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Abstract: Pyrogenic components of soil organic matter are practically not taken into account when
assessing the implications of global climate changes on the SOM sequestration rate and its stability.
In this regard, both the amount and structural stability of SOM were investigated for postpyrogenic
forest–steppe environments. Mature unaffected by fire Psamment Entisols were investigated in
comparison with same soil strongly affected by surface and crown fires in 2010 in Tolyatti city. This
article discusses postpyrogenic succession when comparing the results of field works in 2010 with
2020. The elemental composition of humic acids as well as 13C NMR spectra were investigated for
the studied humic acids. Moreover, for the first time ever, integrated indicators of HAs’ molecular
composition were presented for postpyrogenic soils. The data obtained showed that there are
significant changes in the structural organization of organic matter as a result of forest fires. A
simultaneous decrease in the H/C and O/C atomic ratios was identified as a result of fire, which
indicates a slight loss of oxygen-containing functional groups, while the aromaticity degree of
molecules increases. An increase in the content of oxygen-containing groups in the HA molecules
was shown for 10 years after the fires, which was accompanied by the oxidation of the HA molecule
with the same increase in the aromaticity degree of the HA molecule. The HA molecules of 2020
turned out to be more resistant to environmental factors compared to analogues in 2010. As a result
of fires, the aromaticity degree of HAs molecules significantly increases.

Keywords: wildfire; postpyrogenic succession; soil organic matter; 13C-NMR spectroscopy; crown
fire; surface fire

1. Introduction

Fires are a global phenomenon and affect all ecosystems’ components, including
soils. They have a global nature and can contribute to unexpected changes in atmospheric
composition that are difficult to predict [1–4]. Carbon dioxide emissions resulting from an
increase in fire frequency could escalate global warming. Considering that, in addition to
ecosystem degradation, fires lead to the transfer of forests from carbon stocks to sources of
greenhouse gases, then a problem can be expected in the implementation of international
agreements and additional economic losses in the future. Nowadays, it is important
to decide whether it is necessary to undertake certain measures to restore forests or to
allow natural regeneration. Reforestation was shown to accelerate the conversion of the
fire-affected areas from carbon source to carbon sink after wildfires [5], although natural
regeneration may also increase carbon sequestration [6]. Therefore, the relevance of studies
on the fire impact on forest ecosystems has increased significantly in recent years.

Organic matter plays an important role in the global carbon cycle of the planet [7,8].
However, so far pyrogenic components of the soil organic matter (SOM) are practically
not taken into account. Moreover, there are global changes in the humosphere under
unpredictable effect of fires, and the fingerprints of this key factor on the molecular structure
of SOM are underestimated. In order to assess the implications of global climate changes
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on the SOM sequestration rate and its stability, both the amount and the structural stability
of SOM should be investigated for postpyrogenic environments [9,10]. Therefore, it is
essential to predict the resistance degree of organic matter to transformation processes.
A qualitative composition of humic acids (HAs) analysis is a powerful instrument for
investigation the stability of SOM [7,9]. SOM consists of up to 50% humic acids (HAs),
which are formed in soils during the humification of organic residues [8]. The composition
of HAs determines the direction of the stabilization processes of organic matter in soil.

Forest fires alter the morphological and physicochemical properties of soils [11–14]
and lead to the complete or partial degradation of upper horizons and the formation of
so-called pyrogenic horizons [15,16]. During the fire, the dry Oi horizon serves as fuel,
burns out, and forms a thin Qpyr horizon in its place, where the main products of the
partial pyrolysis of the organic matter was concentrated. However, there are disagreements
regarding the study of postpyrogenic soil organic matter.

SOM changes caused by the action of fire or high temperature lead to the formation of
the so-called pyrogen-transformed humus (pyromorphic humus) [17–21]. The temperature
effect on soil organic matter is a complex and not fully understood issue. In addition to
the difficulty of studying the system of humic substances in soil, this is also explained by a
number of specific reasons:

1. the dependence on the duration of exposure to different temperature effects, so it
is impossible to compare a ten-second exposure to a temperature of 1000 ◦C and
exposure for 30 min at a temperature of 300 ◦C, but, unfortunately, there are no
comprehensive studies on this topic in the scientific literature;

2. the soil temperature during and after the fire in such studies is often an average value,
while soil and organic residues can reach temperatures of about 850 ◦C on the surface;

3. particles of organic matter exposed to different temperatures will be distributed over
the entire upper organic horizon even after fires of low intensity;

4. there are no studies about the effect of different types of fires on SOM and its modifi-
cation during the time after wildfires.

