UDC 517.977.56 Becrauk CIIGIY. Ipukiaanas maremaruka. Uadopmaruka... 2021. T. 17. B, 4
MSC 49N10

Optimal control of a differential-difference parabolic system
with distributed parameters on the graph

A. P. Zhabko', V. V. Provotorov?, A. L. Shindyapin®

L St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation

2 Voronezh State University, 1, Universitetskaya pl., Voronezh,
394006, Russian Federation

3 Eduardo Mondlane University, 1, Julius Nyerere av., Maputo,
3453, Mozambique

For citation: Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-
difference parabolic system with distributed parameters on the graph. Vestnik of Saint Petersburg
University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 4,
pp- 433-448. https://doi.org/10.21638/11701 /spbul0.2021.411

In the paper be considered the problem of optimal control of the differential-difference
equation with distributed parameters on the graph in the class of summable functions.
Particular attention is given to the connection of the differential-differential system with
the evolutionary differential system and the search conditions in which the properties of the
differential system are preserved. This connection establishes a universal method of semi-
digitization by temporal variable for differential system, providing an effective tool in finding
conditions of uniqueness solvability and continuity on the initial data for the differential-
differential system. A priori estimates of the norms of a weak solution of differential-
differential system give an opportunity to establish not only the solvability of this system
but also the existence of a weak solution of the evolutionary differential system. For the
differential-difference system analysis of the optimal control problem is presented, containing
natural in that cases a additional study of the problem with a time lag. This essentially
uses the conjugate state of the system and the conjugate system for a differential-difference
system — defining ratios that determine optimal control or the set optimal controls. The work
shows courses to transfer the results in case of analysis of optimal control problems in the
class of functions with bearer in network-like domains. The transition from an evolutionary
differential system to a differential-difference system was a natural step in the study of applied
problems of the theory of the transfer of solid mediums. The obtained results underlie the
analysis of optimal control problems for differential systems with distributed parameters
on a graph, which have interesting analogies with multiphase problems of multidimensional
hydrodynamics.

Keywords: differential-difference system, conjugate system, oriented graph, optimal control,
delay.

1. Introduction. The problems of optimal control of differential systems with dis-
tributed parameters on the graph were considered by the authors in the works [1-4]. In
addition related problems were also studied: stability on Lyapunov and Neumann, stabi-
lization of weak solutions, temporal delay [5-9]. The transition to differential-difference
systems was the next natural step of the study, namely, an attempt to move closer to
solving applied problems that have their own specifics. Particular attention is give to the
relations of the differential-difference system with the differential system and the search
for conditions for which the properties of the differential system are preserved. The semi-
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digitization method used is a universal method that provides an effective tool for finding
conditions of uniqueness solvability and continuity on the initial data for a differential-
differential system. The analysis of the problem of optimal control of the differential-
difference system contain a additional study of the problem with temporary delay in such
cases. The work also shows ways to transfer the results in case of analysis of optimal
control problems with carrier in network-like domains.

2. Basic concepts, definitions and affirmations. Let I is a oriented bounded
graph whose edges are parameterized by a segment [0, 1]; Ty is a set of all ribs that do not
contain their endpoints: [y = I', T'r = Ty x (0, 7).

We will use standard notations for the spaces of Lebesque and Sobolev:

o L,(I') (p =1,2) is a Banach space of measurable functions on I'y, integrable with
degree of order p (similarly defined the space L,(I'1));

e WI(T) is the space of functions from Lo (T'), with generalized derivative of order 1
also from Lo (T');

o Ly1(I'r) is the space of functions from Li(I'r) with norm defined by ratio

T
ullLy (o) = Of(f u?dzx) 2 dt;
r

o W5°(I'7) is the space of functions from Ly(I'7) with generalized derivative of order
1 for = belonging to space La(I'r) (similarly defined the space Wi(I'r)).
In the domain I't consider the parabolic equation

Wet) — & (al@)20) +b(@)y(e,t) = fla, ), @t €T, 1)

with measurable and limited by I'g coeflicients a(z), b(x); f(z,t) € Lo 1(I'r).
Semi-digitization by temporal variable ¢ (Rothe method [10]) applied to the equation
(1) reduce to a differential-difference equation

Ly —y(k—1) = & (@) %8) +b@)y(k) = fr(k), k=120, (2)

kT
where y(k) :=y(z;k) and f-(k) =2 [ f(z,t)dt € Ly(T), k=1,2,..., M.
(k—1)T
Let’s introduce the spaces of the states y(x,t) of the equation (1) and y(k) := y(z; k)
(k=1,2,..., M) equation (2). Let’s designate through Q,(T") a set of differentiable func-

tions y(z) that satisfy the relations

> a), Mg = Y a(0), Mgk
YEeR(E) yer(€)
in all nodes £ € J(T') (in here R(£) and r(£) as the sets of the edges ~ respectively oriented
“to node £” and “from node &£”, symbol 8(-), designated the narrowing of the function 6(-)
on the edge 7) and u(z)|sr = 0. The closing of the set Q,(I') in norm W(T') relabel
Wi(a;T).

Let the next Q,(I'7) is the set of functions y(z,t) € Wy (I'z), whose traces u(z, to)
are defined in sections of the domain I'r the plane t = to (to € (0,T)) as a function of
class W(a;T). Closing the set ,(I'z) by the norm Wy (') mark through W§°(a; T'r):
W5 (a;Tr) € Wy°(Dr). If closing the set Q,(I'r) realize by the norm Wi(I'z), then we
get space W(a;Tr): Wh(a;Tr) C Wi(T7).

