λ
0 0 −λ (λ+ 1)

2
0







Interchange columns three and four; change the sign of the third andthe fourth column; multiply the third column by λ + 1 and add theresult to the fourth column:








1 0 0 0
0 1 0 0
0 0 λ 0

0 0 0 λ (λ+ 1)
2







Thus we get the Smith canonical form of the matrix. The roots are
λ1 = 0, λ2 = 0, λ3 = −1, and λ4 = −1. The following solutions innormal coordinates corresponds to these roots:

z1 = z01, z2 = z02, z3 = z03e
−t, z4 = z04e

−t, (5.1)where z01, z02, z03, and z04 are the initial values of the correspondingcoordinates. Since solution (5.1) is stable with respect to normal coordinates,the solution with respect to x-coordinates is also stable.5.2. The following equations of a perturbed motion are given:
ẋ1 = x1 − 2x2 + x4,
ẋ2 = −x1 + 3x2 − x3 − 2x4,
ẋ3 = 3x2 − 2x3 − 2x4,
ẋ4 = −3x1 + 6x2 − x3 − 4x4.



69Determine the roots of the characteristic equation and the stabilityof the motion.S o l u t i o n:Determine the A− Eλ matrix for the given equations:
A− λE =









1− λ −2 0 1
−1 3− λ −1 −2
0 3 −2− λ −2
−3 6 −1 −4− λ









.Multiply the last column by −(1 − λ) and add it to the �rst column;then multiply the fourth column by 2 and add it to the second column;next using elementary operations make all the entries in the fourthcolumn, except the �rst one, to vanish:








0 0 0 1
1− 2λ −1− λ −1 0
2− 2λ −1 −2− λ 0

1− 3λ− λ2 −2− 2λ −1 0









.Multiply the second and third columns by -1; interchange the �rst andthe fourth columns:








1 0 0 0
0 1 + λ 1 1− 2λ
0 1 2 + λ 2− 2λ
0 2 + 2λ 1 1− 3λ− λ2









.Subtract the second row from the fourth row:








1 0 0 0
0 1 + λ 1 1− 2λ
0 1 2 + λ 2− 2λ
0 1 + λ 0 −λ− λ2









.Subtract the fourth row from the second one:








1 0 0 0
0 0 1 1− λ+ λ2

0 1 2 + λ 2− 2λ
0 1 + λ 0 −λ− λ2









.



70 Chapter 5. Stability of Linear Autonomous SystemsInterchange the second and the third columns:








1 0 0 0
0 1 0 1− λ+ λ2

0 2 + λ 1 2− 2λ
0 0 1 + λ −λ− λ2









.Multiply the second column by 1 − λ + λ2 and substruct it from thefourth column:








1 0 0 0
0 1 0 0
0 2 + λ 1 −λ− λ2 − λ3

0 0 1 + λ −λ− λ2









.Multiply the second row by the −(2 + λ) and add it to the third row;Multiply the fourth column by -1:








1 0 0 0
0 1 0 0
0 0 1 λ+ λ2 + λ3

0 0 1 + λ λ+ λ2









.Multiply the third column by λ + λ2 + λ3 and subtract it from thefourth column; multiply the fourth column by -1:








1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 + λ λ2 + 2λ3 + λ4









.Multiply the third row by −(1 + λ) and add to the fourth row.








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 λ2(λ+ 1)2









.Now we have the normal form of the matrix A− λE. We note that theinvariant factors are: E1 = 1, E2 = 1, E3 = 1, and E4 = λ2(λ + 1)2.Therefore, the A−λE matrix has two elementary divisors: λ2, (λ+1)2,with the corresponding roots: λ1 = λ2 = 0, λ3 = λ4 = −1.



71The equation of the perturbed motion (cf.[11]) in canonical variablesconsists of two Jordan blocks (cf. normal Jordan form (5.40) in [11]):
ż1 = 0, ż2 = z1, ż3 = −z3, ż4 = z3 − z4.From these it is easy to get the solution as:

z1 = z01, z2 = z01t+ z02, z3 = z03e
−t, z4 = (z04 + z03t) e

−t.The canonical variables are unstable (z2 → ∞ as t→ ∞), and thereforethe system is unstable.5.3. The nonhomogeneous linear di�erential equations
ẋ1 = −5x1 + 2x3 + 2t3 + 5t2 + 2t,

ẋ2 = 41x1 + 5x2 − 19x3 − 19t3 − 41t2 − 10t+ 2,

ẋ3 = 5x1 + 2x2 − 3x3 − 3t3 − 8t2 − 4thave the particular solution
x̄1 = t2, x̄2 = 2t, x̄3 = −t3.Determine the stability of this solution and construct the solution ofthe equation of the perturbed motion in terms of canonical variables.S o l u t i o n:The stability of the solution
x1 = t2, x2 = 2t, x3 = −t3 (5.2)could be investigated using the homogeneous parts of the equations,i.e., the equations (cf. Example 1.4 in [11]):
ẋ1 = −5x1 + 2x3,

ẋ2 = 41x1 + 5x2 − 19x3,

ẋ3 = 5x1 + 2x2 − 3x3.The A− λE matrix for this system of equations is
A− λE =





−5− λ 0 2
41 5− λ −19
5 2 −(3 + λ)



 . (5.3)



72 Chapter 5. Stability of Linear Autonomous SystemsDivide the third column by 2; interchange the �rst and the third columns:




1 0 −(5 + λ)
− 19

2 5− λ 41
− 3+λ

2 2 2



 .Multiply the �rst column by 5+λ and add to the third column; multiplythe third column by -2. Now, in the �rst column, except for the �rstentry get all zeros:




1 0 0
0 5− λ 13 + 19λ
0 2 5 + 8λ+ λ2



 .Divide the second column by 2; multiply the second column by −(5 +
8λ+ λ2) and add the result to the third column:





1 0 0

0 5−λ
2

(λ+1)3

2
0 1 0



 .Multiply the third row by (5− λ) /2 and subtract it from the secondrow; interchange the second and the third row:




1 0 0
0 1 0
0 0 (λ+ 1)3



 .Matrix (5.3) is in normal diagonal form; it contains three invariantfactors
E1 = 1, E2 = 1, E3 = (λ+ 1)3.The root λ1 = λ2 = λ3 = −1 is a root with a multiplicity 3 for theinvariant factor E3 as well as the equation. Therefore, the di�erentialequations or the canonical variables are (cf. equation (5.52) in [11])

ż1 = −z1, ż2 = z1 − z2, ż3 = z2 − z3.The solution is
z1 = z01e

−t, z2 = (z02 + z01t) e
−t, z3 =

(

z03 + z02t+ z01
t2

2

)

e−t.This solution is stable, therefore partial solution (5.2) is asymptoticallystable.



Chapter 6The E�ect of Force Type on Stabilityof Motion
6.1. Determine the di�erential equations which govern the motion inProblem 3.9 and show that they contain gyroscopic forces. For theunstable case when points O1, O and C are collinear and mω2 > c,determine the degree of instability and show that the system may bestabilised by gyroscopic forces.S o l u t i o n:1. In Problem (3.9), we consider the equations corresponding toequation (3.18). In these equations, those terms that contain the derivativesin the �rst power, i.e., 2mωẏ and 2mωẋ, lead to matrix of coe�cients

(

0 −2mω
2mω 0

)which is a skew-symmetric matrix, indicating that these terms aregyroscopic forces.2. For the unstable case the degree of instability should be equalto 2. This follows from the observation that
c1 − c2 =

(

c−mω2
)2
> 0.for all c and ω (refer to the solution for Problem 3.9).6.2. Using the previous problem show the validity of Thomson�Tait�Chetaev Theorems 6.5 and 6.6.73