Summarizing the available literature on this issue, it is reasonably safe to suggest
that, on the one hand, the humus soil state undergoes certain changes during fires, and
on the other hand, it is obvious that there is no consensus on the question of processes
occurring with SOM during fires. Previous publications contain rather heterogeneous data
on the stability of pyrogen-transformed humus [15]. SOM stabilization includes chemical
stabilization, biochemical stabilization, and physical protection [22]. Some papers show a
very slow decomposition rate [23], and some admit that black carbon is very stable and
practically non-degradable [19], while other authors show that it successfully undergoes
chemical [24,25] and microbial [26] oxidation. C.M. Preston and M.W.I. Schmidt showed
that pyrogenic SOM is largely resistant to decomposition and therefore is included in a
very stable carbon pool in soils and sediments [27]. The alteration of pyrogen-transformed
humus stability over time (several years, decades, and so on) has not yet been studied by
other researchers. Moreover, the impact of forest fires on SOM in the forest–steppe zone
has been studied rather poorly compared to studies of soils in the boreal zone [28–33], but
the number of forest fires in the forest–steppe zone increases every year, and they become
more catastrophic [34]. Besides, researchers devoted to the processes of organic matter
transformation over time (monitoring work) for the same objects have not been previously
carried out—this shows the relevance and scientific novelty of this work.

For a deeper study of the fundamental processes of humification and structural
fragments in postfire areas, it is necessary to use modern high-precision instrumental
methods [35]. NMR spectroscopy has significantly expanded the knowledge on SOM
composition and structure and enriched understanding of humification and transformation
mechanisms [36]; therefore, this study use these methods for postpyrogenic SOM charac-
terization. There are a few indices for the assessment of humus stability: for example, the
degree of aromaticity and the elemental composition of humic substances [37,38].
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Therefore, the aim of this work is to study the molecular composition of soil organic
matter after wildfires.

To achieve this aim, the following tasks were set:

- to describe the process that occur in SOM after wildfires by way of the determination
of the elemental composition of HAs isolated from control and postpyrogenic soils;

- to characterize molecular fragments of HAs isolated from control and postpyrogenic
soils according to 13C-NMR spectroscopy;

- to estimate the rate and trend of organic matter transformation during the time
(10-year period).

2. Materials and Methods
2.1. The Study Area

The subject of the study is the forest–steppe island pine forests near Tolyatti city,
Samara region, Russian Federation, which were affected by catastrophic forest fires in July
2010. This is the territory of the Stavropol pine forest (a former park area between the Kom-
somolsky, Central and Avtozavodsky districts of Tolyatti city, near the Institute of Ecology
of the Volga Basin of the Russian Academy of Sciences (53◦29′43.80′′ N, 49◦20′56.44′′ E,
179 m a.s.l.) (Figure 1). The study was carried out in the areas affected by the crown and
surface forest fires that occurred in 2010 and in the territory that was not exposed to fire
(control). A description of the samples and studied plots is given in Tables 1 and 2. The
abovementioned areas were studied in 2010 as quickly as possible after the removal of the
emergency regime from the territory, and annual surveys of the territories were also carried
out. This article discusses postpyrogenic succession comparing the results of field works in
2010 with the results in 2020 at the same sampling plots.

The forest type at the control plot is grassy pine forest. A grass–gramineous suc-
cessional stage was noted at the crown fire plot in 2020, and the total projective cover
was 60–70% (Table 2). The following plant species were present: Calamagrostis epigeios
(L.) Roth, Bromopsis inermis (Leyss.) Holub, Artemisia absinthium L., Artemisia austriaca
Jacq., Artemisia campestris L., Nonea pulla (L.) DC., Sisymbrium loeselii L. and Chamaecytisus
ruthenicus (Fisch. ex Wolosz.) Klaska. A shrub steppe with Chamaecytisus ruthenicus (Fisch.
ex Woł.) Klásk. had begun to form at the surface fire plot (Table 2), and the total projective
cover was 90–95%. Plant species: Chamaecytisus ruthenicus (Fisch. ex Wolosz.) Klask.,
Veronica chamaedrys L., Taraxacum officinale Wigg. s. l., Saponaria officinalis L., Berteroa incana
(L.) DC., Calamagrostis epigeios (L.) Roth.

Soils of the studied areas are gray humus sandy and loamy soils with signs of the
alpha-humus process development but without the formation of an independent podzolic
horizon formed on ancient alluvial Volga sands—Psamment Entisols (according to WRB).
Soil diagnostics were carried out according to the “Classification and diagnostics of soils of
Russia” [39] and the World Reference Base for Soil Resources, FAO 2015 [40].