Let the function y(z,t) € W§%(a; I'p) satisfy the initial and boundary conditions

) |t:0 = 90('77)’ (p(x) € LQ(F)v Y ‘-’L‘GaFT: 0, (3)
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and the functions y(k) satisfy the conditions
y(0) = ¢(z), y(k)|zeor=0, k=1,2,..., M. (4)

Definition 1. A weak solution to the initial boundary value problem (1), (3) of class
W%’O(FT) is called a function y(z,t) € Wlo’o(a; I'r) that satisfies the integral identity

— [ y(z,1) On(zt)dxdt—&—ETyn fgo n(x de—i—ffxt Yn(z, t)dzdt
I'r

for any n(z,t) € Wh(a,'r) that is zero at t = T. Here {1(y,n) is bilinear form, defined
by the ratio

trlyn) = | (a(2) 2R 22D 4 p(w)y (e, (e, ) ) dadt

Definition 2. A weak solution to a boundary value problem (2), (4) is called functions
uw(k) = W(a,T) (k = 0,1,2,.... M), u(0) = p(x) (¢(x) € La(T)), satisfying an integral
identity

fy z)dx + Ly ffT x)dz, k=1,2,... M,

for any n(z) € Wi(a,T), equality y(0) = () in (4) is understood almost everywhere,
y(k)e = L(y(k) —y(k — 1)); L(y(k),n) is bilinear form, defined by the ratio

(k) m) = [ (ale) “EEE2 + byt bn(a) ) do

Remark 1. Definition 2 shows that for each fixed kK = 1,2,..., M ratio (2), (4) is a
boundary problem in space W}(a,T') for the elliptical equation (2) relatively y(k).
Lemma 1. Let o(x) € Lo(T') and the conditions be fulfilled

0 < ax <a(z) <a*, |b(z)| < B, zeTy. (5)

Solution of system (2), (4), i. e. functions y(k) (k =1,2,..., M), when small enough T are
uniquely defined as elements of space Wh(a;T).

P r oo f. In the works [11, 12] establishes the basis property in the spaces W (a;T)
and Lo(T") the system of generalized eigenfunctions of the one-dimensional elliptical ope-

rator A, generated by differential expression A¢ = —A (a(m) d¢(z)> + b(z)¢(z). At the

same time, if the conditions (5) by fulfilled, then eigenvalues of operator A are real, po-
sitive (except, maybe, the finitely number of the first) and have the finite-to-one. They
can be numbered in the order of increasing modules, taking into account the multiplicity:
{Ai}i>1; respectively numbered and generalized eigenfunctions {¢;(z)};>1. For the problem
Ap = Xp+ g, g € Lo(T'), there is an alternative to Fredholm. Based on this when £ = 1
we get an uniqueness resolution relative to y(1) the boundary problem

Ay(1) = —2y(1) + f-(1) + 2y(0), y(0) = (x),

for 7 < 7 and a small enough positive 75. The same statement it remains true in any
k = 2,3,..., M, granting the definition of functions y(2), y(3),-.., y(M) by the recurrent
ratio

Ay(k) = —zy(k) + f-(k) + zy(k — 1).
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Below, at receiving a priori estimates norms of function y(k), will indicate the boun-
dary 79 of the change 7. Lemma is proven.

The method of proof of the existence of a weak solution of differential-difference
system (2), (4) has a sequence of advantages. This method is based on finding a priori
estimates for norm of function y(k) does not dependent on 7. Specifically, it establishes
the conditions of existence and uniqueness of the solution, the continuity of the solution
on the initial data (the latter guarantees the stability of obtaining a solution to a different
problem).

For determine a weak solution y(k), k = 1,2, ..., M, a differential-difference equation
(2) will get an a priori estimate that does not depend on 7.

Theorem 1. Let the conditions (5) be fulfilled and let them (x) € L2(T). Under

TE<T0< 353 and any k=1,2,..., M for functions u(k) correctly fair estimates

ly(k)llz,r < e (llellz,r + 201 £ (k) |2,1,r) (6)

and

ly(m)lI3 - + 2a.7 Z |42 12 4 72 Z ly(®)ell3.r < Cllell3 r + [1f-(m)

|§,1,F)’ (7)

not dependent on the step 7; constant C' depends only on a., 8 and T.
P r o o f. Here are the main arguments, the full proof is presented in the work [13].
From equality y(k — 1)? = (y(k) — ty(k)¢)? = y(k)? + 72y (k)? — 27y (k)y(k); follows

2ry(k)y(k)e = y(k)? + 72 (y(k)e)* — y(k — 1)*. (8)

In the integral identity of the Definition 2 we will put n(z) = 27y(k) and, taking into
account the ratios (5), (8), we get inequality

[y(k)*dz — [y(k —1)*dz + 72 f )2dz + 2a. )2z <
r r
=27 [ b(x)y( )2dx+27ffT )dx
r
and then, when k =1,2,..., M,
oI = (k= DI o + 72yl + 20,7 422 < o
< orlly(®)3 . + 271 - (k) |2, 1y (k) [
where ¢ = 2f; here and below through || - ||2,r the marked norm in space Ly(T"). From
inequality (9) follow
ly(®&)3,r = ly(k = DIZ r < orlly(®)I3 r + 27 f- (k) (k)2 (10)