74 Chapter 6. The e�ect of force type...S o l u t i o n:If we take into account the resistance forces −bẋ and −bẏ, thenHurwitz's criterion is satis�ed for mω2 < c, and the stable systembecomes asymptotically stable. For mω2 > c Hurwitz's criterion is notsatis�ed and the stable system becomes unstable.6.3. Two unstable potential systems are given:
I) q̈1 − q1 +2q2 +3q3 = 0 , II) q̈1 − q1 +2q2 +3q3 = 0 ,
q̈2 + 2q1 + q2 = 0 , q̈2 + 2q1 + q3 = 0 ,
q̈3 + 3q1 + q3 = 0 ; q̈3 + 3q1 + q2 + q3 = 0 .Why are the systems potential? Why are they unstable? Is it possibleto stabilise them by gyroscopic forces?Solutions:1. Both systems are potential because the coordinate matrices aresymmetric.2. In each case, to determine the stability of the system, Hurwitz'scriterion is examined.For the �rst system, we have





−1 + λ2 2 3
2 1 + λ2 0
3 0 1 + λ2



 .For λ = 0, the determinant of this matrix is evaluated to be -14.Then, based on Hurwitz's theorem, we can conclude that the �rstsystem is unstable and could not be stabilised by adding gyroscopicforces.For the second system when λ = 0 we have the determinant
∣

∣

∣

∣

∣

∣

−1 2 3
2 0 1
3 1 1

∣

∣

∣

∣

∣

∣

= 9 > 0.For all other λ, this determinant becomes
∣

∣

∣

∣

∣

∣

−1 + λ2 2 3
2 λ2 1
3 1 1 + λ2

∣

∣

∣

∣

∣

∣

=

λ2(λ4 − 1) + 6 + 6− 3λ2 − (λ2 − 1)− 4(1 + λ2) = λ4 − 9λ2 + 9.



75The negative sign in front of λ2 indicates that the system is unstable,but it could be stabilised by adding gyroscopic forces to the system(cf. Problem 3.9, where, for c < mω2, in the absence of the gyroscopicforces −2mωẏ and 2mωẋ the system would be unstable. In fact, thepresence of these gyroscopic forces has made the system stable for all
c and ω.)6.4. Kinetic and potential energies of a gyroscopic pendulum atthe upper vertical position of its axis of symmetry are, respectively,

T = 1
2 Jx(cos

2α β̇2 + α̇2) + 1
2 Jz(ϕ̇− β̇ sinα)2,

Π = Pl cosβ cosα,where α and β are the angles which de�ne the position of the axis ofgyroscope with respect to a vertical axis, ϕ is the angle of rotationof the gyroscope, Jx and Jz are principle moments of inertia of thegyroscope, P is its weight, and l is the distance from its centre of massto its point of suspension.Using the cyclic integral:
∂T

∂ϕ̇
= Jz(ϕ̇− β̇ sinα) = H = const,determine di�erential equations governing the motion of the gyroscopicpendulum and �nd that value of the angular momentum H , for whichthe upper position of the pendulum can be stabilised by gyroscopicforces.S o l u t i o n:Assuming small angles α and β, the kinetic and potential energy ofthe system are:

T = 1
2Jx

(

α̇2 + β̇2
)

+ 1
2Jz

(

ϕ̇− β̇α
)

,

Π = Pl
(

1− α2

2

)(

1− β2

2

)

= − 1
2Pl

(

α2 + β2
)

.where the constant quantity Pl
2
is ignored. Then, the Lagrange equationsread as

Jxα̈ − Hβ̇ − Plα = 0,

Jxβ̈ + Hα̇− Plβ = 0,
H = ∂T

∂ϕ̇ = Jz (ϕ̇− ϕ̇ sinα)



76 Chapter 6. The e�ect of force type...with the characteristic equation
∣

∣

∣

∣

Jxλ
2 − Pl −Hλ
Hλ Jxλ

2 − Pl

∣

∣

∣

∣

= 0,or
J2
xλ

4 +
(

H2 − 2JxPl
)

λ2 + P 2l2 = 0,

λ2 =
−
(

H2 − 2JxPl
)

±
√

(H2 − 2JxPl)
2 − 4J2

xP
2l2

2J2
x

=

=
−
(

H2 − 2JxPl
)

±
√
H4 − 4H2JxPl

2J2
x

.When H > 2
√
JxPl, the expression under the square root sign will bepositive and both values of λ2 will be real and negative, and thereforethe pendulum will be stable in the �rst approximation.6.5. The di�erential equations of a perturbed motion are:

Aq̈ +HG q̇ + Cq = 0.Here A, G, and C are square (n× n) matrices of constants. Moreover,
A = A

T is a positive de�nite symmetric matrix, composed from inertiacoe�cients of the system; G = −GT is a skew-symmetric matrix ofgyroscopic forces; C = C
T is a symmetric matrix of potential forces; qis a column matrix; H is a positive parameter. For H = 0 the systemis unstable.Prove the following theorem. If gyroscopic forces satisfying the followingconditions:1) detG 6= 0,2) the precession system HG q̇ + Cq = 0 is stable,3) the roots of the characteristic equation are simple,are applied to the unstable potential system, then for rather large valuesof H , the unstable motion can be stabilised by these gyroscopic forces[4]. (This is a rather di�cult problem, and its solution of requires agood level of insight.)



77S o l u t i o n:Recall that for skew-symmetric matrices the determinant of an oddorder matrix vanishes, whereas for an even order matrix the determinantis equal to the square of a rational function of its elements. Therefore,the determinant of an odd order skew-symmetric matrix whose elementsare real numbers must be nonnegative (cf. Section 5.2 Matrices andBasic Operations, a) General de�nitions in [11]).First, let us consider the equation
Aq̈ +HGq̇ + Cq = 0, (6.1)and show that its characteristic equation
|Aλ2 +HGλ+ C| = 0, (6.2)contains only the even powers of the unknown parameter λ. To thisend, denote the determinant in (6.2) as ∆(λ). Then, replacing λ by

−λ, we have
∆(−λ) =

∣

∣Aλ2 −HGλ+ C
∣

∣ .Since interchanging the columns and rows will not change the determinant,we have:
∆(−λ) =

∣

∣ATλ2 −HGTλ+ CT
∣

∣ .Matrices A and C are symmetric, therefore, AT = A and CT = C.Matrix G is skew-symmetric, so that GT = −G (cf. equation (5.16) in[11]). Therefore, we can write
∆(−λ) =

∣

∣Aλ2 +HGλ+ C
∣

∣ = ∆(λ).This expression proves that in the determinant given by (6.2) λ appearsonly in the even powers.From the condition that |G| 6= 0 it follows that n, the order ofthis matrix, is an even number. Now, let n = 2s. Now, based on thecondition stated in the problem, the system (6.1) is unstable when
H = 0. To prove that for large H this system becomes stable, it isnecessary and su�cient to show that for large H all roots of equation(6.2) are pure imaginary, and all λ2 are real negative numbers.To this end, for a large H , we introduce the small parameter µ =
H−1, and let

λ =
ν

H
= νµ.