Data on the main chemical parameters of soils were published in previous works.
Based on study results, it was shown that pyrogenic soil formation in the subboreal zone
is characterized by the following elementary soil processes [41–43]: litter burnout, accu-
mulation of carbonaceous material, reduction of pore space, an increase of pH of topsoil,
deterioration of biological activity and accumulation of humons. The direct fire effect on
soil properties occured only on surface horizons up to 20 cm in depth. However, the indirect
effect of the pyrogenic factor on soils can manifest with a latent period, gradually spreading
to ever deeper layers. Studies have shown that forest fires alter the morphological and
physicochemical properties of soils [41,44–46] and lead to the complete or partial degra-
dation of organic horizons (according to Ctotal—Table 1) and the formation of so-called
pyrogenic horizons [15,16,47,48].
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Figure 1. Stavropol pine forest damaged and destroyed by forest fires in 2010. Symbols: 1—▲—
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Figure 1. Stavropol pine forest damaged and destroyed by forest fires in 2010. Symbols: 1—N—
location of soil profiles (V—crown fire area, S—surface fire area, C—area on the territory unaffected
by the fire); 2—forested areas (before the fire in 2010); 3—territories affected by crown forest fire;
4—territories affected by surface forest fire.
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Table 1. The description of soils studied and HAs extracted.

Sample
No. Plot Year of

Sampling
Horizon,

Depth, cm Soil Horizons Description Ctotal, %
Ash

Content of
HAs, %

1 Control 2010 O, 0–10

peat litter, consisting of needles, tree bark, leaves
and cones, 10 YR 4/2 (Munsell chart method),
slightly moistened, gray with whitish dusting,

loose, sandy loam, structureless, roots abundance,
presence of coal particles

3.94 ± 1.35 10.69

2 Crown
fire 2010 Qpyr, 0–5

ash with needles and cones, dry, gray, 10 YR 3/2
(Munsell chart method), loose, sandy loam, loose

crumbly structure, roots and coals abundance,
undulating boundary

1.42 ± 0.31 2.81

3 Surface
fire 2010 Qpyr, 0–4

ash with needles, leaves and burnt pine cones,
slightly moistened, loose, gray, 10 YR 3/2 (Munsell
chart method) sandy loam, loose crumbly structure,
roots and coals abundance, undulating boundary

1.21 ± 0.50 3.93

4 Crown
fire 2020 AYpyr, 0–20

color from gray to dark gray, 10 YR 2/1 (Munsell
chart method), traces of surface water erosion,

slightly moistened, loose, sandy loam,
crumbly–nutty structure, roots abundance,

presence of coal particles, undulating boundary

2.09 ± 0.20 11.43

5 Surface
fire 2020 AYpyr, 0–29

dark gray, 10 YR 3/1 (Munsell chart method),
almost black color, no signs of erosion, slightly
moistened, loose, sandy loam, crumbly–nutty
structure, roots abundance, presence of coal

particles, undulating boundary

3.16 ± 0.25 5.69

Table 2. The photo description of studied plots and soils. Sample No. corresponds to Table 1.

Sample No. Plot Photo Soil Photo

1
Control 2010
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Table 2. Cont.

Sample No. Plot Photo Soil Photo

2
Crown fire 2010
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Table 2. Cont.

Sample No. Plot Photo Soil Photo

5
Surface fire 2020
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Based on study results, it was shown that pyrogenic soil formation in the subboreal zone 
is characterized by the following elementary soil processes [41–43]: litter burnout, accu-
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called pyrogenic horizons [15,16,47,48]. 
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Studied soil samples were taken from the topsoil at each plot (depth is shown in Table 

1). This article compares results of field summer works in 2010 with 2020; therefore, soils 
were sampled in these periods. Each soil was sampled in threefold replication. Three plots 
were investigated for each study scenario for statistics, and in this paper, generalized soil 
data for each situation are described. Soil samples were dried to an air-dry state and sifted 
through a sieve with a mesh size of 1 mm. 

The HA isolation and purification were conducted using the procedure described by 
M. Schnitzer [49] and Swift [50] and modified by Chukov [51]. At the end of the isolation 
process, humic powders were treated with hydrofluoric acid to coagulate mineral suspen-
sions and finally remove fine mineral suspensions [52]. The elemental composition (C, N, 
H) of humic acids (HAs) was determined using a Euro EA1110 (CHNS-O) analyzer in the 
ecoanalytical laboratory of the Institute of Biology at the Komi Science Centre of the Ural 
Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS). The ash content 
of humic powders (Table 1) was determined using the gravimetric method, GOST 11306-
2013 (Russian Federation). 

Calculation of the atomic percentages; atomic ratios С/N, H/N and O/C; and oxida-
tion degree (ω) of humic acids was carried out in accordance with the manual of Orlov 
and Grishina [53]. C,H,N, and O content was calculated as % of mass, and C/N, H/C, and 
O/C are mole ratio. The ratio H/C modified (H/Cmod), which indicates the number of sub-
stituted hydrogen atoms in HAs, was used for avoiding errors in the determination of the 
hypothetical hydrocarbon skeleton of the studied HAs. The H/Cmod was calculated ac-
cording the following formula [54,55]: 

H/Cmod = H/C + 2 (O/C) * 0.67 (1) 
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2.2. Laboratory Analysis

Studied soil samples were taken from the topsoil at each plot (depth is shown in
Table 1). This article compares results of field summer works in 2010 with 2020; therefore,
soils were sampled in these periods. Each soil was sampled in threefold replication. Three
plots were investigated for each study scenario for statistics, and in this paper, generalized
soil data for each situation are described. Soil samples were dried to an air-dry state and
sifted through a sieve with a mesh size of 1 mm.