Let’s say that ||y(k)|l2,r + |ly(k — 1)||2,0 > 0. Dividing inequality (10) by expression
ly(k) (k — 1) lor, granting ly(E) 2/ () lox + l50: — 1)lax) < 1, reduce to

an estimate
ly(B)ll2,r < =57 ly(k = D2 + 21 £-(F) |2, (11)

under 7 < 19 < ﬁ. If |ly(B)|l2,r + lly(k — 1)|j2,r = 0, then out of (10) it should by
0 < o7||y(k) (k)||2,r. The obtained inequality also leads to an estimate (11) on
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which we receive

ly()ll2r < =5 ly(k = Dlla.r + 7251 (F) |2 <

k
< T lly(O)l2r + 27'521 Ty llfr(8)ll2r <
k
< by (IO +27 2 1f)lar ) <
S= k
< 7 (lyO)llax + 2o ®)laar) 1rlanr =7 5 1) lar

s=

—

the latter inequality is a consequence of the ratios %k < 1— < 20T at 7 < —Q and
m < €297, Thus, the estimate (6). By summing up k the inequality (10) by 1 to
m < M and using estimates (9), we come to inequality

ly(m )||2r+2a*TZ||dyk)ll2+T ley()
k=12, M,

Cllells r + 1fm)lI3 1),

here the constant C' depends only on a,, 8 and T'. The latter proves the correctness of the
estimate (7).

Corollary 1. From the inequalities (6) and (7) follows continuity in the spaces Lo(T")
and W (a,T") solutions of the differential-difference system (2), (4) according to the source
data o(x), f-(k).

Corollary 2. Inequality (7) makes it possible to establish the convergence of the
Rothe method for the initial boundary value problem (1), (3) in space W°(a; T'r). Let’s
designate it through wups(x,t) a function equal y(k) at t € (k—1)7, k7], k =1,2,..., M. It
is clear that upy(z,t) it belongs to the space W°(a; T'r) and satisfy inequality (7). Occur
estimate

lyalle,rr + 155 <O, (12)

where C* is constant, independent of 7; here and below through || - ||2,r, the marked norm
in space Lo(I'y). By analogy, we’ll introduce a function fy(z,t) equal to f(k) under

€ (k= 1)rkr], k = 1,2,..,M. Let it M — oo. Because of the estimate (12), from
the sequence yps(x,t) can distinguish a sub-sequence that is weakly convergent in norm
Wy°(Dr) to function y(z,t) € W5°(a; T'r). It is not difficult what y(z, t) is a weak solution
to the initial boundary value problem (1), (3), i. e. satisfies the identity of Definition 1.
To do this, it is enough to establish this identity for a function n(x,t) € C'(I'r4,) that
satisfy the conditions of agreement in all internal nodes of the graph I" at any ¢ € (0,7
and conditions n|or, = 0, N|iepr,r4-) = 0 (see above the definition of space W{(a; T'r)).
Functions 7(k) are defined by 7(z,t) equality n(k) = n(x, k1), k = 1,2,..., M, in addition
n(k)y = Lin(k +1) — n(k)] (note that the difference quotient n(k), and n(k); = 2[n(k) —

T

n(k —1)] are right and left approximations derivative %7} at the point ¢t = k7, respectively).

As done above for y(k), by n(k) defined sectionally continuous by t function 7, (z,t),
onn (z,t)  Ona(x,t)

am‘gff’t), amg(f_’t). It’s easy to verify that ns(z,t), =5 ==, === uniformly converge
at M — oo on I'r to the functions n(z, t), W, —Ongi’t), respectively, where ns(z,t) = 0,

te [T, T+ 7]

3. The problem of optimal control. Turn to the problem of optimal control of
differential-difference system (2), (4). Let’s designate through U the control space (set
depending on the nature of the applied tasks, everywhere below U = L2(I")) and let the
linear operator B : U — La(I") be set.
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Let’s designate through y(k;v(k)) := y(z, k;v(k)), v(k) :=v(x;k) e U (k =0, 1,...,
M), the solution of the system

Ly(k v(k)) = ylk = 1500k = 1))] = & (ale) 25200 ) 1 ba)y (ki (k) = .

= fo(k) + Bu(k), k=1,2,...,M,

y(0;v(0)) = ¢(), y(k;v(k)) lzeor =0, k=1,2,..., M. (14)

Functions y(k; v(k)) describe the state of the system (13), (14), the observation is set
by a line operator C' : W (a;T') — La(T), i. e. w(k;v(k)) = w(z, k;v(k)) = Cy(k;v(k)).
As ensues from consequence 1 of Theorem 1, linear display v(k) — y(k;v(k)) of space U
into space Wi (a;T) continuously for any k = 1,2, ..., M.

Definition 3. A weak solution of the differential-difference system (13), (14) is called
functions y(k; (k) = Wha,T) (k = 0,1,2, .., M), y(0;0(0)) = (x) (o(z) € L(T),
satisfying an integral identity

ny(k; v(k))e n(z)dz + £(y(k; v f fr (k) n(x)dz + (Bu(k),n)
(k =1,2, ...,M)

for any n(x) € Wi(a,T'); equality y(0;v(0)) = ¢(z) is understood almost everywhere.
Let’s define the minimizing functional by ratio

V(v) = ¥(v(1),v(2),...,vo(M)) =T Z W (v(k)), (15)
Ui(v(k)) = [|Cy(k; v(k)) — wo (k)17 r) (Nv(k) v(k))u,

where wo (k) (k = 1,2,..., M) are given elements of space La(I"') and N : U — U is linear
positively defined Hermite operator for which the conditions are met

(N(v(k), (v(k))u =sllv(k)]|Z, s >0 Vo(k) €U, k=1,2,...,M; (16)

here and everywhere below the symbol (-, ) is denoted a scalar work in space Lo(T"), unless
it is specified specifically. The functional ¥(v) is determined by an operator v — y(v) that
establishes for all k = 1,2, ..., M the connection of the control of the effect v(k) with the
state y(k; v(k)) of the system (13), (14) and the operator y(k;v(k)) — Cy(k;v(k)) of the
transition from state y(k;v(k)) to observation Cy(k;v(k)).