78 Chapter 6. The e�ect of force type...Then equation (6.2) becomes
∆(ν, µ) =

∣

∣µ2Aν2 +Gν + C
∣

∣ = 0, (6.3)so that for µ = 0, we get
∆(ν, 0) = |Gν + C| = 0. (6.4)Expanding the determinant (6.3) in powers of ν2, the coe�cients ofthe resulting equation will depend on the small parameter µ. Recallingthe theorem that asserts the continuous dependence of the roots ofan equation on its coe�cients, we observe that for su�ciently smallvalues of µ, i.e., for large H , each of the n roots of the characteristicequation (6.2) that corresponds to di�erential equation (6.1), is inthe neighbourhood of the corresponding roots of equation (6.4). Theroots of this latter equation are pure imaginary since this equationcontains only the even powers of ν (this can be shown by using thesame approach as was used for equation (6.2)). Thus, under the statedconditions system (6.2) is stable.Denoting these roots by νki, each will correspond to a λk. Then, forlarge H the n roots of equation (6.2) are in the vicinity of the followingroots

λ
(1)
k = ±νk

H
i (k = 1, . . . , n) . (6.5)Next, let

λ = Hγ = µ−1γ. (6.6)Substitute this expression for λ into equation (6.2), and divide theresulting equation by µ−2n. As the result the characteristic equationbecomes
∆(γ, µ) =

∣

∣Aγ2 +Gγ + µ2C
∣

∣ = 0.Upon dividing by γn, for µ = 0, we get
∆(γ, 0) = |Aγ +G| = 0. (6.7)In a similar manner we can show that the n roots of equation (6.2)are in the neighbourhood of the pure imaginary roots of (6.7). It shouldbe noted that equation (6.7) is not very di�erent from equation (6.4),and unlike matrix C, matrix A is positive de�nite. Denoting the rootsof (6.7) as γki, they are related to λk by means of (6.6). Thus, the nroots of equation (6.2) will be in the vicinity of the following roots

λ
(2)
k = ±Hγki (k = 1, . . . , n). (6.8)



79Expressions (6.5) and (6.8) prove that for large H the unstable system(6.1) may be stabilised by gyroscopic forces.The following two remarks are in order:1. The roots must be simple because in moving from equation (6.3)to (6.4) if the roots of the characteristic equations (6.3) are not simplethen the roots of equation (6.4) can have small real parts.2. The quantities νk
H

in (6.5) and Hγk in (6.8) are the frequenciesof harmonic vibrations. The parameter H in a gyroscopic system isproportional to the angular velocity of the gyroscope, which is verylarge (150000-200000 rev./min). The equations obtained for frequenciesshow that the frequencies ( νkH ) are very small, with very large periods.These represent the system precessions which can be damped slowlyin the presence of dissipative forces. The remaining frequencies (Hγk),are very large with small periods. These represent the nutations of thesystem which are damped very quickly in the presence of dissipativeforces. In practical application of theory of gyroscopes, as a rule, thenutations are ignored.



Chapter 7The Stability of NonautonomousSystems7.1. The di�erential equation of a perturbed motion is
ẍ+ aẋ+

(

2−
√

1− x2 sin3 t
)

x = 0,where a = const.What condition has to be satis�ed by a, to ensure asymptotic stabilityof the system with respect to x and ẋ?S o l u t i o n:This equation is similar to equation (7.23) in [11]. For α(t, x, ẋ) =const, this system is stable provided condition (7.43) in [11] is satis�ed,whereB and b are the maximum and minimum of the function β(t, x, ẋ).In Problem 7.1 this function is
β = 2−

√

1− x2 sin3 t.Obviously, B = 3 (for x = 0 and t = π), and b = 1 (for x = 0 and
t = π

2 ). Thus, in view of (7.43) in [11], the system is asymptoticallystable for a > √
3− 1.7.2. A perturbed motion is de�ned by the following set of homogeneouslinear di�erential equations with periodic coe�cients
ẋ1 = −x1 +sin t · x2,
ẋ2 = cos t · x1 −x2 − sin t · x3
ẋ3 = cos t · x2 −x3.80



81Develop a computer program to integrate these equations over the timeinterval [0, 2π] with initial conditions
xkj =

{

1, k = j
0, k 6= 0Obtain the fundamental matrix A. Find the roots of the characteristicequation. Check your results for these roots and analyze the stabilityof the system.S o l u t i o n:This system of linear di�erential equations with periodic coe�cients(the period is equal to 2π) should be integrated numerically using anyappropriate computer code. The interval of integration is [0, 2π] withthe given initial conditions. Then we can get the matrix correspondingto (7.61) and an equation similar to (7.64) in [11]. Solving this equationwe obtain the roots of the characteristic equation:

ρ1 = 2.566519 · 10−5, ρ2,3 = 0.008405± 0.013532 i.Since the moduli of these roots are less than one then the system isasymptotically stable.Using
p1p2p3 = exp

∫ 2π

0

(−3)dtthe accuracy or correctness of the results can be checked. The checkgives good agreement
ρ1ρ2ρ3 = 6.512428 · 10−9, exp−6π = 6.512412 · 10−9.7.3. The equations of a perturbed motion are

ẋ1 = −x31 + cos 2t · x1x32,
ẋ2 =

(

1 + sin2 t
)

x21x
2
2 − 2x52.It is required to investigate the stability of the unperturbed motion

x1 = x2 = 0. (In the book [11], there is an error in the second equation.The last term in this equation must have a coe�cient of 2.)



82 Chapter 7. The Stability of Nonautonomous SystemsS o l u t i o n:We consider the following Liapunov function for this system:
V =

1

2

(

x21 + x22
)

.This is a positive de�nite function and it is an implicit function oftime. Its derivative with respect to time is
V̇ = x1ẋ1 + x2ẋ2.Substitute the expressions for ẋ1 and ẋ2 from (7.1) to get

V̇ = −x41 + cos 2tx21x
3
2 +

(

1 + sin2 t
)

x21x
3
2 − 2x62in which after replacing cos 2t by cos2 t− sin2 t we can obtain

V̇ = −x41 +
(

1 + cos2 t
)

x21x
3
2 − 2x62. (7.1)The expression in (7.1) is a quadratic function in terms of x21 and

x32. Let us prove that V̇ is a negative de�nite function. To this end weuse Sylvester's criterion. The matrix of coe�cients for the variables x21and x32 is
A(x, t) =

(

−1 1
2

(

1 + cos2 t
)

1
2

(

1 + cos2 t
)

−2

)

.From which we have
∆1 = a11 = −1, ∆2 = a11a22 − a12a21 = 2− 1

4

(

1 + cos2 t
)2
.Thus,

∆1 ≤ δ1 = −1 < 0, ∆ ≥ δ2 = 1 > 0 ( for t = πn, n = 0, 1, 2, . . .).These inequalities show that conditions (7.7) in [11] are satis�ed,and therefore, V̇ is a negative de�nite function with respect to x21and x32, and hence with respect to x1 and x2. Thus, V is positivede�nite, whereas its derivative with respect to time is negative de�nite.Therefore, for the system given in (7.1) all conditions of Liapunov'stheorem of asymptotic stability are satis�ed.



837.4. Investigate the stability of a perturbed motion which is governedby the following equations:
ẋ1 =

cos2 t
√

1 + sin2 t
x21 −

x1x
2
2√

1 + cos2 t

ẋ2 =
x21x2√

1 + cos2 t
− x22S o l u t i o n:Let us consider the positive de�nite function V = 1

2

(

x21 + x22
). Byvirtue of the given expressions, the time derivative of this function is

V̇ =
cos2 t

√

1 + sin2 t
x31 − x32.The function V is positive de�nite in the whole x1, x2-plane, whileits derivative is positive, in the sense of Chetaev, in the domain x1 > 0,

x2 < 0. Thus, the equilibrium positions x1 = 0 and x2 = 0 are unstable(Chetaev Theorem).7.5. The equation of a perturbed motion is
ẍ+

(

k − 2 cos2 0.05 t
)

x = 0. (7.2)Determine for what values of k parametric resonance occurs.S o l u t i o n:This equation could be easily transformed into Mathieu's equation(7.89) in [11]. To this end, we use
2 cos2 α = 1 + cos 2α.Then (7.3) can be written as

d2x

dt2
+ (k − 1− cos 0.1t)x = 0. (7.3)Now, let us introduce the nondimensional time, τ = 0.1t, so that

dτ
dt = 0.1,

ẋ = dx
dt = dx

dτ
dτ
dt = 0.1 dx

dτ ,

ẍ = 0.01 d2x
dτ2 .



84 Chapter 7. The Stability of Nonautonomous SystemsThen equation (7.4) can be written as
d2x

dτ2
+ (δ + ε cos τ)x = 0,where

δ =
(k − 1)

0.01
; ε = −0.01.For small ε parametric resonance occurs at the points δ =

n2

4
. Thesepoints correspond to k = 1 +

n2

4
0.01 (n = 0, 1, 2, 3, . . .).