The HA isolation and purification were conducted using the procedure described
by M. Schnitzer [49] and Swift [50] and modified by Chukov [51]. At the end of the
isolation process, humic powders were treated with hydrofluoric acid to coagulate mineral
suspensions and finally remove fine mineral suspensions [52]. The elemental composition
(C, N, H) of humic acids (HAs) was determined using a Euro EA1110 (CHNS-O) analyzer
in the ecoanalytical laboratory of the Institute of Biology at the Komi Science Centre of
the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS). The ash
content of humic powders (Table 1) was determined using the gravimetric method, GOST
11306-2013 (Russian Federation).

Calculation of the atomic percentages; atomic ratios C/N, H/N and O/C; and oxida-
tion degree (ω) of humic acids was carried out in accordance with the manual of Orlov and
Grishina [53]. C, H, N, and O content was calculated as % of mass, and C/N, H/C, and
O/C are mole ratio. The ratio H/C modified (H/Cmod), which indicates the number of
substituted hydrogen atoms in HAs, was used for avoiding errors in the determination of
the hypothetical hydrocarbon skeleton of the studied HAs. The H/Cmod was calculated
according the following formula [54,55]:

H/Cmod = H/C + 2 (O/C) ∗ 0.67 (1)

In order to compile the simplest formula of humic acids, the determined mole number
of each element is divided by the smallest of them (the smallest number of moles in humic
acid is represented by nitrogen). As a result, the simplest atomic multipliers are obtained;
the results are expressed in round numbers of tenths in order to simplify calculations, and
then the determined values are multiplied by the smallest integer that reduces all values to
an integer number of atoms [53,54].
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The total relative oxidation or reduction of humic acids is estimated from the differ-
ences in the numbers of oxygen and hydrogen atoms per carbon atom in the whole molecule:

ω = (2 QO − QH)/QC (2)

where QO is the number of oxygen atoms; QH is the number of hydrogen atoms, and QC is
the number of carbon atoms in a molecule of humic acids.

The combustion value of humic acids was determined by the Aliev formula [55]:

Q = 90 C + 34.4 H − 50 (0.87 O − 4 N) (3)

where Q is the combustion value (cal/g); and C, H, O, and N are the content of carbon,
hydrogen, oxygen, and nitrogen in the humic acids (%).

Van Crevelen diagrams of humic acids were compiled in accordance with the method
of Orlov [54].

13C-NMR spectra of humic acids were determined using a Bruker Avance 500 NMR
spectrometer (Karlsruhe, Germany, 2003). The data from NMR spectroscopy was ob-
tained from the “Center of Chemical Analyses and Materials and Center of Magnetic
Resonance Research”, Scientific Park of Saint-Petersburg State University. Solid-phase
samples were placed in a 3.2 mm zirconium oxide rotor and spun at a frequency of 12 kHz
at the magic angle. The contact time was 2 m; the delay time was 3 s, and the number
of scans was 8000. The relative contributions of the various carbon groups were deter-
mined by the integration of the signal intensity in their respective chemical shift regions.
Data were processed using MestReNova. Groups of different compounds were distin-
guished using chemical shift values. Spectra were divided into the following main chemical
shift regions [56–63]: alkyl C (0–47 ppm), methoxyl C (O-CH3) (47–60 ppm), O,N-alkyl C
(60–108 ppm), aromatic C (108–164 ppm: 108–144 ppm—C,H-arom and 144–164 ppm—
O,Narom), atoms of carboxyl fragments and carbonyl-amides (164–183 ppm), atoms of
quinone fragments (183–190 ppm), and carbonyl groups of ketones and aldehydes with
signals in the ranges of 190 to 204 ppm. The relative intensity for each chemical-shift
region was obtained with the integration routine of the spectrometer. The following pa-
rameters were used to standardize the quantitative characteristics of HA molecules: the
ratio of the aromatic structures’ carbon to the aliphatic chains’ carbon, (Ar/AL) [57,64],
the aromaticity degree (Ar/(Ar + AL)) [61], and the SOM decomposition degree (C,H-
alkyl/O,N-alkyl) [65,66]; in addition, Lodygin et al. [57] proposed an integral index of HAs’
hydrophobicity (ALH,R + ARH,R), which is the total content of unoxidized carbon atoms
(substituted by hydrogen atoms or other aliphatic fragments), which makes it possible to
indirectly estimate the amphiphilic properties of HAs, calculated as the sum of the signals
at 0–47 and 108–144 ppm. The signals of aromatic structures (Ar) were summarized over
the areas of 108–164, 183–190 ppm, aliphatic (AL)—0–105, 164–183, and 190–204 ppm.