Let’s mark through Uy a convex closed subset of set U.

The problem of optimal control system (13), (14) is to determine

inf U(v), v={wk),k=1,2,..,M}.
veUp
Theorem 2. Let the conditions of the Theorem 1 be fulfilled. The task of optimal
system control (13), (14) has the only solution v* € Up, i. e. ¥(v*) = miUn U(v), here
veUy

v ={v*(k),k=1,2,..., M} € Uy is the optimal control of the system (13), (14).

P r o o f. By virtue of the approval of the statement 1 of Theorem 1 linear mapping
v — y(v) of the space of admissible control U in the space of the states W{(a,T') of
the system (13), (14) continuously. The functional ¥(v) is determined by the transition
operator v — y(v) from control effect v to state y(v) of system (13), (14) and the transition
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operator y(v) — Cy(v) from state y(v) to observation Cy(v). Further proof uses the
property of the coercive of the quadratic component of functional ¥(v) on the convex
closed set Uy. Namely, based on the notation (15) for any k = 1,2, ..., M, we have

U (v(k)) = [[Cy (ks v(k)) — wo(k)|IL, ) + (Nv(k), v(k))r =

= [[Cy (ks v(k)) = y(0;v(0))) + Cy(0;v(0)) — wo(k)||7, ) + (Nu(k), v(k))v =
= B (v(k), v(k)) — 2L (v(k)) + | Cy(0;v(0)) — wo(k)II7,

where

Sk(v(k), (v(k)) = (Cy(k; v(k)) = y(0;0(0))), Cy(k; v(k)) —y(0;0(0)))) + (Nv(k), v(k))v

is a square form on U,

Lr(v(k)) = (wo(k) — Cy(0;v(0)), Cy(k; v(k)) — y(0;0(0))))

determines the linear form on U. Hence and (16) follow the view

U(v) = F(v,v) + L), Flv,v)=71 ﬁi Sk(v(k),v(k)), Lv)="71 %i:l Li(v(k)).

Conditions (16) guarantee the coercive of a square form §(v,v). Further reasoning
almost literally repeats the given in the work [14, p. 13].

Remark 2. In the case N = 0, it can be shown that when the conditions of the
Theorem 1 are met, there is a nonempty closed and convex subset UJ C Uy such that

* : 0
U(v*) = vlenlﬁa U(v) Vv e Us.
The proof of this fact is similar to the presented in the work [14, Theorem 5.2, p. 47].
Next, let’s dwell on a detailed study of the conditions of optimal control and get the
ratios that determine optimal control. To simplify the representations of distinct trans-
formations, further operations is taken simultaneously for all states y(k;u(k)) and control
u(k), k = 1,2,..., M; notations y(k; u(k)), y(k;u(k)): and u(k) are replace by y(u), y(u):
and u, respectively.
Pre-proving the following auxiliary statements (see also [14, p. 16, 56]).
Lemma 2. Let the conditions of the Theorem 1 be fulfilled and v* = {u*(k), k =
1,2,..., M} € Uy is the minimizing element of functional ¥(v), then inequality

U (u*)(v—u*) =20 (17)

is fulfilled for any v € Up; derivative ¥’ (u*) is understood in the sense of Frechet.
P r o o f. Since u* is a minimizing element of functional ¥(v), for any v € Uy and
any number 6 € (0, 1) is true inequality ¥(u*) < ¥((1 — @)u* 4 6v). This means that
1 * * 1 * * *
SW((1 = 00" + 60) — W(u')] = SV +6(v — u')) — V()] >0
and ¥'(u*)(v —u*) > 0 at § — 0 whence it should be (17). The inverse statement is also
true. Indeed, let for certain fixed u € Uy fairly inequality ¥’ (u)(v —u) > 0 for any v € Us.
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Due to the convexity of the mapping v — ¥(v) (see proof of the Theorem 2) for any

v € Uy has a place
SIW((1 = B)u+00) — W(w)] = 5[U(u" + 00 — ")) — V()] < V(v) V(o)

which means 0 < ¥'(u)(v — u) < ¥(v) — ¥(u) at § — 0. It follows ¥(v) > ¥(u) for any
v € Uy, 1. e. u is a minimizing element of functional ¥(v).
Lemma 3. For all v,u € Uy take place a ratio

' (u)(v—u) =y(©) —y(u), (18)

here y'(u) is derivative in the sense of Frechet mapping u — y(u).
P r o o f. Based on Definition 3, for control u(k),v(k) € Us (k =0,1,..., M) is a ratio

7 Ff[(y(k; v(k)) = y(k;u(k))) — (y(k — Lok = 1)) —y(k — Lu(k — 1)) n(z)dr +
+ Uy(k; v(k)) — y(k; u(k)),n) = (B(v(k) — u(k),n)u
for any function v(z) € W(a, F). On the other hand, we have

(19)

%! k) +9(v(k) —u(k))) —y(k; ( ) —
—(y(k—l;U(k—l)ﬂ?( ( — 1) —u(k—1) —ylk = Lulk —1)))]n(z)de+
+ Uy (ks u(k) + 9(0(k) — u(k))) — y(k;u(k)),n) = ( 3(0(k) — u(k), n)u

for any ¥ € (0, 1) and any function n(z) € W{(a,T). By dividing both parts of the received
ratio by ¢ and calculating the limit at ¥ — 0, come to the ratio