Chapter 8Structural StabilityBuckling analysis is an important consideration in the design of elasticstructures in various branches of engineering such as naval architecture,missile and rocket manufacturing, and civil and mechanical structures.In this Chapter the stability of elastic structures under static loadingis investigated. Three main methods used in such an investigationare discussed brie�y1. Using these approaches stability of equilibriumstates under conservative and non-conservative loads can be analyzedby considering the corresponding critical loads.Equilibrium method of stability analysis. Euler approachIn classical problems of linear elasticity where in�nitely small deformationsare assumed, the equilibrium conditions are assumed to be satis�ed bythe forces acting on the undeformed elastic system. This assumptionwhich is essential for Kirchho�'s general uniqueness theorem [9, 12]leadsto unique solutions for such linear problems. On the other hand, informulating buckling problems this assumption is dropped and theequilibrium conditions are satis�ed by the forces acting on the deformedelastic system. This leads to an essentially nonlinear formulation of suchproblems in the sense that displacements are not linearly proportionalto the externally applied loads, and, in fact, often the deformation of astructure will not be uniquely determined by the applied loading.According to Kirchho�'s theorem there is only one set of solutions ofstresses, strains, and displacements for an elastic body in equilibrium,1 In some literature a fourth method, called "imperfection method"is alsoconsidered [14]. 85



86 Chapter 8. Structural Stabilitysatisfying all basic equations of linear elasticity for a given body forceand boundary conditions. In fact, any two sets of solution for the samebody force and boundary conditions, at most may di�er only by therigid body displacement of the system, i.e., the di�erence in any two setsof solution describes the rigid body motion of the system. Therefore,the solution of the such a linearly formulated problem is always stable.The su�cient condition required for satisfying Kirchho�'s theorem isthat the potential energy of the elastic system should be a positivede�nite function.Buckling equations are obtained by considering variations of thenonlinear equations. To this end, each unknown x in these equations isreplaced by x0+δx. Here, the x0 describe the "initial equilibrium"state.The stability of this initial state which satis�es the nonlinear system ofequations is to be investigated. The δx describe adjacent equilibriumstates that are in�nitesimally close to the initial state. They satisfythe linear homogeneous equations (the buckling equations) and thehomogeneous boundary conditions, that are obtained as the result oflinearizing the initial nonlinear equations by δx (see Section 1.1 in [11]).Then, considering the non-trivial solutions of the buckling equation thecritical load(s) may be determined. In dealing with buckling problemsit is convenient to assume that the load varies proportionally to aloading parameter λ > 0. Then, the variables x0 describing the initialequilibrium state and the coe�cients of the buckling equation dependon λ. In this way, the buckling problem is reduced to an eigenvalueproblem. The least (positive) eigenvalue is taken as the �rst criticalvalue λ = λ∗ leading to the corresponding buckling mode. Such anapproach is called equilibrium or Euler analysis of stability due toL. Euler who in 1744 used this approach to study the stability of axiallycompressed bars. His paper [7] is considered to be the �rst work onstructural stability.Example 8.1Apply Euler analysis to obtain the critical buckling load for a simplysupported bar under axial compression (Fig. 8.1).Here E is Young's modulus, I is the moment of inertia of the cross-section of the bar with respect to the axis about which the buckling isbeing considered, l is the bar length, and P is the axial force.
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Figure 8.1 Problem 8.1.S o l u t i o n:The equilibrium of the bar is governed by the equation
EI

d4w

dx4
+ P

d2w

dx2
= 0, (8.1)where w is the lateral displacement of the bar. The boundary conditionsfor a simply supported bar are

w (0) = 0,
d2w

dx2

∣

∣

∣

∣

x=0

= 0, w (l) = 0,
d2w

dx2

∣

∣

∣

∣

x=l

= 0.We seek those values of P for which the system admits nontrivialequilibrium states. To this end, we consider the solution of (8.1) in theform
w (x) = A sin kx+B cos kx+ Cx +D (8.2)where

k2 =
P

EI
or P = EIk2.Substituting (8.2) into the boundary conditions we get

B = C = D = 0, sin kl = 0. (8.3)The lowest non-zero value of kl satisfying (8.3) is π. Therefore,
Pcr =

π2EI

l2
.



88 Chapter 8. Structural StabilityThis approach su�ers from a few shortcomings that need to bepointed out. Firstly, this approach does not address the question ofstability of a structure directly. It deals with this question in a ratherindirect manner by seeking the loading(s) at which there exist in�nitesimallyclose adjacent equilibrium states. Secondly, the Euler approach cannot consider the mass distribution in the system. Finally, under somecircumstances it may provide the wrong results. Examples of such casesare either1) when the initial equilibrium state becomes unstable without anyin�nitesimally close equilibrium states appearing, and the system startsto experience �utter (see second part of solution of Problem 8.1);2) when the equilibrium state under investigation is stable and theclose equilibrium states exist, yet they are unstable (see [14]). Moreover,for many non-conservative systems the results obtained by means ofequilibrium approach are not correct (for example, stability analysisof a bar under an axial compressive follower force). Nevertheless, fora large number of conservative systems this approach provides correctresults. Unfortunately, to date no reliable criteria have been establishedthat can be used to classify the type of problems or the conditions forwhich equilibrium method will yield the correct results.Energy method of stability analysis. Lagrange�Dirichletapproach.In the stability analyses of an equilibrium state it is convenientto make use of energy principles. These are based on the Lagrange�Dirichlet theorem that states: If for a mechanical system under staticconservative forces with ideal holonomic constraints2 the potential energyat an equilibrium state attains a strict minimum (i.e., is positive de�nite),then this state is stable. For example, to prove that a system with onedegree of freedom has a stable equilibrium state, we should evaluate thepotential energy of the system Π, and prove that Π′ = 0 and Π′′ > 0at this state.Example 8.2Investigate the stability of the buckled bar given in Example 8.1.Such a buckled form represents the post-buckling state of the bar.2 The work done by ideal constraints during any virtual displacements is zero.Holonomic constraints do not depend on velocities and accelerations.



89S o l u t i o n:When one end of the bar is allowed to be displaced only in theaxial direction, then the main post-buckling deformation is of bendingform. We assume that the bar is inextensible along its longitudinal axis(elastic axis). Then, the axial displacement u(s) is
u (s) = −

∫ s

0

(1− cos θ) ds,where s is the length along the elastic axis (Fig. 8.1), and θ =
dw

ds
isthe slope of the buckled bar.The bending moment is

M = EI
dθ

ds
,so that the potential energy of the bar becomes

Π =

∫ l

0

[1

2
EI

(

dθ

ds

)2

− P (1− cos θ)
]

dsFor small, yet �nite deformations the deformed elastic curve may beapproximated by the �rst mode, i.e., w1 = sin
πs

l
. Then, the solutionfor the buckled bar in the �rst approximation can be given as

θ (s) = cθ1 (s) , where θ1 (s) = cos
πs

lSince θ is small we have
cos θ = 1− 1

2θ
2 + 1

24θ
4 − · · · ,

1− cos θ = 1
2θ

2 − 1
24θ

4 − · · ·Then,
Π ' EIπ2c2

4l
−Pc

2l

4
+
Pc4l

64
=
EI

4l

[

c2− P

Pcr
c2+

P

16Pcr
c4
]

, Pcr =
π2EI

l2and
Π′

c '
EI

4l

[

2c

(

1− P

Pcr

)

+
P

4Pcr
c3
]

, (8.4)
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Π′′

c ' EI

4l

[

2

(

1− P

Pcr

)

+
3P

4Pcr
c2
]Equation (8.4) has two roots: c1 = 0 which corresponds to the undeformedbar, and c2 = ±2

√
2

√

(P − Pcr)

P
which exists only for P > Pcr, andcorresponds to the buckled form represented by the �rst mode.For c = 0

Π′′
c =

EI

2l

(

1− P

Pcr

)is positive only when P < Pcr, i.e., the undeformed bar is stable for all
P less than the critical load while it is unstable for all P > Pcr. For
c2 =