The normal distribution of the data was verified, and a variance analysis (ANOVA)
and post hoc test (Fisher’s least significant difference) were performed. Differences between
several scenarios (control, immediately after wildfire (surface and crown forest fires) and
10 years after fires (surface and crown) were considered significant at p < 0.05. Statistical
data processing and analysis were carried out using standard methods in software packages
MS Excel 2016, Past (version 3.20), and Statistica 64 (version 10).

3. Results and Discussion
3.1. Elemental Composition of Studied HAs

The elemental composition of HAs is the most important indicator that determines the
progress of humification, oxidation, and the degree of condensation of HAs [57,67]. The
elemental composition of HAs varies within a fairly wide range, which is associated with
the high heterogeneity of the local conditions for the formation and maturation of HAs
in the soil [68]. The main factors influencing the formation of HAs are the composition of
the precursors of humification, the rate of humification, and the climatic parameters of the
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territory [68]. There are results of high temperatures’ effect on the elemental composition
of humic acids as a result of forest fires.

Apart from the mass % of elements (C, H, N, O) and atomic percent (Table 3), the molar
ratios of the studied elements were used in order to provide more detailed information. The
C/N ratio is an indicator of the degree of carbon enrichment with nitrogen. The H/C ratio
is an indicator of the carbon degree enrichment with hydrogen and indicates the type of
structure of the HAs. The O/C ratio is an indicator of the degree of oxidation of HAs [58].

Table 3. The elemental composition of studied HAs.

Sample No. * C, % N, % H, % O, % C:N O:C H:C H/Cmod
Formula of

Humic Acids
Combustion
Value, cal/g

Oxidation
Degree

1 54.7 4.5 5.5 35.3 14.15 0.48 1.20 1.85 C99H119O48N7 4481 −0.23

2 57.5 5.6 4.0 32.9 11.98 0.43 0.84 1.41 C84H70O36N7 5005 0.02

3 55.3 5.6 4.4 34.7 11.50 0.47 0.94 1.57 C58H54O27N5 4740 0.01

4 54.3 4.7 3.5 37.5 13.48 0.52 0.77 1.46 C40H31O21N3 4316 0.27

5 53.7 4.1 3.5 38.7 15.28 0.54 0.78 1.50 C107H83O58N7 4090 0.31

Post hoc test 0.24 p << 0.05 p << 0.05 p << 0.05 0.16 0.20 0.15 0.34 p << 0.05 p << 0.05

Significance
of differences Insign. Sign. Sign. Sign. Insign. Insign. Insign. Insign. Sign. Sign.

* Sample No. corresponds to Table 1: 1—Control; 2—Crown fire, 2010; 3—Surface fire, 2010; 4—Crown fire, 2020;
5—Surface fire, 2020.

The mass percent of carbon is 54.7% in humic acids of the control plot and 53.7–57.5%
in postpyrogenic soils. The oxygen content in the HAs of control soils is 35.3%, and for
postfire soils it varies from 32.9% to 38.7%. The nitrogen content in HA molecules after fires
change in the range of 4.1 to 5.6%, while for the control, it is 4.5%.

The type of molecule carbon skeleton structure can be approximately identified using
the H/C ratio [54]. According to D. van Krevelen [69], H:C > 2 ratios are characteristic
of paraffins and H:C ratios from 1.5 to 1.8–2.0 are characteristic of cycloparaffins; the
H:C << 1.0 ratio is characteristic of aromatic hydrocarbons. This ratio shows that the
HA molecules of the control plot have a significant proportion of aliphatic fragments,
while, as a result of fire, their number noticeably decreases; moreover, the proportion of
oxygen-containing and aromatic components increases. Therefore, the aromaticity degree
of organic substances formed during fires increases, and after 10 years, this trend continues.
There is an increase in the HAs molecules carbonization (carbon content) in the range:
control > surface fire > crown fire, but after 10 years, this indicator returns to control values.
However, the H/C ratio indicates that the hydrogenation degree decreases in the range:
control > surface fire 2010 > crown fire 2010 > fire 2020.