%Ff[y’(k; u(k))(v(k) —u(k)) —y'(k = Lu(k = 1))(v(k = 1) —u(k = 1)) n(z)dz +
+ Ly (k; u(k)) (v(k) — u(k)),n) = (B(o(k) — u(k), n)u

for any function n(z) € W}(a,T'). Comparing the left parts of the ratios (19) and (20),
come to the equality

y'(k;uk)(v(k) —u(k)) = y(k;o(k)) —y(k;u(k)), k=0,1,.., M,

(20)

that complete the proof.
Let u(k) is the optimal control for each fixed k = 1,2, ..., M, then by virtue of (17)
and (18) have

— (Cylks ulk)) — wolk), Cyf
— (Cylhs uk)) — wo(k), Cly(ks v(k))  y(ks u(k))))

for any v(k) € Uy.
Denote through C* the operator, conjugate to C, then the ratio (21) takes the form
of

(C*(Cy(ksu(k)) — wo(k)), y(ksv(k)) — y(k;u(k))) + (Nu(k), v(k) —u(k))v >0, (22)
s0, based on the notation (15) of functional ¥(v) and ratio (17), we come to inequality

T %j: [(C*(Cy(k; u(k)) — wo(k)), y(ks; v(k)) — y(k; u(k))) + (Nu(k), v(k) — u(k))u] = 0
(23)
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for any v(k) € Upy. Thus, inequality (23) is a necessary condition for optimal control of the
system (13), (14).

A more detailed description of the conditions of optimal control can be obtained using
the conjugate state for the system (13), (14). In space W (a;T'), we introduce the notation
of a conjugate state p(k;v(k)) (k=1,2,...,M) and a conjugate system to a system (13),
(14), for which we will use the obvious equality

M M-1
Tkgl 0(k)d(k) = —1 kZ::O O(k)I(k)y — 0(0)9(0) + O(M)I(M)

for arbitrary functions (k) and J(k) (similar to the formula of integration by parts by
variable ¢ for functions 6(t) and ¥(t)), based on which we define the conjugate state
p(k;v(k)) (k= 1,2,..., M) to control v(k) (k = 1,2,..., M) as a solution to a conjugate
problem

—L[p(k+ 1;0(k + 1)) — p(k; v(k))] — 4% (a(x)%ﬁ(k))) + b(z)p(k; v(k)) =
= C*(Cy(k;v(k)) —wo(k)), k=0,1,...., M —1,

p(M;v(M)) =0, p(k;v(k)) [zeor= 0, k=0,1,....,. M — 1. (25)

Lemma 4. The solution of the system (24), (25) at small enough T is uniquely defined
as elements of space Wh(a;T).

P r o o f. To be sure of this, it is enough to renumber the ratios of the system (24),
(25) and apply the statement of Lemma 1. Indeed, by changing the numbering by law
l=M-k, k=MM-—1,...,1,0, we get that [ change from 0 until M and we come to
the system

~L05( — Liv(l = 1) = s o(0)] — 45 (alx) L) + b(a)p(; v(1) =
= C*(Cy(l;v(l)) —wo()), 1=1,2,.... M,

p(0;v(0)) =0, p(l;v()) lzear=0, I =1,2,..., M,

for which correctly of the Lemma 1.

Remark 3. The resulting differential-difference system (24), (25) correspond to a
differential problem conjugated with (1), (3) (see also [1, 4]).

For each fixed k = 1,2, ..., M transform inequality (22). Considering the ratios

(24)

~1 A:Z_IOI[p(k + Lu(k + 1)) — plk; u(k)][y(k; v(k)) — y(k; u(k))] =
= %é {ly(k: v(k)) = y(ks u(k)] = [y(k = Lo(k — 1)) = y(k = Lulk = 1)]} p(k; u(k)),

T elpls (k). (b o) = 0 ) = 3 oo — (ks u(b), (s k)

come to equality

M (C*(Cyks v(k)) = wo(k)), y(ks v(k)) — y(k; u(k) =
- é(m(k) — Bu(k), p(k; u(k))) = Ag(Bv(k) — Bu(k), p(k; u(k))) =
_ A:__Ol(B*p(k, w(k)), v(k) — u(k))o
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(there are zero equality y(0;v(0)) — y(0;u(0)) and p(M;u(M))). Therefore, from the ob-
tained equality flows

(C*(Cy(k;v(k)) —wo(k)), y(k;v(k)) —y(k;u(k))) = (B p(k;u(k)), v(k) —u(k))u
for each fixed £k =0,1,..., M — 1, then inequality (22) can be rewritten in the form
(B*p(k;u(k)) + Nu(k), v(k) —u(k))uv 20 Vo(k) € Us, k=0,1,..., M, (26)

and inequality (23) is transformed to form
M
7 > (B*p(k;u(k)) + Nu(k), v(k) —u(k))y =20 VYo(k) €Uy, k=0,1,...,M, (27)
k=0

as above is taken into account y(0;v(0)) — y(0;u(0)) = 0 and p(M;u(M)) = 0.

Thus, the totality of ratios (13), (14), (24), (25) and (27) determines the optimal
control u(k) and corresponding states p(k;u(k)), p(k;u(k)), k= 1,2,..., M.

Private case. Let Uy = U, i. e. hence are no restrictions on control — a fairly often
case in practice. Inequality (26), (27) take the form of equality

(B*p(k;u(k)) + Nu(k), v(k) —uw(k))y =0 Vo(k) €Uy, k=0,1,..., M,

Tk%O(B*p(k;u(k)) + Nu(k), v(k) —u(k))y =0 Vou(k) €Uy, k=0,1,...,M,

respectively. The latter provide an opportunity to determine the optimal control from the
ratios B*p(k;u(k)) + Nu(k) =0,k =0,1,..., M:

u(k) = —N~1B*p(k;u(k)), k=0,1,.., M.