8 (P − Pcr)

P

Π′′
c =

EI

4l

[

2

(

1− P

Pcr

)

+
3P

4Pcr

8 (P − Pcr)

Pcr

]

' 4EI

l

(P − Pcr)

Pcris positive when P > Pcr, i.e, the buckled bar is stable for all P >
Pcr. For a more detailed treatment of this problem one may refer to[1, 14, 5, 3].Kinetic method of stability analysis. Lagrange�LiapunovapproachThe most general approach to stability analysis is to consider thefree vibration of the elastic system about its equilibrium state andinvestigate the perturbation of this motion. This method, referred toas the kinetic method of stability analysis, was initially proposed byLagrange for conservative mechanical systems. Later on, A.M. Liapunovdeveloped a rigorous mathematical theory of stability of motion. To thisend, he proposed that the equilibrium state (or equilibrium motion) ofa mechanical system is considered stable if the deviation from this stateis as small as desired for any su�ciently small perturbation. The kineticanalysis can be applied to determine the stability of equilibrium statein any structural problem, but it should be noted that the stabilityanalysis of a perturbed motion is a much more di�cult problem thanthat considered in the Euler approach in which one determines thoseloading conditions for which the system admits nontrivial equilibriumstates.Therefore, unless absolutely necessary, the kinetic analysis is rarelyused in the stability analysis of equilibrium states. It is important to



91note, however, that for certain stability problems this method is theonly viable and reliable approach. Examples of such problems are thestability analysis of motion under dynamic and or non-conservativeloads, such as the motion of an elastic body in a gas �ux, and analysisof problems due to parametric instability.A load is considered to be conservative, if the work done by itduring a deformation depends only on the two initial and �nal states ofdeformation and is independent of its path. In particular, a load thatdoes not change in magnitude and direction is conservative. However,these loads do not comprise the entire class of conservative loads. Hydrostaticpressure forces, the direction of which depend on the deformation state,are also conservative. Note that only the dynamic analysis will yieldcorrect results when non-conservative forces are involved3.Example 8.3Using kinetic analysis investigate the stability of the equilibriumstate w = 0 for the simply supported bar under axial compression(Fig. 8.1). The bar has a material density of ρ. (Note that, unlike inequilibrium method, using the kinetic approach one needs to know themass distribution of the system.)S o l u t i o n:The small free vibrations of the bar near the equilibrium state w = 0are given by
EI

∂4w

∂x4
+ P

∂2w

∂x2
+ ρ

∂2w

∂t2
= 0, (8.5)where t is time. The general solution of (8.5) has the form

w (x, t) = A sin (ωt+ α)W (x) ,whereA and αmay be found from the initial conditions. The equilibriumstate is stable if the frequency ω is real. Otherwise we have two complexconjugate frequencies that correspond to two solutions one of which3 According to [11] (see Section 6.2) a force R = −Pq whose components arelinear functions of the generalized coordinates q with a skew-symmetric matrix ofcoe�cients P = (pkj) is called a non-conservative force.



92 Chapter 8. Structural Stabilityincreases unbounded with time. To determine W (x) we consider theequation
EI

d4W

dx4
+ P

d2W

dx2
− ρω2W = 0, (8.6)with the boundary conditions

W (0) = 0,
d2W

dx2

∣

∣

∣

∣

x=0

= 0, W (l) = 0,
d2W

dx2

∣

∣

∣

∣

x=l

= 0.The characteristic equation of (8.6) is
k4 + λk2 − Ω2 = 0, λ =

P

EI
, Ω2 = ω2 ρ

EIand its solution has the general form
W (x) = A sinh k2x+B coshk2x+ C sin k1x+D cos k1x, (8.7)where k21 = 1

2

(√
λ2 + 4Ω2 + λ

), and k22 = 1
2

(√
λ2 + 4Ω2 − λ

). Substituting(8.7) into the boundary conditions we get B = D = 0, and
∣

∣

∣

∣

sinh k2l, sink1l
k22 sinhk2l, −k21 sin k1l

∣

∣

∣

∣

= 0.The lowest non-zero solution of this equation is k1l = π. We notethat Ω is real if Ω2 = k21
(

k21 − λ
)

≥ 0, i.e., if λ ≤ k21 =
π2

l2
. Then thecritical load corresponds to the largest λ for which the last inequalityholds, i.e., Pcr =

π2EI

l2
. The equilibrium state is stable if P < Pcr.Problems8.1. The horizontal pipe AB carries a �uid as shown in Fig. 8.2.The pipe has a length L, modulus of elasticity of E, and the momentof inertia I. The velocity of the �ow is V with a mass of m per second�owing through the pipe. Determine the stability of the tube if:1) both ends of the pipe are simply supported;2) one end of the pipe is �xed with the other end being free.S o l u t i o n:The equilibrium equation of the pipe is
EI

d4y

dx4
+mV

d2y

dx2
= 0 (8.8)
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Figure 8.2 Problem 8.1.or
d4y

dx4
+K2 d

2y

dx2
= 0,where K2 = mV

EI .The solution of this equation has the form
y = A sinKx+B cosKx+ Cx +D.1) If both ends of the pipe are simply supported then the boundaryconditions are:

y (0) = 0,
d2y

dx2
|x=0 = 0, y (L) = 0,

d2y

dx2
|x=L = 0.From these conditions it follows that

B = 0, C = 0, D = 0and sinKL = 0. This means that the critical value of the �ow parameteris
(mV ) |cr =

π2EI

L2
.2) If one end of the pipe is �xed with the other end being free, thenthe boundary conditions become:

y (0) = 0,
dy

dx
|x=0 = 0,

d2y

dx2
|x=L = 0

d3y

dx3
|x=L = 0. (8.9)In this case, no non-trivial solution to equation (8.8) is available thatcan satisfy the boundary conditions (8.9). Hence, in this case we shouldconsider the equation of perturbed motion:

m

V

∂2y

∂t2
+mV

∂2y

∂x2
+ EI

∂4y

∂x4
= 0
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∂4y

∂x4
+
mV

EI

∂2y

∂x2
+

m

EIV

∂2y

∂t2
= 0.Using separation of variables y (x, t) = X (x)T (t) , we get

1

X

(

d4X

dx4
+K2d

2X

dx2

)

= − m

EIV

1

T

d2T

dt2
= Λ2.From these two equalities we conclude that

d2T

dt2
+

ΛEIV

m
T = 0, T = A sin (ωt+ α) , ω2 =

ΛEIV

mand
d4X

dx4
+K2d

2X

dx2
− ΛX = 0. (8.10)The characteristic equation of (8.10) is

s4 +K2s2 − Λ = 0with the roots
s21 =

√
K4 + 4Λ−K2

2
, s22 = −s̃22 =

√
K4 + 4Λ+K2

2
, (8.11)so that the solution of equation (8.10) can be given as

X (x) = A sin s̃2x+B cos s̃2x+ C sinh s1x+D cosh s1x.From boundary conditions (8.9) we have
X (0) = 0,

dX (0)

dx
= 0,

d3X (L)

dx3
= 0

d2X (L)

dx2
= 0.Using these we get

B = −D, As̃2 = −Cs1and
Cs1 (s̃2 sin (s̃2L) + s1 sinh (s1L))+D

(

s̃22 cos (s̃2L) + s21 cosh (s1L)
)

= 0

Cs1
(

s̃22 cos (s̃2L) + s21 cosh (s1L)
)

+D
(

s31 sinh (s1L)− s̃32 sin (s̃2L)
)

= 0.