Figure 2 shows how three groups of humic acids are clearly distinguished: the control
site and two separate groups after a forest fires—during sampling in 2010 and in 2020.
It should be remembered that the atomic ratio diagram allows concluding only the total
result of the HA transformation process and does not reveal its stages. Samples after
fires are characterized by the dehydrogenation of HA molecules, and the same is true for
the crown fires (in both situations—2010 and 2020) to a greater extent. With a decrease
in the proportion of hydrogen, there is a loss of C-H, CH2, and CH3 groups and the
formation of more stable fragments of HAs [35], which is especially expressed in case
of samples from 2020. Dehydrogenation can occur either as a result of hydrogen loss
(absolute dehydrogenation) or as a result of oxidation (relative dehydrogenation). The
high oxygen content is associated with the better solubility of oxygen-enriched hydrophilic
HA molecules [57]. An increase in the carbon content and a decrease in the hydrogen
content in the structure of humic acids have been shown by many authors, in particular,
for example, N.V. Chukhareva [70]. Reduced oxygen content and a decrease in the O/C
ratio after fires in 2010 indicates the loss of peripheral fragments by HA molecules, which
changes the redox balance in the molecules, which will be discussed below. The oxidation
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degree of HA is an important characteristic. On the contrary, the samples of 2020 show
an increase in the oxygen content, as well as the O/C ratio, which indicates the oxidation
of HA molecules 10 years after the fires (Figure 2). It is also confirmed by a change of the
oxidation degree in a strongly positive direction (Table 3), whereas HA molecules of the
control plot are restored. Active processes of organic matter transformation take place in
soils under oxidative conditions according to the oxidation degree. The higher activity of
biota in postfire soils 10 years later is likely to promote the oxidation of HA molecules and
the accumulation of the most stable oxygen-containing products.
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The percentage of hydrogen decreases as a result of fires and continues to decrease
for 10 years, which is the reason for the dehydrogenation of HA molecules. The effect of
the crown fire leads to stronger dehydrogenation (Figure 2) due to a more complete loss
of hydrogen. At the same time, the amount of carbon in the HA molecules in soils after
forest fires increases, which indicates that there is a partial degradation of the peripheral
part of HA molecules, and that is another reason for dehydrogenation. Therefore, a hardly
hydrolyzable black carbon component, the so-called “black” organic carbon, formation
in postpyrogenic soils is obvious—highly aromatic compounds formed as a result of
oxidative processes.

The simultaneous decrease in the H/C and O/C atomic ratios during fires indicates a
significant loss of oxygen-containing functional groups with an increase in the aromaticity
degree of HA molecules. The number of oxygen-containing groups increases after 10 years,
molecules become more oxidized, but the aromaticity degree does not change. As shown by
previous researchers, high-temperature-induced dehydration and polymerization reactions
lead to the accumulation of a large number of aromatic structures, including nitrogen-
containing heterocyclic compounds [19,20,71]. There is an increase in the O/C ratio and
the oxidation degree of HA molecules when comparing humic acids in 2010 and 2020. HA
samples changed the oxidation degree from reduced compounds in case of the control plot
to compounds with zero oxidation degree immediately after the fires (2010), while the 2020
HA samples clearly show oxidized compounds (Table 3).

The enrichment degree of humic acids with nitrogen, determined by the C/N ratio,
narrows as a result of fires, which indicates that the structure and composition of HA
molecules are being transformed, which is accompanied by a slight reduction (Figure 2)
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and an increase in the nitrogen content in the HA molecule. This can be due to the
formation of heterocycles with nitrogen. However, after 10 years, this indicator approaches
the control plot values. Conjugated reactions of the breaking C-C bonds, dehydration,
and saponification, as well as the hydrolysis and substitution of NH2 groups, associated
with organic nitrogen compounds, occur during the process of the destruction of organic
matter under the influence of high temperatures, excess water, and its vapors as chemical
agents [72]. As a result, NH3, acid amides, hydroxy compounds of pyridine bases with
a high tendency for condensation, volatile and non-volatile phenols, benzol, and other
aromatic compounds are formed, that is, the necessary primary sources of structural units
of the humic acid molecule [72].

Moreover, as a result of the calculations carried out, the simplest HA formulas for
postfire soils, which are presented in Table 3, were composed. When compiling the simplest
formulas of humic substances, it should be always remembered that their conventionality
follows primarily from the complex fractional composition of the analyzed powders. One of
the advantages of the simplest formulas is the clarity of the composition and the evaluation
of atomic ratios. These formulas are no less convenient when studying the distribution of
individual atoms over atomic (functional) groups.

The humic acids of postfire soils in 2010 are characterized by increased caloric con-
tent and after 10 years, humic acids are reduced in relation to the control, according to
combustion value data. This fact is in good agreement with the decrease in the content
of oxygen-containing groups and the decrease in the O/C ratio. This is probably due to
the fact that during fires, as shown by researchers [20], there is a significant, up to sixfold,
increase in the fraction of soil lipids, which are high in calories. Some lipids are plant
growth promoters or inhibitors, and waxes and similar substances are the essential cause
of soil water repellency [19]. Another explanation is also possible—the calorific capacity of
HA molecules increases due to a relative decrease in the oxygen content, because in the
case of oxidation, the oxygen atoms play a significant role in this reaction, which reduces
the total calorific capacity of organic matter.