In this case, the state y(k) of the system (13), (14) and the conjugate state p(k) of the
system (24), (25) for each fixed k = 0,1, ..., M are defined as weak solutions of problems

Ly(k) = y(k = 1] = & (a(@) BE) + b(a)y(k) + BN B"p(k) = £+ (k).
k=1,2,...M, y(0)=p(zx)

~Lip(k+1) = p(k)] = & (a(@) L&) +ba)p(k) — C*Cyk) = —C wo(k),
k=0,1,..M—1, p(M) =0,

in space Wé (a;T), and optimal control — by formulas
u(k) = —N"1B*p(k), k=0,1,..., M.

In the case N = 0 it is possible show that when the conditions of the Theorem 1 are
fulfill, there is a nonempty closed and convex subset UJ of the set Uy that ¥ (u) = }Eng U (v)
velUsp

for any u € U] (see Remark 2).

Finally we get the following statements.

Theorem 3. Let the conditions (5) be met.

1. If the set Uy is bounded, then the optimal control uw = {u(k) € Us, k =0,1,..., M}
and it of the corresponding states y(k;u(k)),p(k;u(k)) € Wi(a;T), k = 0,1,..., M, are
determined by the solution of the system
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Ly (ks u(k)) - y(k — 1;u( — b () RO by (ks (k) =
= f-(k) + Bu(k), k= 1,2,.. ( ;u(0)) = p(x),

(k+ Lu(k+1)) — pk; -4 (a x (k "(k ) + b(z)p(k;u(k)) =
_ C(Colhsuk ))—wo(k))» k—o,l,...,M L () =0,
(B*p(k; u(k)) + Nu(k), v(k) — u(k))y =0 Yo(k) € Us, k=0,1,..., M.

2. If Up = U, then optimal control u is determined by formulas
u(k) = —N-'B*p(k), k=0,1,..., M,

and it’s the corresponding states y(k),p(k) € Wi(a;T'), k= 0,1,..., M, determined by the
solution of the system

Ly(k) — y(k = 1) = £ (a@) L) + b@)y(k) + BN"LB*p(k) = f-(k),
k=1,2,..,M, y(0)=p(x
~Lip(k+1) = p(k)] — & (a(@) 22 ) + b(@)p(k) = C*Cy(k) = ~C*wo(k),

k=0,1,....,M—1, p(M)=0.

At the same time: a) if the operator N # 0, the optimal control u € Uy is the uniquely;
b) if N =0, the optimal controls form a convez set U C Up.

4. Optimal control of the differential-difference equation with delay. At first,
in space W{(a;T) consider a differential-difference system with a constant delay without
control:

Hy(k) —y(k = 1)) = & (a() %2) +by(k) + ek —m) = L), 5
k=m+1,m+2,..M,

yk) =p(k), k=0,1,...m, 1<m < M, (29)

the coefficient ¢(r) is boundary measurable on I' function ¢(0) € Lao(T), ¢(k) € Wi(a;T),
k=1,2,...m

For the evolutionary differential equation (1) the constant control h = m7 < T define
two domains FO,h =TIy x (O,h) and Fh,T =TIy x (h,T): I'r = FO,h @] Fh,T- Differential-
difference system (28), (29) correspond to a evolutionary differential system

et — 2 (a(w) 2E2) + bl@)y(e,t) + c(@)y(.t = h) = f(z,1), 2.t € Tag,

y(ﬂf,t) = SO(l',t), Jf,t € 1_\0,h7 Y ‘.’EG@I‘T =0

(the system was considered in the work [1]).
Let’s introduce a delay operator Z to represent the system (28), (29) in a more suitable
form. Let Z : Wi(a;T) — W(a;T) is a linear continuous operator, defined by the ratio

yk), k=m+1,m+2,.., M,
Zy(k):{o k=1,2..m
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Let’s set the function F(k) € W{(a;T), k = 1,2, ..., M, the ratio

(k) — f(k), k=m+1,m+2, ., M,
"= (k) = (k= 1)] = & (a(x)d“f;—ik)) +b(x)p(k), k=1,..,m.

Then the differential-difference system (28), (29) will take the form

Ly(k) — 0k = 1] = & (o) %) + blay(h) + e Zy(k) = F(R). 50
k=1,2,.. M,
y(0) = ¢(0) € Ly(T). (31)

It is not difficult to show that all the statements of the previous section are true for a
differential-difference system (30), (31).

Next, let’s look at the optimal control problem, in addition keep all the notations
and concepts of Section 3. Consider a differential-different system with control v(k) € U
(k=0,1,..., M) the state of which y(k;v(k)) € W{(a;T) (k=0,1,..., M) is defined as the
solution to the problem

T

+c(x)Zy(k;v(k)) = F(k) + Bu(k), k=1,2,..., M,

Ly(k v(k) — y(k = Liv(k = 1))] = & (al@) 258D ) 1 ba)y (ki v(k) +

y(0;0(0)) = ¢(0) € La(T).