95The last two equations constitute a system of linear homogeneousequations in C and D, the determinant of which must vanish in orderto provide a non-trivial solution, i.e., characteristic equation of theperturbation becomes:
s41+s̃

4
2+2s21s̃

2
2 cos (s̃2L) cosh (s1L)−s1s̃2

(

s21 − s̃22
)

sinh (s1L) sin (s̃2L) = 0.Now from relations (8.11) we get
s41 + s̃42 = K4 + 2Λ, s21s̃

2
2 = Λ, s̃22 − s21 = K2.Using these expressions the characteristic equation reduces to

F (K,Λ) = K4+2Λ+2Λ cos s̃2L cosh s1L+
√
ΛK2 sinh s1L sin s̃2L = 0,or in dimensionless form to

F
(

K̄, Λ̄
)

= K̄2 + 2Λ̄ + 2Λ̄ cos s̄2 cosh s̄1 +
√

Λ̄K̄ sinh s̄1 sin s̄2 = 0.Here
s̄2 = s̃2L, s̄1 = s1L,with the nondimensional frequency parameter Λ̄, and the nondimensionalparameter K̄ that characterizes the �ow, de�ned as

Λ̄ = ΛL4 = ω2mL
4

EIV
, K̄ = K2L2 =

mV L2

EI
.The dependence of K̄ on the frequency parameter Λ̄ is shown inFig. 8.3.At the limit pointN (K̄cr ' 20.19) the �rst and the second frequenciesof the system coalesce and for K̄ > K̄cr the system becomes unstable.Hence, the critical parameter of the �ow is

(mV ) |cr '
20.19EI

L2
.8.2. Use the kinetic approach to investigate the stability of theequilibrium state w = 0 of a massless bar when subjected to the axialfollower force. The bar is clamped at the bottom but it carries a mass

m at its top (Fig. 8.4).
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Figure 8.3 The dependence of K̄ on the frequency parameter Λ̄.S o l u t i o n:The governing di�erential equation of the beam is
EI

d4w

dx4
+ P

d2w

dx2
= 0 (8.12)with the boundary conditions

w = w′ = 0 at x = 0; and w′′ = 0, EIw′′′ = m
∂2w

∂t2
at x = l.We consider the solution in the form

w(x, t) = f(x) sin(λt+ ε), (8.13)where λ is the frequency, and f(x) and ε are unknowns. Substituting(8.13) into (8.12) we get
f IV + k2f ′′ = 0, k2 =

P

EI
.Hence, the solution has the form

f(x) = A+Bx+ C cos kx+D sin kxSubstituting this into the boundary conditions we get the characteristicequation from which we get
λ2 =

k3EI

ml3
1

sin kl− kl cos kl
.
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Figure 8.4 Problem 8.2.Then the displacement of the bar is given by
w(x, t) = C(tan kl− kx+ sin kx− tan kl cos kx) sin(λt+ ε).When λ is real the beam oscillates about the equilibrium state w =

0, otherwise it will diverge from this state. Therefore, the system isstable if
k3EI

ml3
1

sin kl − kl cos kl
≥ 0.Letting z = kl, the following inequality will be satis�ed

sin z ≥ z cos zwhen 0 ≤ z ≤ 4.493. The critical load corresponds to the largest valueof z for which the above inequality holds, i.e.,
Pcr =

20.19EI

l2
.For P ≤ Pcr the system is stable.



98 Chapter 8. Structural Stability8.3. The equilibrium equation for a cylindrical shell spinning witha constant angular velocity around its axis of symmetry is:
L0U + 2ωΩLcU +Ω2LΩU + ω2U = 0,where

Lc =





0 0 0
0 0 1
0 1 0



 LΩ =





−m2 0 0
0 −m2 2m
0 2m −m2



 .Here m is the circumferential wave number, Ω is the angular velocityof the spin , ω is the natural frequency of shell vibrations, and U =
(u, v, w) is the displacement vector with (u, v, w) being the displacementcomponents in the local coordinate system along the axial, circumferentialand normal directions, respectively. L0 is a linear di�erential operatordescribing the non-spinning shell. Investigate the stability of the shell.S o l u t i o n:We will use the static analysis, i.e., we will try to determine if thereexist any angular velocities (critical speeds) for which the frequency ωwould vanish. Consider the non-spinning shell, the equilibrium of whichis described by

L0U0 + ω2
0U0 = 0,where U0 and ω0 denote, respectively, the mode shape and the naturalfrequency of the non-spinning shell. Assuming that the displacements ofthe spinning shell are approximately equal to those of the non-spinningshell, we have

2ωΩLcU +Ω2LΩU + ω2U − ω2
0U = 0.The characteristic equation of this is

|2ωΩLc +Ω2LΩ + ω2I − ω2
0I| = 0,



99where I is the identity matrix. This equation has six roots:
ω = −

√

Ω2m2 + ω2
0,

ω =
√

Ω2m2 + ω2
0 ,

ω = −Ω−
√

Ω2 (1−m)
2
+ ω2

0 ,

ω = −Ω+

√

Ω2 (1−m)
2
+ ω2

0 ,

ω = Ω−
√

Ω2 (1 +m)
2
+ ω2

0 ,

ω = Ω+
√

Ω2 (1 +m)2 + ω2
0 .When Ω 6= 0, and ω 6= 0, only the fourth root will vanish provided

m = 1. Thus, the critical speed is equal to ω0. A similar result can beobtained for spinning shafts.8.4. The critical axial compressive load for a cylindrical shell ofmedium height, i.e., when √h/R < L/R <
√

R/h, where h is theshell thickness, L is the shell height and R is the shell radius, canbe determined by using the equations of shallow shells. Using non-dimensional variables the governing di�erential equations of a cylindricalshell with an initial imperfection w̃ are ([6]):
∆2w − ∂2Φ

∂x2
− L (w̃ + w,Φ) = 0, (8.14)

∆2Φ +
∂2w

∂x2
+

1

2
L (w,w) + L (w̃, w) = 0,where w is the de�ection function, Φ is the force function and,

∆ =
∂2

∂x2
+

∂2

∂y2
, L (u, v) =

∂2u

∂x2
∂2v

∂y2
+
∂2v

∂x2
∂2u

∂y2
− 2

∂2u

∂x∂y

∂2v

∂x∂y
.Here x and y represent the coordinates in the axial and circumferentialdirections, respectively. Moreover, the non-dimensional variables arerelated to their corresponding physical variables (*) as follows:

w =
w∗c

h
, w̃ =

w̃∗c

h
, (x, y) =

(x∗, y∗)
√
c√

hR
, Φ =

Φ∗c2

Eh3
,where E is Young's modulus, ν is Poisson's ratio, and c2 = 12

(

1− ν2
).The resultant force T , representing the load parameter, is

T =
∂2Φ

∂y2
, T =

T ∗Rc

Eh2
.



100 Chapter 8. Structural Stability1) Determine the stability of a simply supported shell. (Ignore theboundary conditions in the circumferential direction.)2) For a cylindrical shell with an axisymmetric imperfection w̃ =
ξ cosx, investigate its bifurcation into a non-axisymmetric form withequal wavelengths in the axial and circumferential directions.S o l u t i o n:1) We represent the stress function as Φ =

Ty2

2
+ Φa, where Φais some additional stress function. Next, linearizing system (8.14) givesthe governing di�erential equations for a shell without the initial imperfections,i.e., for a shell with w̃ = 0,

∆2w − ∂2Φa

∂x2
− T

∂2w

∂x2
= 0, ∆2Φa +

∂2w

∂x2
= 0,or

∆4w −∆2 ∂
2Φa

∂x2
− T∆2∂

2w

∂x2
= 0, ∆2Φa = −∂

2w

∂x2
;and �nally as

∆4w − T∆2 ∂
2w

∂x2
+
∂4w

∂4x
= 0. (8.15)First, we assume that the buckling mode of the shell is axisymmetric.Then equation (8.15) becomes

d8w

dx8
− T

d6w

dx6
+
d4w

dx4
= 0, (8.16)and we seek the solution of this equation as

w =W sin
πnx∗

L
=W sinλx, with λ =

πn
√
hR

L
√
c
,where n is wave number in the axial direction, and

w (0) = w (L) =
d2w (0)

dx2
=
d2w (L)

dx2
.Substituting the assumed solution into equation (8.16) we get

W
[

λ8 + Tλ6 + λ4
]