An array of data on the elemental composition of soil HAs after fires was obtained
according to the studies carried out, which made it possible to reveal the patterns of the
transformation of organic matter. The obtained data clearly show that humic acids in
the soils of the postfire and control plots form rather heterogeneous groups. The main
difference in the degree of the heterogeneity of HA groups is the ratio of hydrogen, oxygen,
and carbon. There is a simultaneous decrease in the H/C and O/C atomic ratios at
high temperatures, which indicates a slight loss of oxygen-containing functional groups
(moreover, the loss is greater during a crown fire), while the aromaticity degree of molecules
increases. Changes also occur in the HA molecules 10 years after the fires; these manifest
mainly in an increase in the content of oxygen-containing groups, which is accompanied
by the oxidation of the HA molecule with the same increase in the aromaticity degree of
the HA molecule.

3.2. Molecular Structure of Studied HAs

Analysis of the 13C-NMR spectra of humic acid from the studied soils made it possible
to identify the ranges of chemical shifts belonging to carbon atoms of various functional
groups and molecular fragments of HA [60,61,73–76] (Figure 3). The results of the 13C-NMR-
spectroscopy analysis of functional groups and molecular fragments are given in Figure 4.
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The data obtained confirm many studies in this field [17,21,77] that the aliphatic part
is the main share in the humic acids’ composition of soils that are not affected by forest fire,
while, as a result of fires, the aromaticity degree of HA molecules significantly increases,
which is a typical zonal feature of soil organic matter in the forest–steppe zone [78].

All 13C NMR spectra have one relatively sharp peak in the 0–47 ppm region, which can
be related to methylene atoms of carbon in positions α, β, δ, and ε from methyl end-groups
in alkyl chains [79]. The data obtained show a significant decrease in the content of these
functional groups as a result of fires from 27% to 16–18% compared to control, and there
were no changes after 10 years. The share of O,N-alkyl C, predominantly represented
by cellulose C, decreased to 12% after forest fires (2010) compared to control, and after
10 years it continued to decline to 2%. The proportion of methoxyl C (47–60 ppm), probably
associated with lignins, decreased from 16% in control plot up to 8% after wildfires in 2010
and to 0% in 2020. Moreover, the difference between a crown and a surface forest fire in
this case was not so noticeable, which does not confirm previous studies that, with heating,
the thermal destruction of hemicelluloses takes place first, followed by the destruction of
cellulose and lignin with further increasing temperature [14,80].

Based on data obtained, we can note that, in the studied control HAs, aliphatic
fragments predominate up to 62% in sample No. 1. Sharp peaks are noted in the region of
108–164 ppm after forest fires—there is a significant increase in aromatic fragments in the
HA molecules of postpyrogenic soils—up to 60% for samples in 2010 (crown and surface
fires do not differ from each other), and there is a further increase in the aromaticity degree
of HA molecules after 10 years—up to 73%. Moreover, it was previously shown that this
change concerns only the upper horizons, and the underlying humus horizons do not
differ in HA composition compared to the control soils [81]. Therefore, in the process of
humification in the studied samples, there is a decrease in the proportion of aliphatic and
the accumulation of aromatic (C-C/C-H-AR, COO/N-C=O).

As a result of forest fires, the content of groups present in lignins and methyl groups
of aromatic and aliphatic carbon decreases, and the content of carbon atoms associated
with oxygen, secondary alcohols, hydrocarbons, and C,H-alkyl and tetrasubstituted car-
bon groups slightly decreases. However, the content of fragments of C–C bonds, C,H-
substituted aromatic carbon groups, and aromatic carbon of phenolic esters and phenols
increases in postpyrogenic areas. These results are consistent with the data of HA elemental
analysis: fires cause a significant loss of oxygen-containing functional groups (due to their
effect on hydrophobicity, retention of bases, and, mainly, colloidal properties and solubility
in humic substances) and an accumulation of a large number of aromatic structures.

Aromatic structures (AR) in the humic substances’ composition determine their low
water solubility and high stability. Stability to the biodegradation of new formed py-
romorphic humus substances has been discussed by Gonzalez-Perez et al. [19,71]. An
increase in the proportion of aromatic fragments of HAs leads to the stabilization of or-
ganic matter in soils and its low availability for soil microorganisms and, thus, to further
transformation [82].

An analysis of the integral indicators of the humic substances’ molecular composition
showed that HAs isolated from samples taken in 2020 are generally more mature and
resistant to oxidation (including microbial) compared to 2010 (Table 4). Some researchers
proclaim the opposite opinion, that it successfully undergoes chemical [24,25] and micro-
bial [26] oxidation. The total share of unoxidized carbon atoms in HAs is about 77%, while
for 2010 this value is noticeably lower—62%. This indicates that periodically repeating
low-intensity fires in forest–steppe ecosystems can contribute to the accumulation of stable
forms of pyrogenic carbon in soils.
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Table 4. Integral indicators of the molecular composition of HAs in postpyrogenic soils.