Optimizing functional ¥(v) is determined by ratio (15), the problem of optimal control
system (30), (31) has a uniquely solution (see statement of the Theorem 2 for the system
(30), (31)). The conjugate state p(k;v(k)) (k =1,2,..., M) is defined by a system similar
(24), (25) with the only difference that the conjugate system will contain an operator Z*
conjugate at Z:

yk), k=m+1m+2 .., M,

wawwwm={0k:12 -

The pairing system takes the form

~Lip(k + Lol + 1)) = p(k; o(k))] — 25 (a(@) 2ELED) + b(@)p(k; v(k) +
+c(x)Z*p(k;v(k)) = C*(Cy(k;v(k)) —wo(k)), k=0,1,... M —1,

p(M;0(M)) =0, p(k;0(k)) [zcor =0, k=0,1,..., M.

As it is easy to verify, the statements of the Theorem 3 remain correct.

Remark 4. Taken differential-difference system (2), (4) as an approximation of dif-
ferential system (1), (3) is not the only (the two-layer scheme used has an approximation
error O(7)). You can use the system as a more precise approximation

L3k + 1) = y(k) = Sk) =y = 1)] = & (a(@) 2D + b(@)y(k + 1) = f-(k)
k=1,2,..,.M

)

y(0) = p(z), y(1) =p1(2), @(x),¢1(x) € Wi(a;T),
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y(k) |zeor =10, k=0,1,..., M,

with an approximation error O(72) (see also work [15]). The study of such a system is
similar to the one presented above in Sections 2, 3.

5. Generalization for a many-dimensional case. The results (statements by
Theorems 1, 2 and 3) can be extended to a many-dimensional case. In the Euclidean space
R™ n > 2, let’s look at a network-like bounded domain <, comprised of N domains
(k=1,N), pairwise united by means of M nodal place w; (j =1, M, M < N): 3 =S,

where § = U Sk, 0 = Uw],moreover NS =0 (k #1), wjNwi =0 (5 # 1),
k=1 j=1
Sr(Nw; = 0 [16, 17]. Domains I, in nodal place w; share common boundaries in the

form of adjoining surfaces S; (meas.S; > 0). At each nodal place w; the adjoining surface

S; consisting of m; parts S;; (1 < ¢ < mj < N — 1) has a representation S; = U Sji

(meas S;; > 0). In addition S; and Sj; are parts of boundary 03, and 0, of domains
Sk, and Sy, , respectively; S]Z is two-sided surface for each 7, i: ng is interior surface, S;
is exterior surface. Thus, the nodal place w; is determined by the adjoining surface S;, for
which S;; are also the adjoining surface Sy, to S,, i = 1,m;. The boundary 93 of the
domain S is called the union of the boundary 93y, of domain 3y, (k = 1, N), which does

not include the adjoining surface of all node places: 0% = |J 9S4\ U S;. The domain
k=1 j=1

& has a network-like structure similar to that of the geometric graph (see also works [2,

16, 17]), each domain ) adjoins to one or two node places and has one or more of the

surface adjoining other domains (to compare with the structure of the graph: each edge of

the graph has two endpoints, of which one or both are conjugation nodes with the other

edges).

We use customary Lebesque spaces Lq(2), ¢ = 1,2, and the Sobolev space W3(Q),
where U is a bounded domain in R™. For each fixed k (1 < k& < N) denote through
W3 (k) the closure in W3(S%) a set infinitely dlfferentlable on Sy, functions equal to
zero on 9y, C 9. Let Q,(3) is a set of functions z : § — R? i 2lg, € W3 o(S) for each
k=1,2,..., N, u satisfies the condition of agreement

2l o=z _, i=1,my; [ a(=z )Oz(w dx + Z Ik a(z) Z8 gz = 0,

+ onj;
7" Sjcé)i‘rko i=1 S“Cagk

m;

for each node place w; on surfaces S; = |J Sji, 7 = 1, M; here vectors n; and n;; are outer
i=1

normals to S; and Sj;, respectively, a(x) is measurable bounded function from Lo ().

Closing the set Q,(S) in norm |z||& = ((2, 2)4)'/2, where

N

Gl = £ I (sohto) + 3 5020 ),

k=13,

let’s call space I/Vo(a7 ).
The space I/Vo(a7 ) considers a differential-difference system, similar (2), (4):

L(a(k) = 2(k = 1) = 52 (a(@) 58 ) + b@)2(k) = f(k), k=1,2,.., M,

2(0) = p(z), y(k) lzcos=0.
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Here, through % (a(m)agik)> denoted the sum > %(a(m)agik)>, measurable
L K 1 L K

Kyl=
bounded functions a(z), b(x) meet the conditions (5) (I' replaced by J); f(k) € La(S)
(k=1,2,....,M).

The main complexity in analysis such a differential-difference system and proving
statements similar to presented in Sections 3 and 4 is to establish conditions that guarantee
the spectral completeness and basis property of set of the generalized eigenfunctions of

operator z(k) = _6% (a(x) agx)) + b(z)z(k) in space Wé(a, ). The works [2, 16] shows
ways to obtain such conditions.

6. Conclusion. The work presents the approach of approximation of the evolutionary
differential system (1), (3) with distributed parameters on the graph using the method of
semi-digitization by temporal variable. A priori estimates of norms of weak solution (6), (7)
of differential-difference system (statement of the Theorem 1) make possibility to establish
not only the solvability of this system but also the evolutionary system (corollary 2 of the
theorem 1). For differential-difference system (1), (3) is presented analysis of the optimal
control problem without lag (13), (14) and with lag (Section 4). This essentially uses the
conjugate state of the system and the conjugate system for a differential-difference system.
It should be noted that the results presented in the work can be used in the analysis of
control problems [18, 19], stabilization [20-23] of differential systems, as well as in the
study of network-like processes of applied character [24-26].
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OnrumanbHoe ynpasiienue nudepeHInaIbHO-pa3HOCTHON mapaboJsimueckoii
CHCTeMOI ¢ pacHpe/ieJIeHHBIMHI ITapaMeTpamMu Ha rpade