= 0, or T = −
(

λ2 + λ−2
)

,



101so that the critical load (min |T |) is equal to −2 for λ = 1. In terms ofdimensional variables Tcr = Eh2
√

3(1− ν2)R
.Next, we assume that the buckling mode is non-axisymmetric, i.e.,

w =W sin(px+α) sin(qy+ β), where α and β can be equal to either 0or π. Then, after substitution into equation (8.15), we obtain
W
[(

p2 + q2
)4

+ T
(

p2 + q2
)2
p2 + p4

]

= 0, or
−T = f (p, q) =

(p2+q2)
2

p2 + p2

(p2+q2)2

.In our investigation of buckling, we are interested only in the lowesteigenvalue. Therefore,
Tcr = −2 when p2 + q2 = p. (8.17)Thus, according to the classical shell theory there exist an in�nitenumber of buckling modes that are characterised by the wave lengthparameters p and q in the axial and circumferential directions, respectively.These parameters must satisfy the relation p2 + q2 = p. For example,a pair (p, q)=(1, 0) determines an axisymmetric mode.Experimental results have indicated that for buckling of shells thewavelength parameters in the axial and circumferential directions areclose to each other [13]. The "squares"form with p ≈ q is the mostsensitive to the imperfections ( [10, 8]).2) Here we consider a cylindrical shell with an initial axisymmetricimperfection w̃ = ξ cosx that buckles into a non-axisymmetric formwith equal wavelengths in the axial and circumferential directions. Inthis case, the pre-buckling axisymmetric deformation w0 of the shellmay be obtained from the equations

d4w0

dx4
− T

d2 (w0 + w̃)

dx2
− d2Φ0

d2x2
= 0,

d4Φ0

dx4
+
d2w0

dx2
= 0,or

d4w0

dx4
− T

d2w0

dx2
+ w0 = −T d

2w̃

dx2
, w0 =

−Tξ
T + 2

cosx.For the non-axisymmetric component of the de�ection function, w1,and the load function, Φ1, we get from (8.14)
∆2w1 − T

∂2w1

∂x2
− ∂2Φ1

∂x2
+
∂2Φ1

∂y2

(

2ξ

2 + T

)

cosx− Tξ

2 + T

∂2w1

∂y2
= 0,(8.18)
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∆2Φ1 +

∂2w1

∂x2
− ∂2w1

∂y2

(

2ξ

2 + T

)

cosx = 0. (8.19)According to (8.17), if the non-axisymmetric form has equal wavelengthsin the axial and circumferential directions, then p = q = 1/2, and weshould seek the buckling mode in the form w = W1 cos
x
2 cos y

2 . In[10, 8] it is shown that the lowest buckling load corresponds to thismode. Equation (8.19) gives
Φ1 = F1 cos

x

2
cos

y

2
+ F3 cos

3x

2
cos

y

2
+ · · · , F1 'W1

(

1− ξ

2 + T

)

.Substitution into equation (8.18) results in
1

4
W1

[

1 + T + 1− 2ξ

2 + T
+

Tξ

2 (2 + T )

]

= 0,or, considering that T is close to the classical load −2, for ξ � 1

2 + T − 3ξ

2 + T
= 0, or T = −2 +

√

3ξ.Hence, if the amplitude of the initial axisymmetric imperfection isequal to ξ, then the absolute value of the critical load (bifurcation load)decreases by √
3ξ, or, in dimensional variables,

Tcr =
Eh2

√

3(1− ν2)R

(

1− 33/4(1− ν2)1/4ξ∗
1/2

2h1/2

)

,where ξ = ξ∗c

h
.



Chapter 9Frequency Method of StabilityAnalysis
9.1. The governing di�erential equations of a gyroscope are

dϑ

dt
= −ϑ− σ,

dσ

dt
= ϑ+ σ − ϕ(σ),where ϑ is the roll angle of the plant, σ is a parameter which is proportionalto the angle of rotation of the inner gimbals of the gyroscope, ϕ(σ) isthe function that describes the change of the control moment, i. e., andsatis�es the following conditions:

ϕ(0) = 0, ϕ(σ)σ > 0 for σ 6= 0,

∫ ∞

0

ϕ(σ)dσ = ∞.Investigate the stability of the system.S o l u t i o n:Find the transfer function (from the input −ϕ to the output σ):
pϑ = −ϑ− σ,
pσ = ϑ+ σ − ϕ.To eliminate ϑ, from the �rst equation we have

(p+ 1)ϑ = −σ, ϑ = − σ

p+ 1
,103



104 Chapter 9. Frequency Method...which upon substitution into the second equation gives
pσ = − σ

p+ 1
+ σ − ϕ,or,

(

p2 + p
)

σ = −σ + pσ + σ − (p+ 1)ϕ.Therefore,
σ = −p+ 1

p2
ϕ, W (p) =

p+ 1

p2
.We have the critical case with two zero poles. Using Theorem 9.3of the book [11], we get

α = lim
p→0

p2
p+ 1

p2
= 1 > 0,

ρ = lim
p→0

d

dp

[

p2
p+ 1

p2

]

= 1 > 0,

W (iω) =
iω + 1

−ω2
, =W (iω) = − 1

ω
, π (ω) = ω

(

− 1

ω

)

= −1 < 0Thus the given system is absolutely stable.9.2. The behaviour of a gyroscopic system that controls the orientationof a spaceship in the pitch plane is described by the following equations:
au̇ + Hv = 0,

bv̇ − Hu+ εv = ϕ(σ),

σ̇ = u.Here H is the angular momentum of the gyroscope about its axisof rotation, σ is the pitch angle, v = β, is the precession angle ofthe gyroscope, ε is the coe�cient of viscous friction, a and b are theprincipal moments of inertia, ϕ(σ) is the nonlinear characteristic of thecontrol moment that satis�es the following conditions (see Fig. 9.1 and(9.13) of the book [11]):
ϕ(0) = 0, 0 <

ϕ(σ)

σ
< k ≤ +∞, σ 6= 0.Determine the conditions for absolute stability.



105S o l u t i o n:Find the transfer function (from the input −ϕ to the output σ):
apu + Hv = 0,
bpv − Hu+ εv = ϕ,
pσ = u.To eliminate u and v, from the �rst and the third equations we have

u = pσ, v = −ap
H
u = −ap

2

H
σ,which after substituting into the second equation we get

−abp
3

H
σ −Hpσ − aεp2

H
σ = ϕ

σ = − H

abp3 + aεp2 +H2p
ϕ,

W (p) =
H

abp3 + aεp2 +H2p
.We have the critical case with a single zero pole. Using Theorem 9.2,we get

ρ = lim
p→0

pW (p) =
1

H
> 0

W (iω) =
H

−aεω2 + iω (H2 − abω2)
= H

−aεω2 + iω
(

abω2 −H2
)

a2ε2ω4 + ω2 (H2 − abω2)2
.Now, we check frequency condition (9.14) in [11]:

1

k
+ < [(1 + iωϑ)W (iω)] ≥ 0.Letting 1

Hk = µ, this condition becomes
µ
[

a2ε2ω4 + ω2
(

H2 − abω2
)2
]

+

<
[

(1 + iωϑ)
(

−aεω2 + iω
(

abω2 −H2
))]

≥ 0
,or

µa2ε2ω4+µa2b2ω6−2µH2abω4+µH4ω2−aεω2+ϑH2ω2−ϑabω4 ≥ 0.