Sample No. * AR, % AL, % Aromaticity
Degree AR/AL ALH,R + ARH,R C,H-Al/O,N-Al

1 38 62 0.38 0.61 56 0.84

2 59 41 0.59 1.44 64 0.95

3 60 40 0.60 1.50 62 0.84

4 69 31 0.69 2.27 75 3.74

5 73 27 0.73 2.71 77 10.89

Post hoc test p << 0.05 p << 0.05 p << 0.05 p << 0.05 p << 0.05 0.33

Singnificance of
differences Significant Sign. Sign. Sign. Sign. Insign.

* Sample No. corresponds to Table 1: 1—Control; 2—Crown fire, 2010; 3—Surface fire, 2010; 4—Crown fire, 2020;
5—Surface fire, 2020.

The H/C index correlates well with the data on humic substance aromaticity obtained
through 13C-NMR spectroscopy [59,62,73].

Some differences are noted in the C,H-alkyl/O,N-alkyl ratio reflecting the degree of
organic matter decomposition: 2020 samples have relatively high values up to 10.9, which
indicates their greater degree of humification compared with samples immediately after the
fires (2010). The humification of humic substances 10 years after fires leads to an increase
in the thermodynamic stability of HA molecules, which is shown below.

It should be noted that almost all integral indicators differ significantly for all scenarios.

3.3. Stabilization of Organic Matter in the Studied Soils

The method of graphical data representation in the coordinates C,H-alkyl/O,N-alkyl
− ALH,R + ARH,R (Figure 5) was used for the numerical description of HA structure, which
serves as a convenient example for demonstrating the contribution of oxidation processes
(humification) and condensation (stability).
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Graphical and statistical analysis demonstrates a greater humification degree of sam-
ples in 2020 compared to analogues in 2010, and they are also more resistant to environ-
mental factors.

A ternary graph with the use of a tri-plot from MS Excel was used for a numerical
description of the structural-group composition of studied humic acids (Figure 6). The
vertex of the triangle x(C,H-AL) is C,H-substituted aliphatic fragments (0–47 ppm); the
corner x(Ar) is carbon atoms of aromatic fragments (108–144, 144–164 and 183–190 ppm),
and the corner x(O,N-AL) is carbon atoms of O,N-substituted aliphatic fragments (47–60,
60–108, 164–183, and 190–204 ppm). Any point on the surface of the triangle defines the
composition of the functional groups and molecular fragments of studied HAs [59,83].
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Figure 6. Diagram of structural and functional composition of HSs from studied soils. Sample No.
corresponds to Table 1: 1—Control; 2—Crown fire, 2010; 3—Surface fire, 2010; 4—Crown fire, 2020;
5—Surface fire, 2020.

Therefore, Figure 6 clearly shows that there are significant changes in the structural
organization of organic matter as a result of combustion (forest fires). Three heterogeneous
groups of HAs are clearly distinguished—isolated from the control soil, from postfire soils:
in 2010 and 2020. The accumulation of aromatic compounds in humic substances is obvious,
due to a relative decrease in the aliphatic part or, in some cases, due to a small accumulation
of carboxyl and carbonyl groups.

4. Conclusions

The assessment of the composition of HAs’ main functional groups and molecular
fragments proves that there is significant variation in their molecular composition when
comparing control soil with postfire. There is a simultaneous decrease in the H/C and
O/C atomic ratios at high temperatures (from 1.85 in case of control to 1.41 in case of fire),
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which indicates a slight loss of oxygen-containing functional groups (the loss is greater
during a crown fire), while the aromaticity degree of HA molecules increases. There were
no significant differences between surface and crown fires. However, it was noted that
there was an increase in the oxygen content in HA composition 10 years after the fires,
as well as the O/C ratio, which indicates the oxidation of HA molecules, which is also
confirmed by a change in the oxidation degree to a strongly positive direction (0.27–0.31),
while the control HAs are restored (−0.23).

According to 13C-NMR spectroscopy data, it was found that, along with quantitative
changes, a significant transformation of the carbon skeleton of HA molecules occurs in
postpyrogenic soils as a result of fires, which is expressed as a relative increase in the
total content of aromatic structures (from 38% in control soils to 60–70% in postpyrogenic
soils), especially their highly condensed varieties, due to a relative decrease in the aliphatic
part or in in some cases due to the slight accumulation of carboxyl and carbonyl groups.
The humification processes in soils 10 years after the fires contribute to the formation of
“aggressive” humic acids enriched in oxygen-containing functional groups with a high
content of aromatic fragments.

A comprehensive study of macromolecular organic compounds in postpyrogenic soils
and the use of highly sensitive spectroscopic methods will contribute to the understanding
of the fundamental processes of humus formation and the creation of new ideas about
the complex composition and structure of natural molecular compounds in soils after
fires. It becomes more relevant in the context of the essential role of SOM that plays an
important in the global carbon cycle and global changes in the humosphere under the effect
of unpredictable fires.
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