A. II. 2Kabxo', B. B. IIposomopos®, A. H. IMTundanun’

1 Canxr-TlerepGyprckuit rocymapcrsenusiit yausepcuter, Poccuiickas ®eaeparus,
199034, Cankrt-lleTepOypr, YHUBepcuTeTCKasa Hab., 7-9

2 Bopomeskckuit rocygapcreenuniii ynusepcurer, Poccuiickass ®enepanus,
394006, Boponexx, YHUBEPCUTETCKAS ILJIL., 1

3 Vrusepcurer Dxyapao Monanane, Mo3zaMOux,
3453, ManyTy, OyabBap [lxynuyca Hbepepe, 1

Has uumrupoBanusi: Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of
a differential-difference parabolic system with distributed parameters on the graph // Bect-
nuk Cankr-Ilerepbyprckoro yausepcurera. [Ipuknagunas maremaruka. Vudopmaruka. IIponecest

yupasierus. 2021. T. 17. Bom. 4. C. 433-448. https://doi.org/10.21638/11701/spbul(.2021.411

PaccmarpuBaerca 3amada  onmTmMasibHOrO yupasieHus AuddepeHnaIbHO-Pa3HOCTHBIM
ypaBHEHHEM apabOIMIeCKOro TUIA C PACIpeeIeHHbBIMU IapaMeTpaMu Ha rpade B Kiacce
cymmupyembix ¢yukiuii. IIpur 3Tom ocoboe BHIMAaHME yaessieTcs: ¢Bsa3u auddepeHnaIbHo-
Pa3HOCTHOU CHUCTEMBI C IBOIIOIMMUOHHON nuddepeHInaibHoil CHCTEMON U IIOUCKY YCJIOBHIA,
IPU BBIIIOJIHEHNN KOTOPBIX COXPAHAOTCH cBoMcTBa muddepennmanbaoil cucremsr. Takyio
CBSI3b YCTAHABJIMBAET HCIOIB3YeMbINl mist anddepeHnansbHOil CUCTeMBbl yHUBEPCAIbHBIN
MEeTO/T IOJIYAUCKPETHU3AINN 110 BPEMEHHON mepeMeHHOU, Jafomuil 3bdeKTUBHbIN UHCTDPY-
MEHT IIPU OTHICKAHWUH YCJIOBUAU OJHO3HAYHON PAa3PEmnMOCTH U HEIPEPBIBHOCTU II0 MCXO/I-
HBIM JaHHBIM 118 a1ud depeHuaIbHO-PA3ZHOCTHOM CUCTEMbI. ATIPUOPHBIE OIIEHKHU HOPM CJIa-
boro pemennsi quddepeHnaIbHO-PA3HOCTHON CUCTEMBI TO3BOJISAIOT YCTAHOBUTH HE TOJIb-
KO Pa3penInMOCTh JAHHOU CHCTEMBI, HO M CyLIECTBOBAaHUE CJIA00Tr0 pemreHns: 3BOJIIOIUOH-
Hoit tuddepennnanpHoit cuctemsl. g muddepeHnnaabHO-PA3HOCTHOM CHCTEMBI IIPECTAB-
JIeH aHAJIN3 33/a9d ONTHUMAJIBHOIO YIIPABJIEHUS, COAEPIKAIINN €CTeCTBEHHOE B TAKUX CJIy-
YasgX JOUOJHUTEIBHOE UCCIEIOBAHNE 3303491 C BPEMEHHBIM 3ama3apiBanueM. [Ipu sTom cy-
MIECTBEHHO MCIIOJIB3YIOTCS COIPSIXKEHHOE COCTOSIHUE CHCTEMBl W COIPSIKeHHAsi CUCTeMa JJIst
mnd dbepeHmaTbHO-PA3HOCTHON CUCTEMBI — MOJIY9€HbI COOTHOIIEHNUsI, OIIPE/Ie/IAIOIINe OIITH-
MaJIbHOE YIIPABJICHHE MU MHOXKECTBO ONTHUMAJIHHBIX YIIPABJICHUI. YKa3aHbI IIyTH II€PEHOCA
TIOJIy9YeHHBIX PEe3y/IbTAaTOB HA C/Iydail aHa/In3a 3a7a< ONTHMAJIHHOIO YIIPABJIEHHS B KJIacce
dyukmil ¢ HOCUTEIIMU Ha ceTerronobubix obaactsax. [lepexon ot sBostormonnoit muddepen-
IMAJIBHON CUCTeMBI K Iud depeHInaibHO-PA3HOCTHON SBUJICS €CTECTBEHHBIM IIArOM M3y de-
HUS PUKJIATHBIX 33a< TEOPUHU II€PEHOCA CIIOMIHBIX cpen. IIpuBeeHHbBIe pe3yIbTATh Jie-
JKaT B OCHOBE aHAJIN3a 3339 ONTHUMAJIHGHOTO yIIpaBieHus nud depeHnaIbHbIMUA CUCTEMAMUI
C pacrpe/e/IeHHBIMA TTapaMeTpaMu Ha rpade, BbISBICHB HHTEPECHbIE AHAJIOTUH C MHOroMa-
30BBIMU 33/[a9aM¥ MHOTOMEPHOM THIPOTUHAMUKH.

Karouesvie carosa: nuddepeHnnaaIbHO-PA3HOCTHAS CUCTEMA, COMPIKEHHAA CUCTEMA, OPUEH-
THPOBAHHBIN Tpad, OITUMAIBLHOE TOUYETHOE YIIPABJICHNE.
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