106 Chapter 9. Frequency Method...Dividing by ω2, and denoting ω2 = t, we have
µa2b2t2 +

(

µa2ε2 − 2µH2ab− ϑab
)

t+ µH4 + ϑH2 − aε ≥ 0.Next, we obtain the determinant
D =

(

µa2ε2 − 2µH2ab− ϑab
)2 − 4µa2b2

(

µH4 + ϑH2 − aε
)

=

µ2a4ε4 + 4µ2H4a2b2 + ϑ2a2b2 − 4µ2H2a3bε2 − 2µϑa3bε2

+4µH2ϑa2b2 − 4µ2H4a2b2 − 4H2µϑa2b2 + 4µa3b2ε =

a2b2ϑ2 − 2µa3bε2ϑ+ µa3ε(µaε3 + 4b2 − 4µH2bε) < 0.It is necessary to �nd a ϑ such that D < 0. Here D is a quadraticpolynomial in terms of ϑ, so that D → ∞ as |ϑ| → ∞. If ∆ > 0, weneed to �nd a real ϑ such that D < 0:
∆ = 4µ2a6b2ε4 − 4a2b2

(

µ2a4ε4 + 4µa3b2ε− 4µ2H2a3bε2
)

> 0,or
4µ2H2a3bε2 − 4µa3b2ε > 0,or

µH2ε > b, or 1

kH
H2ε > b.Thus, for a nonlinear system, we obtained the following su�cient conditionfor absolute stability

Hε > kbwhich satis�es condition (9.13) in [11], i. e., 0 < ϕ(σ)

σ
< k for σ 6= 0,

ϕ(0) = 0.It's easy to check, that the condition
Hε ≥ kb (9.1)is necessary for absolute stability under condition (9.13) in [11]. Infact, if we consider ϕ(σ) = λσ, then we have a linear system whosecharacteristic polynomial,

abp3 + aεp2 +H2p+Hλsatis�es Hurwitz's condition for aεH2 > abHλ, i. e., Hε > bλ. Ifcondition (9.1) does not hold, then there exists a λ ∈ (0, k) such that
Hε < bλ, and the linear system is not asymptotically stable.



1079.3. Consider the control system of a steam turbine with a hydraulicampli�er. The feedback is by means of a slider with friction. Under somesimplifying assumptions the control system is described by followingequations:
ζ̇ = η2,

η = ζ + ϕ(η2),

τ1η̇1 + η1 = −η,
τ2η̇2 + η2 = η1.The second equation describes the behaviour of the intermediateampli�er; ζ, η1, η2, and η are variable parameters that describe thestate of the system; τ1 and τ2 are the relative time constants; ϕ(η2) isthe characteristic of the frictional force that satis�es the conditions

ϕ(0) = 0, ϕ(η2)η2 > 0 for η2 6= 0.Determine under what conditions absolute stability prevails.S o l u t i o n:Find the transfer function (from the input −ϕ to the output η2):
pζ = η2, (τ1p+ 1) η1 = −ζ − ϕ(η2), (τ2p+ 1) η2 = η1.Eliminate ζ and η1 to get

(τ1p+ 1) (τ2p+ 1) η2 = −η2
p

− ϕ.

η2 = − p

τ1τ2p3 + (τ1 + τ2) p2 + p+ 1
ϕ.

W (p) =
p

αp3 + βp2 + p+ 1
,where α = τ1τ2, β = τ1+τ2. In Example 9.4 in [11] it is shown that thistransfer function satis�es the frequency condition (9.14) of Theorem 9.1for τ1 + τ2 > τ1τ2.9.4. Consider a control system of a steam turbine with two ampli�ersconnected in series and the steam boiler. The piston of the system



108 Chapter 9. Frequency Method...actuator is subjected to a nonlinear friction. The equations of thesystem are
ζ̇ = −π,

ψηη̇ = ζ − η,

ξ̇ = ϕ(σ), σ = η − ξ,

ψπ π̇ + π = ξ.In these equations, ϑ, η, ξ, and π are relative coordinates of the machine,the preliminary ampli�er, the actuator and steam pressure, respectively,
ψη and ψπ are the relative positive time constants of the preliminaryampli�er and the steam boiler. The nonlinear friction satis�es the conditions

ϕ(0) = 0, for σ 6= 0 ϕ(σ)σ > 0,

∫ ∞

0

ϕ(σ)dσ = +∞.Determine the domain of absolute stability.S o l u t i o n:Find the transfer function (from the input −ϕ to the output σ):
pζ = −π, ψηpη = ζ − η, pξ = ϕ,

(ψπp+ 1)π = ξ, σ = η − ξ.Eliminate all variables except σ and ϕ:
ξ =

ϕ

p
, π =

ξ

ψπp+ 1
=

ϕ

p (ψπp+ 1)
,

η =
ζ

ψηp+ 1
= − π

p (ψηϕ+ 1)
= − ϕ

p2 (ψπp+ 1) (ψηp+ 1)
,

σ = η − ξ = −
[

1

p2 (νp2 + µp+ 1)
+

1

p

]

ϕ,where ν = ψηψπ , and µ = ψη + ψπ .Therefore
W (p) =

νp3 + µp2 + p+ 1

p2 (νp2 + µp+ 1)
.We have the critical case with two zero poles. Using Theorem 9.3, wehave

α = lim
p→0

p2W (p) = 1 > 0.
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ρ = lim

p→0

d

dp

(

p2W (p)
)

=
1− µ

(1)2
= 1− µ > 0.Now, the following conditions should be satis�ed:

µ < 1 ( or ψπ + ψν < 1); (9.2)
W (iω) = −1− µω2 + iω(1− νω2)

ω2(1− νω2 + iωµ)
;

=W (iω) = − 1
ω2

(1−µω2)(−µω)+ω(1−νω2)2

(1−νω2)2+ω2µ2

= 1
ω

µ(1−µω2)−(1−νω2)2

(1−νω2)2+ω2µ2 ;

π(ω) = ω=W (iω) =
µ(1 − µω2)− (1 − νω2)2

(1 − νω2)2 + ω2µ2
;

π(ω) < 0, ω2 = t,

µ− µ2t− (1− νt)2 < 0,

ν2t2 +
(

µ2 − 2ν
)

t+ 1− µ > 0. (9.3)Since µ2 − 2ν = (ψπ + ψη)
2 − 2ψπψη = ψ2

π + ψ2
η > 0, it follows fromcondition (9.2) that condition (9.3) is satis�ed for all t ≥ 0. Also dueto (9.2) we have

lim
ω→0

π(ω) =
µ− (1)2

(1)2
= µ− 1 < 0.Thus, according to Theorem 9.2 in [11], (9.1) is a su�cient conditionfor absolute stability of the system.9.5. Consider a gyrostabiliser with forced rotation of its gimbals.Assume friction in the precession axis. The behaviour of this gyrostabiliseris described by the following equations:

σ̇1 = −νσ1 + µv + σ2,

σ̇2 = −σ1 − ϕ(σ2),

v̇ = σ2.Here, σ1, σ2, and v are relative coordinates of the gyrostabiliser, ν and
µ are constant positive parameters, and the nonlinear function ϕ(σ2)satis�es the conditions

ϕ(0) = 0, for σ2 6= 0 ϕ(σ2)σ2 > 0,



110 Chapter 9. Frequency Method...Determine under what conditions the gyrostabiliser is absolutelystable.S o l u t i o n:Find the transfer function (from the input −ϕ to the output σ2):
(p+ ν)σ1 = µv + σ2,

pσ2 = −σ1 − ϕ(σ2),
pv = σ2.Eliminate v and σ1:

v =
σ2
p
, σ1 =

µσ2
(p+ ν)p

+
σ2
p+ ν

=
p+ µ

p(p+ ν)
σ2,

pσ2 = − p+ µ

p(p+ ν)
σ2 − ϕ(σ2),

σ2 = − p(p+ ν)

p3 + p2ν + p+ µ
ϕ,

W (p) =
p(p+ ν)

p3 + p2ν + p+ µ
.Let ν > µ, then we have a non-critical case. Using Theorem 9.1when k = ∞, ϑ = 0, we have

<W (iω) = < νωi− ω2

µ− νω2 + iω(1− ω2)
=
νω4 − µω2 + νω2(1− ω2)

(µ− νω2)2 + ω2(1 − ω2)2
≥ 0,where (ν − µ)ω2 ≥ 0 is satis�ed for ν > µ. Thus, the condition forabsolute stability is ν > µ.
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